<u>Almost-Linear-Time Algorithms</u> <u>for Fundamental Graph Problems</u>

A New Framework and Its Applications

Lorenzo Orecchia

A Tale of Two Disciplines

NEW INSIGHT: Deep connections between core concepts
These two fields have expanded and diverged
Use techniques from one to help the other
They face similar challenges, but with different tools

Fastest Algorithms for Fundamental Graph Problems

 Asks about paths, flows, cuts, clustering, routing

 Asks about matrices, PDEs, computational linear algebra

A New Framework for the Design of Fast Algorithms

Why Graph Algorithms?

Why Fast Graph Algorithms

Classical Algorithms (1970s-1990s):

Standard notion of efficiency is polynomial running time

• Today:

Graphs of interest are getting larger and larger ...

Even quadratic running time is **unfeasibly large** for these instances

Why Fast Graph Algorithms

- Classical Algorithms (1970s-1990s):
 Standard notion of efficiency is polynomial running time
- Today:

Graphs of interest are getting larger and larger ...

Even quadratic running time is unfeasibly large for these instances

• New Efficiency Requirement: as close as possible to linear

ALMOST-LINEAR RUNNING TIME

Input Size Running Time $\Omega(n) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2}$

Almost-Linear-Time Algorithms

GOAL: Build library of primitives running in almost-linear time

What can you do to a graph in almost-linear time?

Almost-Linear Time

Reachability
Shortest Path
Connectivity
Minimum Cost Spanning Tree

Almost-Linear-Time Algorithms

GOAL: Build library of primitives running in almost-linear time

What can you do to a graph in almost-linear time?

Almost-Linear Time

Simple Probe of Graph Structure Reachability
Shortest Path
Connectivity
Minimum Cost Spanning Tree

....

Laplacian Systems of Linear Equations [Spielman, Teng'04]

Deep Probe of Graph Structure

Solve systems of linear equations with an implicit graph structure

$$Lx = b \iff \bigcirc$$

Fundamental problem in numerical analysis with <u>ubiquitous applications</u>

Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

Laplacian Systems of Linear Equations [Spielman, Teng'04]

BREAKTHROUGH: First almost-linear-time algorithm for complex graph problem

IDEA: Combine Computational Linear Algebra and Combinatorial Optimization

DISADVANTAGES: Involved theoretical algorithm, <u>3 papers = 100+ pages</u>

New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu '12]

BREAKTHROUGH: <u>Faster</u>, <u>simple</u> almost-linear-time algorithm

IDEA: Combine Continuous Optimization and Combinatorial Optimization

ADVANTAGES: 5 lines of pseudo-code, proof fits on 1 blackboard

Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu '12]

<u>Faster, simple</u> almost-linear-time algorithm

A New Framework for Designing Fast Algorithms
Combining Continuous Optimization and Combinatorial Optimization

Applying the Framework to Undirected Flow Problems

s-t Maximum Flow [Kelner, Orecchia, Sidford, Lee '13][Sherman'13]

First **almost-linear-time** algorithm for this foundational problem Previous best running time: $O(n^{4/3} \text{ polylog}(n))$ [Christiano et al. '11]

Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu '12]

<u>Faster, simple</u> almost-linear-time algorithm

A New Framework for Designing Fast Algorithms
Combining Continuous Optimization and Combinatorial Optimization

Applying the Framework to Undirected Flow Problems

- s-t Maximum Flow [Kelner, Orecchia, Sidford, Lee '13][Sherman'13]
- Concurrent Multi-commodity Flow [Kelner, Orecchia, Sidford, Lee '13]
 - Oblivious Routing [Kelner, Orecchia, Sidford, Lee '13]

... and Undirected Cut Problems

- Minimum s-t cut [Kelner, Orecchia, Sidford, Lee '13][Sherman'13]
- Approximate Sparsest Cut [Kelner, Orecchia, Sidford, Lee '13] [Sherman'13]
- Approximate Minimum Conductance Cut [Orecchia, Sachdeva, Vishnoi '12]

