
Preemptive Scheduling
and Programming Tips
for FIFOS
CS552 – Operating Systems
08/11/2023
Anton Njavro

Slides by: Sasan Golchin

2

Agenda

▪ Last time:
– Organization of task scheduler
– Non-preemptive task switching
– Setup of GDT

▪ Today:
– Preemptive task switching
– Setup of the system timer (PIT)
– Interrupt handling (PIC)

3

Recap - Overview

Kernel Initialization

▪ GDT w/ at least kernel code and data
descriptor

▪ (*) IDT: to handle hardware exceptions
and IRQs

▪ (*) PIC: to deliver timer interrupts to the
scheduler

▪ (*) PIT: to set preemption points
▪ Initialize a pool of (up to constant N) tasks
▪ Start the scheduler to launch the first task

Scheduler Functionalities

▪ Scheduler’s Public Interface
– thread_create(func, stack)
– thread_yield()
▪ Scheduler’s Private Interface
– current_thread()
–find_next_thread()
– switch_thread(from, to)
– launch_thread(t)
–exit_thread()
–(*) preempt_thread()(*) Preemption support requirements

4

Recap - Organization
• Functionalities

• Add/Remove tasks
• Find the next task to

run
• Handle state

transitions
• Context switching

• Main components
• Task pool
• Run Queue
• Dispatcher

Pool

Hardware

Scheduler
Data

Int. Ctrl

Tasks

PIT
IRQ0

Run
Queue

Priority/
Policy

Scheduler
CodeDispatcher

Pool/Queue Manager
Sched. Policy
Timer Handler

Code

Stack …

Context Switch

Yield/Exit

Preemption

Code

Stack

5

Preemption support

▪ Objective:
– Transfer the execution control to the scheduler after a set amount of

time
▪ Regardless of the task running on the CPU
▪ Whether or not the current task is willing to yield

▪ Requirements:
1. Program the CPU to respond to asynchronous events i.e. IRQs
2. Program a timer (PIT in our case) to generate an IRQ at a set time
3. Program the H/W to deliver the IRQ to the CPU

▪ Dependencies: PIT -> PIC -> IDT -> GDT

6

1 – Interrupt support in x86

▪ Software interrupts
– Exceptions: Runtime errors caught by the CPU e.g. DIV-0, Overflow, Page-Fault
▪ Faults: Can be corrected e.g. DIV-0, Page-Fault
▪ Traps: Due to controlled machine instructions e.g. Breakpoints
▪ Abort: Unrecoverable Error e.g. Internal machine errors: Memory/Bus/Cache errors
▪ There are 32 exceptions defined by x86. More info here.

– User-defined:
▪ Generated by the INT instruction : Defined by the OS or the firmware (e.g. BIOS)
▪ They are maskable – Can be ignored by the CPU

▪ Hardware interrupts
– Interrupt Requests (IRQs): An external device requires CPU’s attention
▪ Examples: System Timer (IRQ-0: FIFOS), Keyboard Controller (IRQ-1: Primer)
▪ 1 Interrupt line per core, thus, we need a multiplexing hardware e.g. PIC or IOAPIC
▪ They are maskable – Can be ignored by the CPU

https://wiki.osdev.org/Exceptions

7

When does the CPU receive
interrupts?

▪ The CPU receives an Interrupt (IRQ or INT) if:
– There is a pending IRQ signal or the INT instruction is issued
– Interrupts are enabled in the CPU i.e. EFLAGS.IF (bit 9 of the

flags register) is set
▪ Otherwise the CPU will ignore the interrupt (aka masking)
▪ Modify EFLAGS.IF by the cli or sti instructions or popf

– There’s a valid Interrupt Descriptor entry corresponding to the
interrupt number:
▪ An interrupt descriptor tells the CPU what to do (Where to jump in the code)
▪ Interrupt descriptor are defined by
▪ The Interrupt Vector Table (IVT) in Real-mode (remember the BIOS calls?)
▪ The Interrupt Descriptor Table (IDT) in Protected-mode

https://wiki.osdev.org/CPU_Registers_x86#EFLAGS_Register
https://wiki.osdev.org/Interrupt_Vector_Table
https://wiki.osdev.org/Interrupt_Descriptor_Table

