
Average Sensitivity of Graph Algorithms

Nithin Varma
Boston University
nvarma@bu.edu

Yuichi Yoshida
National Institute of Informatics

yyoshida@nii.ac.jp

Abstract

In modern applications of graphs algorithms, where the graphs of interest are large and
dynamic, it is unrealistic to assume that an input representation contains the full information
of a graph being studied. Hence, it is desirable to use algorithms that, even when only a (large)
subgraph is available, output solutions that are close to the solutions output when the whole
graph is available. We formalize this idea by introducing the notion of average sensitivity of
graph algorithms, which is the average earth mover’s distance between the output distributions
of an algorithm on a graph and its subgraph obtained by removing an edge, where the average
is over the edges removed and the distance between two outputs is the Hamming distance.

In this work, we initiate a systematic study of average sensitivity. After deriving basic
properties of average sensitivity such as composability, we provide efficient approximation al-
gorithms with low average sensitivities for concrete graph problems, including the minimum
spanning forest problem, the global minimum cut problem, the maximum matching problem,
and the minimum vertex cover problem. We also show that every algorithm for the 2-coloring
problem has average sensitivity linear in the number of vertices. To show our algorithmic results,
we establish and utilize the following fact; if the presence of a vertex or an edge in the solution
output by an algorithm can be decided locally, then the algorithm has a low average sensitivity,
allowing us to reuse the analyses of known sublinear-time algorithms.

1 Introduction

In modern applications of graphs algorithms, where the graphs of interest are large and dynamic,
it is unrealistic to assume that an input representation contains the full information of a graph
being studied. For example, consider a social network, where a vertex corresponds to a user of the
social network service and an edge corresponds to a friendship relation. It is reasonable to assume
that users do not always update new friendship relations on the social network service, and that
sometimes they do not fully disclose their friendship relations because of security or privacy reasons.
Hence, we can only obtain an approximation G′ to the true social network G. This brings out the
need for algorithms that can extract information on G by solving a problem on G′. Moreover,
as the solutions output by a graph algorithm are often used in applications such as detecting
communities [New04, New06], ranking nodes [PBMW99], and spreading influence [KKT03], the
solutions output by an algorithm on G′ should be close to those output on G.

We assume that the input graphG′ at hand is a randomly chosen (large) subgraph of an unknown
true graph G. We regard that a deterministic algorithm A is stable when the Hamming distance
dHam

(
A(G),A(G′)

)
is small, where A(G) and A(G′) are outputs of A on G and G′, respectively.

Here, outputs are typically vertex sets or edges sets. More specifically, for an integer k ≥ 1 and
a function β on graphs, we say that the k-average sensitivity of a deterministic algorithm A is at
most β if

E
e1,...,ek∼E

[
dHam

(
A(G),A(G− {e1, . . . , ek})

)]
≤ β(G) (1)

for every graph G = (V,E), where G − F for an edge set F is the subgraph obtained from G
by removing F , and e1, . . . , ek are sampled from E uniformly at random. When k = 1, we say
that the average sensitivity is at most β. Informally, we say that algorithms with low (k-)average
sensitivity are averagely stable. Although we focus on graphs here, we note that our definition
can also be extended to the study of combinatorial objects other than graphs such as strings and
constraint satisfaction problems. Since average sensitivity does not care about the solution quality,
an algorithm that outputs the same solution regardless of the input has the least possible average
sensitivity, though it is definitely useless. Hence, the key question in a study of average sensitivity
is to reveal the trade-off between solution quality and average sensitivity for various problems.

Example 1.1. Consider the algorithm that, given a graph G = (V,E), outputs the set of vertices of
degree at least n/2. As removing an edge changes the degree of exactly two vertices, the sensitivity
of this algorithm is at most 2.

Example 1.2. Consider the s-t shortest path problem, where given a graph G = (V,E) and two
vertices s, t ∈ V , we are to output the set of edges in a shortest path from s to t. Since the length
of a shortest path is always bounded by n, where n is the number of vertices, every deterministic
algorithm has average sensitivity O(n). Indeed, there exists a graph for which this trivial upper
bound is tight. Think of a cycle of even length n and two vertices s, t in diametrically opposite
positions. Consider an arbitrary deterministic algorithm A, and assume that it outputs a path P
(of length n/2) among the two shortest paths from s to t. With probability half, an edge in P is
removed, and A must output the other path Q (of length n/2) from s to t. Hence, the average
sensitivity must be 1/2 · (n/2) = Ω(n). In this sense, there is no deterministic algorithm with
nontrivial average sensitivity for the s-t shortest path problem.

1

We also define average sensitivity of randomized algorithms. Abusing the notation, we regard
A(G) as the distribution of the output of A on G, and let dEM(A(G),A(G′)) denote the earth
mover’s distance between A(G) and A(G′), where the distance between two outputs is measured
by the Hamming distance. Then, for an integer k ≥ 1 and a function β on graphs, we say that the
k-average sensitivity of a randomized algorithm A is at most β if

E
e1,...,ek∼E

[
dEM

(
A(G),A(G− {e1, . . . , ek})

)]
≤ β(G), (2)

where e1, . . . , ek are sampled from E uniformly at random. When k = 1, again, we say that the
average sensitivity is at most β. Note that when the algorithm A is deterministic, (2) matches the
definition of average sensitivity for deterministic algorithms.

Remark 1.3. The k-average sensitivity of an algorithm A with respect to the total variation
distance can be defined as Ee1,...,ek∼E

[
dTV

(
A(G),A(G− {e1, . . . , ek})

)]
, where dTV(·, ·) denotes

the total variation distance. It is easy to observe that, if the k-average sensitivity of an algorithm
with respect to the total variation distance is at most γ(G), then its k-average sensitivity is bounded
by H · γ(G), where the H is the maximum Hamming weight of a solution.

Example 1.4. Randomness does not add any power to algorithms for the s-t shortest path problem.
Think of the cycle graph given in Example 1.2, and suppose that a randomized algorithm A
outputs P and Q with probability p and q = 1 − p, respectively. Then, the average sensitivity is
p · 1/2 · (n/2) + q · 1/2 · (n/2) = Ω(n).

1.1 Basic properties of average sensitivity

The definition of average sensitivity lends itself to many nice properties. In this section, we discuss
some useful properties of average sensitivity that we use as building blocks in the design of our
averagely stable algorithms. We denote by G the (infinite) set consisting of all graphs. Given a
graph G = (V,E) and e ∈ E, we use G− e as a shorthand for G− {e}. We use n and m to denote
the number of vertices and edges in the input graph, respectively.

k-average sensitivity from average sensitivity. This is one of the most important properties
of our definition of average sensitivity. It essentially says that bounding the average sensitivity of
an algorithm with respect to removal of a single edge automatically gives a bound on the average
sensitivity of that algorithm with respect to removal of multiple edges. In other words, it is enough
to analyze the average sensitivity of an algorithm with respect to the removal of a single edge.

Theorem 1.5. Let A be an algorithm for a graph problem with average sensitivity given by f(n,m).
Then, for any integer k ≥ 1, the algorithm A has k-average sensitivity at most

∑k
i=1 f(n,m−i+1).

In particular, if the average sensitivity is a nondecreasing function of the number of edges, the
above theorem immediately implies that the k-average sensitivity is at most k times the average
sensitivity.

Sequential composability. It will be useful if we can sequentially apply averagely stable algo-
rithms on the input to get a solution and the whole algorithm is again averagely stable. We show
two different sequential composition theorems for average sensitivity.

2

Theorem 1.6 (Sequential composability). Consider two randomized algorithms A1 : G → S1,A2 :
G ×S1 → S2. Suppose that the average sensitivity of A1 with respect to the total variation distance

is γ1 and the average sensitivity of A2(·, S1) is β
(S1)
2 for any S1 ∈ S1. Let A : G → S2 be a

randomized algorithm obtained by composing A1 and A2, that is, A(G) = A2(G,A1(G)). Then,

the average sensitivity of A is H · γ1(G) + ES1∼A1(G)

[
β

(S1)
2 (G)

]
, where H denotes the maximum

Hamming weight among those of solutions obtained by running A on G and {G− e}e∈E.

Our second composition theorem is for the average sensitivity with respect to the total variation
distance. This is also useful to analyze the average sensitivity with respect to the earth mover’s
distance, as it can be bounded by the average sensitivity with respect to the total variation distance
times the maximum Hamming weight of a solution, as in Remark 1.3.

Theorem 1.7 (Sequential composability w.r.t. the TV distance). Consider k randomized algo-
rithms Ai : G ×

∏i−1
j=1 Sj → Si for i ∈ {1, . . . , k}. Suppose that, for each i ∈ {1, . . . , k}, the average

sensitivity of Ai(·, S1, . . . , Si−1) is γi with respect to the total variation distance for every S1 ∈
S1, . . . , Si−1 ∈ Si−1. Consider a sequence of computations S1 = A1(G), S2 = A2(G,S1), . . . , Sk =
Ak(G,S1, . . . , Sk−1). Let A : G → Sk be a randomized algorithm that performs this sequence of
computations on input G and outputs Sk. Then, the average sensitivity of A is at most

∑k
i=1 γi(G)

with respect to the total variation distance.

Parallel composability. It is often the case that there are multiple algorithms that solve the
same problem albeit with different average sensitivity guarantees. Such averagely stable algorithms
can be composed by running them according to a distribution determined by the input graph. The
advantage of such a composition, which we call a parallel composition, is that the average sensitivity
of the resulting algorithm might be better than the component algorithms for all graphs.

Theorem 1.8 (Parallel composability). Let A1,A2, . . . ,Ak be algorithms for a graph problem with
average sensitivities β1, β2, . . . , βk, respectively. Let A be an algorithm that, given a graph G, runs
Ai with probability ρi(G) for i ∈ [k], where

∑
i∈[k] ρi(G) = 1. Let H denote the maximum Hamming

weight among those of solutions obtained by running A on G and {G − e}e∈E. Then the average

sensitivity of A is at most
∑

i∈[k] ρi(G) · βi(G) + H · Ee∈E
[∑

i∈[k] |ρi(G)− ρi(G− e)|
]
.

In this paper, we use the above theorem extensively to combine algorithms with different average
sensitivities.

1.2 Connection to sublinear-time algorithms

We show a relationship between the average sensitivity of a global algorithm and the query com-
plexity of a local algorithm that simulates oracle access to the output of the global algorithm.
Roughly speaking, we show, in Theorem 1.9, that the existence of a local algorithm O that can
answer queries about the solution produced by a global algorithm A implies that the average sen-
sitivity of A is bounded by the query complexity of O. We use Theorem 1.9 to prove the existence
of averagely stable matching algorithms based on the sublinear-time matching algorithms due to
Yoshida et al. [YYI12].

Theorem 1.9 (Locality implies low average sensitivity). Consider a randomized algorithm A :
G → S for a graph problem, where the solutions are subsets of the set of edges of the input graph.
Assume that there exists an oracle O satisfying the following:

3

Table 1: Our results. Here n, m, OPT denote the number of vertices, the number of edges, and
the optimal value, respectively, and ε ∈ (0, 1) is an arbitrary constant. The notation Õ(·) hides a
polylogarithmic factor in n. Small additive losses in the approximation guarantees are omitted.

Problem Output
Approximation

Average Sensitivity Reference
Ratio

Minimum Spanning Forest Edge set 1 O
(
n
m

)
Section 2

Global Minimum Cut Vertex set 2 + ε nO(1/εOPT) Section 3

Maximum Matching Edge set
1/2− o(1) Õ(OPT3/4) Section 4.2

1− ε Õ
((

OPT/ε3
)1/(1+Ω(ε2))

)
Section 4.3

Minimum Vertex Cover Vertex set
2 + o(1) Õ(OPT3/4) Section 5.1

Õ
(
m1+ε

n

)
O
(

n2

m1+ε

)
Section 5.2

2-Coloring Vertex set — Ω(n) Section 6

• when given access to a graph G = (V,E) and query e ∈ E, the oracle generates a random
string π ∈ {0, 1}r(|V |) and outputs whether e is contained in the solution obtained by running
A on G with π as its random string,

• the oracle O makes at most q(G) queries to G in expectation, where this expectation is taken
over the random coins of A and a uniformly random query e ∈ E.

Then, A has average sensitivity at most q(G). Moreover, this is also true for algorithms for graph
problems, where the solutions are subsets of the set of vertices of the input graph, whenever |E| ≥
|V |.

Theorem 1.9 cements the intuition that strong locality guarantees for solutions output by an
algorithm imply that the removal of edges from a graph affects only the presence of a few edges
in the solution, which in turn implies low average sensitivity. As an indirect method to bound the
average sensitivity of algorithms, we think that Theorem 1.9 could lead to further research in the
design of local algorithms for various graph problems.

1.3 Averagely stable algorithms for concrete problems

We summarize, in Table 1, the average sensitivity bounds that we obtain for various concrete
problems. All our algorithms run in polynomial time, and the bounds on k-average sensitivity of
these algorithms can be easily derived using Theorem 1.5. Henceforth, let n, m, OPT denote the
number of vertices, the number of edges, and the optimal value. To help interpret our bounds on
average sensitivity, we mention that for maximization problems whose optimal values are sufficiently
Lipschitz with respect to edge removals, O(OPT) is a trivial upper bound for the average sensitivity.
However, this is not the case in general for minimization problems.

For the minimum spanning forest problem, we show that Kruskal’s algorithm [Kru56] achieves
average sensitivity O(n/m), which is quite small regarding that the spanning forest can have Ω(n)
edges. In contrast, it is not hard to show that the average sensitivities of the known polynomial-time
(approximation) algorithms for the other problems listed in Table 1 are all Ω(n).

4

For the global minimum cut problem, our algorithm outputs a cut as a vertex set. As the
approximation ratio of our algorithm is constant, it is likely to output a cut of size close to OPT,
and hence we want to make its average sensitivity smaller than OPT. We observe that the average
sensitivity becomes smaller than OPT when OPT = Ω(k log log k/ log k) for k = log(n)/ε, and it
quickly decreases as OPT increases.

For the maximum matching problem, we propose two algorithms. The first one has approxi-
mation ratio 1/2− o(1) and average sensitivity Õ(OPT3/4), which is much smaller than the trivial

O(OPT). The second one has approximation ratio 1−ε and average sensitivity Õ
((

OPT/ε3
)1/(1+Ω(ε2))

)
for every constant ε ∈ (0, 1), which shows that we do not have to sacrifice the approximation ratio
a lot to obtain a non-trivial average sensitivity.

