Random Walks as a Stable Analogue of Eigenvectors (with Applications to Nearly-Linear-Time Graph Partitioning)

Lorenzo Orecchia, MIT Math

Based on joint works with Michael Mahoney (Stanford), Sushant Sachdeva (Yale) and Nisheeth Vishnoi (MSR India).

Why Spectral Algorithms for Graph Problems ...

... in practice?

- Simple to implement
- Can exploit very efficient linear algebra routines
- Perform well in practice for many problems

... in theory?

- Connections between spectral and combinatorial objects
- Connections to Markov Chains and Probability Theory
- Intuitive geometric viewpoint

RECENT ADVANCES:

Fast algorithms for fundamental combinatorial problems rely on spectral and optimization ideas

Spectral Algorithms for Graph Partitioning

Spectral algorithms are widely used in many graph-partitioning applications: clustering, image segmentation, community-detection, etc.

CLASSICAL VIEW:

- Based on Cheeger's Inequality
- Eigenvectors sweep-cuts reveal sparse cuts in the graph

Spectral Algorithms for Graph Partitioning

Spectral algorithms are widely used in many graph-partitioning applications: clustering, image segmentation, community-detection, etc.

CLASSICAL VIEW:

- Based on Cheeger's Inequality
- Eigenvectors sweep-cuts reveal sparse cuts in the graph

NEW TREND:

- Random walk vectors replace eigenvectors:
 - Fast Algorithms for Graph Partitioning
 - Local Graph Partitioning
 - Real Network Analysis
- Different random walks: PageRank, Heat-Kernel, etc.

Advantages of Random Walks:

1) Quick approximation to eigenvector in massive graphs

$$A = adjacency matrix$$

D = diagonal degree matrix

W = AD^{-1} = natural random walk matrix L = D – A = Laplacian matrix

Second Eigenvector of the Laplacian can be computed by iterating $W\,$:

For random y_0 s.t. $y_0^T D^{-1} 1 = 0$, compute

$$D^{-1}W^ty_0$$

Advantages of Random Walks:

1) Quick approximation to eigenvector in massive graphs

A = adjacency matrix

D = diagonal degree matrix

 $W = AD^{-1} =$ natural random walk matrix L = D - A =Laplacian matrix

Second Eigenvector of the Laplacian can be computed by iterating ${\cal W}\,$:

For random y_0 s.t. $y_0^T D^{-1} 1 = 0$, compute

$$D^{-1}W^ty_0$$

In the limit, $x_2(L)=\lim_{t o\infty}rac{D^{-1}W^ty_0}{||W^ty_0||_{D^{-1}}}$.

Advantages of Random Walks:

1) Quick approximation to eigenvector in massive graphs

A = adjacency matrix

D = diagonal degree matrix

 $W = AD^{-1} =$ natural random walk matrix L = D - A =Laplacian matrix

Second Eigenvector of the Laplacian can be computed by iterating ${\cal W}\,$:

For random y_0 s.t. $y_0^T D^{-1} 1 = 0$, compute

$$D^{-1}W^ty_0$$

In the limit, $x_2(L)=\lim_{t o\infty}rac{D^{-1}W^ty_0}{||W^ty_0||_{D^{-1}}}$.

Heuristic: For massive graphs, pick t as large as computationally affordable.

Advantages of Random Walks:

- 1) Quick approximation to eigenvector in massive graphs
- 2) <u>Statistical robustness</u>

Real-world graphs are noisy

GROUND TRUTH
GRAPH

Advantages of Random Walks:

- 1) Quick approximation to eigenvector in massive graphs
- 2) <u>Statistical robustness</u>

Real-world graphs are noisy

GRAPH GOAL: estimate eigenvector of groundtruth graph.

Advantages of Random Walks:

- 1) Quick approximation to eigenvector in massive graphs
- 2) <u>Statistical robustness</u>

GOAL: estimate eigenvector of ground-truth graph.

OBSERVATION: eigenvector of input graph can have very large variance, as it can be very sensitive to noise

RANDOM-WALK VECTORS provide better, more stable estimates.

This Talk

QUESTION:

Why random-walk vectors in the design of fast algorithms?

This Talk

QUESTION:

Why random-walk vectors in the design of fast algorithms?

ANSWER: Stable, regularized version of the eigenvector

This Talk

QUESTION:

Why random-walk vectors in the design of fast algorithms?

ANSWER: Stable, regularized version of the eigenvector

GOALS OF THIS TALK:

- Show optimization perspective on why random walks arise

- Application to nearly-linear-time balanced graph partitioning

Random Walks as Regularized Eigenvectors

What is Regularization?

Regularization is a fundamental technique in optimization

OPTIMIZATION PROBLEM

WELL-BEHAVED OPTIMIZATION PROBLEM

- Stable optimum
- Unique optimal solution
- Smoothness conditions

• • •

What is Regularization?

Regularization is a fundamental technique in optimization

Benefits of Regularization in Learning and Statistics:

- Increases stability
- Decreases sensitivity to random noise
- Prevents overfitting

Instability of Eigenvector

Instability of Eigenvector

Instability of Eigenvector

Eigenvector Changes Completely!

The Laplacian Eigenvalue Problem

Quadratic Formulation

$$\frac{1}{d} \min x^T L x$$
s.t. $||x||_2 = 1$

$$x^T 1 = 0$$

For simplicity, take G to be d-regular.

