
 A Simple, Combinatorial Algorithm
for Solving SDD Systems

in Nearly-Linear Time

Lorenzo Orecchia, MIT Math

Joint work with Jonathan Kelner, Aaron Sidford and Zeyuan Allen Zhu

Problem Definition: SDD Systems

2

PROBLEM INPUT:

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant

A 2 Rn£n; b 2 Rn:

Ax= b SQUARE SYSTEM OF
LINEAR EQUATIONS

Problem Definition: SDD Systems

3

PROBLEM INPUT:

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant

2
6664

a11 a12 : : : a1n
a21 a22 : : : a2n
...

...
. . .

...

an1 an2 : : : ann

3
7775

0
BBB@

x1
x2
...

xn

1
CCCA =

0
BBB@

b1
b2
...

bn

1
CCCA

A 2 Rn£n; b 2 Rn:

Problem Definition: SDD Systems

4

PROBLEM INPUT:

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant
• Symmetry: AT = A

2
6664

a11 a12 : : : a1n
a12 a22 : : : a2n
...

...
. . .

...

a1n a2n : : : ann

3
7775

0
BBB@

x1
x2
...

xn

1
CCCA =

0
BBB@

b1
b2
...

bn

1
CCCA

A 2 Rn£n; b 2 Rn:

Problem Definition: SDD Systems

5

PROBLEM INPUT:

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant
• Symmetry: AT = A
• Diagonal Dominance:

for all rows (and columns) i, diagonal entry dominates

aii ¸
P
j 6=i jaijj

A 2 Rn£n; b 2 Rn:
2
6664

a11 a12 : : : a1n
a12 a22 : : : a2n
...

...
. . .

...

a1n a2n : : : ann

3
7775

0
BBB@

x1
x2
...

xn

1
CCCA =

0
BBB@

b1
b2
...

bn

1
CCCA

Problem Definition: SDD Systems

6

PROBLEM INPUT:

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant
• Symmetry: AT = A
• Diagonal Dominance: for all i, aii ¸

P
j 6=i jaijj

A 2 Rn£n; b 2 Rn:
2
6664

a11 a12 : : : a1n
a12 a22 : : : a2n
...

...
. . .

...

a1n a2n : : : ann

3
7775

0
BBB@

x1
x2
...

xn

1
CCCA =

0
BBB@

b1
b2
...

bn

1
CCCA

WHY SDD ? Practically important subcase of positive semidefinite matrices

A IS SDD
Aº 0

Easy-to-identify null space

Problem Definition: SDD Systems

7

PROBLEM INPUT:

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant
• Symmetry: AT = A
• Diagonal Dominance: for all i, aii ¸

P
j 6=i jaijj

A 2 Rn£n; b 2 Rn:
2
6664

a11 a12 : : : a1n
a12 a22 : : : a2n
...

...
. . .

...

a1n a2n : : : ann

3
7775

0
BBB@

x1
x2
...

xn

1
CCCA =

0
BBB@

b1
b2
...

bn

1
CCCA

WHY SDD ? Practically important subcase of positive semidefinite matrices

A IS SDD
Aº 0

Easy-to-identify null space

Problem Definition: SDD Systems

8

PROBLEM INPUT:

GOAL: solve for x
• approximately:

•in nearly-linear time in the sparsity nnz(A) and log(1/²) , i.e.

 RunTime =

A 2 Rn£n; b 2 Rn; b 2 Im(A)

kx¡x¤kA · ²kx¤kA

2
6664

a11 0 : : : a1n
0 a22 : : : 0
...

...
. . .

...

0 a2n : : : ann

3
7775

0
BBB@

x1
x2
...

xn

1
CCCA =

0
BBB@

b1
b2
...

bn

1
CCCAnnz(A)

O (nnz(A) ¢ polylog(n) ¢ log(1=²))

Reduction to Laplacian Systems

9

SDD SYSTEM:

Ax= b

LAPLACIAN SYSTEM:

Lv = Â

[Gremban’96]

Reduction preserves approximation and sparsity

Graph Laplacian

10

G =(V,E,w) weighted undirected graph with n vertices and m edges

1

1

2

1

3

L(G) =

GRAPH G

GRAPH LAPLACIAN L(G)

Graph Laplacian

11

G =(V,E,w) weighted undirected graph with n vertices and m edges

1

1

2

1

3

L(G) =

GRAPH G

GRAPH LAPLACIAN L(G)

Degree of vertex 2

Graph Laplacian

12

G =(V,E,w) weighted undirected graph with n vertices and m edges

1

1

2

1

3

L(G) =

GRAPH G

GRAPH LAPLACIAN L(G)

- Weight of edge {2,3}

Laplacian as Sum of Edges

13

L(G) =
X

e=fi;jg2E

we

0
BBBBBBBBBBB@

0 : : : 0 : : : 0 : : : 0
...

...
...

...
...

...
...

0 : : : 1 : : : ¡1 : : : 0
...

...
...

...
...

...
...

0 : : : ¡1 : : : 1 : : : 0
...

...
...

...
...

...
...

0 : : : 0 : : : 0 : : : 0

1
CCCCCCCCCCCA

i j

i

j

Laplacian as Sum of Edges

14

L(G) =
X

e=fi;jg2E

we

0
BBBBBBBBBBB@

0 : : : 0 : : : 0 : : : 0
...

