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Random Walks as a Stable Analogue of Eigenvectors

(with Applications to Nearly-Linear-Time Graph Partitioning)

Lorenzo Orecchia, MIT Math

Based on joint works with Michael Mahoney (Stanford), Sushant Sachdeva (Yale) and
Nisheeth Vishnoi (MSR India).
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Why Spectral Algorithms for Graph Problems ...

... In practice?
 Simple to implement
* Can exploit very efficient linear algebra routines
* Perform well in practice for many problems

... in theory?

* Connections between spectral and combinatorial objects
* Connections to Markov Chains and Probability Theory

* Intuitive geometric viewpoint

RECENT ADVANCES:
Fast algorithms for fundamental combinatorial problems
rely on spectral and optimization ideas




Spectral Algorithms for Graph Partitioning

Spectral algorithms are widely used in many graph-partitioning applications:
clustering, image segmentation, community-detection, etc.

CLASSICAL VIEW:
- Based on Cheeger’s Inequality

- Eigenvectors sweep-cuts reveal sparse cuts in the graph




Spectral Algorithms for Graph Partitioning

Spectral algorithms are widely used in many graph-partitioning applications:
clustering, image segmentation, community-detection, etc.

CLASSICAL VIEW:
- Based on Cheeger’s Inequality

- Eigenvectors sweep-cuts reveal sparse cuts in the graph

NEW TREND:
- Random walk vectors replace eigenvectors:
* Fast Algorithms for Graph Partitioning
* Local Graph Partitioning
* Real Network Analysis

- Different random walks: PageRank, Heat-Kernel, etc.




Why Random Walks? A Practitioner’s View

Advantages of Random Walks:

1) Quick approximation to eigenvector in massive graphs

A = adjacency matrix D = diagonal degree matrix

W= AD* = natural random walk matrix L = D - A = Laplacian matrix

Second Eigenvector of the Laplacian can be computed by iterating W :

For random y, s.t. y{' D711 =0, compute

D_1Wtyo
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Advantages of Random Walks:

1) Quick approximation to eigenvector in massive graphs

A = adjacency matrix D = diagonal degree matrix

W= AD* = natural random walk matrix L = D - A = Laplacian matrix

Second Eigenvector of the Laplacian can be computed by iterating W :

For random y, s.t.yl' D~11 =0, compute
— 111/t
D—W Yo

D_1Wty0
Wiyol|lp—1

In the limit, L2 (L) = limy_, o I
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Why Random Walks? A Practitioner’s View

Advantages of Random Walks:

1) Quick approximation to eigenvector in massive graphs

A = adjacency matrix D = diagonal degree matrix

W= AD* = natural random walk matrix L = D - A = Laplacian matrix

Second Eigenvector of the Laplacian can be computed by iterating W :

For random y, s.t.yl' D~11 =0, compute

D_thyo
—1 t

Heuristic: For massive graphs, pick t as large as computationally affordable.
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Why Random Walks? A Practitioner’s View

Advantages of Random Walks:
1) Quick approximation to eigenvector in massive graphs

2) Statistical robustness

Real-world graphs are noisy

GROUND TRUTH
GRAPH

~
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Why Random Walks? A Practitioner’s View

Advantages of Random Walks:
1) Quick approximation to eigenvector in massive graphs

2) Statistical robustness

Real-world graphs are noisy

—

NOISY
MEASUREMENT

GROUND-TRUTH INPUT GRAPH

GRAPH GOAL: estimate eigenvector of ground-

truth graph.




Why Random Walks? A Practitioner’s View

Advantages of Random Walks:
1) Quick approximation to eigenvector in massive graphs

2) Statistical robustness

—

NOISY
MEASUREMENT

GROUND-TRUTH INPUT GRAPH

GRAPH
GOAL: estimate eigenvector of ground-truth graph.

OBSERVATION: eigenvector of input graph can have very large variance,
as it can be very sensitive to noise

RANDOM-WALK VECTORS provide better, more stable estimates.
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This Talk

QUESTION:

Why random-walk vectors in the design of fast algorithms?
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ANSWER: Stable, regularized version of the eigenvector




This Talk

QUESTION:

Why random-walk vectors in the design of fast algorithms?

