
MEMOS-2

CS552 Operating Systems

11/10/2023

Anton Njavro



Overview

● In MEMOS-1 we wrote our own MBR, now we utilize GRUB.

● What GRUB does for us:

○ Enumerates resources.

○ Switch to 32-bit Protected Mode.

○ Finds kernel executable (ELF).

○ Loads it at 0x100000 (1MB), passes information to kernel according to Multiboot and jumps to 0x100000.



Starting Point

● Need to know machine state when GRUB calls into kernel.
○ 32-bit protected mode.

○ Segmentation.

○ Can access data/code anywhere between 0x0 and 4GB barrier.

● Environment:
○ Ring-0

○ No BIOS

● Program:
○ GRUB expects kernel as an ELF binary with multiboot header.



X86 Protected-Mode

● Access to 32-bit instructions and registers.
○ Still can access smaller parts of the register.

● 4GB of memory is addressable.
○ Segmentation provided by GDT.

○ Virtual memory/Paging (not needed yet).

○ Certain privilege levels assigned to each segment.

● Several virtual address spaces, each has maximum 4 GB of addressable memory.

● Entering protected mode:
○ Disable interrupts.

○ Enable A20 Line.

○ Load GDT



How does GRUB help?

● Performs a switch from real to protected mode.

○ There’s 4GB of linear memory space available to kernel.

● Finds kernel as ELF file and loads it at 0x100000.

● Checks for Multiboot header and runs according to information gathered there.

● Starts kernel execution and passes the data in accordance with Multiboot specification.



Multiboot

● “Basically, it specifies an interface between a boot loader and a operating system, such that any complying 

boot loader should be able to load any complying operating system.”

● Kernel must define header early in its binary file:

○ Specify information bootloader must pass.

○ Verify that binary file is Multiboot-compliant kernel.

● Multiboot defines desired state before kernel invocation.

● Defines boot information format:

○ Data structure passed to OS by bootloader.

○ Address in %EBX

○ Of advisory nature only.



Now you C me!
● We finally get to use C, however still no fancy external/GCC built-in libraries.

○ Compiler flags: -fno-builtin -nostdinc

● Calling C funCtion:

○ Caller rules:

■ Save contents of caller-saved registers (EAX,ECX,EDX). Push their values onto stack.

■ Pass parameters to subroutine by pushing them onto a stack (inverted order).

■ call instruction places return address on top of the stack and branches to subroutine code.

■ Restore previous values/stack, and return value is expected in EAX.

○ Callee rules:

■ Push value of EBP and copy ESP into EBP. Base pointer used for callee reference to arguments.

■ Allocate local variables on stack at known distance from EBP.

■ Save values of calee-saved registers used by subroutine (EBX,EDI,ESI)

https://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html#calling


Video RAM

● No more BIOS!

● We can ask GRUB for specific video mode.

● Text-based VGA buffer is mapped to memory 0xB8000 in main memory.

● We manipulate display by changing each word (16 bits).

● ASCII code byte and attribute code byte.

● Consult OS-Dev for printing tutorial.


