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Correlation Clustering [BBC]

Given a complete graph G = (V,E)

E = E+ ∪ E−

Want to cluster + edges and separate − edges

Maximize Agreements

Minimize Disagreements

Some Applications

Classification

Entity Resolution
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Algorithm: CC-Pivot [ACN]

CC-Pivot(G = (V,E = E+ ∪ E−)):
Pick random pivot i ∈ V
Set C = {i}, V ′ = ∅
For all j ∈ V \ {i}:

If {i, j} ∈ E+: Add j to C
Else: Add j to V ′

Let G′ be the subgraph induced by V ′

Return clustering C, CC-Pivot(G′)

Runs in O(|E|) time

Randomized expected 3-approximation
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Algorithm: CC-Pivot [ACN]

Example:
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Weighted Corr. Clustering [BBC, ACN]

Every pair of nodes i, j has weights w+
ij ≥ 0 and w−ij ≥ 0

Probability Constraints: w+
ij + w−ij = 1

Clustering Cost:∑
i,j in different clusters

w+
ij +

∑
i,j in same cluster

w−ij

Relation to original CC problem:

{i, j} ∈ E+ ⇔ w+
ij = 1 and w−ij = 0

{i, j} ∈ E− ⇔ w+
ij = 0 and w−ij = 1
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Extending CC-Pivot [ACN]

Given G = (V,E,w):
Form the unweighted majority instance Gw:

Place {i, j} in E+
w if w+

ij > w−ij
Place {i, j} in E−w if w−ij > w+

ij

Break ties arbitrarily

Run CC-Pivot on Gw = (V,Ew = E+
w ∪ E−w )

Approximation Results:

5-approx if w satisfies the probability constraints
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Proof Outline of Approx Bounds [ACN]

“Bad Triangles”:

Two edges are + but one is −

Lemma: Approx ratio of CC-Pivot ≤ worst cost ratio for
bad triangles

0/1: {i, j, k} has cost 1 but {i}, {j, k} has cost 3

Prob: {i, j, k} has cost 1
2 but {i}, {j, k} has cost 5

2
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Relation to Probabilistic Graphs [KPT]

Probabilistic graph G = (V, p):

p(u, v) = probability edge exists between u, v ∈ V
Possible world G v G sampled with probability

Pr(G) =
∏

{u,v}∈EG

p(u, v) ·
∏

{u,v}/∈EG

(1− p(u, v))

Useful for modelling uncertainty
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Relation to Probabilistic Graphs [KPT]

Edit distance: “number of disagreeing edges”
Between possible worlds

D(G,G′) = |EG \ EG′ |+ |EG′ \ EG|

Between probabilistic graph and possible world

D(G, G′) = E
GvG

[D(G,G′)] =
∑
GvG

Pr(G)D(G,G′)

Efficient calculation

D(G, G′) =
∑

{u,v}∈EG′

(1− p(u, v)) +
∑

{u,v}/∈EG′

p(u, v)
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Relation to Probabilistic Graphs [KPT]

pClusterEdit: find clustering C that minimizes D(G, C)
Same objective as CC with probabilistic weights

w+
uv = p(u, v), w−uv = 1− p(u, v)

pKwikCluster: CC-Pivot for probabilistic graphs

cluster nodes with p(u, v) ≥ 1/2

Same running time / approximation ratios
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pKwik Applications

pKwikCluster has been successfully used on

Social network graphs [KPT]

Protein-protein interaction graphs [KPT; HWH]

Event graphs generated from news stories [CMB]
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Other Algorithms for CC Problem

Deterministic CC-Pivot [ZW]

Fixed “best” order of choosing pivots

Same approximation ratios as CC-Pivot

Runs in O(|V |3) time

LP rounding methods

2.5-approx for probability weights [ACN]

2.06-approx for 0/1 weights [CMSY]

Run time dominated by LP solver

CC-Pivot / pKwik still most efficient for large graphs
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Drawbacks of CC-Pivot

CC-Pivot / pKwik performs poorly on star graphs

Expected 1.5 × OPT for 0/1 star

Expected 2 × OPT for 1/2 edge weight star
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A New Approach: RandomNode*

Pick unclustered nodes one at a time

First node creates its own cluster

All others: add to existing cluster, or create own

Greedily minimize growth of objective function

Properties:

