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Agenda

▪ Last time:
– Organization of task scheduler
– Non-preemptive task switching
– Setup of GDT

▪ Today:
– Preemptive task switching
– Setup of the system timer (PIT)  
– Interrupt handling (PIC)
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Recap - Overview

Kernel Initialization

▪ GDT w/ at least kernel code and data 
descriptor

▪ (*)  IDT: to handle hardware exceptions 
and IRQs

▪ (*)  PIC: to deliver timer interrupts to the 
scheduler

▪ (*) PIT: to set preemption points
▪ Initialize a pool of (up to constant N) tasks
▪ Start the scheduler to launch the first task

Scheduler Functionalities

▪ Scheduler’s Public Interface
– thread_create(func, stack)
– thread_yield()
▪ Scheduler’s Private Interface
– current_thread()
–find_next_thread()
– switch_thread(from, to)
– launch_thread(t)
–exit_thread()
–(*) preempt_thread()(*) Preemption support requirements
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Recap - Organization
• Functionalities

• Add/Remove tasks
• Find the next task to 

run
• Handle state 

transitions
• Context switching

• Main components
• Task pool
• Run Queue
• Dispatcher
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Preemption support

▪ Objective:
– Transfer the execution control to the scheduler after a set amount of 

time
▪ Regardless of the task running on the CPU
▪ Whether or not the current task is willing to yield

▪ Requirements:
1. Program the CPU to respond to asynchronous events i.e. IRQs
2. Program a timer (PIT in our case) to generate an IRQ at a set time
3. Program the H/W to deliver the IRQ to the CPU

▪ Dependencies: PIT -> PIC -> IDT -> GDT
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1 – Interrupt support in x86

▪ Software interrupts
– Exceptions: Runtime errors caught by the CPU e.g.  DIV-0, Overflow, Page-Fault
▪ Faults: Can be corrected e.g. DIV-0, Page-Fault
▪ Traps: Due to controlled machine instructions e.g. Breakpoints
▪ Abort: Unrecoverable Error e.g. Internal machine errors:  Memory/Bus/Cache errors
▪ There are 32 exceptions defined by x86. More info here.

– User-defined:
▪ Generated by the INT instruction : Defined by the OS or the firmware (e.g. BIOS)
▪ They are maskable – Can be ignored by the CPU

▪ Hardware interrupts
– Interrupt Requests (IRQs): An external device requires CPU’s attention
▪ Examples: System Timer (IRQ-0: FIFOS), Keyboard Controller (IRQ-1: Primer)
▪ 1 Interrupt line per core, thus, we need a multiplexing hardware e.g. PIC or IOAPIC
▪ They are maskable – Can be ignored by the CPU

https://wiki.osdev.org/Exceptions
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When does the CPU receive 
interrupts?

▪ The CPU receives an Interrupt (IRQ or INT) if:
– There is a pending IRQ signal or the INT instruction is issued
– Interrupts are enabled in the CPU i.e. EFLAGS.IF (bit 9 of the 

flags register) is set
▪ Otherwise the CPU will ignore the interrupt (aka masking)
▪ Modify EFLAGS.IF by the cli or sti instructions or popf

– There’s a valid Interrupt Descriptor entry corresponding to the 
interrupt number:
▪ An interrupt descriptor tells the CPU what to do (Where to jump in the code)
▪ Interrupt descriptor are defined by 
▪ The Interrupt Vector Table (IVT) in Real-mode (remember the BIOS calls?)
▪ The Interrupt Descriptor Table (IDT) in Protected-mode

https://wiki.osdev.org/CPU_Registers_x86#EFLAGS_Register
https://wiki.osdev.org/Interrupt_Vector_Table
https://wiki.osdev.org/Interrupt_Descriptor_Table
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What does the CPU do?
Before executing the next 
instruction, the CPU will 
check if there’s an 
interrupt. If so:
• Retrieves the 