Talk Outline

New Solver for Laplacian Systems of Linear Equations

<u>Faster, simple</u> almost-linear-time algorithm

A New Framework for Designing Fast Algorithms
Combining Continuous Optimization and Combinatorial Optimization

Applying the Framework: Undirected s-t Maximum Flow First almost-linear-time algorithm for a foundational graph problem

Future Directions

Solving Laplacian Systems In Almost-Linear Time:

A Simple Algorithm

Laplacian Systems of Linear Equations

Fundamental Problem in Numerical Analysis

Some Applications

- Finite-element method
- Image Smoothing
- Network Analysis

Laplacian Systems of Linear Equations

Fundamental Problem in Numerical Analysis and Simulation of Physical Systems

Some Applications

- Finite-element method
- Image Smoothing
- Network Analysis

Laplacian Systems of Linear Equations

Fundamental Problem in Numerical Analysis and Simulation of Physical Systems

Some Applications

- Finite-element method
- Image Smoothing
- Network Analysis

Computational Challenge: Compute how <u>electrical flow spreads</u> in the circuit in almost-linear-time in the number of edges m

Optimization Characterization: Electrical flow minimizes energy

$$\min_{f \text{ routes } (s,t)} \sum_{e \in E} r_e f_e^2$$

Equivalent Characterization (Ohm's Law):

There exist voltages v such that for every edge e = (a,b),

Electrical Flow
$$\longrightarrow f_e = \frac{(v_b - v_a)}{r_e} \leftarrow \text{Voltage Gap}$$
 \leftarrow Edge Resistance

Previous Work

- Vast amounts of work on solving various subclasses of graphs
 - Multigrid on grids and meshes
- General direct solvers
 - Gaussian elimination, Strassen's algorithm
- General iterative solvers
 - Conjugate gradient, Chebyshev's method
- For Laplacians, long line of work leading to almost-linear-time algorithm
 - Very complicated: Algorithm and analysis of Spielman and Teng is divided into 3 papers totaling >130 pages
- All previous almost-linear-time graph algorithms have same structure
 - Can be seen as combinatorial analogue of Multigrid

INITIALIZATION:

- Choose a spanning tree **T** of G.
- Route flow along **T** to obtain initial flow f_0 .

INITIALIZATION:

- Choose a spanning tree **T** of G.
- Route flow along **T** to obtain initial flow f_0 .

NOTE:

Flow f_0 is electrical flow if and only if **Ohm's Law** holds for all edges $e{=}(b,a)$

• Apply Ohm's Law to the spanning $\frac{(v_b-v_a)}{\text{tree edges to}}$ deduce voltages.

- Choose a spanning tree **T** of G.
- Route flow along **T** to obtain initial flow f_0 .

NOTE:

Flow f_0 is electrical flow if and only if **Ohm's Law** holds for all edges e=(b,a)

- Apply Ohm's Law to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm's Law on off-tree edges.

INITIALIZATION:

- Choose a spanning tree **T** of G.
- Route flow along T to obtain initial flow f₀.

- Apply Ohm's Law to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm's Law on off-tree edges.
- Consider cycle corresponding to failing off-tree edge e

INITIALIZATION:

- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f₀.

- Apply Ohm's Law to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm's Law on off-tree edges.
- Consider cycle corresponding to failing off-tree edge e
- Send **flow around cycle** until Ohm's Law is satisfied on *e*

INITIALIZATION:

- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f₀.

- Apply Ohm's Law to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm's Law on off-tree edges.
- Consider cycle corresponding to failing off-tree edge e
- Send flow around cycle until Ohm's Law is satisfied on e
- Repeat

INITIALIZATION:

- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f₀.

- Apply Ohm's Law to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm's Law on off-tree edges.
- Consider cycle corresponding to failing off-tree edge e
- Send flow around cycle until Ohm's Law is satisfied on e
- Repeat

- <u>INTTIALIZATION</u>:
- Choose a spanning tree T of G.
- Route flow along T to obtain initial flow f₀.

