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Abstract
Regularization is a powerful technique for extracting useful information from noisy data. Typically, it is implemented by adding some sort of norm constraint to an objective function and then exactly optimizing the modified objective function. This 

procedure often leads to optimization problems that are computationally more expensive than the original problem, a fact that is clearly problematic if one is interested in large-scale applications. On the other hand, a large body of empirical work eigenvector computation procedure often leads to optimization problems that are computationally more expensive than the original problem, a fact that is clearly problematic if one is interested in large-scale applications. On the other hand, a large body of empirical work 

has demonstrated that heuristics, and in some cases approximation algorithms, developed to speed up computations sometimes have the side-effect of performing regularization implicitly. Thus, we consider the question: What is the regularized 

optimization objective that an approximation algorithm is exactly optimizing?
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eigenvector computation
optimization objective that an approximation algorithm is exactly optimizing?

We address this question in the context of computing approximations to the smallest nontrivial eigenvector of a graph Laplacian; and we consider three random-walk-based procedures: one based on the heat kernel of the graph, one based on 

computing the the PageRank vector associated with the graph, and one based on a truncated lazy random walk. In each case, we provide a precise characterization of the manner in which the approximation method can be viewed as implicitly (a) Mathematics Department, Stanford University

(b) Computer Science Division, UC Berkeley
Michael W. Mahoneya and Lorenzo Orecchiab computing the the PageRank vector associated with the graph, and one based on a truncated lazy random walk. In each case, we provide a precise characterization of the manner in which the approximation method can be viewed as implicitly 

computing the exact solution to a regularized problem. Interestingly, the regularization is not on the usual vector form of the optimization problem, but instead it is on a related semidefinite program.
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In many cases, a network can be modeled as an undirected weighted graph and significant communities can be found 
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REGULARIZATION AND IMPLICIT REGULARIZATION
1

MOTIVATION: COMMUNITY STRUCTURE IN NETWORKS

Regularization is a fundamental technique in the study of mathematical optimization. It allows us to take a generic 

optimization problem and convert it into a related regularized problem that enjoys many desirable properties, such as 

REGULARIZED SPECTRAL OPTIMIZATION

In this presentation, we assume that the graph G is d-regular. Our arguments are easily extendable to general 

DISCUSSION: REGULARIZATION AND LOCALIZATION

The main departure between our work and a standard regularization argument is the fact that our regularized In many cases, a network can be modeled as an undirected weighted graph and significant communities can be found 
by optimizing some notion of community score over all cuts S⊆ V. A common community score is conductance:optimization problem and convert it into a related regularized problem that enjoys many desirable properties, such as 

stability and uniqueness of the optimal solution.

Regularization has applications in statistics and learning, where it is used to improve the level of generalization in 

In this presentation, we assume that the graph G is d-regular. Our arguments are easily extendable to general 

graphs. Under this condition, the eigenvector x* can be characterized as the optimal solution to a simple 

quadratic optimization program. To obtain a regularized version of this program, we proceed in two steps. As a 

first step, we construct a semidefinite program (SDP) that is equivalent to the original program.
φ(S) = w(S,S̄)

min{vol(S),vol(S̄)}
.Conductance Score

The main departure between our work and a standard regularization argument is the fact that our regularized 

program does not yield a vector, but a density matrix, which represents a probability distribution over vectors. 

Notice that it is possible to obtain a vector from a density matrix X by sampling its eigenvectors according to 

the probabilities given by the eigenvalues or, more simply, by multiplying the square root of X with a standard 

In words, the conductance of a cut is the ratio of the weight of the edges that cross the cut over the total weight of 

the edges adjacent to the smaller side of the cut. Optimizing conductance is NP-hard, but the eigenvector x* can be 

Regularization has applications in statistics and learning, where it is used to improve the level of generalization in 

supervised learning, to prevent overfitting and to decrease the sensitivity to random noise. Recently, regularization 

methods have also found their way into the study of combinatorial optimization.

first step, we construct a semidefinite program (SDP) that is equivalent to the original program.
φ(S) =

min{vol(S),vol(S̄)}
.

Original Program SDP Formulation

Conductance Score
the probabilities given by the eigenvalues or, more simply, by multiplying the square root of X with a standard 

Gaussian random vector. In either cases, however, we do not have an optimization characterization of the 

resulting vector. the edges adjacent to the smaller side of the cut. Optimizing conductance is NP-hard, but the eigenvector x can be 

used to obtain a good approximation in nearly-linear time.

Implicit Regularization in Community Detection

methods have also found their way into the study of combinatorial optimization.
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resulting vector. 