ANSWER: Stable, regularized version of the eigenvector

GOALS OF THIS TALK:

- Show optimization perspective on why random walks arise

- Application to nearly-linear-time balanced graph partitioning




Random Walks

as Regularized Eigenvectors




What is Regularization?

Regularization is a fundamental technique in optimization

OPTIMIZATION
PROBLEM

WELL-BEHAVED
OPTIMIZATION
PROBLEM

« Stable optimum
* Unique optimal solution

* Smoothness conditions




What is Regularization?

Regularization is a fundamental technique in optimization

OPTIMIZATION , | WELL-BEHAVED
PROBLEM OPTIMIZATION
PROBLEM
mingep L(z) min, e L(z) + A - F(z)
Parameter A > 0 Regularizer F

Benefits of Regularization in Learning and Statistics:
* Increases stability
* Decreases sensitivity to random noise

* Prevents overfitting
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Instability of Eigenvector

C) O

EXPANDER




Current

eigenvector

Instability of Eigenvector

EXPANDER




Instability of Eigenvector

Small perturbation

Current
eigenvector

EXPANDER

Eigenvector Changes Completely!
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The Laplacian Eigenvalue Problem

Quadratic Formulation

| B
~— min 2! Lz

d

s.t. ||z||o = 1
i1l =0

For simplicity, take G to be d-regular.




The Laplacian Eigenvalue Problem

Quadratic Formulation

1

SDP Formulation

1

p min z! Lz —s ¥ min LelX
s.t. ||xl|ls = 1 S.t. e X =1
'l =0 117Te X =0

X =0




The Laplacian Eigenvalue Problem

Quadratic Formulation SDP Formulation

1 1
p min z! Lz —s ¥ min LelX
s.t. ||xl|ls = 1 S.t. e X =1
'l =0 117Te X =0

X =0

Programs have same optimum. Take optimal solution

X* = p* (CC*)T




Instability of Linear Optimization

Consider a convex set S C R™ and a linear optimization problem:

f(c) = argmingeg ¢’z

The optimal solution f(c) may be very unstable under perturbation of c:

I —c]| <6 ana  [f() = fle)l >>6




Regularization Helps Stability

Consider a convex <5 C R™  and aregularized linear optimization

bl
provem f(c) = argmingeg ¢’ z+F(x)

where F'is o-strongly convex.

Then: HC, — CH < 0  implies Hf(C) — f(C/)H <




Regularization Helps Stability

Consider a convex <5 C R™  and aregularized linear optimization

bl
provem f(c) = argmingeg ¢’ z+F(x)

where F'is o-strongly convex.

Then: HC, — CH < 0  implies Hf(C) — f(C/)H <

slope < ¢
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Regularized Spectral
SDP Formulatio
cl_Z min LeX
S.t. e X =1
117 e X =0
X=0

Optimization

n

— Density Matrix

Eigenvector decomposition of X:

—

X = sz-vz-vff )

N~

Eigenvalues of X define probab

\v/%pz Z 07

sz — 17

Vi, vl =0.

ility distribution




Regularized Spectral Optimization

| SDP Formulation

EminLoX

st. JTeX=1 |
Je X =0 — Density Matrix

X =0

Eigenvalues of X  define probability distribution

X* :x*(x*)T 0

TRIVIAL DISTRIBUTION
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Regularized Spectral Optimization

é min LeX Hn- F(X) Regularizer F’

Parameter 7

S.t. [Te X =1
117 e X =0
X =0

The regularizer F' forces the distribution of eigenvalues of X to be non-
trivial

X* :CU*(.CIZ‘*)T 1—e€

€1
REGULARIZATION l

X* = pvvl




Regularizers

Regularizers are SDP-versions of common regularizers

* von Neumann Entropy
F(X) = Tr(X log X) = Y pi log p;

*p-Norm, p > 1

Fp(X) = I X5 = ;Te(XP) = 2 >-p;

* And more, e.g. log-determinant.