- Apply Ohm's Law to the spanning-tree edges to deduce voltages.
- Check if voltages and flows obey Ohm's Law on off-tree edges.
- Consider cycle corresponding to failing off-tree edge e
- Send flow around cycle until Ohm's Law is satisfied on e
- Repeat

Algorithm Analysis

- Pick a cycle
- Fix it
- Repeat

Does it converge?

YES. Converges to electrical flow.

How quickly?

Depends on:

- 1. Choice of **spanning tree**
- 2. Order of cycle updates
 Randomized Order

Algorithm Analysis

Pick a cycle
 Fix it
 Repeat
 How quickly?
 Depends on:

 Choice of spanning tree
 Order of cycle updates

CHOICE OF SPANNING TREE:

Cycle-fixing updates can interfere with one another, lead to slow convergence

Randomized Order

- Choose spanning tree such that cycles <u>interfere</u> minimally: Spanning tree with minimal average cycle-length
- Number of iterations is $O(m) \cdot [average cycle-length]$

Stretch of e=
Length of cycle C_e

Gspanning tree T

Average Stretch:

$$\operatorname{st}(T) = \frac{1}{m} \sum_{e \in E} \operatorname{st}(e)$$

Fact [Abraham, Neiman '12]: It is possible to compute a spanning tree with **average stretch** $O(\log n \log \log n)$ in almost-linear time.

Algorithm Analysis

- Pick a cycle
- Fix it
- Repeat

Does it converge?

> YES. Converges to electrical flow.

How quickly?

Depends on:

- 1. Choice of spanning tree
 Use low-stretch spanning tree
- 2. Order of cycle updates
 Randomized

Number of iterations is O(m) · [average cycle-length] = $O(m \log n \log \log n)$

Each cycle update can be implemented in $O(\log n)$ time using simple data structure

TOTAL RUNNING TIME: $O(m \log^2 n \log \log n)$

Summary of Laplacian Solver

- Simple algorithm based on cycle updates
- Practically appealing:
 Generated interests from
 practitioners and is being
 implemented by groups at UCSB and Sandia Labs

- Formalizes Kaczmarz heuristic used in Computerized Tomography
- Replaces more complicated setup based on Spielman-Teng

A Novel Framework for the Design of Almost-Linear-Time Graph Algorithms:

Generalizing Our Approach to Electrical Flow

Working in the Space of Cycles

START: Geometric interpretation of electrical flow algorithm

Subspace of flows routing required current input/output

NB: Our iterative solutions never leave this subspace thanks to cycle updates

$$f^* \cong f_0 + \sum_i \alpha_i C_i$$

Linear combination of cycles

Coordinate Descent in the Space of Cycles

GOAL:
$$f^* \cong f_0 + \sum_i \alpha_i C_i$$

- Pick a basis of the space of cycles
- Fix a coordinate at the time, i.e., coordinate descent

Coordinate Descent in the Space of Cycles

GOAL:
$$f^* \cong f_0 + \sum_i \alpha_i C_i$$

EXAMPLE:

High interference between basis vectors yields slow convergence

Coordinate Descent in the Space of Cycles

RECALL:

Low-stretch spanning tree yields low-interference basis

Electrical Flow: Algorithmic Components

ITERATIVE METHOD **Continuous Optimization:**

Randomized Coordinate Descent

Joint Design of Components

PROBLEM REPRESENTATION

Combinatorial Optimization:

- Space of cycles
- Basis given by Low-Stretch Spanning Tree

A Framework for Algorithmic Design

ITERATIVE METHOD

<u>Leverage Continuous Optimization Ideas:</u>

- Gradient Descent
- Coordinate Descent
- Nesterov's Algorithm

Fast convergence of these methods depends on **smoothness** of objective function

A Framework for Algorithmic Design

ITERATIVE METHOD

<u>Leverage Continuous Optimization Ideas</u>
Fast convergence requires **smooth** problem

PROBLEM REPRESENTATION

Not all representations are created equal:

Use combinatorial techniques to produce a smooth representation

Efficiency and simplicity rely on **combining these two components** in the right way

Applying Our Design Framework:

Undirected s-t Maximum Flow

Example: Undirected s-t Maximum Flow

INPUT:

- Undirected Graph G=(V,E), n vertices in V, m edges in E
- Edges have positive capacities c_e
- Special vertices: source s and sink t

GOAL: Route maximum flow from s to t while respecting capacities

Previous Work: Augmenting Paths

Route one path at the time until one edge is congested. **IDEA**:

Modify graph to allow pushing flow back.