The Laplacian Eigenvalue Problem

SDP Formulation

 $X \succ 0$

Quadratic Formulation

$$\frac{1}{d} \min x^T L x \longleftrightarrow \frac{1}{d} \min L \bullet X$$
s.t. $||x||_2 = 1$ s.t. $I \bullet X = 1$

$$x^T 1 = 0$$
 $11^T \bullet X = 0$

The Laplacian Eigenvalue Problem

Quadratic Formulation

SDP Formulation

$$\frac{1}{d} \min x^T L x \longleftrightarrow \frac{1}{d} \min L \bullet X$$
s.t. $||x||_2 = 1$ s.t. $I \bullet X = 1$

$$x^T 1 = 0 \qquad 11^T \bullet X = 0$$

$$X \succeq 0$$

Programs have same optimum. Take optimal solution

$$X^* = x^*(x^*)^T$$

Instability of Linear Optimization

Consider a convex set $S \subset \mathbb{R}^n$ and a linear optimization problem:

$$f(c) = \arg\min_{x \in S} c^T x$$

The optimal solution f(c) may be very unstable under perturbation of c:

$$||c'-c|| \le \delta$$
 and $||f(c')-f(c)|| >> \delta$

Regularization Helps Stability

Consider a convex $sS \subset R^n$ and a **regularized** linear optimization problem $f(c) = \arg\min_{x \in S} c^T x + F(x)$

where F is σ -strongly convex.

Regularization Helps Stability

Consider a convex $S \subset R^n$ and a **regularized** linear optimization problem $f(c) = \arg\min_{x \in S} c^T x + F(x)$

where F is σ -strongly convex.

Regularized Spectral Optimization

SDP Formulation

$$\frac{1}{d} \min \quad L \bullet X$$
 s.t.
$$I \bullet X = 1$$

$$11^T \bullet X = 0$$
 Density Matrix
$$X \succeq 0$$

Eigenvector decomposition of X:

$$X = \sum p_i v_i v_i^T$$
 $\forall i, p_i \geq 0,$ $\sum p_i = 1,$ $\forall i, v_i^T 1 = 0.$

Eigenvalues of X define probability distribution

Regularized Spectral Optimization

SDP Formulation

$$\frac{1}{d} \min L \bullet X$$

s.t.
$$I \bullet X = 1$$
 $J \bullet X = 0$

$$X \succeq 0_{-}$$

Density Matrix

Eigenvalues of X define probability distribution

$$X^* = x^*(x^*)^T$$

TRIVIAL DISTRIBUTION

Regularized Spectral Optimization

$$\frac{1}{d} \min \quad L \bullet X + \eta \cdot F(X) \quad \text{Regularizer } F$$
 s.t.
$$I \bullet X = 1$$

$$11^T \bullet X = 0$$

$$X \succeq 0$$

The regularizer F forces the distribution of eigenvalues of X to be non-trivial

$$X^* = x^*(x^*)^T$$
REGULARIZATION \downarrow
 $X^* = \sum p_i v_i v_i^T$

Regularizers

Regularizers are **SDP-versions** of common regularizers

von Neumann Entropy

$$F_H(X) = \text{Tr}(X \log X) = \sum p_i \log p_i$$

• p-Norm, p > 1

$$F_p(X) = \frac{1}{p}||X||_p^p = \frac{1}{p}\text{Tr}(X^p) = \frac{1}{p}\sum p_i^p$$

• And more, e.g. log-determinant.

Our Main Result

Regularized SDP

$$\frac{1}{d} \min L \bullet X + \eta \cdot F(X)$$
s.t.
$$I \bullet X = 1$$

$$J \bullet X = 0$$

$$X \succeq 0$$

RESULT:

Explicit correspondence between **regularizers and random walks**

REGULARIZER

OPTIMAL SOLUTION OF REGULARIZED PROGRAM

$$F=F_H$$
 Entropy $X^\star\propto H_G^t$ where t depends on η

Our Main Result

$$rac{1}{d} \min \ L ullet X + \eta \cdot F(X)$$
s.t. $I ullet X = 1$
 $J ullet X = 0$
 $X \succeq 0$

RESULT:

Explicit correspondence between <u>regularizers and random walks</u>

REGULARIZER

OPTIMAL SOLUTION OF REGULARIZED PROGRAM

$$F=F_H$$
 Entropy $X^\star\propto H_G^t$ where t depends on η

HEAT-KERNEL

$$F=F_{p}$$
 $\xrightarrow{p ext{-Norm}}$ $X^{\star}\propto (qI+(1-q)W)^{\frac{1}{p-1}}$ LAZY RANDOM WALK where q depends on η

Background: Heat-Kernel Random Walk

For simplicity, take G to be **d-regular**.

- ullet The Heat-Kernel Random Walk is a Continuous-Time Markov Chain over V, modeling the diffusion of heat along the edges of G.
- Transitions take place in continuous time t, with an exponential distribution. $\frac{\partial p(t)}{\partial t} = -L\frac{p(t)}{d}$

$$p(t) = e^{-\frac{t}{d}L}p(0)$$

• The Heat Kernel can be interpreted as Poisson distribution over number of steps of the natural random walk $W=AD^{-1}$:

$$e^{-\frac{t}{d}L} = e^{-t} \sum_{k=1}^{\infty} \frac{t^k}{k!} W^k$$

Background: Heat-Kernel Random Walk

For simplicity, take G to be **d-regular**.