a , I
Our Main Result

1 Regularized SDP
Emin LeX +n-F(X)

S.t. e X =1

JeX =0
RESULT: X =0
Explicit correspondence between regularizers and random walks
REGULARIZER OPTIMAL SOLUTION OF REGULARIZED PROGRAM
F = Fy Entropy > X* x Hg where t depends on 7y

F = Fp p-Norm X o (qI+ (1 o Q)W)p_il

where g depends on 7
\ /




a , I
Our Main Result

1 Regularized SDP
p min Le X +n-F(X)

S.t. e X =1

JeX =0
RESULT: X =0
Explicit correspondence between regularizers and random walks
REGULARIZER OPTIMAL SOLUTION OF REGULARIZED PROGRAM
F = Fy Entropy > X* x Hg where t depends on 7y

HEAT-KERNEL

F = Fp p-Norm X o (qI - (1 o Q)W)p_il

LAZY RANDOM WALK  where q depends on 7 /

v

o
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Background: Heat-Kernel Random Walk

For simplicity, take G to be d-regular.

* The Heat-Kernel Random Walk is a Continuous-Time Markov Chain over V,
modeling the diffusion of heat along the edges of G.

* Transitions take place in continuous time ¢, with an exponential

distribution. op(t) _ I p(t)
ot d

* The Heat Kernel can be interpreted as Poisson distribution over number of
steps of the natural random walk W=AD-:

—tL _ _—tN00 Rk
e~ d¥ =e¢ zkzmw

o
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Background: Heat-Kernel Random Walk

For simplicity, take G to be d-regular.

* The Heat-Kernel Random Walk is a Continuous-Time Markov Chain over V,
modeling the diffusion of heat along the edges of G.

* Transitions take place in continuous time ¢, with an exponential

distribution. dp(t) p(t)
o = L=

Notation

p(t) = e~ alp(0) =| HE| p(0)

* The Heat Kernel can be interpreted as Poisson distribution over number of
steps of the natural random walk W=AD-:

i —tx00 tRrrsk
e~ d¥ =e¢ zkzmw

o




Heat Kernel Walk: Stability Analysis

Consider a convex <5 C R™  and aregularized linear optimization

bl
provem f(c) = argmingeg ¢’ z+F(x)

where F'is o-strongly convex.

, 0
Then: HC, — CH < 0 implies Hf(C) — f(C )H < ;




Heat Kernel Walk: Stability Analysis

Consider a convex set S C R" and a regularized linear optimization

bl
provem f(c) = argmingeg ¢’ z+F(x)

where F'is o-strongly convex.

0
Then: HC, — CH < 0 implies Hf(C) — f(C/)H < —
o
Analogous statement for Heat Kernel:
/ : : 7-/ HT
||G — G“OO S 0 implies H[.]C—}T, _ ].]35 1 <79

/




Applications to Graph Partitioning:

Nearly-Linear-Time Balanced Cut




Partitioning Graphs - Conductance

Undirected unweighted G = (V, E),|V| =n,|E|=m

Conductance of SCV

_ESS)
¢(S) ~ min{vol(s),vol(3)}




Partitioning Graphs — Balanced Cut

NP-HARD DECISION PROBLEM
Does G have a b-balanced cut of conductance <« ?

S\

P(S) <

vol(v)
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Partitioning Graphs — Balanced Cut

NP-HARD DECISION PROBLEM
Does G have a b-balanced cut of conductance <« ?

S\

P(S) <

vol(v)

* Important primitive for many recursive algorithms.
 Applications to clustering and graph decomposition.

/
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Spectral Approximation Algorithms

Does G have a b-balanced cut of conductance < ~

~

> v and Time

Recursive Eigenvector Spectral

. ‘ Local Random / 3 O L
[Spielman, Teng ‘04] Walks 0, ( v log n) (72)

, Local Random ~ [m
[Andersen, Chung, Lang ‘07] Walks 0) (, /,), log n O (7>
, Local Random O 1 O b
[Andersen, Peres ‘09] Walks v/ vlogn _’Y
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Spectral Approximation Algorithms

Does G have a b-balanced cut of conductance < v ?

