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A Tale of Two Disciplines

NEW INSIGHT: Deep connections between core Concepts
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They face 51mllar challen Ies,; but with different tools
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Fastest Algorithms for
Fundamental Graph Problems

e Asks about paths, flows, e Asks about matrices, PDEs,




Why Graph Algorithms?
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Why Fast Graph Algorithms

e C(lassical Algorithms (1970s-1990s):

Standard notion of efficiency is polynomial running time
* Today:

Graphs of interest are getting larger and larger ...
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Even quadratic running time is unfeasibly large for these instances
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Why Fast Graph Algorithms

* C(lassical Algorithms (1970s-1990s):

Standard notion of efficiency is polynomial running time
* Today:
Graphs of interest are getting larger and larger ...

Even quadratic running time is unfeasibly large for these instances

* New Efficiency Requirement: as close as possible to linear

ALMOST-LINEAR RUNNING TIME

Input Size Running Time
n O(nDl(omér_’(_)Fd}r terms]

forany e >0
Contrast with Super-Linear Time Q(n'*°) for some § > 0
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Almost-Linear-Time Algorithms

GOAL: Build library of primitives running in almost-linear time

 What can you do to a graph in almost-linear time?

Almost-Linear Time

Reachability

Shortest Path

Connectivity
Minimum Cost Spanning Tree

/ SHORTEST PATH PROBLEM:

What i
Probe Graph Structure in Simple Way

~




Almost-Linear-Time Algorithms

GOAL: Build library of primitives running in almost-linear time

 What can you do to a graph in almost-linear time?

-

Simple Probe

of
Graph

Structure

J

-

Deep Probe
of
Graph

Structure

J

Almost-Linear Time

Reachability

Shortest Path

Connectivity
Minimum Cost Spanning Tree

Laplacian Systems of Linear Equations [Spielman, Teng'04]

/ Solve systems of linear equations with an implicit graph structure \

Lxr=0» ﬁ<\>

Fundamental problem in numerical analysis with ubiquitous aDDllcatlons
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Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

Laplacian Systems of Linear Equations [Spielman, Teng 04]

BREAKTHROUGH: First almost-linear-time algorithm for complex graph problem
IDEA: Combine Computational Linear Algebra and Combinatorial Optimization

DISADVANTAGES: Involved theoretical algorithm, 3 papers = 100+ pages

New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu '12]
BREAKTHROUGH: Faster, simple almost-linear-time algorithm

IDEA: Combine Continuous Optimization and Combinatorial Optimization
ADVANTAGES: 5 lines of pseudo-code, proof fits on 1 blackboard




Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu ’12]
Faster, simple almost-linear-time algorithm

A New Framework for Designing Fast Algorithms
Combining Continuous Optimization and Combinatorial Optimization

Applying the Framework to Undirected Flow Problems
s-t Maximum Flow [Kelner, Orecchia, Sidford, Lee ‘13][Sherman’13]

First almost-linear-time algorithm for this foundational problem

4/3

Previous best running time: O(n*/° polylog(n)) [Christiano etal.’11]



Almost-Linear-Time Algorithms: My Contributions

GOAL: Build library of primitives running in almost-linear time

New Solver for Laplacian Systems [Kelner, Orecchia, Sidford, Zhu '12]
Faster, simple almost-linear-time algorithm

A New Framework for Designing Fast Algorithms
Combining Continuous Optimization and Combinatorial Optimization

Applying the Framework to Undirected Flow Problems
* s-t Maximum Flow [Kelner, Orecchia, Sidford, Lee ‘13][Sherman’13]
e Concurrent Multi-commodity Flow [Kelner, Orecchia, Sidford, Lee '13]
* Oblivious Routing [Kelner, Orecchia, Sidford, Lee '13]