For the minimum vertex cover problem, we propose two algorithms. The first algorithm has
approximation ratio 2 + o(1), which is close to the best we can hope for as obtaining (2 − ε)-
approximation is NP-Hard assuming the Unique Games conjecture [KR03]. Moreover, the average
sensitivity of Õ(OPT3/4) is much smaller than the trivial O(OPT). The second algorithm has
a worse approximation ratio but can achieve a better average sensitivity in some regimes. For
example, when OPT = Ω(n), m = Θ(n) and ε = 1/2, the average sensitivity of the first algorithm
is Ω(n3/4) whereas that of the second algorithm is O(n1/2).

In the 2-coloring problem, given a bipartite graph, we are to output one part in the bipartition.
For this problem, we show a lower bound of Ω(n) in the average sensitivity, that is, there is no
algorithm with non-trivial average sensitivity.

1.4 Discussions

Output representation. The notion of average sensitivity is dependent on the output represen-
tation. For example, we can double the average sensitivity by duplicating the output. A natural
idea for alleviating this issue is to normalize the average sensitivity by the maximum Hamming
weight H of a solution. However, for minimization problems where the optimal value OPT could
be much smaller than H, such a normalization can diminish subtle differences in average sensitiv-
ity, e.g., O(OPT1/2) vs O(OPT). It is an interesting open question whether there is a canonical
way to normalize average sensitivity so that the resulting quantity is independent of the output
representation.

Sensitivity against adversarial edge removals. It is also natural to take the maximum,
instead of the average, over edges in definitions (1) and (2), which can be seen as sensitivity against
adversarial edge removals. Indeed a similar notion has been proposed to study algorithms for
geometric problems [MSVW18]. However, in our context, it seems hard to guarantee that the
output of an algorithm does not change much after removing an arbitrary edge. Moreover, by a
standard averaging argument, one can say that for 99% of arbitrary edge removals, the sensitivity
of an algorithm is asymptotically equal to the average sensitivity, which is sufficient for most
applications.

Average sensitivity against edge additions. As another variant of average sensitivity, it is
natural to consider incorporating edge additions in definitions (1) and (2). If an algorithm is stable
against edge additions, then in addition to the case of not knowing the true graph as we have
discussed earlier, it will be useful for the case that the graph dynamically changes but we want to

5

prevent the output of the algorithm from fluctuating too much. However, in contrast to removing
edges, it is not always clear how we should add edges to the graph in definitions (1) and (2). A
naive idea is sampling k pairs of vertices uniformly at random and adding edges between them.
This procedure makes the graph close to a graph sampled from the Erdős-Rényi model [ER59],
which does not well-represent real networks such as social networks and road networks. To avoid
this subtle issue, in this work, we focus on removing edges.

Alternative notion of average sensitivity for randomized algorithms. Consider a ran-
domized algorithm A that, given a graph G on n vertices, generates a random string π ∈ {0, 1}r(n)

for some function r : N→ N, and then runs a deterministic algorithm Aπ on G, where the algorithm
Aπ has π hardwired into it. Let us assume that Aπ can be applied to any graph. It is also natural
to define the average sensitivity of A as

E
e∼E

[
E
π

[
dHam

(
Aπ(G),Aπ(G− e)

)]]
. (3)

In other words, we measure the expected distance between the outputs of A on G and G− e when
we feed the same string π to A, over the choice of π and edge e. Note that (3) upper bounds (2)
because, in the definition of the earth mover’s distance, we optimally transport probability mass
from A(G) to A(G− e) whereas, in (3), how the probability mass is transported is not necessarily
optimal.

We can actually bound (3) for some of our algorithms. In this work, however, we focus on the
definition (2) because the assumption that Aπ can be applied to any graph does not hold in general,
and bounding (3) is unnecessarily tedious and is not very enlightening.

1.5 Related work

Average sensitivity of network centralities. (Network) centrality is a collective name for
indicators that measure importance of vertices or edges in a network. Notable examples are closeness
centrality [Bav50, Bea65, Sab66], harmonic centrality [ML00], betweenness centrality [Fre77], and
PageRank [PBMW99]. To compare these centralities qualitatively, Murai and Yoshida [MY19]
recently introduced the notion of average-case sensitivity for centralities. Fix a vertex centrality
measure c; let cG(v) denote the centrality of a vertex v ∈ V in a graph G = (V,E). Then, the
average-case sensitivity of c on G is defined as

Sc(G) = E
e∼E

E
v∼V

|cG−e(v)− cG(v)|
cG(v)

,

where e and v are sampled uniformly at random. They showed various upper and lower bounds for
centralities. See [MY19] for details.

Since a centrality measure assigns real values to vertices, they studied the relative change of the
centrality values upon removal of random edges. As our focus in this work is on graph algorithms,
our notion (2) measures the Hamming distance between solutions when one removes random edges.

Differential privacy. Differential privacy [DMNS06] is a notion closely related to average sen-
sitivity. It considers a neighbor relation over inputs and asks that the distributions of outputs
on neighboring inputs are similar. The variant of differential privacy closest to our definition of

6

average sensitivity is edge differential privacy introduced by Nissim et al. [NRS07] and further
studied by [HLMJ09, GLM+10, KS12, KNRS13, KRSY14, RS16]. Here, the neighbors of a graph
G = (V,E) are defined to be {G−e}e∈E . Then for ε > 0, we say that an algorithm is ε-differentially
private if for all e ∈ E,

exp(−ε) · Pr[A(G− e) ∈ S] ≤ Pr[A(G) ∈ S] ≤ exp(ε) · Pr[A(G− e) ∈ S] (4)

for any set of solutions S.
As differential privacy imposes the constraint (4) for every e ∈ E, the requirement is sometimes

too strong for graph problems. For example, for the minimum vertex cover problem, (4) implies
that we must output a vertex cover for G even for G − e, and it follows that we can only output
a vertex cover of size at least n − 1. To avoid this issue, Gupta et al. [GLM+10] considered an
implicit representation of a vertex cover.

Moreover, since differential privacy guarantees that the probabilities of outputting a specific
solution on G and G − e are close to each other, the total variation distance between the two
distributions A(G) and A(G − e) must be small. Since the earth mover’s distance between two
output distributions can be small even if the total variation distance between them is large, even
if an algorithm does not satisfy the conditions of differential privacy, it could still have small
average sensitivity. We would like to add that, despite these differences, our algorithms for the
global minimum cut problem and the vertex cover problem are inspired by differentially private
algorithms for the same problems [GLM+10].

Generalization and stability of learning algorithms. Generalization [SSBD09] is a funda-
mental concept in statistical learning theory. Given samples z1, . . . ,zn from an unknown true
distribution D over a dataset, the goal of a learning algorithm L is to output a parameter θ that
minimizes expected loss Ez∼D[`(z; θ)], where `(z; θ) is the loss incurred by a sample z with respect
to a parameter θ. As the true distribution D is unknown, a frequently used approach in learning is
to compute a parameter θ that minimizes the empirical loss 1

n ·
∑n

i=1 `(zi; θ), which is an unbiased
estimator of the expected loss and is purely a function of the available samples. The generalization
error of a learner L is a measure of how close the empirical loss is to the expected loss as a function
of the sample size n.

One technique to reduce the generalization error is to add a regularization term to the loss
function being minimized [BE02]. This also ensures that the learned parameter θ does not change
much with respect to minor changes in the samples being used for learning. Therefore, in a sense,
learning algorithms that use regularization can be considered as being stable according to our
definition of sensitivity.

Bousquet and Elisseeff [BE02] defined a notion of stability for learning algorithms and explored
its connection to the generalization error. Their stability notion requires that the empirical loss of
the learning algorithm does not change much by removing or replacing any sample in the input
data. In contrast, average sensitivity considers removing random edges from a graph. Also, average
sensitivity considers the change of the output solution rather than that of the objective value.

1.6 Overview of our techniques

Minimum spanning forest. For the minimum spanning forest problem, we show that the clas-
sical Kruskal’s algorithm has low average sensitivity; it is always at most 1. Interestingly, Kruskal’s

7

algorithm is deterministic and yet has low average sensitivity. In contrast, we show that Prim’s
algorithm can have average sensitivity Ω(m) for a natural rule of breaking ties among edges.

Global minimum cut. For the global minimum cut problem, our algorithm is inspired by a
differentially private algorithm due to Gupta et al. [GLM+10]. Our algorithm, given a parameter
ε > 0 and a graph G as input, first enumerates a list of cuts whose sizes are at most (2 + ε) ·OPT;
this enumeration can be done in polynomial time as shown by Karger’s theorem [Kar93]. It then
outputs a cut from the list with probability inversely proportional to the exponential of the product
of the size of the cut and O(1/εOPT). The main argument in analyzing the average sensitivity of
the algorithm is that the aforementioned distribution is very close (in earth mover’s distance) to
a related Gibbs distribution on the set of all cuts in the graph. Therefore the average sensitivity
of the algorithm is of the same order as that of the average sensitivity of sampling a cut from
such a Gibbs distribution doing which requires exponential time. We finally show that the average
sensitivity of sampling a cut from this Gibbs distribution is at most nO(1/εOPT).

Maximum matching. There are several components to the design and analysis of our averagely
stable (1

2 − ε)-approximation algorithm for the maximum matching problem. Our starting point
is the observation (Theorem 1.9) that the ability to locally simulate access to the solution of an
algorithm A implies that A is averagely stable. We use this to bound the average sensitivity of a
randomized greedy 1

2 -approximation algorithm A for the maximum matching problem. Specifically,
A constructs a maximal matching by iterating over edges in the input graph G = (V,E) according
to a uniformly random ordering and adding an edge to the current matching if the addition does
not violate the matching property. Yoshida et al. [YYI12] constructed a local algorithm that, given
a uniformly random edge e ∈ E as input, makes O(∆) queries to G in expectation and answers
whether e is in the matching output by A on G, where the expectation is over the choice of input e
and the randomness in A, and ∆ is the maximum degree of G. Combined with Theorem 1.9, this
implies that the average sensitivity of A is O(∆).

Next, we transform A to also work for graphs of unbounded degree as follows. The idea is to
remove vertices of degree at least m

εOPT from the graph and run A on the resulting graph. This
transformation affects the approximation guarantee only by an additive εOPT term as the number
of such high degree vertices is small. However, this thresholding procedure could in itself have high
average sensitivity, since the thresholds of G and G− e are different for any e ∈ E.

We circumvent this issue by using a Laplace random variable L as the threshold, where the
distribution of L is tightly concentrated around m

εOPT . We use our sequential composition theorem
(Theorem 1.6) in order to analyze the average sensitivity of the resulting procedure, where we
consider the instantiation of the Laplace random threshold as the first algorithm and the remaining
steps in the procedure as the second algorithm. The first term in the expression given by Theo-
rem 1.6 turns out to be a negligible quantity and is easy to bound. The main task in bounding
the second term is to bound, for all x ∈ R, the average sensitivity of a procedure Ax that, on
input a graph G, removes all vertices of degree at least x from G and runs the randomized greedy
maximal matching algorithm. The heart of the argument in bounding this average sensitivity is
that given a local algorithm O with query complexity q(∆) that simulates oracle access to the
solutions output by an algorithm A, we can, for all x ∈ R, construct a local algorithm Ox for the
algorithm Ax. Moreover, the query complexity of Ox, which also bounds the average sensitivity
of Ax by Theorem 1.9, is at most O(x2q(x)). This implies that the second term in the expression

8

given by Theorem 1.6, which is given by EL
[
O(L2q(L))

]
, is O((m

εOPT)3).
An issue with the aforementioned matching algorithm is that its average sensitivity is poor for

graphs with small values of OPT. However, we observe that the algorithm that simply outputs the
lexicographically smallest maximum matching does not have this issue. Its average sensitivity is
O(OPT2/m), since the output matching stays the same unless an edge in the matching is removed.
We obtain our final averagely stable (1

2 − ε)-approximation algorithm for the maximum matching
problem by running these two algorithms according to a probability distribution determined by
the input graph. Using our parallel composition theorem, we bound the sensitivity of the resultant

algorithm as O
(

(OPT/ε)3/4
)

.

The design and analysis of our averagely stable (1 − ε)-approximation algorithm for the max-
imum matching problem uses similar ideas as above. The only difference is that we replace the
randomized greedy maximal matching algorithm above with a (1−ε)-approximation algorithm that
repeatedly improves a matching using greedily chosen augmenting paths.

Minimum vertex cover. We describe two averagely stable algorithms for the minimum vertex
cover problem. Our (2 + ε)-approximation algorithm is based on a reduction from the averagely
stable (1

2 − ε)-approximation algorithm for the maximum matching problem. In particular, it runs
the averagely stable matching algorithm and outputs a union of the set of vertices removed (by
thresholding) and the set of endpoints of the matching computed. For the approximation guarantee,
we argue that, with high probability, the cardinality of the set of removed vertices is O(εOPT). The
main task in showing that the algorithm is averagely stable is to bound the average sensitivity of
outputting the set of removed vertices. In case the same value of threshold is used for G and G− e,
the cardinality of symmetric difference between the sets of removed vertices is at most 2. Using
this observation and the ideas used in bounding the average sensitivity of our matching algorithms,
we can bound the average sensitivity of outputting the set of removed vertices.

Our second algorithm for vertex cover is based on a differentially private vertex cover approx-
imation algorithm due to Gupta et al. [GLM+10]. Specifically, we output a permutation of the
vertices and for each edge, its first endpoint in the permutation is in the vertex cover. If we gen-
erate our permutation by repeatedly sampling vertices according to their yet uncovered degree, we
get a 2-approximation algorithm for vertex cover [Pit85]. If we instead output a uniformly random
permutation of vertices, we get an algorithm with good average sensitivity but poor approximation
guarantee. Our algorithm finds a middle ground between these approaches, by selecting vertices
with probability proportional to their uncovered degrees in the beginning and progressively skewing
towards the uniform distribution.