Algorithm

Method

Distinguishes Running

Recursive Eigenvector

Spectral

> v and Time

07  O(mn)

[Spielman, Teng ‘04]

[Andersen, Chung, Lang ‘07]

[Andersen, Peres ‘09]

Local Random
Walks

Local Random
Walks

Local Random
Walks

[Orecchia, Sachdeva, Vishnoi "12]

Random Walks

2
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Recursive Eigenvector Algorithm
INPUT:(G,b,v) DECISION: does there exists b-balanced S with ¢(S) <~ ?

~
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Recursive Eigenvector Algorithm
INPUT:(G, b,y) DECISION: does there exists b-balanced S with ¢(S) <~y ?

* Compute eigenvector of G and corresponding Laplacian eigenvalue A,

~
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Recursive Eigenvector Algorithm
INPUT:(G, b,y) DECISION: does there exists b-balanced S with ¢(S) <~ ?

* Compute eigenvector of G and corresponding Laplacian eigenvalue A,

° If A\, > ~, output NO. Otherwise, sweep eigenvector to find S, such that

P(S1) < O(V7Y)

~
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Recursive Eigenvector Algorithm
INPUT:(G,b,y) DECISION: does there exists b-balanced S with ¢(S) <~ ?

* Compute eigenvector of G and corresponding Laplacian eigenvalue A,

* If A, > ~, output NO. Otherwise, sweep eigenvector to find .S, such that

¢(S1) < O(v7)

* If S is (b/2)-balanced. Output S.. Otherwise, consider the graph G, induced by G
on V-5, with self-loops replacing the edges going to S..

0 %
-0
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Recursive Eigenvector Algorithm
INPUT:(G,b,y) DECISION: does there exists b-balanced S with ¢(S) <~ ?

* Compute eigenvector of G and corresponding Laplacian eigenvalue A,

* If A, > ~, output NO. Otherwise, sweep eigenvector to find .S, such that

¢(S1) < O(VY)

« If S_ is (b/2)-balanced. Output S|. Otherwise, consider the graph GG, induced by G
on V-5, with self-loops replacing the edges going to S..

* Recurse on G..

0 G,
0
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Recursive Eigenvector Algorithm
INPUT:(G,b,y) DECISION: does there exists b-balanced S with ¢(S) <~ ?

* Compute eigenvector of G and corresponding Laplacian eigenvalue A,

* If A, > ~, output NO. Otherwise, sweep eigenvector to find .S, such that

¢(S1) < O(v7)

« If S_ is (b/2)-balanced. Output S|. Otherwise, consider the graph GG, induced by G
on V-5, with self-loops replacing the edges going to S..

* Recurse on G..
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Recursive Eigenvector Algorithm
INPUT:(G,b,y) DECISION: does there exists b-balanced S with ¢(S) <~ ?

* Compute eigenvector of G and corresponding Laplacian eigenvalue A,

* If A, > ~, output NO. Otherwise, sweep eigenvector to find .S, such that

P(S1) < O(V7Y)

* If S is (b/2)-balanced. Output S.. Otherwise, consider the graph G, induced by G
on V-5, with self-loops replacing the edges going to S..

* Recurse on G..

S1 ﬂ
Sa
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Recursive Eigenvector Algorithm
INPUT:(G,b,y) DECISION: does there exists b-balanced S with ¢(S) <~ ?

* Compute eigenvector of G and corresponding Laplacian eigenvalue A,

* If A, > ~, output NO. Otherwise, sweep eigenvector to find .S, such that

P(S1) < O(V7Y)

* If S is (b/2)-balanced. Output S.. Otherwise, consider the graph G, induced by G
on V-5, with self-loops replacing the edges going to S..

* Recurse on G..

S3
. Ao(Gs) >0 [S)
S2

LARGE INDUCED EXPANDER = NO-CERTIFICATE
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Recursive Eigenvector Algorithm
INPUT:(G,b,y) DECISION: does there exists b-balanced S with ¢(S) <~ ?

* Compute eigenvector of G and corresponding Laplacian eigenvalue A,

* If A, > ~, output NO. Otherwise, sweep eigenvector to find .S, such that

P(S1) < O(V7Y)

* If S is (b/2)-balanced. Output S.. Otherwise, consider the graph G, induced by G
on V-5, with self-loops replacing the edges going to S..

