Linking, Compiling, and Make filing...

CS 410 Software Systems (Spring 2024)

Slides: Anton Njavro

main.c helper.c

Compilation Pipeline

e Our program takes a lengthy path from being an (I;r,]iljgz) (I;?;jilcaf;:)
ASClII source file to getting executed in memory. l l

e Understanding the nuances of this process enables
us to build large programs and avoid very subtle, yet main.o helper.o
difficult bugs. 1 1

e Linker helps us combine various chunks of data and | Linker (ld)
code into an executable file that can be loaded in l
memory and executed. myprogram

e Often hidden in simple programs due to compiler

drivers. [$ gcc -o myprogram main.c helper.c]

Static Linking

e GNU Linker (Id) takes as an input a set of relocatable object files
and command-line arguments and generates a executable
object file which can be loaded by loader.

e Relocatable object files are made of different code and data
sections, each section itself is a contiguous sequence of bytes.

e Linker has two main tasks:

o Symbol Resolution

o Relocation

e Linkers have minimal understanding of target machine.

Object Files

Three main forms of object files are:
o Relocatable object file
o Executable object file
o Shared object file

Compilers and assemblers generate relocatable
object files.

Linker creates executable object file.

There are formats guiding how object files are
organized: Windows (PE), MacOS (Mach-0),
Linux (ELF).

First UNIX systems from Bell Labs used (a.out)

Sections <

ELF header

.text

.rodata

.data

.bss

.symtab

.rel.text

.rel.data

.debug

.line

Describes
object file
sections

.strtab

Section header table

ELF Relocatable object file

Linking with Static Libraries

e How should we go about building larger-scale programs?

e Have one large source file with every function defined and referenced within it? Split it among
multiple files and always pass them along to linker?

e That would be bloated and clunky!

e There exists a mechanism to package related object files into a single file called static library.

e We provide just the library name to the linker, and linker decides which exact object files from it are
needed.

e Consider ISO C99 library (libc.a) and its very commonly used functions (printf, atoi, scanf,rand...)

e What are the alternatives to this approach and their pitfalls?

More on Static Libraries..

As mentioned, at link time the linker copies only the object modules
that are referenced by the program. (Reduces the size of executable
ondisk and in memory)

Programmer only needs to include library name, no need for specific
object module reference.

C compiler driver always passes libc.a to the linker!

In Linux static libraries are stored on disk in format called archive.
Archive: Collection of concatenated relocatable object files, with a
header describing the location and size of each member.

First we would compile needed library modules, and then we can use

ar command to join themin alibrary.

main.c helper.h

Translators
(cpp, cc1, as)

libhelper.a

l

main.o

1

myhelper.o

libc.a

printf.o

Linker (Id)

|

myexecutable

Executable Object Files

e Formatissimilar to that of relocatable object file.

e ELF Header still describes overall format of the file. It includes entry point as well
which is the address of first instruction to be executed.

e .rodata,.data, and .text sections have been relocated to their run-time memory
addresses.

e Thereare no more .rel sections.

e Contiguous chunks of executable file should be mapped to contiguous memory
segments.

e Instructions for that are contained in program header table.

Dynamic Linking with Shared Libraries

e While useful, static libraries still have some issues. That’s where dynamic libraries come to shine...

e Ifthereisachange to static library, programmer must become aware of it and perform relinking.

e Anotherissue is unnecessary code duplication for common functions (e.g printf).

e Shared library is an object module that at either run time or load time can be placed in memory and linked with
program memory.

° For that we need what are known as dynamic linkers.

e Inanygiven file system, there is only one (.so) for a library, and its code and data are shared by all of the executable
object files that reference it.

e Single copy of .text can be shared among different processes.

e |deaistodosome linking statically when executable is being created, then do rest of it dynamically at runtime.

$ gcc -shared -fpic -o libvector.so addvec.c multvec.c

Loading and Linking Shared Libraries from Program

e Applications are also able to request from dynamic linker “on the fly” to load and link arbitrary shared
libraries, while the application is running.
e Usecases:

o Distributing software
o High-performance Web servers
o Many others...

e Linux provides simple interface to dynamic linker via: dlopen(), dlsym(), diclose(), dlerror()

e dlopen() loads and links shared library.

e dlIsym() takes a handle to the open shared library and a symbol name (variable/function) and returns the
address of the symbol (Returns NULL if it wasn’t found).

Makefiles

e Makefiles are a way in which we can organize and execute build process. It comes especially handy
when working on larger more modular projects.

e Command make invokes instructions from Makefile file located in same directory.

e Makefile contains recipes on how to build specific targets and what dependencies are needed.

e Well written Makefile can optimize on knowing which dependencies got altered, therefore

avoiding compilation for files that were not altered.

Macros

e These are the substitutions defined towards the top of the makefile usually. (e.g CFLAGS = -g
-Wall) used to specify compile flags for GCC. Or (CC = gcc) used to specify GCC as C compiler.

e They aresimilar to #define statements in C, and should be used for any expression which is likely to
be used repeatedly in a makefile. Once a macro has been assigned, we can reference it later using
$(MACRO_NAME)

Targets

e Thetarget name is generally the name of the file that will
be produced when this target is built.

e The first target listed in a makefile is the default target,
meaning that it is the target which is built when make is target-name : dependencies
invoked with no arguments. action

e Other targets can be built using make [target-name] at
the command line.

e The Make utility will then examine the timestamps of

each file on which the parent target depends.

References:

e Stanford Guide to Makefiles:

(https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html)
e Computer Systems A Programmer’s Perspective (Third Edition) (Bryant, O’Hallaron)

https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html

