
MEMOS-1

CS552 Operating Systems

04/10/2023

Anton Njavro

Agenda for today

● Understand BIOS and booting process on BIOS firmware.

● Overview of MEMOS-1 assignment.

● X86 Real-mode programming

Ab ovo…

● What is the point of booting anyways?

● We must bring machine to some known state, allowing us to run our OS.

● Hardware checks.

● Operating system must find its way from storage device to RAM/CPU.

Basic Input Output System (BIOS)

● First appeared in 1975.

● Exists as firmware on the edge between HW and SW.

● Its purpose is to serve as a layer between HW/SW, allowing

HW to diversify without hassling SW.

● Shortcomings might be some performance bottlenecks (e.g.

video) where direct HW access might be optimal.

● CPU usually preprogrammed to go to FFFF0h

● That location just contains jump direction to actual BIOS boot

program. AMD BIOS Chips

BIOS Interrupt Service Routines

● Used in Real-Mode by loading AH (AX/EAX) registers with

specific value, and calling an interrupt.

● Due to lack of standardization rigor in the industry, number

of function varies.

● Each BIOS function has specific set of “result” registers,

other registers should stay unaffected.

● BIOS functions should never crash, so make sure to check

their error returns manually.

● Once in protected mode it’s hard to access BIOS functions.

We have to use Virtual 8086 mode or switch back to Real

Mode (both are cumbersome).

How does BIOS boot?

● Power On Self Test: First thing is to check HW and make sure it is working properly.

● Iterate through boot devices looking for magic signature, once found load MBR at 0x7C00.

● Transfer execution to MBR code.

● We are currently in Real Mode.

● HDD has only 446 bytes left to load the kernel. Floppy has all 510.

● GCC generates protected code executable only.

Our current environment? x86 Real Mode

● Relic from the past, left for compatibility reasons.

● Only 1MB of memory is “addressable”, with no HW protection.

● Default CPU operand length is 16 bits.

● Accessing more than 64K requires cumbersome usage of segment registers.

● Faster memory access, and access to BIOS functions.

Real Mode memory segmentation

● Memory access is done via Segmentation by using segment:offset.

● Size of a segment can range from 1 up to 65,536 bytes (using 16 bits for offset).

● Segment registers contain 16-bit segment selector, which are most significant 16-bits of 20-bit segment

address.

● Segment address is added to 16-bit offset in instruction to create linear address (same as physical here).

Wikiepdia

ELF Format

● Executable and Linkable Format

● Organizes code and data into different sections:

○ .text: machine instructions

○ .data: global tables and variables

○ .rodata: constant data (e.g strings…)

○ .bss: uninitialized data

● Each section can be loaded at a different location in memory.

● Specifies entry point.

● Flat binary contains no metadata: just mixed bag of code and data

○ Order: By the order of your code and as specified by linker script.

○ BIOS requires it.

Linker Scripts

● Linker collects compiled object files, resolves references to symbols to memory addresses and

builds binary executable/linkable file.

● Linker script guides linker to:

○ Desired OUTPUT_FORMAT (in our case flat binary).

○ Target system architecture: OUTPUT_ARCH.

○ Entry point to executable (ENTRY).

○ Sections of output file (SECTIONS):

■ Where to put sections in main memory.

■ Where to get sections from (which section of which object file).