Also linear in the number of edges

Each cluster has average edge weight ≥ 1/2

* Inspired by Node algorithm for oracle query reduction [VBD];
similar to greedy algorithm for online CC [MSS]
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A New Approach: RandomNode

Example review:
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A New Approach: RandomNode

Example review: Star graphs

Any ordering produces optimal-valued clustering
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A New Approach: RandomNode

Lemma: RandomNode runs in O(|V |2) = O(|E|) time

Proof: decision for each node requires O(|V |) time

S = previously settled nodes; u = current node

Store
∑

v∈C p(u, v) for each current cluster C

Cost of adding to existing cluster C:∑
v∈C

(1−p(u, v))+
∑

v∈S\C

p(u, v) = |C|+
∑
v∈S

p(u, v)−2
∑
v∈C

p(u, v)
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A New Approach: RandomNode

Lemma: RandomNode clusters have avg weight ≥ 1/2

Proof: S = settled nodes; u = current node
Adding u to cluster C implies:∑

v∈C

(1− p(u, v)) +
∑

v∈S\C

p(u, v) ≤
∑
v∈S

p(u, v)

Subtract
∑

v∈S\C p(u, v):∑
v∈C

(1− p(u, v)) ≤
∑
v∈C

p(u, v)

Therefore |C| ≤ 2
∑

v∈C p(u, v) and 1
2
≤ 1
|C|
∑

v∈C p(u, v)
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Best Ordering: DeterministicNode

Expected Cluster Size [VBD]: ECS(u) =
∑

v∈V \{u}
p(u, v)

Theorem: Ordering nodes greatest to least by ECS is
the best ordering for RandomNode (in expectation)

Properties:
Still linear in |E|

Compute ECS for each node: O(|V |2)
Order nodes by ECS: O(|V | log |V |)

Edges between clusters now have avg weight ≤ 1/2
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Best Ordering: DeterministicNode

Theorem: ECS is best expected order for RandomNode

Proof: Si = settled nodes; ui = current node; n = |V |
Cost increase at iteration i is ≤

∑
v∈Si−1

p(ui, v)

Estimate using i−1
n−1
∑

v∈V \{ui} p(ui, v) =
i−1
n−1ECS(ui)

Total expected cost bounded by
∑n

i=2
i−1
n−1ECS(ui)

Minimized when ECS(u2) ≥ · · · ≥ ECS(un)
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Best Ordering: DeterministicNode

Lemma: Edges between clusters have avg weight ≤ 1/2

Proof:
First node ui to form a new cluster satisfies∑

v∈C1

p(ui, v) <
∑
v∈C1

(1− p(ui, v))⇒
1

|C1|
∑
v∈C1

p(ui, v) <
1

2

Approximate value of 1
n−1ECS(ui) < 1/2

Each subsequent node uj has ECS(uj) ≤ ECS(ui)
Expected avg edge weight between clusters is

1

n− 1
ECS(uj) ≤

1

n− 1
ECS(ui) < 1/2
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Cluster Improvement

Lemma: for any G, the cost of the DeterministicNode
clustering of G is ≤ the cost of G being one cluster

Proof:
A := intra-cluster edges of DNode(G)
B := inter-cluster edges of DNode(G)
p(e) := weight of edge e
DNode ⇒

∑
e∈B p(e) ≤ |B|/2

⇒ 2
∑

e∈B p(e) ≤ |B|
⇒
∑

e∈B p(e) ≤
∑

e∈B(1− p(e))
Thus∑

e∈A

(1− p(e)) +
∑
e∈B

p(e) ≤
∑
e∈A

(1− p(e)) +
∑
e∈B

(1− p(e))
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Cluster Improvement

Hybrid Algorithm: on graph G

Obtain clusters C1, . . . , Ck from pKwik(G)

Let Gi be the graph induced by Ci

Return DNode(G1), . . . ,DNode(Gk)

Properties:
Still linear in |E|∑k

i=1 |Ci|2 ≤
(∑k

i=1 |Ci|
)2

= |V |2

Improves cluster scores from pKwikCluster
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Experiments

Test Data Sets [FSS, GFSS]:
All Sports: 200 nodes, 19900 edges

Images of athletes from 10 different sports

Gym: 94 nodes, 4371 edges
Images of gymnastics athletes

Cora 200: 190 nodes, 17955 edges
Title, author, venue, and date of scientific papers