2-coloring. To show our Ω(n) lower bound of average sensitivity for 2-coloring, consider the set
of all paths on n vertices and the set of all graphs obtained by removing exactly one edge from these
paths (called 2-paths). A path has exactly two ways of being 2-colored and a 2-path has four ways
of being 2-colored. A path and 2-path are neighbors if the latter is obtained from the former by
removing an edge. A 2-path has at most four neighbors. The output distribution of any 2-coloring
algorithm A on a 2-path can be close (in earth mover’s distance) only to those of at most 2 of its
neighboring paths. If A however has low average sensitivity, the output distributions of A has to
be close on a large fraction of pairs of neighboring graphs, which gives a contradiction.

9

1.7 Notation

For a positive integer n, let [n] = {1, 2, . . . , n}. Let G = (V,E) be a graph. For an edge e ∈ E, we
denote by G − e the graph obtained by removing e from G. Similarly, for an edge set F ⊆ E, we
denote by G−F the graph obtained by removing every edge in F from G. For an edge set F ⊆ E,
let V (F) denote the set of vertices incident to an edge in F . For a vertex set S, let G[S] be the
subgraph of G induced by S. We often use the symbols n, m, ∆ to denote the number of vertices,
the number of edges, and the maximum degree of a vertex, respectively, in the input graph. We use
OPT(G) to denote the optimal value of a graph G in the graph problem we are concerned with. We
simply write OPT when G is clear from the context. We denote by G the (infinite) set consisting
of all graphs.

1.8 Organization

We show our averagely stable algorithms for the minimum spanning forest problem, the global
minimum cut problem, the maximum matching problem, and the vertex cover problems in Sec-
tions 2, 3, 4, and 5, respectively. Then, we show a linear lower bound for the 2-coloring problem in
Section 6. We discuss general properties of average sensitivity in Section 7.

2 Warm Up: Minimum Spanning Forest

To get intution about average sensitivity of algorithms, we start with the minimum spanning forest
problem. In this problem, we are given a weighted graph G = (V,E,w), where w : E → R is a
weight function on edges, and we want to find a forest of the minimum total weight including all
the vertices.

Recall that Kruskal’s algorithm [Kru56] works as follows: Iterate over edges in the order of
increasing weights, where we break ties arbitrarily. At each iteration, add the current edge to the
solution if it does not form a cycle with the edges already added. The following theorem states
that this simple and deterministic algorithm is averagely stable.

Theorem 2.1. The average sensitivity of Kruskal’s algorithm is O(n/m).

Proof. Let G = (V,E) be the input graph and T be the spanning forest obtained by running
Kruskal’s algorithm on G. We consider how the output changes when we remove an edge e ∈ E
from G.

If the edge e does not belong to T , clearly the output of Kruskal’s algorithm on G− e is also T .
Suppose that the edge e belongs to T . Let T1 and T2 be the two trees rooted at the endpoints

of e obtained by removing e from T . If G − e is not connected, that is, e is a bridge in G, then
Kruskal’s algorithm outputs T1 ∪ T2 on G − e. If G − e is connected, then let e′ be the first edge
considered by Kruskal’s algorithm among all the edges connecting G[V (T1)] and G[V (T2)], where
V (Ti) is the vertex set of Ti for i ∈ [2]. Then, Kruskal’s algorithm outputs T1 ∪ T2 ∪ {e′} on G− e.
It follows that the Hamming distance between T and the output of the algorithm on G − e is at
most 2.

Therefore, the average sensitivity of Kruskal’s algorithm is at most

m− |T |
m

· 0 +
|T |
m
· 2 = O

(n
m

)
.

10

In Appendix A, we show that Prim’s algorithm, another classical algorithm for the minimum
spanning forest problem, have average sensitivity Ω(m) for a certain natural tie breaking rule.

3 Global Minimum Cut

For a graph G = (V,E) and a vertex set S ⊆ V , we define cost(G,S) to be the number of edges in
E that cross the cut (S, V \S). Then in the global minimum cut problem, given a graph G = (V,E),
we want to compute a vertex set ∅ (S (V that minimizes cost(G,S). In this section, we show an
algorithm with low average sensitivity for computing the global minimum cut problem in undirected
graphs. Specifically, we show the following.

Theorem 3.1. For ε > 0, there exists a polynomial-time algorithm for the global minimum cut
problem with approximation ratio 2 + ε and average sensitivity nO(1/εOPT).

Let OPT be the minimum size of a cut in G. Our algorithm enumerates cuts of small size and
then output a vertex set S with probability exp(−α · cost(G,S)) for a suitable α. See Algorithm 1
for details.

Algorithm 1: Stable Algorithm for Global Minimum Cut

Input: undirected graph G = (V,E), ε > 0
1 Compute the value OPT;

2 Let α← (2+1/ε) logn
OPT denote a parameter;

3 Enumerate all cuts of size at most (2 + 7ε)OPT + 2ε;
4 Sample a vertex set S (from among the cuts enumerated) with probability proportional to

exp(−α · cost(G,S));
5 return S.

The approximation ratio of the Algorithm 1 is 2 + 9ε: It clearly holds when OPT ≥ 1, and it
also holds when OPT = 0 because we only output a cut of size zero (for ε < 1/2). The following
theorem due to Karger [Kar93] directly implies that it runs in time polynomial in the input size
for any constant ε > 0.

Theorem 3.2 ([Kar93]). Given a graph G on n vertices with the minimum cut size c and a
parameter α ≥ 1, the number of cuts of size at most α · c is at most n2α and can be enumerated in
time polynomial (in n) per cut.

We now show that Algorithm 1 is averagely stable.

Lemma 3.3. The average sensitivity of Algorithm 1 is at most

β(G) =
n

m
· n(2+1/ε)/OPT · ((2 + 7ε)OPT + 2ε) + o(1).

As we have OPT ≤ 2m/n, the average sensitivity can be bounded by nO(1/εOPT), and Theo-
rem 3.1 follows by replacing ε with ε/9.

Proof. If OPT = 0, then the claim trivially holds because the right hand size is infinity. Hence in
what follows, we assume OPT ≥ 1.

11

Let A denote Algorithm 1. Consider an (inefficient) algorithm A′ that on input G, outputs a
cut S ⊆ V (from among all the cuts in G) with probability proportional to exp(−α · cost(G,S)).
For a graph G = (V,E), let A(G) and A′(G) denote the output distribution of algorithms A and
A′ on input G, respectively. For G = (V,E) and S ⊆ V , let pG(S) and p′G(S) be shorthands for
the probabilities that S is output on input G by algorithms A and A′, respectively.

We first bound the earth mover’s distance between A(G) and A′(G) for a graph G = (V,E).
To this end, we define

Z =
∑

S⊆V :cost(G,S)≤OPT+b

exp(−α · cost(G,S)), and Z ′ =
∑
S⊆V

exp(−α · cost(G,S))

where b = (1 + 7ε)OPT+ 2ε. Note that Z ≤ Z ′ and the quantity Z′−Z
Z′ is the total probability mass

assigned by algorithm A′ to cuts S ⊆ V such that cost(G,S) > OPT + b.
Now, we start with A′(G). For each S ⊆ V such that cost(G,S) ≤ OPT + b, keep at least

Z
Z′ · p

′
G(S) mass with a cost of 0 and move a mass of at most p′G(S) − Z

Z′ · p
′
G(S) at a cost of

n · (p′G(S)− Z
Z′ · p

′
G(S)). For each S ⊆ V such that cost(G,S) > OPT+ b, we move a mass of p′G(S)

at a cost of n · p′G(S). The total cost of moving masses is then equal to:

dEM

(
A(G),A′(G)

)
≤ n ·

∑
S⊆V :cost(G,S)≤OPT+b

p′G(S)

(
1− Z

Z ′

)
+ n ·

∑
S⊆V :cost(G,S)>OPT+b

p′G(S)

=
n(Z ′ − Z)

Z ′

 ∑
S⊆V :cost(G,S)≤OPT+b

p′G(S)

(
1− Z

Z ′

)
+ 1


≤ 2n(Z ′ − Z)

Z ′
.

Let nt stand for the number of cuts of cost at most OPT + t in G. By Karger’s theorem
(Theorem 3.2), we have that nt ≤ n2+2t/OPT. Then, we have

Z ′ − Z
Z ′

≤
∑
t>b

exp(−αt) · (nt − nt−1) ≤ (exp(α)− 1) ·
∑
t>b

exp(−αt)nt

≤ (exp(α)− 1)n2 ·
∑
t>b

n2t/OPT · exp(−αt)

≤ (exp(α)− 1)n2 ·
∑
t>b

n−t/εOPT ≤ (exp(α)− 1)n2 · n
−(b+1)/εOPT

1− n−1/εOPT

=
(
n(2+1/ε)/OPT − 1

)
·
(

1 +
1

n1/εOPT − 1

)
· n2

n(b+1)/εOPT

≤ n(2+1/ε)/OPT ·
(

1 +
εn

log n

)
· n2

n(b+1)/εOPT

= O

(
εn3+(2+1/ε)/OPT

n(b+1)/εOPT

)
= O

(ε

n4+1/ε

)
.

The last inequality above follows from our choice of b. Therefore, the earth mover’s distance between
A(G) and A′(G) is dEM

(
A(G),A′(G)

)
≤ O(ε

n3+1/ε). In addition, we can bound the expected size
of the cut output by A′ on G as OPT + b+m ·O(ε

n3+1/ε) = (2 + 7ε)OPT + 2ε+O(εm
n4+1/ε).

12

We now bound the earth mover’ distance between A′(G) and A′(G − e) for an arbitrary edge
e ∈ E. Let Z ′e denote the quantity

∑
S⊆V exp(−α · cost(G− e, S)). Since the cost of every cut in

G− e is at most the cost of the same cut in G, we have that Z ′ ≤ Z ′e and therefore,

p′G(S) =
exp(−α · cost(G,S))

Z ′
≤ exp(α · cost(G− e, S))

Z ′e
· Z
′
e

Z ′
= p′G−e(S) · Z

′
e

Z ′
.

We transform A′(G) into A′(G− e) as follows. For each S ⊆ V , we leave a probability mass of
at most p′G−e(S) at S with zero cost and move a mass of max{0, p′G(S) − p′G−e(S)} to any other

point at a cost of at most n ·max{0, p′G(S)− p′G−e(S)} ≤ n ·
(
Z′e
Z′ − 1

)
· p′G(S). Hence,

dEM

(
A′(G),A′(G− e)

)
≤ n ·

(
Z ′e
Z ′
− 1

)
·
∑
S⊆V

p′G(S) = n ·
(
Z ′e
Z ′
− 1

)
.

By the triangle inequality, the earth mover’s distance between A(G) and A(G − e) can be
bounded as

dEM

(
A(G),A(G− e)

)
≤ dEM

(
A(G),A′(G)

)
+ dEM

(
A′(G),A′(G− e)

)
+ dEM

(
A′(G− e),A(G− e)

)
≤ n ·

(
Z ′e
Z ′
− 1

)
+O

(
2ε

n2+1/ε

)
.

Hence, the average sensitivity of A is bounded as:

β(G) = E
e∈E

dEM

(
A(G),A(G− e)

)
≤ O

(
2ε

n3+1/ε

)
+ n · E

e∈E

(
Z ′e
Z ′
− 1

)
= O

(
2ε

n3+1/ε

)
+

n

mZ ′

∑
e∈E

(Z ′e − Z ′)

= O

(
2ε

n3+1/ε

)
+

n

mZ ′

∑
e∈E

∑
S⊆V :e crosses S

exp(−α · cost(G− e, S))− exp(−α · cost(G,S))

= O

(
2ε

n3+1/ε

)
+
n(exp(α)− 1)

mZ ′

∑
e∈E

∑
S⊆V :e crosses S

exp(−α · cost(G,S))

= O

(
2ε

n3+1/ε

)
+
n(exp(α)− 1)

m

∑
S⊆V

cost(G,S) · exp(−α · cost(G,S))

Z ′
.

The summation in the second term above is equal to the expected size of the cut output by
algorithm A′ on input G. We argued that it is at most (2 + 7ε)OPT + 2ε+O(εm

n4+1/ε). Hence, the
average sensitivity of A is at most

n

m
· n(2+1/ε)/OPT · ((2 + 7ε)OPT + 2ε) +O

(
εn(2+1/ε)/OPT + 2

n3+1/ε

)
=

n

m
· n(2+1/ε)/OPT · ((2 + 7ε)OPT + 2ε) + o(1)

as OPT ≥ 1.

13

4 Maximum Matching

A vertex-disjoint set of edges is called a matching. In the maximum matching problem, given a
graph, we want to find a matching of the maximum size. In this section, we describe different
algorithms with low average sensitivity that approximate the maximum matching in a graph.

4.1 Lexicographically smallest matching

In this section, we describe an algorithm that computes a maximum matching in a graph with
average sensitivity at most OPT2/m and prove Theorem 4.1, where OPT is the maximum size of a
matching.

First, we define some ordering among vertex pairs. Then, we can naturally define the lexico-
graphical order among matchings by regarding a matching as a sorted sequence of vertex pairs.
Then, our algorithm simply outputs the lexicographically smallest matching. Note that this can
be done in polynomial time using Edmonds’ algorithm [Edm65].

Theorem 4.1. Let A be the algorithm that outputs the lexicographically smallest maximum match-
ing. Then, the average sensitivity of A is at most OPT2/m, where OPT is the maximum size of a
matching.

Proof. For a graph G = (V,E), let M(G) ⊆ E be its lexicographically smallest maximum matching.
As long as e 6∈ M , we have M(G) = M(G − e). Hence, the average sensitivity of the algorithm is
at most

OPT

m
· OPT +

(
1− OPT

m

)
· 0 =

OPT2

m
.

Remark 4.2. Consider the path graph Pn = ({1, . . . , n}, E), where E = {(i, i + 1) : i ∈ [n − 1]}.
The average sensitivity of the above algorithm on Pn is Ω(OPT2

m). Hence the above analysis of the
average sensitivity is tight.

4.2 Greedy matching algorithm

In this section, we describe an algorithm (based on a randomized greedy maximal matching algo-

rithm) with average sensitivity Õ
(
OPT3/4

)
and approximation ration 1/2−o(1) for the maximum

matching problem and prove Theorem 4.9.
In Theorem 4.3, we prove that the basic randomized greedy maximal matching algorithm has

sensitivity O(∆), where ∆ is the maximum degree of the input graph.
Theorem 4.4 shows how to transform the randomized greedy algorithm to another algorithm

whose average sensitivity does not depend on the maximum degree, albeit at the cost of slightly
worsening the approximation guarantee. In particular, Theorem 4.8 shows that a (1/2 − ε)-

approximation algorithm for maximum matching with average sensitivity O
(

ε
1−ε log n+ m3

ε3OPT3

)
is obtained by applying Theorem 4.4 to the randomized greedy maximal matching.