- ullet The Heat-Kernel Random Walk is a Continuous-Time Markov Chain over V, modeling the diffusion of heat along the edges of G.
- Transitions take place in continuous time t, with an exponential distribution. $\frac{\partial p(t)}{\partial t} = -L \frac{p(t)}{d}$

$$p(t) = e^{-\frac{t}{d}L}p(0) =: H_G^t \quad p(0)$$

• The Heat Kernel can be interpreted as Poisson distribution over number of steps of the natural random walk $W=AD^{-1}$:

$$e^{-\frac{t}{d}L} = e^{-t} \sum_{k=1}^{\infty} \frac{t^k}{k!} W^k$$

Heat Kernel Walk: Stability Analysis

Consider a convex $S \subset R^n$ and a **regularized** linear optimization problem $f(c) = \arg\min_{x \in S} c^T x + F(x)$

where F is σ -strongly convex.

Then:
$$\|c'-c\| \leq \delta$$
 implies $\|f(c)-f(c')\| \leq \frac{\delta}{\sigma}$

Heat Kernel Walk: Stability Analysis

Consider a convex set $S \subset R^n$ and a **regularized** linear optimization problem $f(c) = \arg\min_{x \in S} c^T x + F(x)$

where F is σ -strongly convex.

Then:
$$\|c'-c\| \leq \delta$$
 implies $\|f(c)-f(c')\| \leq \frac{\delta}{\sigma}$

Analogous statement for Heat Kernel:

$$\|G' - G\|_{\infty} \le \delta \quad \text{implies} \quad \left\| \frac{H_{G'}^{\tau}}{I \bullet H_{G'}^{\tau}} - \frac{H_{G}^{\tau}}{I \bullet H_{G}^{\tau}} \right\|_{1} \le \tau \cdot \delta$$

Applications to Graph Partitioning: Nearly-Linear-Time Balanced Cut

Partitioning Graphs - Conductance

Undirected unweighted G = (V, E), |V| = n, |E| = m

Conductance of $S \subseteq V$

$$\phi(S) = \frac{|E(S,\bar{S})|}{\min\{\text{Vol}(S),\text{Vol}(\bar{S})\}}$$

Partitioning Graphs – Balanced Cut

NP-HARD DECISION PROBLEM

$$\phi(S) < \gamma$$

$$\frac{1}{2} > \frac{\text{vol}(S)}{\text{vol}(V)} > b$$

Partitioning Graphs – Balanced Cut

NP-HARD DECISION PROBLEM

- Important primitive for many recursive algorithms.
- Applications to clustering and graph decomposition.

Spectral Approximation Algorithms

Algorithm	Method	Distinguishes $\geq \; \gamma \;$ and	Running Time
Recursive Eigenvector	Spectral	$O(\sqrt{\gamma})$	$ ilde{O}(mn)$
[Spielman, Teng '04]	Local Random Walks	$O\left(\sqrt{\gamma \log^3 n}\right)$	$\tilde{O}\left(\frac{m}{\gamma^2}\right)$
[Andersen, Chung, Lang '07]	Local Random Walks	$O\left(\sqrt{\gamma \log n}\right)$	$\tilde{O}\left(\frac{m}{\gamma}\right)$
[Andersen, Peres '09]	Local Random Walks	$O\left(\sqrt{\gamma \log n}\right)$	$\tilde{O}\left(\frac{m}{\sqrt{\gamma}}\right)$

Spectral Approximation Algorithms

Algorithm	Method	Distinguishes $\geq \; \gamma \;$ and	Running Time
Recursive Eigenvector	Spectral	$O(\sqrt{\gamma})$	$ ilde{O}(mn)$
[Spielman, Teng '04]	Local Random Walks	$O\left(\sqrt{\gamma \log^3 n}\right)$	$\tilde{O}\left(\frac{m}{\gamma^2}\right)$
[Andersen, Chung, Lang '07]	Local Random Walks	$O\left(\sqrt{\gamma \log n}\right)$	$\tilde{O}\left(\frac{m}{\gamma}\right)$
[Andersen, Peres '09]	Local Random Walks	$O\left(\sqrt{\gamma \log n}\right)$	$\tilde{O}\left(\frac{m}{\sqrt{\gamma}}\right)$
[Orecchia, Sachdeva, Vishnoi '12]	Random Walks	$O(\sqrt{\gamma})$	$ ilde{O}\left(m ight)$

INPUT: (G, b, γ) **DECISION**: does there exists b-balanced S with $\phi(S) < \gamma$?

 \bullet Compute eigenvector of G and corresponding Laplacian eigenvalue $\lambda_{\scriptscriptstyle 2}$

- Compute eigenvector of G and corresponding Laplacian eigenvalue λ_2
- If $\lambda_2 \geq \gamma$, output **NO**. Otherwise, sweep eigenvector to find S_1 such that

$$\phi(S_1) \le O(\sqrt{\gamma})$$

INPUT: (G, b, γ) **DECISION**: does there exists b-balanced S with $\phi(S) < \gamma$?

- Compute eigenvector of G and corresponding Laplacian eigenvalue λ_2
- If $\lambda_2 \geq \gamma$, output NO. Otherwise, sweep eigenvector to find S_1 such that

$$\phi(S_1) \le O(\sqrt{\gamma})$$

• If S_1 is (b/2)-balanced. Output S_1 . Otherwise, consider the graph G_1 induced by G on V- S_1 with self-loops replacing the edges going to S_1 .