Landmarks: 266 nodes, 35245 edges
Images of landmarks in Paris and Barcelona
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Experiments: pKwik vs Hybrid

pKwik and Hybrid Objective Value Comparison:

Run pKwikCluster for 500 iterations

Improve each iteration by hybrid algorithm

Report rolling minimum score (every 10 iters)
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Experiments: pKwik vs Hybrid
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Experiments: Best Value

Best Objective Value Comparison:

Run DeterministicNode on each graph

Compare with best results from pKwik and Hybrid
Lower bound: best clusterings across sets of 3 nodes

LB(G) =
1

n− 2

n∑
i=1

n∑
j=i+1

n∑
k=j+1

best(i, j, k)
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Experiments: Best Value
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Experiments: Clustering Quality

Check algorithm results against ground truth graph

Edit distance: # disagreements between clusterings

Error rate: edit distance divided by |E|
Noise rate: obj val of ground truth divided by |E|

G matches ground truth = 0% noise
G opposite of ground truth = 100% noise
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Experiments: Clustering Quality
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Parallel Algorithms

Multi-threaded versions of CC-Pivot [PPORRJ]

Version 1: Concurrency Control (3-approx)
Choose k pivots with a precedence order
Form k clusters on parallel threads
Award conflicting claims to higher precedence pivot

Version 2: Coordination-Free ((3 + ε)-approx)
Sample a small number of working pivots
Ignore any edges between sampled pivots
Create clusters for each pivot in parallel

Both versions expected to finish in polylogarithmic
number of rounds
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Parallel Algorithms

Multi-threaded version of RandomNode

k threads, n/k rounds
Stage 1: parallel compute cluster costs for k nodes

Keep k lowest cluster choices per node

Stage 2: add nodes to clustering one at a time
Update cluster choices for remaining nodes in parallel

Runtime: Stage 1 = O(n), Stage 2 = O(k2)
Overall: O(n2/k + kn)

DNode: parallel compute ECS and sort in O(n2/k) time
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Parallel Algorithms

Parallel Cluster Improvement

Run multi-threaded pKwikCluster on single machine

Distribute resulting clusters to separate machines

Improve each cluster using multi-threaded DNode

Collect new clusters together
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Constrained Cluster Sizes [PM]

Given integer K ≥ 1, all clusters must have size ≤ K
LP rounding alg: 6-approx

All probabilistic graphs

CC-Pivot adaptation: 7-approx
0/1 graphs only
Efficient version: 11-approx
Works well experimentally though
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Constrained CC-Pivot [PM]

Constrained CC-Pivot: on graph G with 0/1 weights,

“Remove” smallest number of edges from G so that
every node has at most K − 1 neighbors

Run CC-Pivot on new graph and return clustering

Probabilistic Graphs: use “majority instance”

0/1 graph formed by rounding edge weights
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Constrained CC-Pivot [PM]

Approximation Ratios: CC-Pivot α-approx for G,

Constrained CC-Pivot: 2α + 1

0/1 graphs: 7-approx

Probabilistic graphs: 11-approx

Efficiency:

Finding smallest edge set: O(
√
K|V ||V |2) time

Instead, let every node choose K − 1 neighbors

Approximation ratio increases to 3α + 2

11 for 0/1 graphs, 17 for probabilistic graphs
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Bounded pKwik / Hybrid

Tweak for Probabilistic Graphs:

Run pKwikCluster directly on G

Each node chooses top K − 1 neighbors

Hybrid approach for cluster improvement:

All clusters from Bounded pKwik have size ≤ K

Run DNode on each cluster—sizes can only decrease

Cluster cost still expected to improve
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Experiments: Constrained Cluster Sizes

Test Bounded pKwik and Hybrid on four data sets

Max cluster sizes K = 5, 10, 15, and 20

Report best result after 500 iterations

Compare against the (unconstrained) lower bound

Algs perform much better than the 17-approx ratio
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Experiments: Constrained Cluster Sizes
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Future Work

Apply cluster improvement to known CC-Pivot variants

Data stream model

Fairness constraints

Find efficient algorithms for other CC variants

Non-uniform cluster size constraints

Generalized weight systems

Number of clusters constraints
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