Finally, we combine the matching algorithm guaranteed by Theorem 4.8 with the matching
algorithm guaranteed by Theorem 4.1 using the parallel composition property (Theorem 7.2) of
averagely stable algorithms and obtain Theorem 4.9.

14

4.2.1 Average sensitivity of the greedy algorithm in terms of the maximum degree

In this section, we describe the average sensitivity guarantee of the randomized greedy algorithm
described in Algorithm 2. It is evident that Algorithm 2 runs in polynomial time and that the

Algorithm 2: Randomized Greedy Algorithm

Input: undirected unweighted graph G = (V,E)
1 Sample a uniformly random ordering π of edges in E;
2 Set M ← ∅;
3 Consider edges one by one according to π and add an edge (u, v) to M only if both u and v

are unmatched in M ;
4 return M .

matching it outputs has size at least 1
2 the size of a maximum matching in the input graph.

Theorem 4.3. For every undirected unweighted graph G, the average sensitivity of Algorithm 2 is
β(G) ≤ 1

2 + ∆, where ∆ is the maximum degree of G.

Proof. Consider a graph G = (V,E). Let ∆ be the maximum degree of G. For an edge e ∈ E, let
G− e denote the graph obtained by removing e from G. Let M(G) denote the matching output by
Algorithm 2 on input G. Yoshida et al. [YYI12, Theorem 2.1] show that the presence of a uniformly
random edge e in M(G) depends on at most 1

2 + ∆ edges in expectation, where the expectation is
taken over both the randomness of the algorithm and the randomness in selecting the edge e. By
applying Theorem 1.9 to this statement, we can see that the average sensitivity of Algorithm 2 is
β(G) ≤ 1

2 + ∆, where ∆ is the maximum degree of G.

4.2.2 Averagely stable thresholding transformation

In this section, we show a transformation from matching algorithms whose average sensitivity
is a function of the maximum degree to matching algorithms whose average sensitivity does not
depend on the maximum degree. This is done by adding to the algorithm, a preprocessing step
that removes vertices from the input graph, where the removed vertices have degree at least an
appropriate random threshold. Such a transformation helps us to design averagely stable algorithms
for graphs with unbounded degree. Let Lap(µ, φ) denote the Laplace distribution with a location
parameter µ and a scale parameter φ.

Theorem 4.4. Let A′ be a randomized algorithm for the maximum matching problem such that
the size of the matching output by A′ on a graph G is always at least a · OPT for some a ≥ 0. In
addition, assume that there exists an oracle O satisfying the following:

• when given access to a graph G = (V,E) and query e ∈ E, the oracle generates a random
string π ∈ {0, 1}r and outputs whether e is contained in the matching output by A′ on G with
π as its random string, and

• the oracle O makes at most q(∆) queries to G in expectation, where ∆ is the maximum degree
of G and the expectation is taken over the random coins of A′ and a uniformly random query
e ∈ E.

15

Let δ > 0 and τ be a non-negative function on graphs. Then, there exists an algorithm A for the
maximum matching problem with average sensitivity

β(G) ≤ O
(

KG

δ(τ(G)−KG)
+ exp

(
−1

δ

))
· OPT + E

L

[
(2L− 2)2q(L)

]
,

where L is a random variable distributed as Lap(τ(G), δτ(G)) and KG = maxe∈E(G) |τ(G)−τ(G−e)|.
Moreover, the expected size of the matching output by A is at least

a · OPT− am

(1− δ ln(OPT/2)) · τ(G)
− a.

The following fact will be useful in the proof of Theorem 4.4.

Proposition 4.5. Let L be a random variable distributed as Lap(µ, φ). Then, Pr[L < (1− ε)µ] ≤
exp(−εµ/φ)/2. Similarly, Pr[L > (1 + ε)µ] ≤ exp(−εµ/φ)/2.

Proof of Theorem 4.4. The algorithm A is given below.

Algorithm A: On input G = (V,E),

1. Sample a random variable L according to the distribution Lap(τ(G), δτ(G)).

2. Let [G]L be the graph obtained after removing from G all vertices of degree at least L.

3. Run A′ on [G]L.

We first bound the average sensitivity of A. We can think of A as being sequentially composed
of two algorithms, where the first algorithm takes in a graph G = (V,E) and outputs a number
L ∼ Lap(τ(G), δτ(G)). The second algorithm takes both L and G and runs A′ on [G]L.
Let Le for e ∈ E denote a Laplace random variable distributed as Lap(τ(G− e), δτ(G− e)). Using
Theorem 1.6, we get that the average sensitivity of A is bounded by

OPT · E
e∈E

[dTV(L,Le)] + E
L

[
E
e∈E

[
dEM(A′([G]L),A′([G− e]L))

]]
.

Claim 4.6. For x ∈ R, Ee∈E
[
dEM

(
A′([G]x),A′([G− e]x)

)]
≤ (2x− 2)2q(x).

Proof. Fix x ∈ R. In order to bound the term Ee∈E
[
dEM

(
A′([G]x),A′([G− e]x)

)]
, consider

the following algorithm A′x. On input G = (V,E), the algorithm A′x first removes every ver-
tex of degree at least x from G and then runs A′ on the resulting graph. Hence, the quantity

Ee∈E
[
dEM

(
A′([G]x),A′([G− e]x)

)]
denotes the average sensitivity of A′x.

In order to bound the average sensitivity of A′x, construct an oracle Ox as follows. Ox when
given access to a graph G = (V,E) and input e sampled uniformly at random from E, does the
following. It first checks whether at least one of the endpoints of e has degree at least x. If so, it
returns that e does not belong to the solution obtained by running A′x on G. Otherwise, it runs O
with access to [G]x and e as input and outputs the answer of O.

We can analyze the query complexity of Ox as follows. Call an edge e ∈ E alive if both the
endpoints of e have degree less than x. Otherwise, e is dead.

The oracle Ox can check whether an edge e = (u, v) is alive or not by querying at most 2x− 2
edges incident to e. In particular Ox examines the neighbors of u and v one by one, and, as soon

16

Ox encounters x − 1 distinct neighbors (excluding u or v themselves) for either u or v, Ox can
declare e to be a dead edge.

If the edge e ∈ E input to Ox is a dead edge, therefore, Ox queries at most 2x − 2 edges and
returns that e cannot be part of a solution to running A′x on G.

If the input edge e ∈ E is alive, then we know that it is a uniformly random alive edge. By the
guarantee on O, we then know that O makes at most q(x) queries to the alive edges in expectation
over the randomness of A′ and the choice of the input alive edge, since the maximum degree of [G]x
is at most x. In order for the oracle Ox to simulate oracle access to [G]x for the oracle O, for each
alive edge e queried by O, the oracle Ox has to query each edge incident to e in G and determine
which among these are alive. Since e is alive, both endpoints of e have degrees less than x. Hence,
Ox need only check whether at most 2x− 2 edges incident to e are alive or not. This can be done
by querying (2x− 2)2 edges in E in total.

Combining all of the above, the expected query complexity of Ox is at most (2x− 2)2q(x),
where the expectation is taken over the edges of e ∈ E and the randomness in Ax.

Therefore, by Theorem 1.9, we get that the average sensitivity of algorithm Ax is bounded by
(2x− 2)2q(x).

We now bound the quantity Ee∈E [dTV(L,Le)].

Claim 4.7. For any e ∈ E, we have

dTV(L,Le) ≤ O
(

K

δ(τ −K)
+ exp

(
−1

δ

))
.

Proof. Let fL, fLe : R→ R be the probability density functions of the Laplace random variables L
and Le, respectively. Let τ = τ(G), τe = τ(Ge), and K = KG. Then

fL(x)

fLe(x)
=

1
2δτ exp

(
− |x−τ |δτ

)
1

2δτe
exp

(
− |x−τe|δτe

) =
τe
τ

exp

(
|x− τe|
δτe

− |x− τ |
δτ

)

=

(
1− τ − τe

τ

)
exp

(
τ |x− τe| − τe|x− τ |

δττe

)
.

A direct calculation shows that for 0 ≤ x ≤ 2 max{τ, τe}, we have(
1− K

τ

)
exp

(
−2K

δ(τ −K)

)
≤ fL(x)

fLe(x)
≤
(

1 +
K

τ

)
exp

(
2K

δ(τ −K)

)
.

This implies that for all S ⊆ [0, 2 max{τ, τe}],(
1− K

τ

)
exp

(
−2K

δ(τ −K)

)
− 1 ≤ Pr[L ∈ S]− Pr[Le ∈ S] ≤

(
1 +

K

τ

)
exp

(
2K

δ(τ −K)

)
− 1.

By Proposition 4.5, the probability that L (and Le as well) falls in the range [−∞, 0]∪[2 max{τ, τe},∞]
is bounded by exp(−1/δ). Hence, total variation distance between L and Le is(

1 +
K

τ

)
exp

(
2K

δ(τ −K)

)
−
(

1− K

τ

)
exp

(
−2K

δ(τ −K)

)
+ 2 exp

(
−1

δ

)

17

=

(
1 +

K

τ

)(
1 +

2K

δ(τ −K)
+O

(
K2

δ2(τ −K)2

))
−
(

1− K

τ

)(
1− 2K

δ(τ −K)
−O

(
K2

δ2(τ −K)2

))
+ 2 exp

(
−1

δ

)
=

2K

τ
+

4K

δ(τ −K)
+O

(
K2

δ2(τ −K)2

)
+ 2 exp

(
−1

δ

)
≤ 6K

δ(τ −K)
+ 2 exp

(
−1

δ

)
+O

(
K2

δ2(τ −K)2

)
.

= O

(
K

δ(τ −K)
+ exp

(
−1

δ

))
.

Therefore, the average sensitivity of A is bounded as

β(G) = E
e∈E

dEM

(
A(G),A(G− e)

)
≤ O

(
K

δ(τ −K)
+ exp

(
−1

δ

))
· OPT + E

L

[
(2x− 2)2q(x)

]
.

We now bound the approximation guarantee of A. By Proposition 4.5,

Pr

[
L <

(
1− δ ln

(
OPT

2

))
· τ(G)

]
≤ 1

OPT
.

Therefore, with probability at least 1 − 1/OPT, only those vertices with degree at least (1 −
δ ln(OPT/2)) ·τ(G) are removed from G. The number of such vertices is at most m

(1−δ ln(OPT/2))·τ(G) .

Therefore, with probability at least 1 − 1/OPT, the size of a maximum matching in the resulting
graph is at most m

(1−δ ln(OPT/2))·τ(G) smaller than that of G. With probability at most 1/OPT, the
size of a maximum matching in the resulting instance could be smaller by an additive term of at
most OPT. Hence, the expected size of a maximum matching in the new instance is at least

OPT− m

(1− δ ln(OPT(G)/2)) · τ(G)
− 1.

The statement on approximation guarantee follows.

4.2.3 Average sensitivity of the greedy algorithm with thresholding

In this section, we apply Theorem 4.4 to Algorithm 2 and analyze the average sensitivity of the
resulting algorithm. We show the following.

Theorem 4.8. Let ε ∈ (0, 1) be a parameter. There exists an algorithm Aε with approximation

ratio 1/2− ε and sensitivity O
(

ε
1−ε · log n+ m3

ε3OPT(G)3

)
.

Proof. The algorithm guaranteed by the theorem statement is as follows.

Algorithm Aε: On input G = (V,E),

1. Compute OPT.

18

2. If OPT ≤ 1
ε + 1 or m ≤ 1

2ε , then output an arbitrary maximum matching.

3. Otherwise, run the algorithm obtained by applying Theorem 4.4 to Algorithm 2 with the
setting τ := τ(G) = m

ε′OPT and δ := 1
2 lnn , where ε′ = ε− 1

2OPT .

Approximation guarantee: If OPT ≤ 1
ε + 1 or m ≤ 1

2ε , the approximation guarantee is clear.

Otherwise, since Algorithm 2 outputs a maximal matching whose size is always at least OPT
2 , the

size of the matching output by Aε is at least OPT
2 −

ε′
2
OPT

1− ln(OPT/2)
2 lnn

− 1
2 , which is at least

OPT

2
− ε · OPT

by the setting of ε′ and the fact that ln(OPT/2)
2 lnn ≤ 1

2 .

Average sensitivity: If OPT ≤ 1
ε + 1 or m ≤ 1

2ε , the average sensitivity of Aε is bounded by O(1
ε),

since the size of maximum matching in G is small and it can decrease only by at most 1 by the
removal of an edge.

We now analyze the average sensitivity of Aε for the case that OPT > 1
ε + 1. Note that

KG = 2 max
e∈E

∣∣∣∣ m

2εOPT(G)− 1
− m− 1

2εOPT(G− e)− 1

∣∣∣∣
≤ 2 max

{
m

2εOPT(G)− 1
− m− 1

2εOPT(G)− 1
,

m− 1

2ε(OPT(G)− 1)− 1
− m

2εOPT(G)− 1

}
= 2 max

{
1

2εOPT(G)− 1
,

2ε(m− OPT(G)) + 1

(2ε(OPT(G)− 1)− 1) · (2εOPT(G)− 1)

}
=

2

2εOPT(G)− 1
max

{
1,

2ε(m− OPT(G)) + 1

2ε(OPT(G)− 1)− 1

}
.

The second inequality above uses the fact that for numbers a, b, c ≥ 0 such that a ≤ b and c(b −
1)− 1 ≥ 0, we have that a

cb−1 ≤
a−1

c(b−1)−1 .

From the statement of Theorem 4.3, we can see that q(x) ≤ 1
2 + x when x > 0 and q(x) = 0

otherwise. Therefore, we can see that the average sensitivity of the algorithm resulting from
applying Theorem 4.4 to Algorithm 2 is bounded as:

O

(
KG

δ(τ −KG)
+ exp

(
−1

δ

))
· OPT +

∫ ∞
0

(2x− 2)2 ·
(

1

2
+ x

)
· 1

2δτ
· exp

(
−|x− τ |

δτ

)
dx. (5)

Since 2ε(m−OPT)+1
2ε(OPT−1)−1 is a nonincreasing function of OPT and OPT ≥ 1

ε + 1, we have that

2ε(m− OPT) + 1

2ε(OPT− 1)− 1
≤ 2εm.