- ullet Compute eigenvector of G and corresponding Laplacian eigenvalue $\lambda_{\scriptscriptstyle 2}$
- If $\lambda_2 \geq \gamma$, output **NO**. Otherwise, sweep eigenvector to find S_1 such that

$$\phi(S_1) \le O(\sqrt{\gamma})$$

- If S_1 is (b/2)-balanced. Output S_1 . Otherwise, consider the graph G_1 induced by G on V- S_1 with self-loops replacing the edges going to S_1 .
- Recurse on G_1 .

- Compute eigenvector of G and corresponding Laplacian eigenvalue λ_2
- If $\lambda_2 \geq \gamma$, output **NO**. Otherwise, sweep eigenvector to find S_1 such that

$$\phi(S_1) \le O(\sqrt{\gamma})$$

- If S_1 is (b/2)-balanced. Output S_1 . Otherwise, consider the graph G_1 induced by G on V- S_1 with self-loops replacing the edges going to S_1 .
- Recurse on G_1 .

- ullet Compute eigenvector of G and corresponding Laplacian eigenvalue $\lambda_{\scriptscriptstyle 2}$
- If $\lambda_2 \geq \gamma$, output **NO**. Otherwise, sweep eigenvector to find S_1 such that

$$\phi(S_1) \le O(\sqrt{\gamma})$$

- If S_1 is (b/2)-balanced. Output S_1 . Otherwise, consider the graph G_1 induced by G on V- S_1 with self-loops replacing the edges going to S_1 .
- Recurse on G_1 .

INPUT: (G, b, γ) **DECISION**: does there exists b-balanced S with $\phi(S) < \gamma$?

- ullet Compute eigenvector of G and corresponding Laplacian eigenvalue $\lambda_{\scriptscriptstyle 2}$
- If $\lambda_2 \geq \gamma$, output **NO**. Otherwise, sweep eigenvector to find S_1 such that

$$\phi(S_1) \le O(\sqrt{\gamma})$$

- If S_1 is (b/2)-balanced. Output S_1 . Otherwise, consider the graph G_1 induced by G on V- S_1 with self-loops replacing the edges going to S_1 .
- Recurse on G_1 .

LARGE INDUCED EXPANDER = **NO-CERTIFICATE**

INPUT: (G, b, γ) **DECISION**: does there exists b-balanced S with $\phi(S) < \gamma$?

- Compute eigenvector of G and corresponding Laplacian eigenvalue λ_2
- If $\lambda_2 \geq \gamma$, output **NO**. Otherwise, sweep eigenvector to find S_1 such that

$$\phi(S_1) \le O(\sqrt{\gamma})$$

- If S_1 is (b/2)-balanced. Output S_1 . Otherwise, consider the graph G_1 induced by G on V- S_1 with self-loops replacing the edges going to S_1 .
- Recurse on G_1 .

RUNNING TIME: $\tilde{O}(m)$ per iteration, O(n) iterations. Total: $\tilde{O}(mn)$

 $\Omega(n)$ nearly-disconnected components

NB: Recursive Eigenvector eliminates one component per iteration.

 $\Omega(n)$ iterations are necessary. Each iteration requires $\Omega(m)$ time.

NB: Recursive Eigenvector eliminates one component per iteration.

 $\Omega(n)$ iterations are necessary. Each iteration requires $\Omega(mn)$ time.

GOAL: Eliminate unbalanced low-conductance cuts faster.

STABILITY VIEW:

- Ideally, we would like to enforce progress: $\lambda_2(G_{t+1}) >> \lambda_2(G_t)$
- Eigenvector may change completely at every iteration. Impossible to enforce any non-trivial relation between $\lambda_2(G_{t+1})$ and $\lambda_2(G_t)$

Our Algorithm: Contributions

Algorithm	Method	Distinguishes $\geq \gamma$ and	Time
Recursive Eigenvector	Eigenvector	$O(\sqrt{\gamma})$	$ ilde{O}(mn)$
OUR ALGORITHM	Random Walks	$O(\sqrt{\gamma})$	$\tilde{O}\left(m ight)$

MAIN FEATURES:

- Compute $O(\log n)$ global heat-kernel random-walk vectors at each iteration
- Unbalanced cuts are removed in $O(\log n)$ iterations
- Method to compute heat-kernel vectors in nearly-linear time

TECHNICAL COMPONENTS:

- 1) New iterative algorithm with a simple random walk interpretation
- 2) Novel analysis of Lanczos methods for computing heat-kernel vectors

• The graph eigenvector may be correlated with only one sparse unbalanced cut.

• The graph eigenvector may be correlated with only one sparse unbalanced cut.

• Consider the Heat-Kernel random walk-matrix H_G^{τ} for $\tau = \log n/\gamma$.

 $H_G^{ au}e_i$ Probability vector for random walk started at vertex i

Long vectors are slow-mixing random walks

• The graph eigenvector may be correlated with only one sparse unbalanced cut.

• Consider the Heat-Kernel random walk-matrix $H_G^{ au}$ for au = $\log n/\gamma$.

Unbalanced cuts of conductance $<\sqrt{\gamma}$

• The graph eigenvector may be correlated with only one sparse unbalanced cut.

SINGLE VECTOR SINGLE CUT

• Consider the Heat-Kernel random walk-matrix $H_G^{ au}$ for au = $\log n/\gamma$.

VECTOR
EMBEDDING
MULTIPLE CUTS

Unbalanced cuts of conductance $<\sqrt{\gamma}$

• The graph eigenvector may be correlated with only one sparse unbalanced cut.

SINGLE VECTOR
SINGLE CUT

AFTER CUT REMOVAL ...