...and Undirected Cut Problems
 Minimum s-t cut [Kelner, Orecchia, Sidford, Lee ‘13][Sherman’13]
* Approximate Sparsest Cut [Kelner, Orecchia, Sidford, Lee '13] [Sherman’13]
e Approximate Minimum Conductance Cut [Orecchia, Sachdeva, Vishnoi '12]



Talk Outline

New Solver for Laplacian Systems of Linear Equations
Faster, simple almost-linear-time algorithm

A New Framework for Designing Fast Algorithms

Combining Continuous Optimization and Combinatorial Optimization

Applying the Framework: Undirected s-t Maximum Flow
First almost-linear-time algorithm for a foundational graph problem

Future Directions



Solving Laplacian Systems
In Almost-Linear Time:

A Simple Algorithm




Laplacian Systems of Linear Equations

o= H<\\>

Fundamental Problem in Numerical Analysis
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Some Applications
* Finite-element method
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Laplacian Systems of Linear Equations

Fundamental Problem in Numerical Analysis and Simulation of Physical
Systems

Az = b {—}<\\>

Some Applications

* Finite-element method

* Image Smoothing

* Network Analysis

14



Laplacian Systems of Linear Equations

Fundamental Problem in Numerical Analysis and Simulation of Physical
Systems
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Laplacian Systems and Electrical Flow

Axr = b

Matrix A defines a graph Vector b defines:
flow input/output

Graph » Electrical Circuit

Edges » Unitresistors



Laplacian Systems and Electrical Flow

Solution zx is Vector b defines electrical current
voltage induced by current input/output

Current Source



Laplacian Systems and Electrical Flow
9 3 6 3 3

Computational Challenge: Compute how electrical flow spreads in the
circuit in almost-linear-time in the number of edges m

Optimization Characterization: Electrical flow minimizes energy

min E ref?
froutes (S,t)

eckE



Laplacian Systems and Electrical Flow
9 3 6 3 3

Equivalent Characterization (Ohm’s Law):
There exist voltages v such that for every edge e = (a,b),

(Ub — Ua) <— Voltage Gap

Electrical Flow — fe —

Te <— Edge Resistance



Previous Work

Vast amounts of work on solving various subclasses of graphs
— Multigrid on grids and meshes
General direct solvers

— Gaussian elimination, Strassen’s algorithm

General iterative solvers

— Conjugate gradient, Chebyshev’'s method

For Laplacians, long line of work leading to almost-linear-time algorithm

— Very complicated: Algorithm and analysis of Spielman and Teng is
divided into 3 papers totaling >130 pages

All previous almost-linear-time graph algorithms have same structure

— Can be seen as combinatorial analogue of Multigrid



Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
* Choose a spanning tree T of G.
* Route flow along T to obtain initial flow f..




Our Fastest, Simplest Laplacian Solver

24 g 16 g 8

32 0 24 o 24
INITIALIZATION:

* Choose a spanning tree T of G.
* Route flow along T to obtain initial flow f..

NOTE:
Flow f, is electrical flow if and only if Ohm’s Law holds for all edges
e=(b,a)
(Vb — V)
* Apply Ohm’s Law to the spéﬁnﬁg-tree (%dges to deduce voltages.
e




Our Fastest, Simplest Laplacian Solver

24 g 16 g 8

32 0 24 o ¥ _ (0~ va)
INITIALIZATION: e

* Choose a spanning tree T of G.
* Route flow along T to obtain initial flow f..

NOTE:
Flow f, is electrical flow if and only if Ohm’s Law holds for all edges e=(b,a)

* Apply Ohm’s Law to the spanning-tree edges to deduce voltages.

* Check if voltages and flows obey Ohm’s Law on off-tree edges.



Our Fastest, Simplest Laplacian Solver

24 g 16 8 8

32 0 24 o 24
INITIALIZATION:

* Choose a spanning tree T of G.
* Route flow along T to obtain initial flow f;,.

MAIN LOOP (CYCLE FIXING):

* Apply Ohm’s Law to the spanning-tree edges to deduce voltages.
* Checkifvoltages and flows obey Ohm’s Law on off-tree edges.