Hence, KG ≤ 2
2εOPT−1 max {1, 2εm} = 4εm

2εOPT−1 , since m > 1
2ε and therefore, we have that τ−KG ≥

τ(1− 2ε). Hence, the first term above can be upper bounded by

O

(
KG

δτ(1− 2ε)
+ exp

(
−1

δ

))
· OPT(G) = O

(
4εm

2εOPT− 1
· 1

1− 2ε
· 2 lnn

2m
2εOPT−1

+
OPT

n2

)

19

= O

(
ε

1− ε
· log n

)
.

The second term of (5) can be upper bounded by∫ ∞
0

(2x)2 ·
(

1

2
+ x

)
· 1

2δτ
· exp

(
−|x− τ |

δτ

)
dx

=

∫ ∞
0

x2

δτ
· exp

(
−|x− τ |

δτ

)
dx+

∫ ∞
0

2x3

δτ
· exp

(
−|x− τ |

δτ

)
dx.

Let I1 and I2 denote the first and second terms above. The term I1 can be evaluated as:

I1 =

∫ τ

0

x2

δτ
· exp

(
−τ − x

δτ

)
dx+

∫ ∞
τ

x2

δτ
· exp

(
−x− τ

δτ

)
dx

=

(
1− 2δ + 2δ2 − 2 exp

(
−1

δ

)
δ2

)
τ2 + (1 + 2δ + 2δ2)τ2

=

(
2 + 4δ2 − 2 exp

(
−1

δ

)
δ2

)
τ2 = O

(
m2

ε2OPT2

)
.

The term I2 can be evaluated as:

I2 =

∫ τ

0

2x3

δτ
· exp

(
−τ − x

δτ

)
dx+

∫ ∞
τ

2x3

δτ
· exp

(
−x− τ

δτ

)
dx

= 2

(
1− 3δ + 6δ2 − 6δ3 + 6 exp

(
−1

δ

)
δ3

)
τ3 + 2(1 + 3δ + 6δ2 + 6δ3)τ3

= 2

(
2 + 12δ2 + 6 exp

(
−1

δ

)
δ3

)
τ3 = O

(
m3

ε3OPT3

)
.

Hence, the average sensitivity of the algorithm obtained can be bounded by:

β(G) = max

{
O

(
1

ε

)
, O

(
ε

1− 2ε
· log n

)
+O

(
m2

ε2OPT2

)
+O

(
m3

ε3OPT3

)}
= O

(
ε log n

1− ε
+

m3

ε3OPT3

)
.

4.2.4 Average sensitivity of a combined matching algorithm

In this section, we combine the algorithms guaranteed by Theorems 4.1 and 4.8 in order to get a
matching algorithm with improved sensitivity.

Theorem 4.9. Let ε ∈ (0, 1
2) be a parameter. There exists an algorithm for the maximum matching

problem with approximation ratio 1/2− ε and sensitivity

O

(
OPT3/4

(
ε1/4 log1/4 n+

1

ε3/4

))
.

In particular when ε = 1/ log1/4 n, the average sensitivity is O(OPT3/4 log3/16 n).

20

Algorithm 3: Combined Algorithm to
(

1
2 − ε

)
-Approximate Maximum Matching

Input: undirected unweighted graph G = (V,E)
1 Compute OPT.;
2 if OPT < 5 or m < 6 then
3 return an arbitrary maximum matching in G.

4 else

5 Let f(G)← OPT2

m and g(G)← ε
(1−ε) · log n+ m3

ε3OPT3 ;

6 Run the algorithm given by Theorem 4.1 with probability g(G)
f(G)+g(G) and run the

algorithm given by Theorem 4.8 with the remaining probability.

Proof. The algorithm guaranteed by the theorem is given as Algorithm 3. The bounds on approx-
imation guarantee and average sensitivity are both straightforward when OPT < 5 or m < 4.

The approximation guarantee in the case when OPT ≥ 5 and m ≥ 6 is also straightforward since
Algorithm 3 is simply a distribution over algorithms guaranteed by Theorem 4.1 and Theorem 4.8.

We now bound the average sensitivity of Algorithm 3 when OPT ≥ 5 and m ≥ 6. Let ρ(G)

denote the probability g(G)
f(G)+g(G) . By Theorem 7.2, the average sensitivity is at most

O(f(G)) · g(G) +O(g(G)) · f(G)

f(G) + g(G)
+ 2OPT · E

e∈E
[|ρ(G)− ρ(G− e)|] . (6)

We first bound the quantity Ee∈E [|ρ(G)− ρ(G− e)|].

Claim 4.10. For every graph G = (V,E) such that OPT ≥ 5, we have, for every e ∈ E,

g(G) ·
(

1− 3

m

)
≤ g(G− e) ≤ g(G) ·

(
1 +

4

OPT− 1

)
.

Proof. We first prove the upper bound. We know that

g(G− e)
g(G)

≤

1 +

(
m−1

ε(OPT−1)

)3
−
(

m
εOPT

)3
ε logn
(1−ε) + m3

ε3OPT3


≤

1 +

(
m−1

ε(OPT−1)

)3
−
(

m
εOPT

)3
m3

ε3OPT3


=

(
1− 1

m

)3

·
(

1 +
1

OPT− 1

)3

≤
(

1 +
4

OPT− 1

)
.

Note that the second-to-last inequality holds whenever OPT ≥ 5 and m ≥ 3.
For the lower bound,

g(G− e)
g(G)

≥

(
1−

(
m

εOPT

)3 − (m−1
εOPT

)3
ε logn
(1−ε) + m3

ε3OPT3

)

21

≥

(
1−

(
m

εOPT

)3 − (m−1
εOPT

)3
m3

ε3OPT3

)

=

(
1− 1

m

)3

≥ 1− 3

m
.

Claim 4.11. For every graphs G = (V,E) and every e ∈ E,

f(G) ·
(

1− 2

OPT

)
≤ f(G− e) ≤ f(G) ·

(
1 +

1

m− 1

)
.

Proof. To prove the upper bound,

f(G− e)
f(G)

≤
(

m

m− 1

)
=

(
1 +

1

m− 1

)
.

For the lower bound,

f(G− e)
f(G)

≥
(
OPT− 1

OPT

)2

·
(

m

m− 1

)2

≥
(
OPT− 1

OPT

)2

≥ 1− 2

OPT
.

Note that
(
1− 2

OPT

)−1 ≤ 1 + 4
OPT and

(
1− 3

m

)−1 ≤ 1 + 6
m for OPT ≥ 4 and m ≥ 6. We also have(

1 + 4
OPT−1

)−1
≥ 1− 4

OPT−1 and
(

1 + 1
m−1

)−1
≥ 1− 1

m−1 for OPT ≥ 5 and m ≥ 2.

Combining all of the above,

ρ(G− e) =
g(G− e)

f(G− e) + g(G− e)

≤
g(G) ·

(
1 + 4

OPT−1

)
(f(G) + g(G)) ·min

{
1− 3

m , 1−
2

OPT

}
≤ ρ(G) ·

(
1 +

4

OPT− 1

)
·max

{
1 +

6

m
, 1 +

4

OPT

}
≤ ρ(G) ·

(
1 +

12

OPT− 1

)
.

Using similar calculations, we can see that

ρ(G− e) ≥ ρ(G) ·
(

1− 3

m

)
·min

{
1− 4

OPT− 1
, 1− 1

m− 1

}
≥ ρ(G) ·

(
1− 7

OPT− 1

)
.

Thus, for all e ∈ E, we have that |ρ(G)−ρ(G−e)| ≤ max
{

7
OPT−1 ,

12
OPT−1

}
·ρ(G) = 12ρ(G)

OPT−1 . Hence,

Ee∈E [|ρ(G)− ρ(G− e)|] ≤ 12ρ(G)
OPT−1 .

Therefore, the average sensitivity of Algorithm 3 is at most

O(f(G)) · g(G) +O(g(G)) · f(G)

f(G) + g(G)
+ 2OPT · E

e∈E
[|ρ(G)− ρ(G− e)|]

22

= O

 f(G)3/4g(G)1/4

g(G)1/4

f(G)1/4
+ f(G)3/4

g(G)3/4

+O

(
OPTρ(G)

OPT

)
= O

(
f(G)3/4g(G)1/4

)
+O(1)

= O

((
OPT2

m

)3/4

·

(
(ε log n)1/4 +

(
m3

ε3OPT3

)1/4
))

= O

((
OPT3/2

m3/4
ε1/4 log1/4 n+

OPT3/2

m3/4

m3/4

ε3/4OPT3/4

))

= O

(
OPT3/2

m3/4
ε1/4 log1/4 n+

OPT3/4

ε3/4

)

= O

(
OPT3/4

(
ε1/4 log1/4 n+

1

ε3/4

))
.

4.3 Matching algorithm based on augmenting paths

In this section, we describe a (1− ε)-approximation algorithm for the maximum matching problem

with average sensitivity Õ
(
OPT

c
c+1 /ε

3c
c+1

)
for c = O(1/ε2) in Theorem 4.14. The basic building

block is a (1− ε)-approximation algorithm for maximum matching that is based on iteratively aug-
menting a matching with greedily chosen augmenting paths of increasing lengths. In Theorem 4.12,
we show that the average sensitivity of this algorithm is ∆O(1/ε2), where ∆ is the maximum degree
of the input graph. To this, we first apply Theorem 4.4 to obtain Theorem 4.13. We then com-
bine the algorithm guaranteed by Theorem 4.13 with the algorithm guaranteed by Theorem 4.1 to
obtain Theorem 4.14.

Algorithm 4: Greedy Augmenting Paths Algorithm

Input: undirected unweighted graph G = (V,E), parameter ε ∈ (0, 1)
1 M0 ← ∅;
2 for i ∈ {1, 2, . . . d1

ε − 1e} do
3 Let Ai denote the set of augmenting paths of length 2i− 1 for the matching Mi−1;
4 Let A′i denote a maximal set of disjoint paths from Ai, where A′i is made from a random

ordering of Ai;
5 Mi ←Mi−14A′i.
6 return Md 1

ε
−1e.

Theorem 4.12. Algorithm 4 with parameter ε > 0 has approximation ratio 1 − ε and average
sensitivity ∆O(1/ε2), where ∆ is the maximum degree of the input graph.

Proof. For all k ≥ 0, it is known that |Mk| ≥ k
k+1 · |M

∗| [GJ79], where M∗ denotes a maximum
matching in G. Hence, the matching Md 1

ε
−1e is a (1− ε)-approximation to M∗.

Yoshida et al. [YYI12, Theorem 3.7] show that for all k ≥ 0, determining whether a uniformly
random edge e ∼ E belongs to Mk can be done by querying at most ∆O(k2) edges in expectation,

23

where ∆ is the maximum degree of G. Applying Theorem 1.9 to this, we can see that the average
sensitivity of Algorithm 4 with parameter ε > 0 and input G is ∆O(1/ε2), where ∆ is the maximum
degree of G.

Theorem 4.13. Let ε ∈ (0, 1) be a parameter. There exists an algorithm with approximation ratio
1− ε and average sensitivity

O

(
ε

1− ε
log n

)
+
(m

ε3OPT

)O(1/ε2)
.

Proof. The algorithm guaranteed by the theorem statement is as follows.

Algorithm Aε: On input G = (V,E),

1. Compute OPT.

2. If OPT ≤ 2
ε + 1 or m ≤ 1

3ε , then output an arbitrary maximum matching.

3. Otherwise, run the algorithm obtained by applying Theorem 4.4 with the setting τ := τ(G) =
m

ε′OPT and δ := 1
2 lnn to Algorithm 4 run with parameter ε′, where ε′ = ε

3 −
1

3OPT .

As the analysis is almost identical to that of Theorem 4.8, we only highlight the differences.

Approximation guarantee: The analysis of the approximation ratio is straightforward.

Average sensitivity : We focus on the case that OPT > 2
ε+1 and m > 1

3ε since the average sensitivity

in other case is straightforward to analyze. The first term of (5) can be bounded by O
(

ε
1−ε · log n

)
in the same way as in the proof of Theorem 4.8.

Let c = O(1/ε2). Then, the second term of (5) becomes∫ ∞
0

(2x− 2)2xc
1

2δτ
exp

(
−|x− τ |

δτ

)
dx = 4

∫ ∞
τ

xc+2 1

δτ
exp

(
−x− τ

δτ

)
dx

= exp

(
1

δ

)
(δτ)c+2Γ

(
c+ 3,

1

δ

)
= (δτ)c+2(c+ 2)!

c+2∑
k=0

(1/δ)k

k!
=
(m

ε3OPT

)O(1/ε2)

where Γ(·, ·) is the incomplete Gamma function and we have used the fact that Γ(s + 1, x) =
s! exp(−x)

∑s
k=0 x

k/k! if s is a non-negative integer. Moreover, each term in the summation δc+2 ·
(c+ 2)!

∑c+2
k=0

(1/δ)k

k! is o(1). Hence, the summation is O(1
ε2

).

By combining Theorems 4.1 and 4.13, we get the following.

Theorem 4.14. Let ε ∈ (0, 1) be a parameter. There exists an algorithm with approximation ratio
1− ε and average sensitivity

OPT(G)
c
c+1 ·O

((
ε

1− ε
· log n

) 1
c+1

+
1

ε
3c
c+1

)

for c = O(1/ε2).

24

Proof. Let f(G) = OPT2

m and g(G) = ε
1−ε · log n +

(
m

ε3OPT

)c
for c = O(1/ε2). Let ρ(G) denote

g(G)
f(G)+g(G) . Given a graph G = (V,E) as input and a parameter ε ∈ (0, 1), the algorithm guaranteed
by the theorem first computes OPT and returns an arbitrary maximum matching if OPT < 2c or
m < 2c. Otherwise, it runs the algorithm given by Theorem 4.1 with probability ρ(G) and the
algorithm given by Theorem 4.13 using the parameter ε with probability 1− ρ(G).

We highlight the differences in the analysis when compared to the proof of Theorem 4.9, which
arise only in the part where we analyze the average sensitivity for the case that OPT ≥ 2c and
m ≥ 2c. While bounding the second term of (6), the bounds on f(G− e) that we use are identical
to that in Claim 4.11. The following claim gives bounds for g(G− e).