8

What does the CPU do?
Before executing the next
instruction, the CPU will
check if there’s an
interrupt. If so:
• Retrieves the

Interrupt/Exception
number

• Pushes the following
information on the stack

• Disables the interrupts
• Jumps to the code

location specified in the
corresponding interrupt
descriptor

Otherwise, carries on with
the execution of the next
instruction

Old EFLAGS
Old CS
Old EIP %es

p

Old EFLAGS
Old CS
Old EIP %es

p

Old ESP
Old SS

Without privilege change
Old EFLAGS

Old CS
Old EIP

%es
p

Error Code

Without error code

Old EFLAGS
Old CS
Old EIP

%es
p

Old ESP
Old SS

Error Code

With error code

With privilege change

9

Interrupt Service Routines

▪ A function that CPU calls upon reception of an interrupt
▪ The content pushed on top the stack depends on
– Type of the interrupt/exception (whether there’s an error code or not)
– The privilege (ring of protection) of the current running code vs. the ISR
– So, the calling convention is different from that of a C function
– Different Prologue and Epiloge

▪ The ISR returns using iret instead of ret
– Pops everything pushed to the stack as a result of an interrupt except the error code.
– Can re-enable the interrupts by popping the old flags register
– If your ISR is handling an exception with an error-code you should pop it yourself before

issuing iret
– No other register is saved. So, what if you call a C function from an ISR?

▪ Can be written in C or assembly. Look here!

https://wiki.osdev.org/Interrupt_Service_Routines

10

Example of an ISR in assembly

my_isr0:
// retrieve the error code (if any)
…
// pass some parameters to C if needed
…
// call the handler code in C
call my_handler_in_c
// return from the ISR
iret

11

Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

11

Pointer[15:0]Selector[15:0]

MUST BE 0Gate
Type

0151631

3239404348 45474663 44

SP DPL

https://wiki.osdev.org/Interrupt_Descriptor_Table

12

Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

12

Pointer[15:0]Selector[15:0]

MUST BE 0Gate
Type

0151631

3239404348 45474663 44

SP DPL

ISR’s address
(Lower part)

ISR’s address
(Upper part)

https://wiki.osdev.org/Interrupt_Descriptor_Table

13

Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

13

Pointer[15:0]Selector[15:0]

MUST BE 0Gate
Type

0151631

3239404348 45474663 44

SP DPL

Offset of the entry in
GDT

(Has to be a ring 0 Code
Seg.)

https://wiki.osdev.org/Interrupt_Descriptor_Table

14

Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

14

Pointer[15:0]Selector[15:0]

MUST BE 0Gate
Type

0151631

3239404348 45474663 44

SP DPL

Set to 0xE for a 32-bit
Interrupt gate

(Disables Interrupts while in
ISR)

https://wiki.osdev.org/Interrupt_Descriptor_Table

15

Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

15

Pointer[15:0]Selector[15:0]

MUST BE 0Gate
Type

0151631

3239404348 45474663 44

SP DPL

Storage Segment
Must be 0 for

Interrupt gates

https://wiki.osdev.org/Interrupt_Descriptor_Table

16

Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

16

Pointer[15:0]Selector[15:0]

MUST BE 0Gate
Type

0151631

3239404348 45474663 44

SP DPL

Descriptor’s Privilege:
Minimum Privilege the ISR

has.
e.g. We don’t want ring 3 ISRs!

https://wiki.osdev.org/Interrupt_Descriptor_Table

17

Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

17

Pointer[15:0]Selector[15:0]

MUST BE 0Gate
Type

0151631

3239404348 45474663 44

SP DPL

Present: set to 1
for

a valid descriptor

https://wiki.osdev.org/Interrupt_Descriptor_Table

18

Example of an IDT setup code in asm

1) Allocation of our IDT and ISR
pointers
An empty IDT w/ 49 8-byte entries
.globl idt_base
idt_base:
 .fill 49,8,0

Definition of IDT pointer to use w/
lidt
.globl idt_pointer
idt_pointer:
 # size - 1
 .short idt_pointer - idt_base – 1
 # base addr. of our IDT
 .long idt_base

List of pointer to my ISRs
idt_vectors:
 # ISRs 0 to 31 handle CPU exceptions
 .long excep_div_by_zero
 ...