* Consider cycle corresponding to failing off-tree edge e




Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
* Choose a spanning tree T of G.
* Route flow along T to obtain initial flow f;,.

MAIN LOOP (CYCLE FIXING):

* Apply Ohm’s Law to the spanning-tree edges to deduce voltages.
* Checkifvoltages and flows obey Ohm’s Law on off-tree edges.

* Consider cycle corresponding to failing off-tree edge e

* Send flow around cycle until Ohm’s Law is satisfied on e




Our Fastest, Simplest Laplacian Solver

4/30 4/9
INITIALIZATION:
* Choose a spanning tree T of G.
* Route flow along T to obtain initial flow f;,.

MAIN LOOP (CYCLE FIXING):

* Apply Ohm’s Law to the spanning-tree edges to deduce voltages.
* Checkifvoltages and flows obey Ohm’s Law on off-tree edges.

* Consider cycle corresponding to failing off-tree edge e

* Send flow around cycle until Ohm’s Law is satisfied on e

* Repeat




Our Fastest, Simplest Laplacian Solver

24 g 16 8 8
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INITIALIZATION:

* Choose a spanning tree T of G.
* Route flow along T to obtain initial flow f;,.

MAIN LOOP (CYCLE FIXING):

* Apply Ohm’s Law to the spanning-tree edges to deduce voltages.
* Checkifvoltages and flows obey Ohm’s Law on off-tree edges.

* Consider cycle corresponding to failing off-tree edge e

* Send flow around cycle until Ohm’s Law is satisfied on e

* Repeat




Our Fastest, Simplest Laplacian Solver

INITIALIZATION:
* Choose a spanning tree T of G.
* Route flow along T to obtain initial flow f;,.

MAIN LOOP (CYCLE FIXING):

* Apply Ohm’s Law to the spanning-tree edges to deduce voltages.
* Checkifvoltages and flows obey Ohm’s Law on off-tree edges.

* Consider cycle corresponding to failing off-tree edge e

* Send flow around cycle until Ohm’s Law is satisfied on e

* Repeat




Algorithm Analysis

Does it
converge?

How

YES. Converges to electrical flow.

* Pickacycle

* Fixit
* Repeat

Depends on:
— s 1. Choice of spanning tree
2. Order of cycle updates
Randomized Order

quickly ?




Algorithm Analysis

Does it ——> YES. Converges to electrical flow.
converge?

How Depends on:
—> 1. Choice of spanning tree
2. Order of cycle updates
Randomized Order

Pick a cycle

Fix it
Repeat

quickly ?

CHOICE OF SPANNING TREE:
* Cycle-fixing updates can interfere with one another, lead to slow convergence

* Choose spanning tree such that cycles interfere minimally:
Spanning tree with minimal average cycle-length

* Number of iterations is O(m) - [average cycle-length]



Low-Stretch Spanning Trees

spanning tree T’ G




Low-Stretch Spanning Trees

spanning tree T’ G

Stretch of e

Length of cycle C,




Low-Stretch Spanning Trees

Stretch of e

Length of cycle C,

spanning tree T’ G




Low-Stretch Spanning Trees

spanning tree T’ G

Stretch of e

Length of cycle C,

cq 1 1 | | | I

Average Stretch:

$t(T) = % S st(e)

eckE




Low-Stretch Spanning Trees

spanning tree T’ G

Stretch of e

Length of cycle C,

Average Stretch:

$t(T) = % S st(e)

eckE

Fact [Abraham, Neiman '12]: It is possible to compute a spanning tree
with average stretch O(log n loglog n) in almost-linear time.



Algorithm Analysis

Does it — > YES. Converges to electrical flow.
converge?