... eigenvector can change completely

• Consider the Heat-Kernel random walk-matrix $H_G^{ au}$ for au = $\log n/\gamma$.

VECTOR
EMBEDDING
MULTIPLE CUTS

... vectors do not change a lot

Our Algorithm for Balanced Cut

IDEA BEHIND OUR ALGORITHM:

Replace eigenvector in recursive eigenvector algorithm with

Heat-Kernel random walk $H_G^{ au}$ for $\ au = \log n/\gamma$

Consider the embedding $\{v_i\}$ given by $H_G^ au$:

Our Algorithm for Balanced Cut

IDEA BEHIND OUR ALGORITHM:

Replace eigenvector in recursive eigenvector algorithm with

Heat-Kernel random walk $H_G^{ au}$ for $\ au = \log n/\gamma$

Chosen to emphasize cuts of conductance $\approx \gamma$

Consider the embedding $\{v_i\}$ given by $H_G^ au$:

Stationary distribution is uniform as G is regular

Our Algorithm for Balanced Cut

IDEA BEHIND OUR ALGORITHM:

Replace eigenvector in recursive eigenvector algorithm with

Heat-Kernel random walk $H_G^{ au}$ for $\ au = \log n/\gamma$

Chosen to emphasize cuts of conductance $\approx \gamma$

Consider the embedding $\{v_i\}$ given by $H_G^ au$:

Stationary distribution is uniform as G is regular

MIXING:

Define the total deviation from stationary for a set $S \subseteq V$ for walk

$$\Psi(H_G^{\tau}, S) = \sum_{i \in S} ||v_i - \vec{1}/n||^2$$

FUNDAMENTAL QUANTITY TO UNDERSTAND CUTS IN G

Our Algorithm: Case Analysis

Recall:

$$au = \log n/\gamma$$

$$\tau = \log n/\gamma$$
 $\Psi(H_G^{\tau}, S) = \sum_{i \in S} ||H_G^{\tau} e_i - \vec{1}/n||^2$

CASE 1: Random walks have **mixed**

ALL VECTORS ARE SHORT

$$\Psi(H_G^{\tau}, V) \le \frac{1}{\text{poly}(n)}$$

Our Algorithm: Case Analysis

Recall:

$$au = \log n/\gamma$$

$$\tau = \log n/\gamma$$
 $\Psi(H_G^{\tau}, S) = \sum_{i \in S} ||H_G^{\tau} e_i - \vec{1}/n||^2$

CASE 1: Random walks have **mixed**

ALL VECTORS ARE SHORT

Our Algorithm

$$\tau = \log n/\gamma$$

$$\Psi(H_G^{\tau}, S) = \sum_{i \in S} ||H_G^{\tau} e_i - \vec{1}/n||^2$$

CASE 2: Random walks have **not mixed**

$$\Psi(H_G^{\tau}, V) > \frac{1}{\text{poly}(n)}$$

We can either find an $\Omega(b)$ -balanced cut with conductance $O(\sqrt{\gamma})$

Our Algorithm

$$\tau = \log n/\gamma$$

$$\Psi(H_G^{\tau}, S) = \sum_{i \in S} ||H_G^{\tau} e_i - \vec{1}/n||^2$$

RANDOM PROJECTION + SWEEP CUT

CASE 2: Random walks have **not mixed**

$$\Psi(H_G^{\tau}, V) > \frac{1}{\text{poly}(n)}$$

We can either find an $\Omega(b)$ -balanced cut with conductance $O(\sqrt{\gamma})$

Our Algorithm

$$\tau = \log n/\gamma$$

$$\Psi(H_G^{\tau}, S) = \sum_{i \in S} ||H_G^{\tau} e_i - \vec{1}/n||^2$$

BALL ROUNDING

CASE 2: Random walks have **not mixed**

$$\Psi(H_G^{\tau}, V) > \frac{1}{\text{poly}(n)}$$

We can either find an $\Omega(b)$ -balanced cut with conductance $O(\sqrt{\gamma})$

OR a ball cut yields S_1 such that $\phi(S_1) \leq O(\sqrt{\gamma})$ and

$$\Psi(H_G^{\tau}, S_1) \ge \frac{1}{2} \Psi(H_G^{\tau}, V).$$

Our Algorithm: Iteration

$$\tau = \log n/\gamma$$

<u>CASE 2</u>: We found an unbalanced cut S_1 with $\phi(S_1) \leq O(\sqrt{\gamma})$ and

$$\Psi(H_G^{\tau}, S_1) \ge \frac{1}{2} \Psi(H_G^{\tau}, V).$$

Modify $G = G^{(1)}$ by **adding edges** across $(S_1, \bar{S_1})$ to construct $G^{(2)}$.

Analogous to removing unbalanced cut S_1 in Recursive Eigenvector algorithm

Our Algorithm: Modifying G

<u>CASE 2</u>: We found an unbalanced cut S_1 with $\phi(S_1) \leq O(\sqrt{\gamma})$ and

$$\Psi(H_G^{\tau}, S_1) \ge \frac{1}{2} \Psi(H_G^{\tau}, V).$$

Modify $G = G^{(1)}$ by **adding edges** across (S_1, \bar{S}_1) to construct $G^{(2)}$.