OPEN QUESTION: Given the transition matrix P of one of the three random walk processes under 

consideration and a seed vector s such that                        ,   , can we characterize the vectors
T
D
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Implicit Regularization in Community Detection

Our study is motivated by an observation made by Lang, Leskovec and Mahoney, who evaluate the performance of 

different algorithms in identifying communities in information networks. In particular, they compared the use of 
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consideration and a seed vector s such that                        ,   , can we characterize the vector

as the solution of a regularized version of the spectral optimization problem?

y = D−1Psminx∈H L(x)
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−
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different algorithms in identifying communities in information networks. In particular, they compared the use of 

eigenvector computation and other algorithms optimizing conductance against the use of  random walks that are 

stopped before they converge to the first non-trivial eigenvector.

Regularized program
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Matrix
as the solution of a regularized version of the spectral optimization problem?

PARTIAL SOLUTION: It is possible for Personalized PageRank. In recent work with Nisheeth Vishnoi, we modify 

the original spectral problem by adding a localization constraints forcing vectors to belong to a spherical cap 

minx∈H L(x)

min L(x) + λ · F (x) stopped before they converge to the first non-trivial eigenvector.

EIGENVECTOR COMPUTATION:
F  is  chosen to have special properties (convexity, continuity) that yield the well-behaved features of the regularized 

A feasible X for this SDP is a density matrix (i.e. a positive semidefinite matrix with trace 1). Hence, the 

eigenvector decomposition of X must satisfy the following constraints:

Parameter λ > 

X � 0

OUTPUT COMMUNITIES

the original spectral problem by adding a localization constraints forcing vectors to belong to a spherical cap 

centered at s. We show that the optimal solutions of the resulting program are Personalized PageRanks of s.

minx∈H L(x) + λ · F (x)

Feasible Region s

F  is  chosen to have special properties (convexity, continuity) that yield the well-behaved features of the regularized 

problem. Usually, the regularized problem is explicitly stated and solved.

limt→∞
D−1W ty0
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Distribution
Feasible Region s

Implicit Regularization

Empirical Observation: Many heuristics and approximation techniques, designed to speed-up computations, seem to 
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Localized Program

Empirical Observation: Many heuristics and approximation techniques, designed to speed-up computations, seem to 

have regularizing effects. Important examples of this phenomenon are early stopping in gradient descent (e.g. in the 

training of neural networks) , and binning in image processing.
Because of the equivalence above, for this SDP formulation the optimal solution is just                           and the 

LOW CONDUCTANCE, BUT OFTEN DISJOINT, ELONGATED, SENSITIVE TO NOISE
∀i, vT
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APPROXIMATE EIGENVECTOR COMPUTATION  BY RANDOM WALKS:
NB: This regularization is implicit, no optimization problem is explicitly solved and the regularizer is unknown.

Because of the equivalence above, for this SDP formulation the optimal solution is just                           and the 

distribution over eigenvectors is trivial with all the weight concentrated on x*. To obtain a regularized program, 

we introduce a regularizer term that will force the distribution of eigenvalues of X to be closer to uniform.
OUTPUT COMMUNITIES
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Main Question: 
Can such approximate computation procedures be seen as solving explicit regularized problems? 1

d
min L •X + ηF (X)

constraint
x Ds ≥ κ||W ty0||D−1

x
T
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Specific setting: Computation of first non-trivial eigenvector of a graph.

RANDOM WALKS IMPLICITLY REGULARIZE EIGENVECTOR COMPUTATION

d
•

s.t. I •X = 1; J •X = 0

X � 0

HIGHER CONDUCTANCE, BUT SMOOTHER, STABLER CLUSTERS
THEOREM:

For every α ∈ (0,1), there exists a κ such that the optimal solution to the Localized Program is a scaling of R .RANDOM WALKS IMPLICITLY REGULARIZE EIGENVECTOR COMPUTATION

• •

X � 0 For every α ∈ (0,1), there exists a κ such that the optimal solution to the Localized Program is a scaling of Rα.
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DISCUSSION: APPLICATIONS TO GRAPH PARTITIONING

To constrain the distribution {p
i
} of eigenvalues of X to be less concentrated, we use convex 

We consider an undirected weighted graph G=(V,E,w), where edge {i,j} ∈ E has weight wij. In the study of 

Spectral Graph Theory, different matrices in RV × V are associated with graph G. We denote by D the diagonal 

Different random walks can be used to obtain different approximations of the eigenvector x*, yielding 

different regularization properties. In this work, we focus on the three random walk processes that 

Recently, the regularization of the eigenvector computation by using random walks has found application in 

combinatorial optimization in the design of improved algorithms for different graph partitioning problems, such 

as finding the cut of minimum conductance and finding the balanced cut of minimum conductance.regularizers that, as a function of X,  are unitarily invariant (i.e. depend only on {p
i
} ) and are 

minimized when {p
i
} is uniform, i.e. when X ∝ I. Moreover, the regularizers that we consider are 

Spectral Graph Theory, different matrices in R × are associated with graph G. We denote by D the diagonal 

matrix of degrees of G and by A the adjacency matrix of G. The  following are two fundamental graph 

matrices:

Natural Random Walk Matrix    W = A D-1 

different regularization properties. In this work, we focus on the three random walk processes that 

appear most prominently in the study of community detection and graph partitioning. as finding the cut of minimum conductance and finding the balanced cut of minimum conductance.

