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Algorithms for massive datasets

m Cannot read the entire dataset
- Sublinear-time algorithms

m Performance Metrics
Speed

Memory efficiency
Accuracy

Resilience to faults in data




Faults In datasets

m \Wrong Entries (Errors)
- sublinear algorithms
- machine learning
- error detection and correction

m Missing Entries (Erasures) : Our Focus




Occurrence of erasures: Reasons

Hidden friena
Data collection relations on social
networks

Adversarial deletion Accidental deletion




Large dataset with
erasures: Access

m Algorithm queries the
oracle for dataset entries

m Algorithm does not know in

advance what's erased

m Oracle returns:
- the nonerased entry, or

- special symbol L if queried
point [s erased
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Overview of our contributions

Erasure-Resilient Testlng
[Dixit, Raskhodnikova,
Thakurta & Varma '18,
Kalemaj, Raskhodnikova &
Varma]

- Local Erasure- Decodlng

o

[Raskhodnikova, Ron-Zewi &
Varma '19]

- Application to property
testing -

/ Erasure-Resilient
Sublinear-time
Algorithms for Graphs

[Levi, Pallavoor,
Raskhodnikova & Varma]

Sensitivity of Graph
Algorithms to Missing

Edges
\[Varma & Yoshidal]
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- Main results

Average sensitivity of approximate maximum matching
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Decision problem Universe

=

m Can't solve nontrivial NO
decision problems without

full access to input

m Need a notion of
approximation




Property testing

oroblem

[Rubinfeld & Sudan '96,
Goldreich, Goldwasser & Ron '98]

m &-far from property

- > ¢ fraction of values to be
changed to satisfy property

{ e-tester }

Universe

o

g-far from
the property

Property

Accept, w.p.
>2/3




(Error) Tolerant

testing problem
[Parnas, Ron & Rubinfeld '06]

< a fraction of input is wrong

[ (a, &)-tolerant tester ]

Universe

et

from
property

&

K

Property

Reject, w.p.
>2/3

Accept, w.p.
>2/3




“rasure-resilient Universe

testing problem m
Dixit, Raskhodnikova, Thakurta & Every

Varma '16] completion
< a fraction of input is erased is e-far

m \Worst-case erasures, made
before tester queries

Can be
completed
to satisty

property

m Completion
— Fill-in values at erased points

{ (@, €)-erasure-resilient }
tester




Relationship between models

lesting

Erasure-resilient testing

< [olerant testing >




Frasure-resilient testing: Our results

[Dixit, Raskhodnikova, Thakurta, Varma 18]

m Blackbox transtormations
m Efficient erasure-resilient testers for other properties
m Separation of standard and erasure-resilient testing




Our blackbox transformations

m Makes certain classes of uniform testers erasure-resilient
m Works by simply repeating the original tester

Query complexity of (a, €)-erasure-resilient tester equal to e-tester
fora € (0,1), e € (0,1)
m Applies to:
- Monotonicity over general partial orders [FLNRRSOZ]

- Convexity of black and white images [BMRT5]
- Boolean functions having at most k alternations in values




Main properties that we study

m Monotonicity, Lipschitz properties, and convexity of real-
valued functions

Widely studied in property testing
[EKKRVO0O0,DGLRRS99,LROT,FLNRRSO2,PRRO3,AC04,F04,HKO4,BRWO5,PRRO6,ACCLO7,BGIRW1T2,BCGMTO,
BBM11, AIMS12, DIRT13, JR13,

CS13a,CS13b,BIRY14,CST14,BB15,CDJS15,CDST15,BB16,CS16,KMS18,BCS18,PRV18,B18,CS19, ...

m Optimal testers for these properties are not uniform testers
- Qur blackbox transformation does not apply




Optimal erasure-resilient testers

m For functions f:[n] » R m For functions f:[n]¢ - R
- Monotonicity - Monotonicity
— Lipschitz properties - Lipschitz properties
- Convexity

Query complexity of (a, €)- Query complexity of («, €)-
erasure-resilient tester equal erasure-resilient tester equal
to e-tester to e-tester

fora € (0,1), € € (0,1) fore € (0,1), a = 0(g/d)




Separation of erasure-resilient and
standard testing

Theorem: There exists a property P on inputs of size n such
that:

* testing with constant number of queries
» every erasure-resilient tester needs Q(n) queries




Relationship between models

Stanaard Testing

Erasure-resilient testing

< Tolerant testing

Some containments are strict:

 [Fischer Fortnow 05]: standard vs. tolerant

* [Dixit Raskhodnikova Thakurta Varma 18]: standard vs.
erasure-resilient
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Local decoding

m Error correcting code C: 3™ -» XN, for N > n

Message »—{SIRRR ) — (R vorc

m Decoding: Recover x from w
if not too many errors or erasures

m Local decoder: Sublinear-time algorithm for decoding

Local decoding is extensively studied and has many applications
[GL89,BFLS9T,BLRI3,GLRSWI1,GS92,PS94,BIKRI3,KTOO,STVO1,YOS,E12,DGY11,BET10.. ]




Local decoding and property testing

[Raskhodnikova, Ron-Zewi, Varma 19]

Our Results
m [nitiate study of erasures in the context of local decoding

m Frasures are easier than errors in local decoding

m Separation between erasure-resilient and (error) tolerant
testing




Separation of erasure-resilient and

tolerant testing
[Raskhodnikova, Ron-Zewi, Varma 19]

Theorem: There exists a property P on inputs of size n such
that:

 erasure-resilient testing with constant number of queries
» every (error) tolerant tester needs n*() queries




Relationship between models

[esting

Erasure-resilient testing

[olerant testing

All containments are strict:

Fischer Fortnow 05]: standard vs. tolerant

Dixit Raskhodnikova Thakurta Varma 18]: standard vs. erasure-resilient
‘Raskhodnikova Ron-Zewi Varma 19]: erasure-resilient vs. tolerant
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Motivation

m \Want to solve optimization problems on large graphs
- Maximum matching, min. vertex cover, min cut, ...

m Cannot assume that we get access to the true graph
- A fraction of the edges , say 1%, might be missing

m Need algorithms that are robust to missing edges




Towards average sensitivity

m \Want to solve problem on G; only have access to G’

G = (V,E) —

4 )

Algorithm A

—» A(G)

N
"~y

G'= (V,E');E'CE —»

Algorithm A

—> A(G")

m Similar to robustness notions in differential privacy pwork,
Kenthapadi, McSherry, Mironov & Naor 06, Dwork, McSherry, Nissim & Smith 06],

learning theory [Bosquet & Elisseef 02],

oo o0




Average sensitivity: Deterministic
a‘gOrith [T [Varma & Yoshida]

m A : deterministic graph algorithm outputting a set of edges
or vertices

- e.g., A outputs a maximum matching

Average sensitivity of deterministic algorithm A

sa(G) = avgeecr [Ham(A(G), A(G — e))]

m s,: G- R where G is the universe of input graphs




Average sensitivity: Randomized

d ‘gOrlth [T [Varma & Yoshida] Output
distributions

Average sensitivity of randomized algorithm A

s4(G) = avgeer [Dist(A(G), A(G —e))]

m s,;: G — R where G is the universe of input graphs
m Algorithm with low average sensitivity: stable-on-average




Average sensitivity:
Randomized
algorithms

Average sensitivity of
randomized algorithm A,
s.(G), is defined as:

avQeer [Dist(A(G), A(G — e))]

cost(p,x =»y) = p- Ham(x,y)

Distribution
o A(G)

Distribution
®© &6 O 4G -o

Y

Optimal cost of moving the probability
mass from one distribution to the other




- Farth mover's distance
Average sensitivity:
Randomizea Distribution

algorithms o A0)
[Varma & Yoshida]

Average sensitivity of
randomized algorithm A, Distribution
s, (G), is defined as: ® 6 O i -0

dVQeeE [dEM(A(G)'A(G — e))]

Optimal cost of moving the probability
Can extend definition to mass from one distribution to the other

multiple missing edges




Locality implies
average sensitivi

q(G) £ E, cp[#queries by L]

Our Theorem:
sa(G) < q(G)

G A{Algorithm A J—> A(G)

-

lifee A
e € E Local e (&)
—— . =

simulator L 0, otherwise

-

Graph G

Local computation algorithm
[Rubinfeld, Tamir, Vardi, Xie '11]




Locality implies G
average sensitivi m

sa(G) < q(G)