 # ISRs 32 to 47 handle IRQ0 to IRQ15
 .long irq0_handler

2) Code to populate our IDT
mov $49, %ecx
lea idt_base, %edi
lea idt_vectors, %ebx
1:
put the first byte of the entry in %eax
and the second byte in %edx
…
movl %eax, (%edi)
movl %edx, 4(%edi)
addl $8, %edi
addl $4, %ebx
dec %ecx
jne 1b

Load the IDT
lidt idt_pointer

19

How to test our IDT quickly?

▪ Cause an exception:
– E.g. Divide-By-Zero
– Define an ISR that prints something on the screen
– After initializing IDT, perform a division by zero and see if the ISR kicks

in

▪ INT instruction:
– Using inline assembly, issue an INT instruction in your code after IDT

is setup
– Make the corresponding ISR print something on the screen

20

2 – Programmable Interval Timer
(PIT)

▪ A peripheral device that can be programmed using I/O ports
– Remember the inb and outb instructions we used in the Primer?
– Base frequency of about 1.19MHz that can be decreased by a single prescaler (a

circuit that performs integer division on a clock frequency)

▪ It is an interval timer with 3 channels
– While the prescaler affects all channels, each channel has its own frequency divider.

So, they can run with different speeds.
– Channel 0 is usually used as the system timer and generates the “IRQ-0” upon

some event that depends on the mode it’s set up to operate in (e.g. when its
counter reaches zero in mode 2 – rate generator)

– Channel 1 and 2 are not really used anymore.

▪ Tutorial on how to set it up: here

▪ Question? How to make PIT generate an interrupt every 10ms?

https://wiki.osdev.org/Programmable_Interval_Timer

21

3 – Programmable Interrupt Ctrl
(PIC)

▪ A peripheral port-based I/O device that delivers IRQs to the
CPU

▪ There are 2 PIC chipsets in the system (master and slave)
– Each can handle IRQs from 8 devices
– The second PIC (slave) is connected to IRQ2 (third input) of the master

to provide support for an addition 8 devices (15 devices in total)
– List of IRQs going to each of the PICs: here.
– Can enable the master only or both
– A tutorial on how to program PIC: here.

https://en.wikipedia.org/wiki/Interrupt_request_(PC_architecture)
https://wiki.osdev.org/8259_PIC

22

3 – Programmable Interrupt Ctrl
(PIC)

CPUPIC 1
(Master)

offset

PIC 2
(Slave)

offset

IRQ# +
Offset

IDT

IRQ0

IRQ1

IRQ2

IRQ7

IRQ8

IRQ12

IRQ15

23

Additional tips about PIC/PIT

▪ Disable the interrupts before both PIC and PIT are setup
– Why?

▪ Map IRQs to interrupt numbers beyond 31
– The interrupt number that CPU uses to look up IDT = IRQ number + Offset
– Why? Remember the first 32 interrupt numbers are reserved for CPU

exceptions
– How? Look here.

▪ Send an End-Of-Interrupt command to
– The master PIC if the IRQ number is from 0 to 7
– The slave PIC and then the master PIC if the IRQ number is from 8 to 15
– Why?
– How? Look here.

https://wiki.osdev.org/Exceptions
https://wiki.osdev.org/8259_PIC#Initialisation
https://wiki.osdev.org/8259_PIC#End_of_Interrupt

	Preemptive Scheduling and Programming Tips for FIFOS
	Agenda
	Recap - Overview
	Recap - Organization
	Preemption support
	1 – Interrupt support in x86
	When does the CPU receive interrupts?
	What does the CPU do?
	Interrupt Service Routines
	Example of an ISR in assembly
	Setting up an IDT
	Setting up an IDT (2)
	Setting up an IDT (3)
	Setting up an IDT (4)
	Setting up an IDT (5)
	Setting up an IDT (6)
	Setting up an IDT (7)
	Example of an IDT setup code in asm
	How to test our IDT quickly?
	2 – Programmable Interval Timer (PIT)
	3 – Programmable Interrupt Ctrl (PIC)
	3 – Programmable Interrupt Ctrl (PIC) (2)
	Additional tips about PIC/PIT