* Recurse on G..

S3

i Ao(Gs) >0 [S)
S2

RUNNING TIME: O(m) per iteration, O(n) iterations. Total: O(mn)

~
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Recursive Eigenvector: The Worst Case

©

N

Varying

conductance
EXPANDER

(2(n) nearly-disconnected components
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Recursive Eigenvector: The Worst Case

Varying
conductance

EXPANDER

NB: Recursive Eigenvector eliminates one component per iteration.

o

()(n) iterations are necessary. Each iteration requires Q(m) time.

~
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Recursive Eigenvector: The Worst Case

Varying
conductance

EXPANDER

NB: Recursive Eigenvector eliminates one component per iteration.

()(n) iterations are necessary. Each iteration requires Q(mn) time.

GOAL: Eliminate unbalanced low-conductance cuts faster.

o
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Recursive Eigenvector: The Worst Case

Varying
conductance

EXPANDER

STABILITY VIEW:
 Ideally, we would like to enforce progress: Ao (Gt+1) >> Ao (Gt)

* Eigenvector may change completely at every iteration. Impossible to
enforce any non-trivial relation between Ao (G 1) and Ao (Gy)

~
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Our Algorithm: Contributions

Algorithm Distinguishes >~y and

~

* Unbalanced cuts are removed in O(log n) iterations

* Method to compute heat-kernel vectors in nearly-linear time

TECHNICAL COMPONENTS:

o

1) New iterative algorithm with a simple random walk interpretation

Recursive Eigenvector Eigenvector (\/’7 ) O(mn)
OUR ALGORITHM Random Walks O(v7) O (m)
MAIN FEATURES:

* Compute O(log n) global heat-kernel random-walk vectors at each iteration

2) Novel analysis of Lanczos methods for computing heat-kernel vectors

/
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Eliminating Unbalanced Cuts

* The graph eigenvector may be correlated with only one sparse unbalanced cut.




p
Eliminating Unbalanced Cuts

* The graph eigenvector may be correlated with only one sparse unbalanced cut.

» Consider the Heat-Kernel random walk-matrix H/ for 7=log n/~.

&€; Probability vector for random
walk started at vertex 2
T .
GE;j
Long vectors are slow-mixing
random walks
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Eliminating Unbalanced Cuts

* The graph eigenvector may be correlated with only one sparse unbalanced cut.

» Consider the Heat-Kernel random walk-matrix H/ for 7=log n/~.

Unbalanced cuts of
conductance < /Y
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Eliminating Unbalanced Cuts

* The graph eigenvector may be correlated with only one sparse unbalanced cut.

SINGLE VECTOR
SINGLE CUT

» Consider the Heat-Kernel random walk-matrix H/ for 7=log n/~.

VECTOR Unbalanced cuts of
EMBEDDING conductance < /Y
MULTIPLE CUTS
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Eliminating Unbalanced Cuts

* The graph eigenvector may be correlated with only one sparse unbalanced cut.

AFTER CUT REMOVAL ...
SINGLE VECTOR v 0

SINGLE CUT
... eigenvector can change completely

» Consider the Heat-Kernel random walk-matrix H/ for 7=log n/~.

VECTOR

EMBEDDING ... vectors do not change a lot
MULTIPLE CUTS
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Our Algorithm for Balanced Cut

IDEA BEHIND OUR ALGORITHM:
Replace eigenvector in recursive eigenvector algorithm with
Heat-Kernel random walk HJ, for 7 =logn/~

Consider the embedding {v;} given by H G

_—gT
Uy = 11464

S |l
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IDEA BEHIND OUR ALGORITHM:

Replace eigenvector in recursive eigenvector algorithm with

Our Algorithm for Balanced Cut

Heat-Kernel random walk HJ, for 7 =logn/~

Consider the embedding {v;} given by H/, :

S |l

Chosen to emphasize
cuts of conductance = v

T
Uy = 11464

Stationary distribution is
uniform as G is regular
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Our Algorithm for Balanced Cut