Depends on:
— s 1. Choice of spanning tree
Use low-stretch spanning tree

* Pickacycle

* Fixit
* Repeat

2. Order of cycle updates
Randomized

Number of iterations is O(m) - [average cycle-length] = O (m log n log log n)
Each cycle update can be implemented in O(log n) time using simple data structure

TOTAL RUNNING TIME: O(m log?® n log log n)



Summary of Laplacian Solver

Simple algorithm based
on cycle updates

5 NN

Practically appealing:

Generated interests from
practitioners and is being
implemented by groups at UCSB and Sandia Labs

Numerical stability is very easy to prove

Formalizes Kaczmarz heuristic used in Computerized Tomography

Replaces more complicated setup based on Spielman-Teng



A Novel Framework for the Design of

Almost-Linear-Time Graph Algorithms:

Generalizing Our Approach to Electrical Flow




Working in the Space of Cycles

START: Geometric interpretation of electrical flow algorithm

Initial Flow

o P

Cycle update /
on C, Cycle update

L on C,

o f

Electrical Flow

Subspace of flows routing
required current input/output

NB: Our iterative solutions never leave this subspace thanks to cycle updates
* A~

J7= fot+ E a; C;

b

Linear combination of cycles 39



Coordinate Descent in the Space of Cycles

GOAL: fF2fo+ ) oG

f

Electrical Flow

* Pick a basis of the space of cycles

 Fix a coordinate at the time, i.e., coordinate

40



Coordinate Descent in the Space of Cycles

GOAL: fF2fo+ ) oG

/ me\f

Electrical Flow

EXAMPLE:
High interference between basis vectors yields slow convergence

41



Coordinate Descent in the Space of Cycles

RECALL:
Low-stretch spanning tree yields low-interference basis

42



Electrical Flow: Algorithmic Components

ITERATIVE Continuous Optimization:
METHOD Randomized Coordinate Descent

I Joint Design of Components

Combinatorial Optimization:

PROBLEM
REPRESENTATION

* Space of cycles

* Basis given by Low-Stretch Spanning Tree

43



A Framework for Algorithmic Design

ITERATIVE Leverage Continuous Optimization Ideas:
METHOD

* (Gradient Descent

 (Coordinate Descent
* Nesterov’s Algorithm

Fast convergence of these methods depends on smoothness of objective function

min f(z)

Gradient changes too quickly!

v

2 (t+1) :Ij(t)



A Framework for Algorithmic Design

ITERATIVE Leverage Continuous Optimization Ideas
METHOD Fast convergence requires smooth problem
PROBLEM Not all representations are created equal:

REPRESENTATION Use combinatorial techniques

to produce a smooth representation

Efficiency and simplicity rely on combining these two components in the right way



Applying Our Design Framework:

Undirected s-t Maximum Flow




Example: Undirected s-t Maximum Flow

INPUT:
— Undirected Graph G=(V,E), n vertices in V, m edges in E
— Edges have positive capacities c,

— Special vertices: source s and sink ¢

GOAL: Route maximum flow from s to ¢ while respecting capacities




Previous Work: Augmenting Paths

IDEA: Route one path at the time until one edge is congested.
Modify graph to allow pushing flow back.
Repeat.

Different policies for choosing augmentation lead to different variants.

DISCRETE ALGORITHM: Intermediate flows routed are always integral.
Convergence analysis is combinatorial.

2
Running Times: [Edmonds, Karp '72] O(m n)
[Dinic’70] O(mn?)

[Goldberg-Rao '98] 0, (m\/ﬁ)



An Optimization View of Maximum Flow

Two Equivalent Formulations

Maximize s-t flow Minimize maximum congestion
while respecting capacities: h —— while routing unit flow from s to ¢
fe . - e
Ve € I, min max —
1 Ce ! e Ce

Max edge congestion <1 s.t. f routes s — ¢



An Optimization View of Maximum Flow

2/33  2/34

2/3 2 V2/3 2

Two Equivalent Formulations

Maximize s-t flow Minimize maximum congestion
while respecting capacities: h —— while routing unit flow from s to ¢
fe . e
Ve € I, min max —
1 Ce ! e Ce

