Andy Huynh PhD Candidate in Computer Science

\boxtimes huynh.n.andy@gmail.com · $\widehat{\otimes}$ ndhuynh.com · $\widehat{\otimes}$ United States

Research Interest

Databases, Tuning and Optimizing Data Systems, Robust Data Systems, High Performance Computing

Education	
Ph.D. Computer Science	2017 - Present
Boston University with Manos Athanassoulis	
B.Eng Computer Engineering Magna Cum Laude with Distinction University of Minnesota, Twin Cities with Vladimir Cherkassky	2014 - 2017
Awards	
IBM Ph.D. Student Fellowship	2020
Dean's List 6 Semester at University of Minnesota	2014 - 2017
Experience	
Ph.D. Researcher at Boston University with Manos Athanassoulis	2017 - Present
Research Intern at Netapp in Advanced Technology Group	2019
Machine Learning Research Intern at Bose in Automotive Group	2018
Undergraduate Researcher at University of Minnesota with Vladimir Cherkassky	2016 - 2017
Firmware Engineering Intern at Medtronic	2017
Undergraduate Researcher at University of Minnesota with Dr. Bin He	2015 - 2017
Undergraduate Researcher at University of Minnesota with Jack Stubbs, Fluvio Lobo	2014 - 2017
Publications	

- 1. Endure: A Robust Tuning Paradigm for LSM Trees Under Workload Uncertainty **Huynh A**, Chaudhari H, Terzi E, Athanassoulis M. Under Submission
- Analysis of Allogeneic Hematopoietic Cell Transplant Patients Using Self-Organizing Maps Huynh A, Cherkassky V. Undergraduate Honors Thesis, 2017, Department of ECE, University of Minnesota Twin Cities.
- 3. Modeling of Swine Diaphragmatic Tissue Under Uniaxial Loading Huynh A, Molina Espinosa M, Lobo Fenoglietto F, Singal A, Iaizzo P. ASME Journal of Medical Devices, 9(3), 3-3. 2015.

Posters and Presentations

- 1. Robust LSM-Trees: Tuning for Workload and Resources Uncertainty RedHat Greater New England Research Interest Group Meeting, Presentation, May 2021
- 2. Tuning Data Systems Under Uncertainty in Workload North East Database Day 2020, Poster

Teaching

CS 460: Introduction to Database Systems	Fall 2020
CS 591A: Data Systems Architecture	Spring 2020
CS 591P: Object Oriented Programming in Java	Fall 2018, Spring, Summer, Fall 2019
CS 112: Introduct to Computer Science II	Spring 2018, Summer 2018
CS 111: Introduction to Computer Science I	Fall 2017
PHYS 1302W: Introductory Physics for Science and Engineering II	Spring 2015

Selected Works

Robust LSM Trees: I am implementing a new robust tuning paradigm for LSM Trees. By framing the tuning problem as an optimization problem that takes into consideration uncertainties in the input factors, we can find a design that, when deployed, is robust to changes in the expected workload and resources. I utilize Python to create an optimization framework that solves the modeled problem, then pipes the design decisions into a C++ framework that exposes tuning knobs of RocksDB. An instance of the database is deployed and we can test this on randomized or real workloads.

Optimizing Distributed Data Placement: I worked on creating a model for optimal data placement in a distributed data system that contains a high level of separation between the data nodes and the compute nodes. In a team of two, we created a simulation of the particular system setting, formulated the data placement problem as an optimization problem, and utilized the Mosek optimization package in C++ to show the improvements in performance and the competitive computation time com- pared to various other common heuristics and strategies.

Optimal Column Stores: I am working on creating a key-value column storage engine that takes into consideration the access profile across keys in order to optimally partition columns for future workloads. In addition I am taking a look how to formulate the partitioning problem as a robust optimization problem to take into consideration shifts in the expected workload. This system is open-source and written in C++.

B.Eng Thesis: I worked on analyzing blood factors from a cohort of cancer patients who have all undergone allogeneic hematopoietic cell transplant procedures using machine learning techniques. In particular I utilized self-organizing maps as a technique to visualize and understand relationships between the outcome of patient procedures and blood factors.

Mentoring

Caterina Caravaggio: Exchange student from Universit'a di Bologna

Summer 2020