Our Algorithm: Modifying G

<u>CASE 2</u>: We found an unbalanced cut S_1 with $\phi(S_1) \leq O(\sqrt{\gamma})$ and

$$\Psi(H_G^{\tau}, S_1) \ge \frac{1}{2} \Psi(H_G^{\tau}, V).$$

Modify $G = G^{(1)}$ by **adding edges** across (S_1, \bar{S}_1) to construct $G^{(2)}$.

$$G^{(t+1)} = G^{(t)} + \gamma \sum_{i \in S_t} \operatorname{Star}_i$$

where $Star_i$ is the star graph rooted at vertex i.

Our Algorithm: Modifying G

<u>CASE 2</u>: We found an unbalanced cut S_1 with $\phi(S_1) \leq O(\sqrt{\gamma})$ and

$$\Psi(H_G^{\tau}, S_1) \ge \frac{1}{2} \Psi(H_G^{\tau}, V).$$

Modify $G = G^{(1)}$ by **adding edges** across $(S_1, \bar{S_1})$ to construct $G^{(2)}$.

$$G^{(t+1)} = G^{(t)} + \gamma \sum_{i \in S_t} \operatorname{Star}_i$$

where $Star_i$ is the star graph rooted at vertex i.

The random walk can now escape S_1 more easily.

Our Algorithm: Iteration

$$\tau = \log n/\gamma$$

$$\Psi(H_G^{\tau}, S) = \sum_{i \in S} ||H_G^{\tau} e_i - \vec{1}/n||^2$$
 S_1

<u>CASE 2</u>: We found an unbalanced cut S_1 with $\phi(S_1) \leq O(\sqrt{\gamma})$ and

$$\Psi(H_G^{\tau}, S_1) \ge \frac{1}{2} \Psi(H_G^{\tau}, V).$$

Modify $G = G^{(1)}$ by **adding edges** across (S_1, \bar{S}_1) to construct $G^{(2)}$.

POTENTIAL REDUCTION:

$$\Psi(H_{G^{(t+1)}}^{\tau}, V) \le \Psi(H_{G^{(t)}}^{\tau}, V) - \frac{1}{2}\Psi(H_{G^{(t)}}^{\tau}, S_t) \le \frac{3}{4}\Psi(H_{G^{(t)}}^{\tau}, V)$$

Our Algorithm: Iteration

$$\tau = \log n/\gamma$$

$$\Psi(H_G^{\tau}, S) = \sum_{i \in S} ||H_G^{\tau} e_i - \vec{1}/n||^2$$

<u>CASE 2</u>: We found an unbalanced cut S_1 with $\phi(S_1) \leq O(\sqrt{\gamma})$ and

$$\Psi(H_G^{\tau}, S_1) \ge \frac{1}{2} \Psi(H_G^{\tau}, V).$$

Modify $G = G^{(1)}$ by adding edges across (S_1, \bar{S}_1) to construct $G^{(2)}$.

POTENTIAL REDUCTION:

$$\Psi(H_{G^{(t+1)}}^{\tau}, V) \le \Psi(H_{G^{(t)}}^{\tau}, V) - \frac{1}{2}\Psi(H_{G^{(t)}}^{\tau}, S_t) \le \frac{3}{4}\Psi(H_{G^{(t)}}^{\tau}, V)$$

CRUCIAL APPLICATION OF STABILITY OF RANDOM WALK

Summary and Potential Analysis

IN SUMMARY:

At every step t of the recursion, we either

1. Produce a $\Omega(b)$ -balanced cut of the required conductance, OR

Potential Reduction

IN SUMMARY:

At every step t of the recursion, we either

- 1. Produce a $\Omega(b)$ -balanced cut of the required conductance, OR
- 2. Find that

$$\Psi(H^{ au}_{G^{(t)}},V) \leq rac{1}{\mathrm{poly}(n)}$$
 , or

Potential Reduction

IN SUMMARY:

At every step t of the recursion, we either

- 1. Produce a $\Omega(b)$ -balanced cut of the required conductance, OR
- 2. Find that

$$\Psi(H^{ au}_{G^{(t)}},V) \leq rac{1}{\mathrm{poly}(n)}$$
 , or

3. Find an unbalanced cut S_t of the required conductance, such that for the graph $G^{(t+1)}$, modified to have increased edges from S_t ,

$$\Psi(H_{G^{(t+1)}}^{\tau}, V) \le \frac{3}{4} \Psi(H_{G^{(t)}}^{\tau}, V)$$

Potential Reduction

IN SUMMARY:

At every step t-1 of the recursion, we either

- 1. Produce a $\Omega(b)$ -balanced cut of the required conductance, OR
- 2. Find that

$$\Psi(H^{ au}_{G^{(t)}},V) \leq rac{1}{\mathrm{poly}(n)}$$
, OR

3. Find an unbalanced cut S_t of the required conductance, such that for the process $P^{(t+1)}$, modified to have increased transitions from S_t ,

$$\Psi(H_{G^{(t+1)}}^{\tau}, V) \le \frac{3}{4} \Psi(H_{G^{(t)}}^{\tau}, V)$$

After $T=O(\log n)$ iterations, if no balanced cut is found:

$$\Psi(H_{G^{(T)}}^{\tau}, V) \le \frac{1}{\text{poly}(n)}$$

From this guarantee, using the definition of $G^{(T)}$, we derive an SDP-certificate that no b-balanced cut of conductance $O(\gamma)$ exists in G.

NB: Only O(log n) iterations to remove unbalanced cuts.