Minimum Conductanceminimized when {p
i
} is uniform, i.e. when X ∝ I. Moreover, the regularizers that we consider are 

classical regularizers that have been used in many learning applications.

Natural Random Walk Matrix    W = A D-1 

Laplacian Matrix    L = D – A

Random walks considered in our work

Heat Kernel random walk with parameter 

Minimum Conductance

The eigenvector x* may be poorly correlated with the optimal cut v and may only yield a weak approximation.

Replacing the eigenvector with a vector y obtained from a random walk process is helpful in these cases, as y

still displays slow mixing (i.e. it is correlated with some low conductance cut), but has non-zero probability of 

Regularizers considered in our work

Laplacian Matrix    L = D – A

The Natural Random Walk Matrix is the probability transition matrix of the natural random walk over G, i.e. the 

random walk that, in one step from vertex v, picks a neighbor u of v with probability proportionally to the 

weight of and moves to that vertex.

• Heat Kernel random walk with parameter t
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still displays slow mixing (i.e. it is correlated with some low conductance cut), but has non-zero probability of 

having better correlation with the optimal cut and of yielding an improved approximation.
sRegularizers considered in our work

• von Neumann Entropy
weight of wuv and moves to that vertex.

Connection between W and L

Ht = e
−tL
= e

−t
∑

∞

i=1

t
i

i!
W

i Poisson (t)
s

y

• Log Determinant

Connection between W and L
The Random Walk W has a stationary distribution π∝D, uniform over the edges.

The first (smallest) eigenvector of L is the constant eigenvector  with eigenvalue .

• Personalized PageRank random walk with teleportation α FH(X) = −S(X) = Tr(X logX) =
∑

pi log pi x
⋆

• Log Determinant
The first (smallest) eigenvector of L is the constant eigenvector  with eigenvalue .

Given vector x such that xTD1 = 0

W
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• p-Norm
The rate of convergence or mixing is determined by the quadratic form • Truncated lazy random walk with staying probability p and number of steps t
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x
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Balanced Cut of Minimum Conductance

Regularization by random walk computation is particularly useful in the study of balanced cuts because the 
• p-Norm

FAST MIXING SLOW MIXING

Tp,t = (pI + (1− p)W )t Binomial (t, p)
Fp(X) = 1

p
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p
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p

∑
p
p
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Regularization by random walk computation is particularly useful in the study of balanced cuts because the 

sensitivity of the first non-trivial eigenvector makes it a poor tool to detect low-conductance balanced cuts. For 

example, by adding a small number of poorly connected vertices to a graph is possible to completely hide the 

minimum-conductance balanced cut from the eigenvector * (i.e. make the cut and eigenvector orthogonal).
Main Theorem

The second eigenvalue of the Laplacian of and its eigenvector * describe the most slowly mixing unit 

x
T
Lx x

T
Lxlarge small

Tp,t = (pI + (1− p)W )t Binomial (t, p)
minimum-conductance balanced cut from the eigenvector x* (i.e. make the cut and eigenvector orthogonal).

The second eigenvalue λ of the Laplacian of G and its eigenvector x* describe the most slowly mixing unit 

vector, i.e. the  unit vector that is the slowest to converge to 0 under the application of the random walk W.
Our Result
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Computation of x*

The eigenvector can be computed up to an arbitrary degree of precision by simulating the limit process

Our Result

In this work, we formulate a regularized version of the spectral optimization program defining the first 

F = FH

F = F

X
⋆
∝ Ht
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where t depends on parameter η

EIGENVECTOR *
The eigenvector can be computed up to an arbitrary degree of precision by simulating the limit process In this work, we formulate a regularized version of the spectral optimization program defining the first 

non-trivial eigenvector and show that three common choices of regularizers yield the three random 

walks as optimal solutions.x
⋆
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where q depends on parameter η Because of its regularization properties, the random walk approach is more stable and more successful at 

eliminating the noise introduced by unbalanced cuts of low conductance.yT
0
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