Repeat.

Different policies for choosing augmentation lead to different variants.

DISCRETE ALGORITHM: Intermediate flows routed are always **integral**. Convergence analysis is combinatorial.

 $O(m^2n)$ **Running Times**: [Edmonds, Karp '72]

> $O(mn^2)$ [Dinic '70]

 $O(m\sqrt{n})$ [Goldberg-Rao '98]

An Optimization View of Maximum Flow

Two Equivalent Formulations

Maximize s-t flow while respecting capacities:

$$\forall e \in E, \ \frac{f_e}{c_e} \le 1$$

Max edge congestion ≤ 1

Minimize maximum congestion while routing unit flow from s to t

$$\min_{f} \max_{e} \frac{f_e}{c_e}$$

s.t. f routes s - t

An Optimization View of Maximum Flow

Two Equivalent Formulations

Maximize s-t flow while respecting capacities:

Minimize maximum congestion while routing unit flow from \boldsymbol{s} to \boldsymbol{t}

$$\forall e \in E, \ \frac{f_e}{c_e} \le 1$$

Max edge congestion ≤ 1

$$\min_{f} \max_{e} \frac{f_e}{c_e}$$

s.t. f routes
$$s-t$$

An Optimization View of Maximum Flow

Minimize maximum congestion while routing unit flow from \boldsymbol{s} to \boldsymbol{t}

$$\min_{f} \|C^{-1}f\|_{\infty}$$

s.t. f routes s-t

Connection with Electrical Flow

Electrical Flow

$$\min_{f} \sum_{e \in E} r_e f_e^2$$

s.t. f routes s-t

Energy Minimization

s-t Maximum Flow

$$\min_{f} \|C^{-1}f\|_{\infty}$$

s.t. f routes s - t

Congestion Minimization

Connection with Electrical Flow

Electrical Flow

Set resistances as: $r_e = \frac{1}{c_e}$

$$\min_{f} \|C^{-1/2} f\|_2$$

s.t. f routes s-t

s-t Maximum Flow

$$\min_{f} \|C^{-1}f\|_{\infty}$$

s.t. f routes s-t

Applying the framework: Can we change basis to make problem smoother?

An Extra Difficulty

Objective function:

$$g(f) = \|C^{-1}f\|_{\infty}$$

An Extra Difficulty

Objective function:

$$g(f) = \|C^{-1}f\|_{\infty}$$

PROBLEM: OBJECTIVE IS EXTREMELY NON-SMOOTH

No change of basis can help

An Extra Step: Regularization

Objective function:
$$g(f) = \|C^{-1}f\|_{\infty}$$

PROBLEM: No change of basis can smoothen objective

SOLUTION: Change objective

Find function that is close to objective but somewhat smooth

Applying the Framework: Comparison

 $||C^{-1/2}f||_2$

OBJECTIVE

s-t Maximum Flow

$$\|C^{-1}f\|_{\infty}$$

No regularization needed

Use basis given by Low-stretch spanning tree

PROBLEM REPRESENTATION

Regularize to softmax

Which basis to use? Little interference in $\|\cdot\|_{\infty}$

Surprising equivalence:

Basis is

OBLIVIOUS ROUTING SCHEME

ITERATIVE METHOD

Oblivious Routing

GOAL: **Route** traffic between **many pairs** of users on the Internet Minimize **maximum congestion** of a link

Routing = Probability Distribution over Paths = **Flow**

Oblivious Routing

GOAL: **Route** traffic between **many pairs** of users on the Internet Minimize **maximum congestion** of a link

DIFFICULTY: Requests arrive online in arbitrary order
How to **avoid global flow computation** at every new arrival

SOLUTION:

Oblivious Routing: Every request is **routed obliviously** of the other requests

Oblivious Routing

GOAL: **Route** traffic between **many pairs** of users on the Internet Minimize **maximum congestion** of a link

DIFFICULTY: Requests arrive online in arbitrary order

How to avoid global flow computation at every new arrival

SOLUTION:

Oblivious Routing: Every request is **routed obliviously** of the other requests

PRE-PREPROCESSING: Routes are pre-computed

MEASURE OF PERFORMANCE:

Worst-case ratio between congestion of oblivious-routing and optimal a posteriori routing

COMPETITIVE RATIO

Oblivious Routing: A New Scheme

GOAL: **Route** traffic between **many pairs** of users on the Internet Minimize **maximum congestion** of a link

DIFFICULTY: Requests arrive online in arbitrary order

How to avoid global flow computation at every new arrival

SOLUTION:

Oblivious Routing: Every request is **routed obliviously** of the other requests

PRE-PREPROCESSING: Routes are pre-computed

ALMOST-LINEAR RUNNING TIME

MEASURE OF PERFORMANCE:

Worst-case ratio between congestion of oblivious-routing and optimal a posteriori routing

SUBLINEARETOM PERIATVO RATIO

Applying the Framework: Comparison

Euclidean Gradient Descent

Contour map of $g(f) = \|C^{-1}f\|_{\infty}$ over feasible subspace

Non-Euclidean Gradient Descent

Contour map of $g(f) = \|C^{-1}f\|_{\infty}$ over feasible subspace

Applying the Framework: Comparison

ALMOST-LINEAR-TIME FOR BOTH PROBLEMS

Where Do We Go From Here?

Future Directions

A New Algorithmic Approach

- A novel design framework for fast graph algorithms
- Incorporates and leverages idea from multiple fields
- Based on radically different approach
- Has yielded conceptually simple, powerful algorithms
- Combinatorial insight plays a crucial role
 - Low-stretch spanning trees
 - Oblivious routings
- Numerous potential applications in Algorithms and other fields

What Are the Limits of Almost-Linear Time?

Almost-Linear Time

Super-linear Time

Reachability **Shortest Path** Connectivity Minimum Cost Spanning Tree

Directed Flow Problems Directed Cut Problems

> All-pair Shortest Path **Network Design**

Lap Recenty Bartia b Phogras Squations

- Improved running time for directed Undirficted From Problems [Madry'13]

 • s-t Maximum Flow

- Concurrent Multi-commodity Flow -Ob Conditional lowerbounds for All-Pair Shortest Path [Williams'13]

Undirected Cut Problems:

- Minimum s-t cut Approximate Sparsest Cut
- Approximate Minimum Conductance Cut

Properties of Resulting Algorithms

OBSERVE: Our algorithms solve regularized versions of the problem SOLUTIONS ARE STABLE UNDER NOISE

Our iterative solutions are stable under noise

Practical Advantage: Real-world Instances are often noisy samples

REGULARIZATION PREVENTS OVERFITTING TO NOISE

CONNECTIONS TO: Convex Optimization, Machine Learning, Statistics, Complexity Theory

Connecting Theory and Practice

EMPIRICAL OBSERVATION:

Many of the algorithms obtained in this framework resemble heuristics used successfully in practice

Examples:

- METIS for Graph Partitioning
- PageRank Random Walks for Clustering
- Kaczmarz Iteration for Solving Linear Systems

Future Work: Interpret and improve existing heuristics

Example: Clustering heuristics in computational biology

A Modern Theory of Algorithms

BROAD VISION:

Convergence of Combinatorial and Continuous Optimization yields new approach to the design of algorithms

PERSPECTIVE: We have only made first steps in leveraging this insight

5-10 year plan: much richer toolkit of almost-linear-time algorithms

RENEWED FOCUS ON PRACTICAL APPLICATIONS:

- Scalability
- Conceptual simplicity, practical appeal
- Address fundamental problems with wide applicability

LONG-TERM GOAL:

Redefine the relationship between Theory of Algorithms and other areas:

Scientific Computing, Machine Learning, Experimental Algorithms, and more