Heat-Kernel and Certificates

• If no balanced cut of conductance is found, our potential analysis yields:

$$\Psi(H_{G^{(T)}}^{\tau}, V) \le \frac{1}{\text{poly}(n)} \longrightarrow L + \gamma \sum_{j=1}^{T-1} \sum_{i \in S_j} L(\text{Star}_i) \succeq \gamma L(K_V)$$

Modified graph has $\lambda_2 \geq \gamma$

<u>CLAIM</u>: This is a certificate that no balanced cut of conductance $< \gamma$ existed in G.

Heat-Kernel and Certificates

• If no balanced cut of conductance is found, our potential analysis yields:

$$\Psi(H_{G^{(T)}}^{\tau}, V) \le \frac{1}{\text{poly}(n)} \longrightarrow L + \gamma \sum_{j=1}^{T-1} \sum_{i \in S_j} L(\text{Star}_i) \succeq \gamma L(K_V)$$

Modified graph has $\lambda_2 \geq \gamma$

CLAIM: This is a certificate that no balanced cut of conductance $< \gamma$ existed in G.

Heat-Kernel and Certificates

• If no balanced cut of conductance is found, our potential analysis yields:

$$\Psi(H_{G^{(T)}}^{\tau}, V) \le \frac{1}{\text{poly}(n)} \longrightarrow L + \gamma \sum_{j=1}^{T-1} \sum_{i \in S_j} L(\text{Star}_i) \succeq \gamma L(K_V)$$

Modified graph has $\lambda_2 \geq \gamma$

CLAIM: This is a certificate that no balanced cut of conductance $< \gamma$ existed in G.

Comparison with Recursive Eigenvector

RECURSIVE EIGENVECTOR:

We can only bound number of iterations by volume of graph removed. $\Omega(n)$ iterations possible.

OUR ALGORITHM:

Use variance of random walk as potential. Only $O(\log n)$ iterations necessary.

$$\Psi(P, V) = \sum_{i \in V} ||Pe_i - \vec{1}/n||^2$$

STABLE SPECTRAL NOTION OF POTENTIAL

Running Time

- Our Algorithm runs in $O(\log n)$ iterations.
- In one iteration, we perform some simple computation (projection, sweep cut) on the vector embedding $H^{ au}_{G^{(t)}}$. This takes time $\tilde{O}(md)$, where d is the dimension of the embedding.
- Can use Johnson-Lindenstrauss to obtain $d = O(\log n)$.
- Hence, we only need to compute $O(\log^2 n)$ matrix-vector products

$$H_{G^{(t)}}^{ au}u$$

- We show how to perform one such product in time $\tilde{O}(m)$ for all au.
- OBSTACLE:

 τ , the mean number of steps in the Heat-Kernel random walk, is Ω (n^2) for path.

Conclusion

NOVEL ALGORITHMIC CONTRIBUTIONS

• Balanced-Cut Algorithm using Random Walks in time $\tilde{O}(m)$

MAIN IDEA

Random walks provide a very useful stable analogue of the graph eigenvector via regularization

OPEN QUESTION

More applications of this idea? Applications beyond design of fast algorithms?

A Different Interpretation

THEOREM:

Suppose eigenvector x yields an unbalanced cut S of low conductance and no balanced cut of the required conductance. S

Then,

$$\sum_{i \in S} d_i x_i^2 \ge \frac{1}{2} \sum_{i \in V} d_i x_i^2.$$

In words, S contains most of the variance of the eigenvector.

A Different Interpretation

THEOREM:

Suppose eigenvector x yields an unbalanced cut S of low conductance and no balanced cut of the required conductance.

$$\sum d_i x_i = 0$$

$$V-S$$

Then,

$$\sum_{i \in S} d_i x_i^2 \ge \frac{1}{2} \sum_{i \in V} d_i x_i^2.$$

In words, S contains most of the variance of the eigenvector.

QUESTION: Does this mean the graph induced by G on V- S is much closer to have conductance at least γ ?

A Different Interpretation

THEOREM:

Suppose eigenvector x yields an unbalanced cut S of low conductance and no balanced cut of the required conductance.

$$\sum d_i x_i = 0$$

$$V-S$$

Then,

$$\sum_{i \in S} d_i x_i^2 \ge \frac{1}{2} \sum_{i \in V} d_i x_i^2.$$

QUESTION: Does this mean the graph induced by G on V- S is much closer to have conductance at least γ ?

ANSWER: NO. x may contain little or no information about G on V- S. Next eigenvector may be only infinitesimally larger.

CONCLUSION: To make significant progress, we need an analogue of the eigenvector that captures sparse

THEOREM 1: (WALKS HAVE NOT MIXED)

THEOREM 1: (WALKS HAVE NOT MIXED)

Proof: Recall that

$$P^{(t)} = e^{-\tau Q^{(t)}}$$
 $\tau = \log n/\gamma$ $\Psi(P, V) = \sum_{i \in V} ||Pe_i - \vec{1}/n||^2$

Use the definition of τ . The spectrum of $P^{(t)}$ implies that

$$\sum_{ij \in E} ||P^{(t)}e_i - P^{(t)}e_j||^2 \cdot O(\gamma) \cdot \Psi(P^{(t)}, V)$$
EDGE LENGTH
TOTAL VARIANCE

THEOREM 1: (WALKS HAVE NOT MIXED)

Proof: Recall that

$$P^{(t)} = e^{-\tau Q^{(t)}}$$
 $\tau = \log n/\gamma$ $\Psi(P, V) = \sum_{i \in V} ||Pe_i - \vec{1}/n||^2$

Use the definition of τ . The spectrum of $P^{(t)}$ implies that

$$\sum_{ij \in E} ||P^{(t)}e_i - P^{(t)}e_j||^2 \cdot O(\gamma) \cdot \Psi(P^{(t)}, V)$$
EDGE LENGTH
TOTAL VARIANCE

Hence, by a random projection of the embedding $\{P \ e_i\}$, followed by a sweep cut, we can recover the required cut.