IDEA BEHIND OUR ALGORITHM:

Replace eigenvector in recursive eigenvector algorithm with

Heat-Kernel rand lk Hf, for 7 =logn
cabRETIE ranaom we G 1o Bn/y Chosen to emphasize

cuts of conductance = v

Consider the embedding {v;} given by H/, :

T
Uy = 11464

Stationary distribution is
uniform as G is regular

1
n

MIXING:

Define the total deviation from stationary for a set S C Vfor walk

V(HE, S) =3 s llvi = 1/nll?
FUNDAMENTAL QUANTITY TO UNDERSTAND CUTS IN G

o
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Our Algorithm: Case Analysis

Recall: - - —
T =logn/y U(HE, S) = ics [[HGei — 1/n||?
CASE 1: Random walks have mixed
V; — H@ez
ALL VECTORS ARE SHORT
U(HL V) < —
G —
poly(n)
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Our Algorithm: Case Analysis

Recall: - - -
T =logn/y U(HE, S) = ics [[HGei — 1/n||?
CASE 1: Random walks have mixed
V; — Hg;ez
ALL VECTORS ARE SHORT
W(HT, V) < —
<77~ poly(n)
\L I By definition of 7
A2 > Q)

!

k da > ()
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Our Algorithm

T:]an/’y \II(HZ;,S) :ZiGSHH@@i _T/nH2

V; — H@ez

CASE 2: Random walks have not mixed

\IJ(HE% V) > pol;(n)

We can either find an €2(b)-balanced cut with conductance O(\ﬁ/)

\_ /
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Our Algorithm

r —logn/~ U(HE, S) = Y.cq [|HEes — 1/
v; = Hle;
RANDOM PROJECTION
SWEE+P CUT

CASE 2: Random walks have not mixed

U(HT 1
( G V) > pOlY(n)

We can either find an Q(b)-balanced cut with conductance O(\/’_Y)

o /
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Our Algorithm

T:]an/’y \II(HZ;,S) :ZiGSHH@@i _T/nH2
S1
BALL
ROUNDING

CASE 2: Random walks have not mixed
U(HL, V) > —
(He: V) > Soly
We can either find an Q(b)-balanced cut with conductance 0(\/’7)
OR aball cut yields S, such that ¢(.S1) < O(y/7) and

V(HE, S1) > 3 Y(HE, V).

o /
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CASE 2: We found an unbalanced cut S, with ¢(51) < O(y/7)and

Modify G =G by adding edges across (57, S1) to construct G,

T =logn/y

Our Algorithm: lteration

\

\II(H(T;v S) = ZiES ||HZ¥€?3 - i)/n||2

S1

\Il( 5,51) > %\Ij( Z;,V).

Analogous to removing unbalanced cut S,
in Recursive Eigenvector algorithm
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Our Algorithm: Modifying G

CASE 2: We found an unbalanced cut S, with ¢(S1) < O(y/7)and
Y(H5, $1) > BU(H5 V),

Modify G =G® by adding edges across (51,51) to construct G®.

S;
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o

Our Algorithm: Modifying G

CASE 2: We found an unbalanced cut S, with ¢(S1) < O(y/7)and

V(HE, 81) > 3U(HE, V).

Modify G =G® by adding edges across (51,51) to construct G®.

S1

GUHY =G + 43" o Star;

1€S5¢

where Star, is the star graph rooted at vertex i.
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Our Algorithm: Modifying G
CASE 2: We found an unbalanced cut S, with ¢(S1) < O(y/7)and

V(HE, 81) > 3U(HE, V).

Modify G =G by adding edges across (S1,51) to construct G,

S1

GUHY =G + 43" o Star;

1€S5¢

where Star, is the star graph rooted at vertex i.

