
Linking, Compiling, and Make filing…

CS 410 Software Systems (Spring 2024)

Slides: Anton Njavro

Compilation Pipeline

● Our program takes a lengthy path from being an

ASCII source file to getting executed in memory.

● Understanding the nuances of this process enables

us to build large programs and avoid very subtle, yet

difficult bugs.

● Linker helps us combine various chunks of data and

code into an executable file that can be loaded in

memory and executed.

● Often hidden in simple programs due to compiler

drivers.

Translators
(cpp, cc1, as)

Linker (ld)

main.c helper.c

Translators
(cpp, cc1, as)

main.o helper.o

myprogram

$ gcc -o myprogram main.c helper.c

Static Linking

● GNU Linker (ld) takes as an input a set of relocatable object files

and command-line arguments and generates a executable

object file which can be loaded by loader.

● Relocatable object files are made of different code and data

sections, each section itself is a contiguous sequence of bytes.

● Linker has two main tasks:

○ Symbol Resolution

○ Relocation

● Linkers have minimal understanding of target machine.

Object Files

● Three main forms of object files are:

○ Relocatable object file

○ Executable object file

○ Shared object file

● Compilers and assemblers generate relocatable

object files.

● Linker creates executable object file.

● There are formats guiding how object files are

organized: Windows (PE), MacOS (Mach-O),

Linux (ELF).

● First UNIX systems from Bell Labs used (a.out) ELF Relocatable object file

Linking with Static Libraries

● How should we go about building larger-scale programs?

● Have one large source file with every function defined and referenced within it? Split it among

multiple files and always pass them along to linker?

● That would be bloated and clunky!

● There exists a mechanism to package related object files into a single file called static library.

● We provide just the library name to the linker, and linker decides which exact object files from it are

needed.

● Consider ISO C99 library (libc.a) and its very commonly used functions (printf, atoi, scanf,rand…)

● What are the alternatives to this approach and their pitfalls?

More on Static Libraries…

● As mentioned, at link time the linker copies only the object modules

that are referenced by the program. (Reduces the size of executable

on disk and in memory)

● Programmer only needs to include library name, no need for specific

object module reference.

● C compiler driver always passes libc.a to the linker!

● In Linux static libraries are stored on disk in format called archive.

● Archive: Collection of concatenated relocatable object files, with a

header describing the location and size of each member.

● First we would compile needed library modules, and then we can use

ar command to join them in a library.

Translators
(cpp, cc1, as)

Linker (ld)

main.o

main.c helper.h

libhelper.a libc.a

myhelper.o
printf.o

myexecutable

Executable Object Files

● Format is similar to that of relocatable object file.

● ELF Header still describes overall format of the file. It includes entry point as well

which is the address of first instruction to be executed.

● .rodata, .data, and .text sections have been relocated to their run-time memory

addresses.

● There are no more .rel sections.

● Contiguous chunks of executable file should be mapped to contiguous memory

segments.

● Instructions for that are contained in program header table.

Dynamic Linking with Shared Libraries
● While useful, static libraries still have some issues. That’s where dynamic libraries come to shine…

● If there is a change to static library, programmer must become aware of it and perform relinking.

● Another issue is unnecessary code duplication for common functions (e.g printf).

● Shared library is an object module that at either run time or load time can be placed in memory and linked with

program memory.

● For that we need what are known as dynamic linkers.

● In any given file system, there is only one (.so) for a library, and its code and data are shared by all of the executable

object files that reference it.

● Single copy of .text can be shared among different processes.

● Idea is to do some linking statically when executable is being created, then do rest of it dynamically at runtime.

$ gcc -shared -fpic -o libvector.so addvec.c multvec.c

Loading and Linking Shared Libraries from Program
● Applications are also able to request from dynamic linker “on the fly” to load and link arbitrary shared

libraries, while the application is running.

● Usecases:

○ Distributing software

○ High-performance Web servers

○ Many others…

● Linux provides simple interface to dynamic linker via: dlopen(), dlsym(), dlclose(), dlerror()

● dlopen() loads and links shared library.

● dlsym() takes a handle to the open shared library and a symbol name (variable/function) and returns the

address of the symbol (Returns NULL if it wasn’t found).

Makefiles

● Makefiles are a way in which we can organize and execute build process. It comes especially handy

when working on larger more modular projects.

● Command make invokes instructions from Makefile file located in same directory.

● Makefile contains recipes on how to build specific targets and what dependencies are needed.

● Well written Makefile can optimize on knowing which dependencies got altered, therefore

avoiding compilation for files that were not altered.

●

Macros

● These are the substitutions defined towards the top of the makefile usually. (e.g CFLAGS = -g

-Wall) used to specify compile flags for GCC. Or (CC = gcc) used to specify GCC as C compiler.

● They are similar to #define statements in C, and should be used for any expression which is likely to

be used repeatedly in a makefile. Once a macro has been assigned, we can reference it later using

$(MACRO_NAME)

Targets

● The target name is generally the name of the file that will

be produced when this target is built.

● The first target listed in a makefile is the default target,

meaning that it is the target which is built when make is

invoked with no arguments.

● Other targets can be built using make [target-name] at

the command line.

● The Make utility will then examine the timestamps of

each file on which the parent target depends.

References:

● Stanford Guide to Makefiles:

(https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html)

● Computer Systems A Programmer’s Perspective (Third Edition) (Bryant, O’Hallaron)

https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html