Interrupt/Exception 
number

• Pushes the following 
information on the stack

• Disables the interrupts
• Jumps to the code 

location specified in the 
corresponding interrupt 
descriptor

Otherwise, carries on with 
the execution of the next 
instruction

Old EFLAGS
Old CS
Old EIP %es

p

Old EFLAGS
Old CS
Old EIP %es

p

Old ESP
Old SS

Without privilege change
Old EFLAGS

Old CS
Old EIP

%es
p

Error Code

Without error code

Old EFLAGS
Old CS
Old EIP

%es
p

Old ESP
Old SS

Error Code

With error code

With privilege change
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Interrupt Service Routines

▪ A function that CPU calls upon reception of an interrupt
▪ The content pushed on top the stack depends on
– Type of the interrupt/exception (whether there’s an error code or not)
– The privilege (ring of protection) of the current running code vs. the ISR
– So, the calling convention is different from that of a C function
– Different Prologue and Epiloge 

▪ The ISR returns using iret instead of ret
– Pops everything pushed to the stack as a result of an interrupt except the error code.
– Can re-enable the interrupts by popping the old flags register
– If your ISR is handling an exception with an error-code you should pop it yourself before 

issuing iret
– No other register is saved. So, what if you call a C function from an ISR?

▪ Can be written in C or assembly. Look here!

https://wiki.osdev.org/Interrupt_Service_Routines
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Example of an ISR in assembly

my_isr0:
// retrieve the error code (if any)
…
// pass some parameters to C if needed
…
// call the handler code in C
call my_handler_in_c
// return from the ISR
iret
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Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

11

Pointer[15:0]Selector[15:0]

MUST BE 0Gate 
Type

0151631

3239404348 45474663 44

SP DPL

https://wiki.osdev.org/Interrupt_Descriptor_Table
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Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

12

Pointer[15:0]Selector[15:0]

MUST BE 0Gate 
Type

0151631

3239404348 45474663 44

SP DPL

ISR’s address
(Lower part)

ISR’s address
(Upper part)

https://wiki.osdev.org/Interrupt_Descriptor_Table
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Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

13

Pointer[15:0]Selector[15:0]

MUST BE 0Gate 
Type

0151631

3239404348 45474663 44

SP DPL

Offset of the entry in 
GDT

(Has to be a ring 0 Code 
Seg.)

https://wiki.osdev.org/Interrupt_Descriptor_Table
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Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

14

Pointer[15:0]Selector[15:0]

MUST BE 0Gate 
Type

0151631

3239404348 45474663 44

SP DPL

Set to 0xE for a 32-bit 
Interrupt gate

(Disables Interrupts while in 
ISR)

https://wiki.osdev.org/Interrupt_Descriptor_Table
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Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

15

Pointer[15:0]Selector[15:0]

MUST BE 0Gate 
Type

0151631

3239404348 45474663 44

SP DPL

Storage Segment
Must be 0 for 

Interrupt gates

https://wiki.osdev.org/Interrupt_Descriptor_Table
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Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

16

Pointer[15:0]Selector[15:0]

MUST BE 0Gate 
Type

0151631

3239404348 45474663 44

SP DPL

Descriptor’s Privilege: 
Minimum Privilege the ISR 

has.
e.g. We don’t want ring 3 ISRs!

https://wiki.osdev.org/Interrupt_Descriptor_Table
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Pointer[31:16]

Setting up an IDT

▪ Pretty much like GDT:
– Create a table with some entries following the specific format required by x86
– Tell the CPU where to find the table using a special instruction: lidt

▪ Format of each entry in IDT:

17

Pointer[15:0]Selector[15:0]

MUST BE 0Gate 
Type

0151631

3239404348 45474663 44

SP DPL

Present: set to 1 
for

a valid descriptor

https://wiki.osdev.org/Interrupt_Descriptor_Table
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Example of an IDT setup code in asm