The random walk can now escape S, more easily.

o
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Our Algorithm: lteration

T:]an/’y \II(HZ;,S) :ZiGSHH@@i _T/nH2
S1

CASE 2: We found an unbalanced cut S, with ¢(51) < O(y/7)and

(H@,Sl) 1\IJ(H57V)

Modify G =G by adding edges across (S}, S} ) to construct G2,
POTENTIAL REDUCTION:

T 1
\Ij( G(t+1)7v) < \Ij( G(t)av) T 5\1}( G(t)ast) <

%)

Z\Ij( Z-;’(t) ) V)

o /




p
Our Algorithm: lteration

~

T = logn/'y \II(H(T;, S) = ZiES ||HZ;€7, — T/TL||2

S1

CASE 2: We found an unbalanced cut S, with ¢(51) < O(y/7)and
\Il( eT Sl) > %\Ij( & V)-

Modify G =G by adding edges across (S}, S} ) to construct G2,

POTENTIAL REDUCTION:

_ 1 3
\Ij( G(t+1)7v) < \Ij( G(t)av) o 5\11( G(t),St) < 4\11( G(t)av)

K CRUCIAL APPLICATION OF STABILITY OF RANDOM WALK

/
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Summary and Potential Analysis
IN SUMMARY:

At every step t of the recursion, we either

1. Produce a Q(b)-balanced cut of the required conductance, OR
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Potential Reduction
IN SUMMARY:

At every step t of the recursion, we either
1. Produce a Q(b)-balanced cut of the required conductance, OR
2. Find that

1
\Ij T t 7V S
(Hew. V) poly(n)

, OR
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Potential Reduction
IN SUMMARY:

At every step t of the recursion, we either

1. Produce a Q(b)-balanced cut of the required conductance, OR
2. Find that

1
\Ij( ~ t) V) S ) OR
G poly ()
3. Find an unbalanced cut .S,  of the required conductance, such that for the

graph G 1), modified to have increased edges from S,

T 3 T
W(H41),V) < Z‘I’( aw» V)
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Potential Reduction
IN SUMMARY:

At every step t-1 of the recursion, we either
1. Produce a Q(b)-balanced cut of the required conductance, OR

2. Find that !
V(H.,V)< ——,0R
N poly(n)
3. Find an unbalanced cut S, of the required conductance, such that for the

process P (1) modified to have increased transitions from S,

T 3 T
W(H41),V) < Z‘I’( aw» V)

After T=0O(log n) iterations, if no balanced cut is found:
1
V(HL, V)<
( G(T)» ) — poly(n)
From this guarantee, using the definition of G, we derive an SDP-certificate
that no b-balanced cut of conductance O(~) exists in G.

\_ NB: Only O(log n) iterations to remove unbalanced cuts.
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Heat-Kernel and Certificates

* If no balanced cut of conductance is found, our potential analysis yields:

1
U(H . V) <
(Hem, V) poly(n)

T—1
> L+v) Zz‘esj L(Star;) = vL(Ky)
Modified graph has A, = 7y

CLAIM: This is a certificate that no balanced cut of conductance <  existed in G.
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\IJ(H&(T) ) V) <

Heat-Kernel and Certificates

* If no balanced cut of conductance is found, our potential analysis yields:

1
~ poly(n)

T—1
> L+ 1 2ies, L(Star;) = yL(Ky)
Modified graph has A\, > 7y

CLAIM: This is a certificate that no balanced cut of conductance < vy existed in G.
\Balanced cutT

S,
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Heat-Kernel and Certificates

* If no balanced cut of conductance is found, our potential analysis yields:

1
~ poly(n)

T—1
> L+ 1 2ies, L(Star;) = yL(Ky)
Modified graph has A\, > 7y

CLAIM: This is a certificate that no balanced cut of conductance < vy existed in G.
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Comparison with Recursive Eigenvector

RECURSIVE EIGENVECTOR:

We can only bound number of iterations by volume of graph removed.

C2(n) iterations possible.

OUR ALGORITHM:

Use variance of random walk as potential.

Only O(log n) iterations necessary.

W(P,V) =Y ey l|1Pei — 1/n]?

\

Y

STABLE SPECTRAL NOTION OF POTENTIAL




Running Time
* Our Algorithm runs in O(log n) iterations.
* In one iteration, we perform some simple computation (projection, sweep

cut) on the vector embedding H,,, . This takes time O(nd), where d is the
dimension of the embedding.

* Can use Johnson-Lindenstrauss to obtain d = O(log n).