1 is the random string

::[Algorithm A J—> A, (G)

-

q(G) £ E, .cp[#queries by L] e€ E life € A.(G)
_> i
Our Theorem: e simulator L 0, otherwise

-

Graph G

Local computation algorithm
[Rubinfeld, Tamir, Vardi, Xie '11]




Main results

m Approximation algorithms with low average sensitivity for
- Minimum spanning tree
- Global min cut
- Maximum matching
- Minimum vertex cover

m Lower bounds on average sensitivity for
- Global min cut algorithms
- 2-coloring algorithms




Outline
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Frasures in local decoding

Average sensitivity of graph algorithms
- Properties of the definition
—- Main results

Average sensitivity of approximate maximum matching

Current and open directions




Average sensitivity of approximating the
maximum matching: Our results

Upper Bound: There exists a polynomial time matching

algorithm with OPT: <ive of
Approximation ratio:% — 0(1) max matching
O

Average sensitivity : 0(OPT?7%)- °

Lower Bound: Every exact maximum matching algorithm has
average sensitivity Q(OPT).




Average sensitivity of exact maximum
matching

m fven cycle G,
- Exactly two max. matchings

- For every edge e, the graph C,, — e has exactly
one max. matching

m Deterministic max. matching algorithm A
- Forg edges e, outputs A(C,,) and A(C,, — e) Average Se”SitiVit}/ of
differ in Q(OPT) edges exact max. matching
- Average sensitivity of A is Q(OPT) s Q(OPT).




Upper bound: Starting point

Randomized greedy matching algorithm A

On input G:
* As long as possible, add a fresh uniformly random
edge of G into the matching M

* Output M

Local algorithm for A with query complexity < A(G) [Yoshida, Yamamoto & Ito '12]
[Parnas & Ron '07; Nguyen & Onak '08; Onak, Ron, Rosen & Rubinfeld 12]

Locality implies low sensitivity Approximation ratio : 1/2
Average sensitivity < A(G)




Improving average sensitivity of A

Average sensitivity of A < A(G)

Average sensitivity can be high when max. degree is large

Let e € (0,1/2) m: Number of edges

Idea: Remove all vertices of degree > 30% , and then run A

< £ - OPT vertices removed = Approximation ratiois 1/2 — &

Average sensitivity of vertex-removal step can be large




Improving average sensitivity of A

Average sensitivity of A < A(G)

Average sensitivity can be high when max. degree is large

ete € (0,1/2) and A = (=5 =)

Idea: Remove all vertices of degree > 30% + Lap(A), and then run A

W.h.p. < e - OPT vertices removed = W.h.p. Approximation
ratiois1/2 — ¢




Degree-reduction matching algorithm

Algorithm A’

On input G-
e Sample L ~

m m 1

-opT T LPCOPT )

* Run A on the graph after removing vertices of
degree at least L

Sequential Composition Approximation ratio :1/2 —

[Varma & Yoshida] o Y
Average sensitivity : 0 ((e-OPT) )




Lexicographically smallest matching

m Fix an ordering on vertex pairs

m Algorithm A" outputs the lexicographically smallest
maximum matching

Our Theorem: Average sensitivity of A” < OPT?/m




Final Algorithm B

e . . ™
Degree-reduction algorithm A Lex. smallest matching algorithm A"

m_\’ OPT?
SA’(G)=O<(8-OPT)> J U sar(6) =0

On input G
* Run A" with probability

SAH(G)
SAH(G)+SA/(G)

and run A" with remaining probability

Parallel Composition Approximation ratio : 1/2 — ¢

[Varma & Yoshida]

&E

0.75
Average sensitivity :O((OPT) )




What we saw

Theorem: Matching algorithm with
Approximation ratio: 1/2 — o(1)
Average sensitivity : O(OPT?%7%)
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Current and future directions

m Erasure-resilience in other models of sublinear algorithms

m Erasure-resilient testing under different erasure models
- Ongoing work with Sofya Raskhodnikova and Iden Kalemay

m Average sensitivity bounds for other optimization problems
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Current and future directions

m Erasure-resilience in other models of sublinear algorithms

m Erasure-resilient testing under different erasure models
- Ongoing work with Sofya Raskhodnikova and Iden Kalemay

m Average sensitivity bounds for other optimization problems

Thank You!




