MEMOS-1

CS552 Operating Systems
04/10/2023

Anton Njavro

Agenda for today

e Understand BIOS and booting process on BIOS firmware.
e Overview of MEMOS-1 assignment.

e X86 Real-mode programming

Ab ovo...

e Whatis the point of booting anyways?
e We must bring machine to some known state, allowing us to run our OS.
e Hardware checks.

e Operating system must find its way from storage device to RAM/CPU.

Basic Input Output System (BIOS)

e Firstappearedin 1975.

e Exists as firmware on the edge between HW and SW.

e Itspurposeistoserve as alayer between HW/SW, allowing
HW to diversify without hassling SW.

e Shortcomings might be some performance bottlenecks (e.g.
video) where direct HW access might be optimal.

e CPU usually preprogrammed to go to FFFFOh

e That location just contains jump direction to actual BIOS boot

96AXZ00
J0551-

D
=
~
~J
<
N
o
o

| QWY 9861 &

‘1

program. AMD BIOS Chips

BIOS Interrupt Service Routines

e Usedin Real-Mode by loading AH (AX/EAX) registers with

specific value, and calling an interrupt.

e Dueto lack of standardization rigor in the industry, number * INT 0x10 = Video display functions (including VESA/VBE)
of function varies. * INT Ox13 = mass storage (disk, floppy) access

° Each BIOS function has specific set of “result” registers, « INT 0x15 = memory size functions
other registers should stay unaffected. « INT 0x16 = keyboard functions

e BIOS functions should never crash, so make sure to check
their error returns manually.

e Onceinprotected mode it’s hard to access BIOS functions.
We have to use Virtual 8086 mode or switch back to Real
Mode (both are cumbersome).

How does BIOS boot?

Power On Self Test: First thing is to check HW and make sure it is working properly.

e [terate through boot devices looking for magic signature, once found load MBR at 0x7CO00.
e Transfer execution to MBR code.

e Weare currently in Real Mode.

e HDD has only 446 bytes left to load the kernel. Floppy has all 510.

e GCC generates protected code executable only.

Our current environment? x86 Real Mode

e Relic from the past, left for compatibility reasons.

e Only 1MB of memory is “addressable”, with no HW protection.

e Default CPU operand length is 16 bits.

e Accessing more than 64K requires cumbersome usage of segment registers.

e Faster memory access, and access to BIOS functions.

Real Mode memory segmentation

e Memory access is done via Segmentation by using segment:offset.
e Size of asegment can range from 1 up to 65,536 bytes (using 16 bits for offset).
e Segment registers contain 16-bit segment selector, which are most significant 16-bits of 20-bit segment

address.
e Segment address is added to 16-bit offset in instruction to create linear address (same as physical here).

16 bits, shifted 4 bits left (or

0000 0110 1110 1111 0000 Segment o
multiplied by 0x10)

+ 0001 0010 0011 0100 Offset 16 bits

0000 1000 0001 0010 0100 Address 20 bits

Wikiepdia

ELF Format

e Executable and Linkable Format

e Organizes code and data into different sections:
o .text: machine instructions
o .data: global tables and variables
o .rodata: constant data (e.g strings...)

o .bss: uninitialized data

Each section can be loaded at a different location in memory.
e Specifies entry point.

e Flat binary contains no metadata: just mixed bag of code and data

o Order: By the order of your code and as specified by linker script.

o BIOS requiresiit.

Linker Scripts

e Linker collects compiled object files, resolves references to symbols to memory addresses and
builds binary executable/linkable file.

e Linker script guides linker to:
o Desired OUTPUT_FORMAT (in our case flat binary).
o Target system architecture: OUTPUT_ARCH.
o Entry point to executable (ENTRY).
o Sections of output file (SECTIONS):
m Where to put sections in main memory.

m Where to get sections from (which section of which object file).