SDP ROUNDING TECHNIQUE

THEOREM 2: (WALKS HAVE MIXED)

$$\Psi(P^{(t)}, V) \cdot \frac{1}{\text{poly}(n)}$$
 No $\Omega(b)$ -balanced cut of conductance $O(\gamma)$

THEOREM 2: (WALKS HAVE MIXED)

$$\Psi(P^{(t)}, V) \cdot \frac{1}{\text{poly}(n)}$$
 No $\Omega(b)$ -balanced cut of conductance $O(\gamma)$

Proof: Consider $S = \bigcup S_i$. Notice that S is unbalanced.

Assumption is equivalent to

$$L(K_V) \bullet e^{-\tau L - O(\log n) \sum_{i \in S} L(S_i)} \cdot \frac{1}{\text{poly}(n)}.$$

THEOREM 2: (WALKS HAVE MIXED)

$$\Psi(P^{(t)}, V) \cdot \xrightarrow{\frac{1}{\text{poly}(n)}} \longrightarrow \text{No } \Omega(t)$$

No $\Omega(b)$ -balanced cut of conductance $O(\gamma)$

Proof: Consider $S = \bigcup S_i$. Notice that S is unbalanced.

Assumption is equivalent to

$$L(K_V) \bullet e^{-\tau L - O(\log n) \sum_{i \in S} L(S_i)} \cdot \frac{1}{\text{poly}(n)}.$$

By taking logs,

$$L + O(\gamma) \sum_{i \in S} L(S_i) \succeq \Omega(\gamma) L(K_V)$$
. SDP DUAL CERTIFICATE

THEOREM 2: (WALKS HAVE MIXED)

$$\Psi(P^{(t)}, V) \cdot \frac{1}{\text{poly}(n)}$$
 No $\Omega(b)$ -balanced cut of conductance $O(\gamma)$

Proof: Consider $S = \bigcup S_i$. Notice that S is unbalanced.

Assumption is equivalent to

$$L(K_V) \bullet e^{-\tau L - O(\log n) \sum_{i \in S} L(S_i)} \cdot \frac{1}{\text{poly}(n)}.$$

By taking logs,

$$L + O(\gamma) \sum_{i \in S} L(S_i) \succeq \Omega(\gamma) L(K_V)$$
. SDP DUAL

This is a certificate that no $\Omega(1)$ -balanced cut of conductance $O(\gamma)$ exists, as evaluating the quadratic form for a vector representing a balanced cut U yields

$$\phi(U) \ge \Omega(\gamma) - \frac{\operatorname{vol}(S)}{\operatorname{vol}(U)} O(\gamma) \ge \Omega(\gamma)$$

as long as S is sufficiently unbalanced.

SDP Interpretation

$$\mathsf{E}_{\,\{i,j\}\in E_G} \quad ||v_i-v_j||^2 \cdot \;\; \gamma,$$

$$\begin{aligned} & \mathsf{E}_{\,\{i,j\}\in E_G} & \ ||v_i-v_j||^2\cdot \ \gamma, & \ \mathsf{SHORT\,EDGES} \\ & \mathsf{E}_{\,\{i,j\}\in V\times V} & \ ||v_i-v_j||^2 = \frac{1}{2m}, & \ \mathsf{FIXED\,VARIANCE} \end{aligned}$$

$$\forall i \in V$$

$$\mathsf{E}_{j \in V}$$

$$\forall i \in V$$
 $\mathsf{E}_{j \in V}$ $||v_i - v_j||^2 \cdot \frac{1}{b} \cdot \frac{1}{2m}.$

LENGTH OF **EDGES**

SDP Interpretation

$$\mathsf{E}_{\{i,j\}\in E_G} \quad ||v_i-v_j||^2 \cdot \quad \gamma,$$

$$\mathsf{E}_{\,\{i,j\}\in V imes V} \quad ||v_i-v_j||^2 = rac{1}{2m}, \qquad ext{fixed variance}$$

$$\forall i \in V$$

$$\mathsf{E}_{j\in V}$$

$$\forall i \in V \qquad \mathsf{E}_{j \in V} \qquad ||v_i - v_j||^2 \cdot \frac{1}{b} \cdot \frac{1}{2m}.$$

SHORT EDGES

Background: Heat-Kernel Random Walk

For simplicity, take G to be **d-regular**.

- ullet The Heat-Kernel Random Walk is a Continuous-Time Markov Chain over V, modeling the diffusion of heat along the edges of G.
- Transitions take place in continuous time t, with an exponential distribution. $\frac{\partial p(t)}{\partial t} = -L \frac{p(t)}{d}$

$$p(t) = e^{-\frac{t}{d}L}p(0) =: H_G^t \stackrel{\text{Notatio}}{=} p(0)$$

• The Heat Kernel can be interpreted as Poisson distribution over number of steps of the natural random walk $W-\Delta D^{-1}$.

$$\int e^{-\frac{t}{d}L} = e^{-t} \sum_{k=1}^{\infty} \frac{t^k}{k!} W^k$$

ullet In practice, can replace Heat-Kernel with natural random walk W^{-t}