Claim 4.15. For every graph G = (V,E) such that OPT ≥ c+ 1 and m ≥ 2c, and for every e ∈ E,(
1− c

m

)
· g(G) ≤ g(G− e) ≤

(
1 +

c

OPT− c

)
· g(G).

The proof of Claim 4.15 is nearly identical to that of Claim 4.10. In order to get the upper
bound, we use the fact that (1 + x)r ≤ 1 + rx

1−(r−1)x for x ∈ [0, 1
r−1) and r > 1.

Using these bounds, we can argue that Ee∈E [|ρ(G)−ρ(G− e)|] ≤ 3c
OPT−c . Therefore, the second

term of (6) can be bounded by 3cOPT
OPT−c . This is O(1/ε2), since OPT

OPT−c ≤ 2 as OPT ≥ 2c.

To bound the first term of (6), we divide both the numerator and denominator by f(G)
1
c+1 ·

g(G)
c
c+1 and upper bound the resulting fraction by its numerator g(G)

1
c+1 · f(G)

c
c+1 , which can be

simplified to obtain the final upper bound on the average sensitivity.

5 Minimum Vertex Cover

A vertex set S ⊆ V in a graph G = (V,E) is called a vertex cover if every edge in E is incident to a
vertex in S. In the minimum vertex cover problem, given a graph G, we want to compute a vertex
cover of the minimum size. In this section, we discuss averagely stable approximation algorithms
for the minimum vertex cover problem.

In Section 5.1, we give an algorithm that reduces to the maximum matching problem and prove
Theorem 5.1. Then, in Section 5.2, we show another algorithm based on a differentially private
algorithm due to Gupta et al. [GLM+10], which has a worse approximation ratio but could have a
smaller average sensitivity compared to the first algorithm. In particular, we prove Theorem 5.2.

5.1 Reduction to the maximum matching problem

It is well known that, for any maximal matching M , the vertex set consisting of all endpoints of
edges in M is a 2-approximate vertex cover. Based on this fact, we slightly modify Algorithm 3 to
obtain an averagely stable algorithm for the minimum vertex cover problem. Specifically, we show
the following.

Theorem 5.1. Let ε ∈ (0, 1). There exists a (2 + ε)-approximation algorithm for the minimum
vertex cover problem with average sensitivity

O

(
OPT3/4

(
ε1/4 log1/4 n+

1

ε3/4

))
.

In particular when ε = 1/ log1/4 n, the average sensitivity is O(OPT3/4 log3/16 n).

25

Proof. Given a graph G = (V,E), let MM denote the size of a maximum matching in G. Let A
denote the algorithm given by Theorem 4.9. Our algorithm to approximate vertex cover is a slight
modification of A.

Recall that, on input G = (V,E) and parameter ε ∈ (0, 1/2), algorithm A runs one of the
following algorithms. The first one, denoted by A1, simply outputs a maximum matching in G.
The second one, denoted by A2, does the following. If MM ≤ 1

ε + 1 or m ≤ 1
2ε , it outputs an

arbitrary maximum matching. Otherwise, A2 constructs a graph [G]L by removing vertices of
degrees at least a threshold L ∼ Lap(τ, δτ) and then applies the randomized greedy algorithm on
[G]L, where τ = 2m

2εMM−1 , and δ = 1
2 lnn .

Our modification to A is as follows. When we run A1, we output the vertex set S consisting of
the endpoints of the output matching. When we run A2, we output the set T = T1 ∪ T2, where T1

is the set of endpoints of the matching and T2 is the set of vertices removed by A2.
Approximation guarantee: Clearly, S is a 2-approximate vertex cover. As T1 is a vertex cover

of [G]L, the set T is a vertex cover of G. We now bound the expected size of T . Let OPT and
OPT([G]L) be the sizes of minimum vertex covers in G and [G]L, respectively. Then, observing that
OPT ≥ OPT([G]L) ≥ |T1|/2, we have E[|T1|] ≤ 2OPT. We now bound E[|T2|]. By Proposition 4.5,
we know that the value of L < (1− ln 2

2) · τ with probability at most 1
n . Therefore, with probability

at least 1− 1
n , the number of vertices removed is at most m

(1− ln 2
2

)·τ and with probability at most 1
n ,

the number of vertices removed is at most n. Therefore, the expected cardinality of S2 is at most
m

(2−ln 2)· m
2εMM−1

· (1 − 1
n) + n · 1

n , which is at most 2εMM. Note that OPT
2 ≤ MM ≤ OPT as the set

of endpoints in a maximum matching is a 2-approximate vertex cover. Therefore, we can see that

E[|T2|] ≤ 2εOPT. It follows that

E[|T |] = E[|T1|] + E[|T2|] ≤ 2OPT + 2εOPT = (2 + 2ε) · OPT.

Average sensitivity : The average sensitivity of A1 even after the modification is O
(
OPT2

m

)
, since

outputting the endpoints of a matching instead of the matching itself can only affect the average
sensitivity by a factor of at most 2.

We now bound the average sensitivity ofA2 after the modification. Consider a graphG = (V,E).
Let Ai2 for i ∈ {1, 2} denote the algorithm that simulates the actions of A2 and outputs only Ti. Let
He,π for e ∈ E denote the Hamming distance between the outputs of A2 on G and G− e when run
using the same random string π ∈ {0, 1}∗. Let H i

e,π for i ∈ {1, 2} and e ∈ E denote the Hamming

distance between the outputs of A(i)
2 on G and G − e when run using the same random string π.

Since T1 and T2 are always disjoint, we have for all e ∈ E and all π ∈ {0, 1}∗,

He,π ≤ H1
e,π +H2

e,π.

Therefore, the average sensitivity of A2 is at most the sum of average sensitivities of A(1)
2 and A(2)

2 .

The average sensitivity of A(1)
2 is O

(
ε

1−ε · log n+ m3

ε3MM3

)
, since outputting the endpoints of a

matching does not change the average sensitivity asymptotically.

We now bound the average sensitivity of A(2)
2 . Note that the output of A(2)

2 on a graph G =
(V,E) is fully characterized by the value of the Laplace random variable that is sampled. Fix e ∈ E.

We bound the earth mover’s distance between A(2)
2 (G) and A(2)

2 (G− e).
Let fG(x) and fG−e(x) denote the probability densities that A(2)

2 samples the value x as the

threshold on inputs G and G − e, respectively. We start with the distribution A(2)
2 (G). For

26

each x ∈ R, we retain a probability density of min{fG−e(x), fG(x)} at point x at a cost of 2 ·
min{fG−e(x), fG(x)}. The factor 2 comes from the fact that for the same value of random threshold,

the sets output by A(2)
2 on G and G− e can differ in at most 2 vertices.

We also transport a probability density of max{fG(x) − fG−e(x), 0} to another point where
there is a deficit in probability density. The cost of this transport equals to the transported
probability density weighted by Hamming distance between the cardinality of outputs at the source
and destination points. Let MMe denote the size of a maximum matching in G− e. As we argued

earlier, for the distribution A(2)
2 (G), a probability of at least 1 − 1

n is located on values of x that

would make the cardinality of output of A(2)
2 at most 2εMM. Using the same argument, we can

see that, for the distribution A(2)
2 (G − e), a probability of at least 1 − 1

n is located on values of x

that would make the cardinality of output of A(2)
2 at most 2εMMe ≤ 2εMM. If a probability p is

transported from a source point with output size at most 2εMM to a destination point with output
size at most 2εMM, the cost of the transport is at most p ·4εMM. Only for a probability of at most
2
n , the symmetric difference between the source and destination output sets is Ω(n) and hence, the

cost of transport is at most 2. Thus, the earth mover’s distance between A(2)
2 (G) and A(2)

2 (G− e)
is at most dTV(L,Le) · 4εMM +O(1).

Using Claim 4.7 and following the steps in the proof of Theorem 4.8, the average sensitivity of

A(2)
2 is bounded by O(ε2

1−ε log n).

Hence, the average sensitivity of A2 is O
(

ε
1−ε · log n+ m3

ε3MM3

)
. Following the proof of Theo-

rem 4.9 again, the overall average sensitivity is bounded by

O

(
MM3/4

(
ε1/4 log1/4 n+

1

ε3/4

))
= O

(
OPT3/4

(
ε1/4 log1/4 n+

1

ε3/4

))
.

By replacing ε with ε/2 throughout, we get the approximation and average sensitivity guarantees
given by the statement.

5.2 Algorithm based on a differentially private algorithm

We consider another algorithm for the minimum vertex cover problem based on the differentially
private algorithm due to Gupta et al. [GLM+10] and show the following.

Theorem 5.2. Let ε ≥ 0. There exists an algorithm for the minimum vertex cover problem with
average sensitivity O(n2/m1+ε) and approximation ratio O((m1+ε log n)/n).

The algorithm of Gupta et al. [GLM+10] is based on the simple (non-private) 2-approximation
algorithm [Pit85] that repeatedly selects a vertex at random with probability proportional to its
degree with respect to the uncovered edges and adds the sampled vertex to the solution. To
make this algorithm differentially private, Gupta et al. [GLM+10] mixed the distribution with a
uniform distribution, using a weight that grows as the number of remaining vertices decreases. Our
algorithm, shown in Algorithm 5, is similar to theirs though our choice of weights is different.

We will show that Algorithm 5 has approximation ratio O((m1+ε log n)/n) and average sensi-
tivity O(n2/m1+ε). Although the approximation ratio is worse than that discussed in Section 5.1,
the present one has a better sensitivity. In what follows, for simplicity, we assume n ≤ m1+ε.

Lemma 5.3. The approximation ratio of Algorithm 5 is O((m1+ε log n)/n).

27

Algorithm 5: Averagely Stable Algorithm for Vertex Cover

Input: Graph G = (V,E) and parameter ε ≥ 0
1 Let G1 = (V1, E1)← G, and S ← ∅;
2 for i = 1, . . . , n do
3 wi ← 2m1+ε/(n− i+ 1);
4 Sample a vertex v ∈ V (Gi) with probability proportional to dGi(v) + wi;
5 if dGi(v) ≥ 1 then
6 S ← S ∪ {v}.
7 Gi+1 ← the graph obtained from Gi by removing v and incident edges.

8 return S.

Proof. It is shown in [GLM+10] that the approximation ratio is (2 + (2/n)
∑n

i=1wi), which is

2 +
2

n

n∑
i=1

2m1+ε

n− i+ 1
= O

(
m1+ε log n

n

)
.

Lemma 5.4. The average sensitivity of Algorithm 5 is O(n2/m1+ε).

Proof. For a while, we fix a graph G = (V,E) and an edge e ∈ E. To analyze the sensitivity of
Algorithm 5, we focus on the vertex ordering π = (v1, . . . , vn), where vi (i = 1, . . . , n) is the vertex
sampled at the i-th step. Note that the output set is fully determined by π. Let pG(π) and pG−e(π)
denote the probabilities that Algorithm 5 samples the vertex ordering π on inputs G and G − e,
respectively. Then, we can bound the earth mover’s distance between A(G) and A(G− e), where
A is Algorithm 5, as follows. For each vertex ordering π, we retain a mass of pG(π) at a cost of
1 · pG(π) (the output sets can have a Hamming distance of 1 even if the vertex orderings generated
are the same) and bring in a “remaining” mass of max{0, pG−e(π)−pG(π)} from other points where
there is excess probability mass. The second step costs at most n ·max{0, pG−e(π)− pG(π)}.

We now bound pG−e(π) − pG(π). Let ke ∈ {1, . . . , n} be such that the first endpoint of e in π
occurs in the ke-th position in π. As long as e is fixed, we write k instead for simplicity. Let Gi
and G′i be the graphs at the beginning of the i-th step of Algorithm 5 on G and G− e, respectively.
Let mi and m′i be the number of edges in Gi and G′i, respectively. Note that mi = m′i + 1 for i ≤ k
and mi = m′i for i > k. For a vertex v ∈ V , let di(v) and d′i(v) denote the degrees of v in Gi and
G′i, respectively. Note that di(vi) = d′i(vi) for i 6= k and dk(vk) = d′k(vk) + 1. Now, we have

pG−e(π)− pG(π)

=

n∏
i=1

d′i(vi) + wi
(n− i+ 1)wi + 2m′i

−
n∏
i=1

di(vi) + wi
(n− i+ 1)wi + 2mi

=

∏
i∈[n]:i 6=k di(vi) + wi∏n

i=k+1(n− i+ 1)wi + 2mi

[
d′k(vk) + wk∏k

i=1(n− i+ 1)wi + 2m′i
− dk(vk) + wk∏k

i=1(n− i+ 1)wi + 2mi

]

=

∏
i∈[n]:i 6=k di(vi) + wi∏n

i=k+1(n− i+ 1)wi + 2mi

[
dk(vk)− 1 + wk∏k

i=1(n− i+ 1)wi + 2mi − 2
− dk(vk) + wk∏k

i=1(n− i+ 1)wi + 2mi

]
.

28

Let Zπ and Z ′π stand for
∏
i≤k(n− i+ 1)wi+ 2mi and

∏
i≤k(n− i+ 1)wi+ 2mi−2, respectively.

The expression inside the square brackets can be written as

(dk(vk) + wk)

(
1

Z ′π
− 1

Zπ

)
− 1

Z ′π
.

Let ti stand for (n− i+ 1)wi + 2mi for all i ≤ k. By using the identity

n∏
i=1

xi −
n∏
i=1

yi =
n∑
i=1

(xi − yi) ·
i−1∏
j=1

xj ·
n∏

j=i+1

yj ,

we can rewrite 1
Z′π
− 1

Zπ
as follows.

1

Z ′π
− 1

Zπ
=

k∑
i=1

i−1∏
j=1

1

tj − 2

(1

ti − 2
− 1

ti

) k∏
j=i+1

1

tj

 = 2
k∑
i=1

 i∏
j=1

1

tj − 2

 k∏
j=i

1

tj


≤ 2

k∏
i=1

1

ti − 2

k∑
i=1

1

ti
=

2

Z ′π

k∑
i=1

1

ti
=

2

Zπ
· Zπ
Z ′π
·
k∑
i=1

1

ti
.