Max edge congestion <1 s.t. f routes s — ¢



An Optimization View of Maximum Flow

2/33  2/34

: —1
Minimize maximum congestion m;n ‘ | C f ‘ ‘ 0

while routing unit flow from s to ¢

s.t. I routes s — ¢



Connection with Electrical Flow

Electrical Flow s-t Maximum Flow

S t
: 2
in ) e/ min € £
ecl f
s.t. f routes s — ¢ s.t. f routes s — ¢

Energy Minimization Congestion Minimization



Connection with Electrical Flow

Electrical Flow s-t Maximum Flow

g t
1
Set resistances as: 7“6 —_ —
Ce
: —1
min G2 1| min 1C™ fllo
s.t. f routes s — ¢ s.t. f routes s — ¢

Applying the framework: Can we change basis to make problem smoother?



An Extra Difficulty

Objective function:  ( (f) — H C~ L f H 00

1.0
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An Extra Difficulty

Objective function: g(f) — HC’_lfHoo

1.0

T

>

y 00F

-05¢F

- I 0 1 1 1 1 1 1 1 Il 1 1 1 1 1 1 1 1 1 Il 1
-1.0 -0.5 0.0 0.5 1.0

PROBLEM: OBJECTIVE IS EXTREMELY NON-SMOOTH

No change of basis can help



An Extra Step: Regularization

Objective function:  ( (f) — H C~ 1 f H 00

1.0

|
0.5 I

softmax(C 1 f) . o

054 |
l'. \ j ’1_
I.I l"_
N o4

—-1.0 \\l .uT‘r—a Ve N T W T S r—1":— 1 l/

-1 -0.5 0.0 0.5 1.0

X

PROBLEM: No change of basis can smoothen objective

SOLUTION: Change objective
Find function that is close to objective but somewhat smooth




Applying the Framework: Comparison

Electrical Flow s-t Maximum Flow
_ —1
|C—Y2 11, OBJECTIVE 1C™ flloo
No regularization needed Regularize to softmax
PROBLEM
Use basis given by REPRESENTATION | Which basis to use?
Low-stretch spanning tree Little interference in H - HOO

Surprising equivalence:
Basis is
OBLIVIOUS ROUTING SCHEME

ITERATIVE METHOD




Oblivious Routing

GOAL: Route traffic between many pairs of users on the Internet
Minimize maximum congestion of a link

Routing = Probability Distribution over Paths = Flow

I S S S - - - -,




Oblivious Routing

GOAL: Route traffic between many pairs of users on the Internet
Minimize maximum congestion of a link

DIFFICULTY: Requests arrive online in arbitrary order
How to avoid global flow computation at every new arrival

SOLUTION:
Oblivious Routing: Every request is routed obliviously of the other requests




Oblivious Routing

GOAL: Route traffic between many pairs of users on the Internet
Minimize maximum congestion of a link

DIFFICULTY: Requests arrive online in arbitrary order
How to avoid global flow computation at every new arrival

SOLUTION:
Oblivious Routing: Every request is routed obliviously of the other requests

PRE-PREPROCESSING: Routes are pre-computed

MEASURE OF PERFORMANCE:
Worst-case ratio between congestion
of oblivious-routing and optimal a posteriori routing

COMPETITIVE RATIO



Oblivious Routing: A New Scheme

GOAL: Route traffic between many pairs of users on the Internet
Minimize maximum congestion of a link

DIFFICULTY: Requests arrive online in arbitrary order
How to avoid global flow computation at every new arrival

SOLUTION:
Oblivious Routing: Every request is routed obliviously of the other requests

PRE-PREPROCESSING: Routes are pre-computed
ALMOST-LINEAR RUNNING TIME

MEASURE OF PERFORMANCE:
Worst-case ratio between congestion
of oblivious-routing and optimal a posteriori routing