# 1) Allocation of our IDT and ISR 
pointers
# An empty IDT w/ 49 8-byte entries
.globl idt_base
idt_base:
    .fill 49,8,0

# Definition of IDT pointer to use w/ 
lidt
.globl idt_pointer
idt_pointer:
    # size - 1
    .short  idt_pointer - idt_base – 1
    # base addr. of our IDT
    .long   idt_base

# List of pointer to my ISRs
idt_vectors:
    # ISRs 0 to 31 handle CPU exceptions
    .long   excep_div_by_zero
    ...

    # ISRs 32 to 47 handle IRQ0 to IRQ15
    .long   irq0_handler

# 2) Code to populate our IDT
mov $49,         %ecx
lea idt_base,    %edi
lea idt_vectors, %ebx
1:
# put the first byte of the entry in %eax
# and the second byte in %edx
…
movl %eax,       (%edi)
movl %edx,       4(%edi)
addl $8,         %edi
addl $4,         %ebx
dec  %ecx
jne 1b

# Load the IDT
lidt idt_pointer
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How to test our IDT quickly?

▪ Cause an exception:
– E.g. Divide-By-Zero
– Define an ISR that prints something on the screen
– After initializing IDT, perform a division by zero and see if the ISR kicks 

in

▪ INT instruction:
– Using inline assembly, issue an INT instruction in your code after IDT 

is setup
– Make the corresponding ISR print something on the screen
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2 – Programmable Interval Timer 
(PIT)

▪ A peripheral device that can be programmed using I/O ports
– Remember the inb and outb instructions we used in the Primer?
– Base frequency of about 1.19MHz that can be decreased by a single prescaler (a 

circuit that performs integer division on a clock frequency)

▪ It is an interval timer with 3 channels
– While the prescaler affects all channels, each channel has its own frequency divider. 

So, they can run with different speeds.
– Channel 0 is usually used as the system timer and generates the “IRQ-0” upon 

some event that depends on the mode it’s set up to operate in (e.g. when its 
counter reaches zero in mode 2 – rate generator)

– Channel 1 and 2 are not really used anymore.

▪ Tutorial on how to set it up: here

▪ Question? How to make PIT generate an interrupt every 10ms?

https://wiki.osdev.org/Programmable_Interval_Timer
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3 – Programmable Interrupt Ctrl 
(PIC)

▪ A peripheral port-based  I/O device that delivers IRQs to the 
CPU

▪ There are 2 PIC chipsets in the system (master and slave)
– Each can handle IRQs from 8 devices
– The second PIC (slave) is connected to IRQ2 (third input) of the master 

to provide support for an addition 8 devices (15 devices in total)
–  List of IRQs going to each of the PICs: here.
– Can enable the master only or both
– A tutorial on how to program PIC: here.

https://en.wikipedia.org/wiki/Interrupt_request_(PC_architecture)
https://wiki.osdev.org/8259_PIC
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3 – Programmable Interrupt Ctrl 
(PIC)

CPUPIC 1
(Master)

offset

PIC 2
(Slave)

offset

IRQ# + 
Offset 

IDT

IRQ0

IRQ1

IRQ2

IRQ7

IRQ8

IRQ12

IRQ15



23

Additional tips about PIC/PIT

▪ Disable the interrupts before both PIC and PIT are setup
– Why?

▪ Map IRQs to interrupt numbers beyond 31
– The interrupt number that CPU uses to look up IDT = IRQ number + Offset
– Why? Remember the first 32 interrupt numbers are reserved for CPU 

exceptions
– How? Look here.

▪ Send an End-Of-Interrupt command to
– The master PIC if the IRQ number is from 0 to 7
– The slave PIC and then the master PIC if the IRQ number is from 8 to 15
– Why? 
– How? Look here.

https://wiki.osdev.org/Exceptions
https://wiki.osdev.org/8259_PIC#Initialisation
https://wiki.osdev.org/8259_PIC#End_of_Interrupt
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