Note that

Zπ
Z ′π

=
k∏
i=1

(n− i+ 1)wi + 2mi

(n− i+ 1)wi + 2mi − 2
=

k∏
i=1

(
1 +

2

(n− i+ 1)wi + 2mi − 2

)

≤ exp

(
k∑
i=1

2

(n− i+ 1)wi + 2mi − 2

)
= exp

(
k∑
i=1

2

2m1+ε + 2mi − 2

)
≤ exp

(n

m1+ε

)
≤ e. (From the assumption n ≤ m1+ε.)

Combining all of the above, we get,

pG−e(π)− pG(π) =

∏
i∈[n]:i 6=k di(vi) + wi∏n

i=k+1(n− i+ 1)wi + 2mi

[
(dk(vk) + wk)

(
1

Z ′π
− 1

Zπ

)
− 1

Z ′π

]

≤
∏
i∈[n]:i 6=k di(vi) + wi∏n

i=k+1(n− i+ 1)wi + 2mi

(dk(vk) + wk)

 2

Zπ
· Zπ
Z ′π
·
∑
i≤k

1

ti


≤ 2epG(π)

∑
i≤k

1

ti
.

Now, we take the average over e ∈ E.

E
e

[pG−e(π)− pG(π)] ≤ 1

m

∑
e∈E

(
2epG(π)

ke∑
i=1

1

ti

)
=

2epG(π)

m

n∑
j=1

(
dj(vj)

j∑
i=1

1

ti

)

=
2epG(π)

m

n∑
i=1

1

ti

n∑
j=i

dj(vj) =
2epG(π)

m

n∑
i=1

mi

ti

29

=
2epG(π)

m

n∑
i=1

mi

(n− i+ 1)wi + 2mi
≤ 2epG(π)

m

n∑
i=1

mi

2m1+ε + 2mi

≤ epG(π)

m

n∑
i=1

1

mε
≤ enpG(π)

m1+ε
.

Then, the average sensitivity is bounded by

1 + n
∑
π

E
e

[pG−e(π)− pG(π)] = 1 +
∑
π

en2pG(π)

m1+ε
= O

(
n2

m1+ε

)
.

6 2-Coloring

In the 2-coloring problem, given a bipartite graph G = (V,E), we are to output a (proper) 2-
coloring on G, that is, an assignment f : V → {0, 1} such that f(u) 6= f(v) for every edge
(u, v) ∈ E. Clearly this problem can be solved in linear time. In this section, however, we show
that there is no averagely stable algorithm for the 2-coloring problem.

Theorem 6.1. Any (randomized) algorithm for the 2-coloring problem has average sensitivity Ω(n).

Proof. Suppose that there is a (randomized) algorithm A whose average sensitivity is at most βn
for β < 1/256. In what follows, we assume that n, that is, the number of vertices in the input
graph, is a multiple of 16.

Let Pn be the family of all possible paths on n vertices, and let Qn be the family of all possible
graphs on n vertices consisting of two paths. Note that |Pn| = n!/2 and |Qn| = (n − 1)n!/4.
Consider a bipartite graph H = (Pn,Qn;E), where a pair (P,Q) is in E if and only if Q can be
obtained by removing an edge in P . Note that each P ∈ Pn has n − 1 neighbors in H and each
Q ∈ Qn has four neighbors in H.

We say that an edge (P,Q) ∈ E is intimate if dEM

(
A(P),A(Q)

)
≤ 8βn. We observe that for

every P ∈ Pn, at least a 7/8-fraction of the edges incident to P are intimate; otherwise

E
e∈E(P)

[
dEM

(
A(P),A(P − e)

)]
>

1

8
· 8βn = βn,

which is a contradiction, where E(P) denotes the set of edges in P .
We say that a graph Q ∈ Qn is heavy if both components of Q have at least n/16 vertices, and

say that an edge (P,Q) ∈ E is heavy if Q is heavy. We observe that for every P ∈ Pn, at least a
7/8-fraction of the edges incident to P are heavy.

We say that an edge (P,Q) ∈ E is good if it is intimate and heavy. Observe that for every
P ∈ Pn, by the union bound, at least a 3/4-fraction of the edges incident to P are good. In
particular, this means that the fraction of good edges in H is at least 3/4. Hence, there exists
Q∗ ∈ Qn that has at least three good incident edges; otherwise the fraction of good edges in H is
at most 2/4 = 1/2, which is a contradiction.

Let f1, . . . , f4 be the four 2-colorings of Q∗. As Q∗ has three good incident edges, without loss of
generality, there are adjacent paths P1, P2 ∈ Pn such that both (P1, Q

∗) and (P2, Q
∗) are good, and

there is no assignment that is a 2-coloring for both P1 and P2. Without loss of generality, we assume
that f1, f2 are 2-colorings of P1, and f3, f4 are 2-colorings of P2. Note that dHam(fi, fj) ≥ n/16 for

30

i 6= j because Q is heavy. Let qi = Pr[A(Q∗) = fi] for i ∈ [4]. As the edge (P1, Q
∗) is intimate, we

have

8βn ≥ dEM

(
A(P1),A(Q∗)

)
≥ n

16

(∣∣Pr[A(P1) = f1]− q1

∣∣+
∣∣Pr[A(P1) = f2]− q2

∣∣+ q3 + q4

)
=

n

16

(∣∣Pr[A(P1) = f1]− q1

∣∣+
∣∣Pr[A(P1) = f2]− q2

∣∣+ 1− q1 − q2

)
and hence we must have q1 + q2 ≥ 1 − 128β. Considering dEM

(
A(P2),A(Q∗)

)
, we also have

q3 + q4 ≥ 1− 128β. However,

1 = q1 + q2 + q3 + q4 ≥ (1− 128β) + (1− 128β) = 2− 256β > 1

as β < 1/256, which is a contradiction.

7 General Results on Average Sensitivity

In this section, we state and prove some basic properties of average sensitivity and show that locality
guarantees of solutions output by an algorithm imply low average sensitivity for that algorithm.

7.1 k-average sensitivity from average sensitivity

In this section, we prove Theorem 1.5, which says that, if an algorithm is averagely stable against
deleting a single edge, it is also averagely stable against deleting multiple edges. We restate the
theorem here.

Theorem 1.5. Let A be an algorithm for a graph problem with average sensitivity given by f(n,m).
Then, for any integer k ≥ 1, the algorithm A has k-average sensitivity at most

∑k
i=1 f(n,m−i+1).

Proof. We have

E
e1,...,ek∈E

[
dEM

(
A(G),A(G− {e1, . . . , ek})

)]
≤ E
e1,...,ek∈E

[
k∑
i=1

dEM

(
A(G− {e1, . . . , ei−1}),A(G− {e1, . . . , ei})

)]
= E
e1∈E

[
dEM

(
A(G),A(G− {e1})

)
+ E
e2∈E

[
dEM

(
A(G− {e1}),A(G− {e1, e2})

)
+ · · ·

+ E
ek∈E

[
dEM

(
A(G− {e1, . . . , ek−1}),A(G− {e1, . . . , ek})

)
. . .
]]]

=f(n,m) + E
e1∈E

[
β(G− {e1}) + E

e2∈E

[
β(G− {e1, e2}) + · · ·+ E

ek−1∈E

[
β(G− {e1, . . . , ek−1}) . . .

]]]
≤

k∑
i=1

f(n,m− i+ 1).

Here, the first inequality is due to the triangle inequality.

31

7.2 Sequential composability

In this section, we state and prove our two sequential composition theorems Theorem 1.6 and
Theorem 1.7.

Theorem 1.6 (Sequential composability). Consider two randomized algorithms A1 : G → S1,A2 :
G ×S1 → S2. Suppose that the average sensitivity of A1 with respect to the total variation distance

is γ1 and the average sensitivity of A2(·, S1) is β
(S1)
2 for any S1 ∈ S1. Let A : G → S2 be a

randomized algorithm obtained by composing A1 and A2, that is, A(G) = A2(G,A1(G)). Then,

the average sensitivity of A is H · γ1(G) + ES1∼A1(G)

[
β

(S1)
2 (G)

]
, where H denotes the maximum

Hamming weight among those of solutions obtained by running A on G and {G− e}e∈E.

Proof. Consider G = (V,E) and let e ∈ E. We bound the earth mover’s distance between A(G)
and A(G− e) as follows. For a distribution D, we use fD to denote its probability mass function.
We know that for all S1 ∈ S1 and S2 ∈ S2

f(A1(G),A2(G,S1))(S1, S2) = fA1(G)(S1) · fA2(G,S1)(S2),

where (A1(G),A2(G,S1)) denotes the joint distribution of A1(G) and A2(G,S1). Fix S1 ∈ S1.
For each S2 ∈ S2, we transform probabilities of the form f(A1(G),A2(G,S1))(S1, S2) to fA1(G)(S1) ·
fA2(G−e,S1)(S2). This incurs a total cost of fA1(G)(S1) · dEM(A2(G,S1),A2(G − e, S1)). We can
now, for each S1 ∈ S1 and S2 ∈ S2, transform the probability fA1(G)(S1) · fA2(G−e,S1)(S2) into
fA1(G−e)(S1) · fA2(G−e,S1)(S2) at a cost of at most dTV(A1(G),A1(G− e)) ·H, where H denotes the
maximum Hamming weight among those of solutions obtained by running A on G and {G−e}e∈E .
Thus, the earth mover’s distance between A(G) and A(G− e) is at most

dTV(A1(G),A1(G− e)) · H +

∫
S1
fA1(G)(S1) · dEM

(
A2(G,S1),A2(G− e, S1)

)
dS1.

Hence, the average sensitivity of A can be bounded as:

E
e∈E

[dEM(A(G),A(G− e))] ≤ H · E
e∈E

[dTV(A1(G),A1(G− e))]

+ E
e∈E

[∫
S1∈S1

fA1(G)(S1) · dEM(A2(G,S1),A2(G− e, S1)) dS1

]
≤ Hγ1(G) + E

S1∼A1(G)
[dEM(A2(G,S1),A2(G− e, S1))]

= Hγ1(G) + E
S1∼A1(G)

[
E
e∈E

dEM(A2(G,S1),A2(G− e, S1))

]
= Hγ1(G) + E

S1∼A1(G)

[
β

(S1)
2 (G)

]
.

We are able to interchange the order of expectations because of Fubini’s theorem [Fub07].

The following theorem states the composability of average sensitivity with respect to the total
variation distance.

Theorem 1.7 (Sequential composability w.r.t. the TV distance). Consider k randomized algo-
rithms Ai : G ×

∏i−1
j=1 Sj → Si for i ∈ {1, . . . , k}. Suppose that, for each i ∈ {1, . . . , k}, the average

32

sensitivity of Ai(·, S1, . . . , Si−1) is γi with respect to the total variation distance for every S1 ∈
S1, . . . , Si−1 ∈ Si−1. Consider a sequence of computations S1 = A1(G), S2 = A2(G,S1), . . . , Sk =
Ak(G,S1, . . . , Sk−1). Let A : G → Sk be a randomized algorithm that performs this sequence of
computations on input G and outputs Sk. Then, the average sensitivity of A is at most

∑k
i=1 γi(G)

with respect to the total variation distance.

Theorem 1.7 can be immediately obtained by iteratively applying Lemma 7.1.

Lemma 7.1. Consider two randomized algorithms A1 : G → S1,A2 : G × S1 → S2 for a graph
problem. Suppose that the average sensitivity of A1 is γ1(G) and the average sensitivity of A2(·, S1)
is γ2(G) for any S1 ∈ S1, both with respect to the total variation distance. Let A : G → S2 be a
randomized algorithm obtained by composing A1 and A2, that is, A(G) = A2(G,A1(G)). Then, the
average sensitivity of A is γ1(G) + γ2(G) with respect to the total variation distance.

Proof. For a distribution D, we use fD to denote its probability mass function. Consider a graph
G = (V,E). Note that

fA(G)(S2) =

∫
S1
fA2(G,S1)(S2)fA1(G)(S1) dS1.

Then we have that, for e ∈ E,

dTV

(
A(G),A(G− e)

)
=

1

2

∫
S2

∣∣∣∣∫
S1
fA2(G,S1)(S2)fA1(G)(S1) dS1 −

∫
S1
fA2(G−e,S1)(S2)fA1(G−e)(S1) dS1

∣∣∣∣ dS2

=
1

2

∫
S2

∣∣∣∣∫
S1
fA2(G,S1)(S2)

(
fA1(G)(S1)− fA1(G−e)(S1)

)
dS1−∫

S1

(
fA2(G−e,S1)(S2)− fA2(G,S1)(S2)

)
fA1(G−e)(S1) dS1

∣∣∣∣ dS2

≤ 1

2

∫
S1

∣∣∣∣fA1(G)(S1)− fA1(G−e)(S1)

∣∣∣∣ dS1 ·
∫
S2
fA2(G,S1)(S2) dS2+∫

S1
fA1(G−e)(S1) dS1 ·

1

2

∫
S2

∣∣∣∣fA2(G−e,S1)(S2)− fA2(G,S1)(S2)

∣∣∣∣ dS2

=
1

2

∫
S1

∣∣∣∣fA1(G)(S1)− fA1(G−e)(S1)

∣∣∣∣ dS1+∫
S1
fA1(G−e)(S1) dS1 ·

1

2

∫
S2

∣∣∣∣fA2(G−e,S1)(S2)− fA2(G,S1)(S2)

∣∣∣∣ dS2

= dTV

(
A1(G),A1(G− e)

)
+

∫
S1
fA1(G−e)(S1) · dTV

(
A2(G,S1),A2(G− e, S1)

)
dS1.

Hence, the average sensitivity of A with respect to the total variation distance can be bounded
as,

E
e∈E

[
dTV

(
A(G),A(G− e)

)]
≤ E

e∈E

[
dTV

(
A1(G),A1(G− e)

)]
+

E
e∈E

[∫
S1
fA1(G−e)(S1) · dTV

(
A2(G,S1),A2(G− e, S1)

)
dS1

]
≤ γ1(G) +

∫
S1
fA1(G−e)(S1) dS1 · γ2(G) = γ1(G) + γ2(G).

33

7.3 Parallel composability

In this section, we prove Theorem 1.8, which bounds the average sensitivity of an algorithm obtained
by running different algorithms according to a distribution in terms of the average sensitivities of
the component algorithms. We restate the theorem here.