SUBLINBARECOMPERATVE RATIO



Applying the Framework: Comparison

Electrical Flow

G725,

No regularization needed

Use basis given by
low-stretch spanning tree

OBJECTIVE

PROBLEM
REPRESENTATION

s-t Maximum Flow

1C™ flls

Regularize to softmax

Use basis given by
oblivious routing scheme

Coordinate Descent

ITERATIVE METHOD

Non-Euclidean
Gradient Descent




Euclidean Gradient Descent

Contour map of g(f) = H c! fHOO over feasible subspace



Non-Euclidean Gradient Descent

|
Vg(f)

2

Contour map of g(f) = H c! fHOO over feasible subspace



Applying the Framework: Comparison

Electrical Flow

G725,

No regularization needed

Use basis given by
low-stretch spanning tree

OBJECTIVE

PROBLEM
REPRESENTATION

s-t Maximum Flow

1C™ flls

Regularize to softmax

Use basis given by
oblivious routing scheme

Coordinate Descent

ITERATIVE METHOD

Non-Euclidean
Gradient Descent

ALMOST-LINEAR-TIME FOR BOTH PROBLEMS



Where Do We Go From Here?

Future Directions




A New Algorithmic Approach

A novel design framework

//‘“""""'w \
for fast graph algorithms L/ m\\/

Incorporates and leverages

idea from multiple fields Combinatorial Numerical
Optimization Scientific
Computin
Based on radically different puting
approach PROBLEM ITERATIVE
REPRESENTATION METHOD
Has yielded conceptually simple, ‘
powerful algorithms A\ /

Combinatorial insight plays a crucial role
- Low-stretch spanning trees
- Oblivious routings

Numerous potential applications in Algorithms and other fields



What Are the Limits of Almost-Linear Time?

Almost-Linear Time Super-linear Time
Reachability ? Directed Flow Problems
Shortest Path . Directed Cut Problems
Connectivity
Minimum Cost Spanning Tree All-pair Shortest Path
Network Design

LapRezentyBtatiabPomredsguations
- Improved running time for directe
Undirfigsoel hrob1eias fmadry’13]
* s-t Maximum Flow

*  Concurrent Multi-commodity Flow
- -obanditienal lowerbounds for

All-Pair Shortest Path [Williams’13]

Undirected Cut Problems:

*  Minimum s-t cut Approximate Sparsest Cut
Approximate Minimum Conductance Cut

—————————&———

e e et



Properties of Resulting Algorithms

OBSERVE: Our algorithms solve regularized versions of the problem
SOLUTIONS ARE STABLE UNDER NOISE

—

NOISY
MEASUREMENT

GROUND-TRUTH GRAPH INPUT GRAPH

Our iterative solutions are stable under noise

Practical Advantage: Real-world Instances are often noisy samples

REGULARIZATION PREVENTS OVERFITTING TO NOISE

CONNECTIONS TO: Convex Optimization, Machine Learning, Statistics, Complexity Theory



Connecting Theory and Practice

EMPIRICAL OBSERVATION:

Many of the algorithms obtained in this framework
resemble heuristics used successfully in practice

Examples:
- METIS for Graph Partitioning
- PageRank Random Walks for Clustering
- Kaczmarz Iteration for Solving Linear Systems

Future Work: Interpret and improve existing heuristics

Example: Clustering heuristics in computational biology



A Modern Theory of Algorithms

BROAD VISION:
Convergence of Combinatorial and Continuous Optimization
yields new approach to the design of algorithms

PERSPECTIVE: We have only made first steps in leveraging this insight

5-10 year plan: much richer toolkit of almost-linear-time algorithms

RENEWED FOCUS ON PRACTICAL APPLICATIONS:
e Scalability

* Conceptual simplicity, practical appeal

e Address fundamental problems with wide applicability

LONG-TERM GOAL:
Redefine the relationship between Theory of Algorithms and other areas:

Scientific Computing, Machine Learning, Experimental Algorithms, and more



