
CS552 – Operating Systems
10/31/2023

Anton Njavro
Slides done by: Sasan Golchin

Task Scheduling and
Programming Tips for
FIFOS

2

Agenda

▪ Today:
– Organization of task scheduler
– Non-preemptive task switching
– Setup of GDT

▪ Next lab:
– Preemptive task switching
– Interrupt handling (PIC)
– Setup of the system timer (PIT)

3

Overview

Kernel Initialization

▪ GDT w/ at least kernel code and data
descriptor

▪ (*) IDT: to handle hardware exceptions
and IRQs

▪ (*) PIC: to deliver timer interrupts to the
scheduler

▪ (*) PIT: to set preemption points
▪ Initialize a pool of (up to constant N) tasks
▪ Start the scheduler to launch the first task

Scheduler Functionalities

▪ Scheduler’s Public Interface
– thread_create(func, stack)
– thread_yield()
▪ Scheduler’s Private Interface
– current_thread()
–find_next_thread()
– switch_thread(from, to)
– launch_thread(t)
–exit_thread()
–(*) preempt_thread()(*) Preemption support requirements

4

TCBs: Task Control Block

▪ A thread is a function with a private stack
▪ What information do we keep in TCB
– State: New, Ready, Active, Dead, etc.
▪ Affects the behavior of the scheduler and dispatcher
▪ E.g. Switching to a newly created task w/o an initial state to restore

– Next Instruction to run: EIP
▪ call addr;
▪ pushl addr; ret;

– Stack top: ESP
– Machine State (minimally the following)
▪ General registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP (pushl/popl, pushal/popal)
▪ Flags: EFLAGS (pushf/ popf)

5

Organization
• Functionalities

• Add/Remove tasks
• Find the next task to

run
• Handle state

transitions
• Context switching

• Main components
• Task pool
• Run Queue
• Dispatcher

Pool

Hardware

Scheduler
Data

Int. Ctrl

Tasks

PIT
IRQ0

Run
Queue

Priority/
Policy

Scheduler
CodeDispatcher

Pool/Queue Manager
Sched. Policy
Timer Handler

Code

Stack …

Context Switch

Yield/Exit

Preemption

Code

Stack

6

Non-preemptive Context Switch

▪ A context switch happens when:
– The current running task finishes execution
– Explicitly yields execution

▪ What should happen?
– The current task goes to the scheduler’s code
– The scheduler finds the next task to run
– Pushes the machine state on the stack
– Updates the TCB of the current (ESP, EIP, State)
– Switches to the stack of the next thread (mov next->esp, %esp)
– Pops the machine state from the new stack
– Returns to the new current task

7

Example (T1 -> T2 -> T1)

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret

Different colors show whose stack is active

*1

8

Example (T1 -> T2 -> T1)

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

Let’s take a look at the
stack of T1 at different

times

9

Example – Before T1 yields

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T1’s user
data%esp

10

Example – After T1 yields

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T1’s user
data

Addr of *1%esp

11

Example – T1’s executing the sched.
code

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T1’s user
data

Addr of *1

Sched. frame%esp

12

Example – Before switching to T2’s
stack

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T1’s user
data

Addr of *1

Sched. frame

Machine
Registers%esp

13

Example – Running in T’2 context

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T2’s running and
%eip is pointing to
somewhere in T2’s

stack
until it yields/exits

and we get to

14

Example – After switching to T1’s
stack

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T1’s user
data

Addr of *1

Sched. frame

Machine
Registers%esp

15

Example – After restoring T1’s state

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T1’s user
data

Addr of *1

Sched. frame%esp

16

Example – At the end of sched.’s
code

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T1’s user
data

Addr of *1%esp

17

Example – After the scheduler
returns

T1 Scheduler T2

yield()
Finds T2
Stores T1’s state
Switches to T2’s stack
Restores T2’s state
Returns ret

yield()
Finds T1
Stores T2’s state
Switches to T1’s stack
Restores T1’s state
Returnsret*1

T1’s user
data%esp

18

Setting up a GDT for your OS!

▪ GRUB sets up a default GDT and hands over control to us after setting the CPU mode
to Protected Mode.

▪ Can we rely on that default table?...No since we don’t know the base address of the
table itself!

▪ Set up our own GDT since we need it to refer to memory segments
▪ GDT
– Each GDT table entry is 8 byte. It decides the accessible memory range.
– GDT is too complex! Just use the very basic feature of it!
– Setting up the GDT first: at least three entries: one empty, one for code, one for data
– GDT Tutorial
– Tell CPU where GDT is: length of GDT - 1 and the linear address of the GDT
▪ The lgdt instruction and a GDT pointer structure

– Reload all the segment registers to point to the GDT entry
– Neither POP nor MOV can place a value in the code-segment register CS; only the far control-

transfer instructions can change CS.

http://wiki.osdev.org/GDT_Tutorial

19

Format of GDT entries

▪ An array of 64-bit entries – Look here for definitions
– In Assembly: Check out .byte, .short and .long directives here
– In C: Check out packed data structures and GNU inline assembly

▪ Format of each GDT entry:

Limit[15:0]Base[15:0]

Base[23:16]Base[31:24] Flags Limit
[19:16] Access Byte

0151631

32394047485155 525663

https://wiki.osdev.org/Global_Descriptor_Table
https://www.cs.yale.edu/flint/cs421/papers/x86-asm/asm.html#memory
https://riptutorial.com/c/example/31059/packing-structures
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html

20

Format of GDT Entries

▪ Base: A 32-bit value indicating the linear address where the segment
begins.

▪ Limit: A 20-bit value indicating size of the segment with a granularity
specified by the flags field, bit 55 of the entry

▪ Flags.Granularity (Bit 55):
– 0 : 1-byte granularity -> W/ a limit of 0xFFFFF can address up to 1MB after the base
– 1: 4-KB granularity -> W/ a limit of 0xFFFFF can address up to 4GB

▪ Flags.CodeSize (Bit 54):
– 0: 16-bit code in Protected Mode (you won’t need it)
– 1: 32-bit code in Protected Mode

▪ Flags (Bits 52 to 53): Reserved, must be Zero

21

Example: Setting up your GDT in
assembly

Somewhere in your assembly code:
lgdt gdt_pointer

Somewhere your assembly data:
gdt_base:
Null descriptor
.long 0x0
.long 0x0
Flat 4 GB code segment descriptor (ring 0)
… bit definitions for your kernel’s code segment
Flat 4 GB data segment descriptor
… bit definitions for your kernel’s data segment
End of my GDT
gdt_pointer:
.short gdt_pointer - gdt_base – 1
.long gdt_base

	Task Scheduling and Programming Tips for FIFOS
	Agenda
	Overview
	TCBs: Task Control Block
	Organization
	Non-preemptive Context Switch
	Example (T1 -> T2 -> T1)
	Example (T1 -> T2 -> T1) (2)
	Example – Before T1 yields
	Example – After T1 yields
	Example – T1’s executing the sched. code
	Example – Before switching to T2’s stack
	Example – Running in T’2 context
	Example – After switching to T1’s stack
	Example – After restoring T1’s state
	Example – At the end of sched.’s code
	Example – After the scheduler returns
	Setting up a GDT for your OS!
	Format of GDT entries
	Format of GDT Entries
	Example: Setting up your GDT in assembly