Theorem 1.8 (Parallel composability). Let A1,A2, . . . ,Ak be algorithms for a graph problem with
average sensitivities β1, β2, . . . , βk, respectively. Let A be an algorithm that, given a graph G, runs
Ai with probability ρi(G) for i ∈ [k], where

∑
i∈[k] ρi(G) = 1. Let H denote the maximum Hamming

weight among those of solutions obtained by running A on G and {G − e}e∈E. Then the average

sensitivity of A is at most
∑

i∈[k] ρi(G) · βi(G) + H · Ee∈E
[∑

i∈[k] |ρi(G)− ρi(G− e)|
]
.

Proof. Consider a graph G = (V,E). For a solution S, let pG(S) denote the probability that S is
output on input G by A. Let pGi (S) denote the probability that S is output on input G by Ai. For
every solution S, we know that pG(S) =

∑
i∈[k] ρi(G) · pGi (S).

Let A(G) denote the output distribution of A on G. Fix e ∈ E. We first bound the earth
mover’s distance between A(G) and A(G− e). In order to transform A(G) into A(G− e), we first
transform pG(S), for each solution S, into

∑
i∈[k] ρi(G) · pG−ei (S). This can be done at a cost of at

most
∑

i∈[k] ρi(G) · dEM(Ai(G),Ai(G− e)).
We now convert

∑
i∈[k] ρi(G) · pG−ei (S), for each solution S, into

∑
i∈[k] ρi(G − e) · p

G−e
i (S) at

a cost of at most 2H · 1
2

∑
i∈[k] |ρi(G) − ρi(G − e)|, where 1

2

∑
i∈[k] |ρi(G) − ρi(G − e)| is the total

variation distance between the probability distributions with which A selects the algorithms on
inputs G and G− e. Hence, the average sensitivity of A is at most

∑
i∈[k]

ρi(G) · βi(G) + H · E
e∈E

∑
i∈[k]

|ρi(G)− ρi(G− e)|

 .
We separately state the special case of Theorem 1.8 for k = 2.

Theorem 7.2. Let A1 and A2 be two algorithms for a graph problem with average sensitivities
β1(G) and β2(G), respectively. Let A be an algorithm that, given a graph G, runs A1 with probability
ρ(G) and runs A2 with the remaining probability. Let H denote the maximum Hamming weight
among those of solutions obtained by running A on G and {G−e}e∈E. Then the average sensitivity
of A is at most ρ(G) · β1(G) + (1− ρ(G)) · β2(G) + 2H · Ee∈E [|ρ(G)− ρ(G− e)|].

7.4 Locality implies low average sensitivity

In this section, we prove Theorem 1.9, which shows that the existence of an oracle that can simulate
access to the solution of a global algorithm A implies that the average sensitivity of A is bounded
by the query complexity of that oracle.

Theorem 1.9 (Locality implies low average sensitivity). Consider a randomized algorithm A :
G → S for a graph problem, where the solutions are subsets of the set of edges of the input graph.
Assume that there exists an oracle O satisfying the following:

• when given access to a graph G = (V,E) and query e ∈ E, the oracle generates a random
string π ∈ {0, 1}r(|V |) and outputs whether e is contained in the solution obtained by running
A on G with π as its random string,

34

• the oracle O makes at most q(G) queries to G in expectation, where this expectation is taken
over the random coins of A and a uniformly random query e ∈ E.

Then, A has average sensitivity at most q(G). Moreover, this is also true for algorithms for graph
problems, where the solutions are subsets of the set of vertices of the input graph, whenever |E| ≥
|V |.

Proof. We prove the theorem for the case that solutions output by A are subsets of edges of the
input graph. It can be easily modified to work for the case that the solutions output by A are
subsets of vertices of the input graph in which case, we will use the technical condition that n ≤ m.

Without loss of generality, assume that A uses r(n) random bits when run on graphs of n
vertices1. Consider a graph G = (V,E) that O gets access to. For e ∈ E and a string π ∈ {0, 1}r(n),
let Qe,π denote the set of edges in E queried by O on input e, while simulating the run of A with
π as the random string. The set Qe,π denotes the set of edges e′ such that the status of e in the
solutions output by A with randomness π on inputs G and G− e′ could be different. For each edge
e′ ∈ E and string π ∈ {0, 1}r(n), define Re′,π as the set of edges e ∈ E such that e′ ∈ Qe,π.

By definition, for each π ∈ {0, 1}r(n), we have
∑

e∈E |Re,π| =
∑

e∈E |Qe,π|. Hence we have:∑
π∈{0,1}r(n)

∑
e∈E
|Re,π| =

∑
π∈{0,1}r(n)

∑
e∈E
|Qe,π|,

and

E
π∈{0,1}r(n)

E
e∈E
|Re,π| ≤ E

π∈{0,1}r(n)
E
e∈E
|Qe,π| ≤ q(G),

where the last inequality follows from our assumption on O.
For π ∈ {0, 1}r(n) and e ∈ E, the set Re,π contains the set of edges whose presence in the

solution could be affected by the removal of e from G. Therefore, it is a superset of the set of edges
contained in the symmetric difference between the outputs of A on inputs G and G− e when run
with π as the random string.

Let HA,π(G,G′) denote the Hamming distance between the outputs of the algorithm A on
inputs G and G′ when run with π as the random string. As per this notation, for each e ∈ E,

E
π∈{0,1}r(n)

HA,π(G,G− e) ≤ E
π∈{0,1}r(n)

|Re,π|.

The following claim relates the quantity on the left hand side of the above inequality with the
average sensitivity of A.

Claim 7.3. The average sensitivity of A is bounded as

β(G) ≤ E
e∈E(G)

E
π∈{0,1}r(n)

HA,π(G,G− e).

Proof. Fix G ∈ G and e ∈ E(G). We first bound the earth mover’s distance between A(G) and
A(G − e), where A(G) and A(G − e) are the output distributions of A on inputs G and G − e,
respectively. For S ∈ S, let pG(S) and pG−e(S) denote the probabilities that A outputs S on G
and G − e, respectively. We start with A(G). Consider a string π ∈ {0, 1}r(n). Let S ∈ S denote

1If r(G) is the length of the random string used for G, we can simply set r(n) = max{r(G) : G = (V,E), |V | = n}.
If we do not need r(n) bits for some particular graph G on n vertices, we can just throw away the unused bits.

35

the output of A on input G when using the string π as its random string. Let S′ denote the output
that is generated when running A on input G− e with π as the random string. We move a mass of

1
2r(n)

(corresponding to the string π) from pG(S) to pG(S′) at a cost of dHam(S,S′)
2r(n)

. Moving masses

corresponding to every string π ∈ {0, 1}r(n) this way, we can transform A(G) to A(G − e). The
total cost incurred during this transformation is Eπ∈{0,1}r(n) HA,π(G,G − e). Therefore the earth
mover’s distance between A(G) and A(G− e) is at most Eπ∈{0,1}r(n) HA,π(G,G− e). Therefore the
average sensitivity of A is β(G) ≤ Ee∈E(G) Eπ∈{0,1}r(n) HA,π(G,G− e).

Therefore, the average sensitivity of A is:

β(G) ≤ E
e∈E

E
π∈{0,1}r(n)

HA,π(G,G− e) ≤ E
e∈E

E
π∈{0,1}r(n)

|Re,π| ≤ q(G).

References

[Bav50] Alex Bavelas. Communication patterns in task-oriented groups. The Journal of the
Acoustical Society of America, 22(6):725–730, 1950.

[BE02] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine
Learning Research, pages 499–526, 2002.

[Bea65] Murray A. Beauchamp. An improved index of centrality. Behavioral Science, 10(2):161–
163, 1965.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Proceedings of the 3rd Theory of Cryptography
Conference, pages 265–284, 2006.

[Edm65] J Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, pages 449–
467, 1965.

[ER59] P Erdős and A Rényi. On random graphs. Publicationes Mathematicae, 6:290–297,
1959.

[Fre77] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35–41, 1977.

[Fub07] G. Fubini. Sugli integrali multipli. Rom. Acc. L. Rend. (5), 16(1):608–614, 1907.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[GLM+10] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.
Differentially private combinatorial optimization. In Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1106–1125, 2010.

[GRU12] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and pri-
vate data release. In Theory of Cryptography - 9th Theory of Cryptography Conference,
TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, pages 339–356,
2012.

36

[HLMJ09] Michael Hay, Chao Li, Gerome Miklau, and David D. Jensen. Accurate estimation of
the degree distribution of private networks. In ICDM 2009, The Ninth IEEE Interna-
tional Conference on Data Mining, Miami, Florida, USA, 6-9 December 2009, pages
169–178, 2009.

[HR10] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages
61–70, 2010.

[HRMS09] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy
of differentially-private queries through consistency. CoRR, abs/0904.0942, 2009.

[Kar93] David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-
cut algorithm. In Proceedings of the 4th Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms (SODA), pages 21–30, 1993.

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 137–146, 2003.

[KNRS13] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam D.
Smith. Analyzing graphs with node differential privacy. In Theory of Cryptography -
10th Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013.
Proceedings, pages 457–476, 2013.

[KR03] Subhash A Khot and Oded Regev. Vertex cover might be hard to approximate to
within 2 − ε. In Proceedings of the 18th Annual IEEE Conference on Computational
Complexity (CCC), pages 379–386, 2003.

[KRSY14] Vishesh Karwa, Sofya Raskhodnikova, Adam D. Smith, and Grigory Yaroslavtsev.
Private analysis of graph structure. ACM Trans. Database Syst., 39(3):22:1–22:33,
2014.

[Kru56] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):48–50,
1956.

[KS12] Vishesh Karwa and Aleksandra B. Slavkovic. Differentially private graphical degree
sequences and synthetic graphs. In Privacy in Statistical Databases - UNESCO Chair
in Data Privacy, International Conference, PSD 2012, Palermo, Italy, September 26-
28, 2012. Proceedings, pages 273–285, 2012.

[ML00] Massimo Marchiori and Vito Latora. Harmony in the small-world. Physica A: Statis-
tical Mechanics and its Applications, 285(3-4):539–546, 2000.

[MSVW18] Wouter Meulemans, Bettina Speckmann, Kevin Verbeek, and Jules Wulms. A frame-
work for algorithm stability and its application to kinetic euclidean MSTs. In Pro-
ceedings of the 13th Latin American Symposium on Theoretical Informatics (LATIN),
pages 805–819, 2018.

37

[MY19] Shogo Murai and Yuichi Yoshida. Sensitivity analysis of centralities on unweighted
networks. In Proceedings of the 2019 World Wide Web Conference (WWW), 2019. to
appear.

[New04] M E J Newman. Fast algorithm for detecting community structure in networks. Phys-
ical Review E, 69(6):066133, 2004.

[New06] M E J Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, 2006.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and
sampling in private data analysis. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 75–84,
2007.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[Pit85] L. Pitt. A simple probabilistic approximation algorithm for vertex cover. Technical
report, Yale University, 1985.

[RS16] Sofya Raskhodnikova and Adam D. Smith. Lipschitz extensions for node-private graph
statistics and the generalized exponential mechanism. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pages 495–504, 2016.

[Sab66] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603, 1966.

[SSBD09] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning. From
Theory to Algorithms. Cambridge University Press, Cambridge, 2009.

[YYI12] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approxima-
tion algorithms for maximum matchings and other optimization problems. SIAM J.
Comput., 41(4):1074–1093, 2012.

A Average Sensitivity of Prim’s algorithm

In this section, we show that Prim’s algorithm (with a simple tie-breaking rule, as described in
Algorithm 6) has high average sensitivity even on unweighted graphs. This is in contrast to the
low average sensitivity of Kruskal’s algorithm that we discussed in Section 2.

Lemma A.1. The average sensitivity of Prim’s algorithm is Ω(m).

Proof. Consider the graph family {Gn}n∈2N in Figure 1. For a large enough n ∈ 2N, consider
running Algorithm 6 on Gn. The tree T output will consist of the edges (i, i+1) for all i ∈ [n/2−2],
the edges (n/2− 1, j) for all j ∈ {n/2 + 1, . . . n}, and the edge (n/2, 1).

If we remove an edge (i′, i′+ 1) for i′ ∈ [n/2− 2] from Gn and run Algorithm 6 on the resulting
graph, the tree, say Ti′ , output will consist of all edges of the form (i, i+ 1) for i ∈ [n/2− 1] \ {i′},

38

Algorithm 6: Prim’s Algorithm

Input: undirected graph G = ([n], E)
1 Let T ← {1};
2 while there exists a vertex not spanned by T do
3 Let E′ be the set of edges with the smallest weight among all the edges in E that have

exactly one endpoint in T ;
4 Add to T , an edge from E′ that has lexicographically smallest T -endpoint among all

edges in E′, breaking further ties arbitrarily.

5 return Output T .

n=2

n=2− 1

n− 1

n− 2

n=2 + 1

n

1

2

n=2− 3

n=2− 2

Figure 1: The graph family {Gn}n∈2N.

all edges of the form (n/2, j) for all j ∈ {n/2 + 1, . . . n}, and the edges (n/2 + 1, n/2 − 1) and
(n/2, 1). The Hamming distance of Ti′ from T is equal to n/2.

Since a uniformly random edge removed from Gn is of the form (i, i+ 1) for i ∈ [n/2− 2] with

probability n/2−2
3n/2−1 , the average sensitivity of Algorithm 6 is at least n

2 ·
n/2−2
3n/2−1 , which is at least

n
6 − 1 = Ω(m) for the family {Gn}n∈2N.

39

	Introduction
	Basic properties of average sensitivity
	Connection to sublinear-time algorithms
	Averagely stable algorithms for concrete problems
	Discussions
	Related work
	Overview of our techniques
	Notation
	Organization

	Warm Up: Minimum Spanning Forest
	Global Minimum Cut
	Maximum Matching
	Lexicographically smallest matching
	Greedy matching algorithm
	Average sensitivity of the greedy algorithm in terms of the maximum degree
	Averagely stable thresholding transformation
	Average sensitivity of the greedy algorithm with thresholding
	Average sensitivity of a combined matching algorithm

	Matching algorithm based on augmenting paths

	Minimum Vertex Cover
	Reduction to the maximum matching problem
	Algorithm based on a differentially private algorithm

	2-Coloring
	General Results on Average Sensitivity
	k-average sensitivity from average sensitivity
	Sequential composability
	Parallel composability
	Locality implies low average sensitivity

	Average Sensitivity of Prim's algorithm