* Hence, we only need to compute O(log? n) matrix-vector products
T
H G U

* We show how to perform one such product in time O(m) for all 7.

* OBSTACLE:

7, the mean number of steps in the Heat-Kernel random walk, is €2 (n?) for path.




Conclusion

NOVEL ALGORITHMIC CONTRIBUTIONS

- Balanced-Cut Algorithm using Random Walks in time O(m)

MAIN IDEA
Random walks provide a very useful
stable analogue of the graph eigenvector
via regularization

OPEN QUESTION
More applications of this idea?
Applications beyond design of fast algorithms?
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A Different Interpretation

THEOREM:
Suppose eigenvector z yields an unbalanced cut S of low conductance
and no balanced cut of the required conductance. S
!
> diz; =0 0 E
Then,

2 1 2
Zz’ES d;x; > 5 ZiEV d;x; .

In words, S contains most of the variance of the eigenvector.
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A Different Interpretation

THEOREM:

Suppose eigenvector z yields an unbalanced cut S of low conductance
and no balanced cut of the required conductance.

Coooood)
Sdiai =0 s

|
|
0

Then
’ 2 1 2
Zies dix; > 2 Ziev d;x;.

QUESTION: Does this mean the graph induced by GG on V= §'is much closer to
have conductance at least +?

ANSWER: NO. x may contain little or no information about GG on V- S.

Next eigenvector may be only infinitesimally larger.

CONCLUSION: To make significant progress, we need an analogue of the
keigenvector that captures sparse
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Theorems for Our Algorithm

THEOREM 1: (WALKS HAVE NOT MIXED)

\/j p(t), V) > 1 Can find cut of
( ) poly(n) g conductance O(ﬁ)

Proof: Recall that
P — QY T =logn/y U(P, V)= ||Pe; —1/n]|?
Use the definition of 7. The spectrum of P ) implies that
t t 2 t
Zz’jGE\HP( Je; — P )€j|}| - O(v) '\‘I’(P( ), V)

|
EDGE [Y,ENGTH TOTAL VARIANCE

Hence, by a random projection of the embedding {P e }, followed by a sweep
cut, we can recover the required cut.

SDP ROUNDING TECHNIQUE

/
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Theorems for Our Algorithm

THEOREM 2: (WALKS HAVE MIXED)

\P(P(t), V) - 11 5 No Q(b)-balanced cut of
poly(n) conductance O(7)

Proof: Consider S = U S;. Notice that S is unbalanced.

Assumption is equivalent to

—7L—0O(logn) Zz L(S;) 1
Lify)ee 7 oy
By taking logs,
L+0()Ycs L(Si) = Q) L(Kv). sppDUAL

This is a certificate that no €2(1)-balanced cut of condugt%[r{lqéleFl(g‘e%ﬂ)Eexists, as
evaluating the quadratic form for a vector representing a balanced cut U

yields

B(U) = Qy) = 2GLL0() = ()

N /




SDP Interpretation

2
E i irers vi —vi||? -, SHORT EDGES
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Efijrevxv Ui — V5[ = 5—, FIXED VARIANCE
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SDP Interpretation

2
E (i eBo vi —vi]? - 7, SHORT EDGES
5 1
Eoiitevxv v; — V|| = —, FIXED VARIANCE
2m
\V/GV E. || o ||2 1 1 LENGTH OF
t JEV Ui — Uj b 9m STAR
EDGEf
\!
SHORT RADIUS




4 N
Background: Heat-Kernel Random Walk

For simplicity, take G to be d-regular.

* The Heat-Kernel Random Walk is a Continuous-Time Markov Chain over V,
modeling the diffusion of heat along the edges of G.

* Transitions take place in continuous time ¢, with an exponential
distribution. op(t) _

(1
Ot Lp

Notatio

p(t) = e~ Lp(0) =| HE | p(0)

* The Heat Kernel can be interpreted as Poisson distribution over number of
steps of the natural random™ wa"z T/— A DL

k
e d _e_tZk 1t!Wk

Nl practice.can reslace Heat-Kernel with natural randorm swall W /