...
...

...
...

...
...

0 : : : 1 : : : ¡1 : : : 0
...

...
...

...
...

...
...

0 : : : ¡1 : : : 1 : : : 0
...

...
...

...
...

...
...

0 : : : 0 : : : 0 : : : 0

1
CCCCCCCCCCCA

i j

i

j

Edge Matrix Le

Laplacian as Sum of Edges

15

L(G) =
X

e=fi;jg2E

we

0
BBBBBBBBBBB@

0 : : : 0 : : : 0 : : : 0
...

...
...

...
...

...
...

0 : : : 1 : : : ¡1 : : : 0
...

...
...

...
...

...
...

0 : : : ¡1 : : : 1 : : : 0
...

...
...

...
...

...
...

0 : : : 0 : : : 0 : : : 0

1
CCCCCCCCCCCA

i j

i

j

Edge Matrix Le has rank 1

Laplacian as Sum of Edges

16

L(G) =
X

e=fi;jg2E

we

0
BBBBBBBBBBB@

0
...

1
...

¡1
...

0

1
CCCCCCCCCCCA

¡
0 ¢ ¢ ¢ 1 ¢ ¢ ¢ ¡1 ¢ ¢ ¢ 0

¢T
i

j

i j

Âe ÂT
e

i j

ARBITRARY ORIENTATION OF EDGES: WILL BE USEFUL WHEN DISCUSSING FLOWS

+1 -1

More Graph Matrices: Incidence Matrix

17

G =(V,E,w) weighted undirected graph with n vertices and m edges

BT =

0
BBBBBBBB@

Âe1
Âe2
...

Âei
...

Âem

1
CCCCCCCCA

m

n

More Graph Matrices: Incidence Matrix

18

G =(V,E,w) weighted undirected graph with n vertices and m edges

BT =

0
BBBBBBBB@

Âe1
Âe2
...

Âei
...

Âem

1
CCCCCCCCA

m

n

L =
X

e=fi;jg2E

weÂeÂ
T
e = BTWB

diag(w)

More Graph Matrices: Incidence Matrix

19

G =(V,E,w) weighted undirected graph with n vertices and m edges

BT =

0
BBBBBBBB@

Âe1
Âe2
...

Âei
...

Âem

1
CCCCCCCCA

m

n

L =
X

e=fi;jg2E

weÂeÂ
T
e = BTWB

diag(w)
W1/2 B is square root of L

Action of Incidence Matrix

20

G =(V,E,w) weighted undirected graph with n vertices and m edges

Action of BT on a vector f 2 Rm:

Action of B on a vector v 2 Rn:

(BTf)i = °ow out of i¡ °ow into of i = net °ow into graph at i

+1 -1

+1

-1

(Bv)e=(i;j) = vi ¡ vj = change in v along (i; j)

Graphs as Electrical Circuits

21

1

1

2

1

3 Edge conductances we

Graphs as Electrical Circuits

22

1

1/2

1/2

1

1/3

Edge conductances we

Edge resistances re

 re= 1/we

Graphs as Electrical Circuits

23

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Edge conductances we

Edge resistances re

 re= 1/we

Graphs as Electrical Circuits

24

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Q: What is resulting electrical flow on the graph?

Edge conductances we

Edge resistances re

 re= 1/we

Graphs as Electrical Circuits

25

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Edge conductances we

Edge resistances re

 re= 1/we

1. Ohm's Law: For every edge e = (i; j) 2 E:

f(i;j) =
vi ¡ vj

rij

2. Kircho®'s Conservation Law: For every vertex i 2 V :

°ow out of i¡ °ow into i = net °ow into network at i

Graphs as Electrical Circuits

26

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Edge conductances we

Edge resistances re

 re= 1/we

1. Ohm's Law: For every edge e = (i; j) 2 E:

f(i;j) =
vi ¡ vj

rij

2. Kircho®'s Conservation Law: For every vertex i 2 V :

°ow out of i¡ °ow into i = net °ow into network at i

f =R¡1Bv =WBv

Graphs as Electrical Circuits

27

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Edge conductances we

Edge resistances re

 re= 1/we

1. Ohm's Law:

f = R¡1Bv = WBv

2. Kircho®'s Conservation Law:

BT f = es ¡ et

Example above: Current source s is vertex 1. Current sink t is vertex 3

Graphs as Electrical Circuits

28

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Edge conductances we

Edge resistances re

 re= 1/we

1. Ohm's Law:

f = R¡1Bv = WBv

2. Kircho®'s Conservation Law:

BT f = Â

Example above: Current source s is vertex 1. Current sink t is vertex 3

General net flow
 vector Â allowed:

ÂT~1 = 0

29

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Edge conductances we

Edge resistances re

 re= 1/we

General net flow
 vector Â :

ÂT~1 = 0

Laplacian Systems as Electrical Problems

Q: What is resulting electrical flow on the graph?

f = R¡1Bv = WBv;

BTf = Â

¾
! BTWBv = Lv = Â

30

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Edge conductances we

Edge resistances re

 re= 1/we

General net flow
 vector Â :

ÂT~1 = 0

Laplacian Systems as Electrical Problems

Q: What is resulting electrical flow on the graph?

Given input currents Â, finding voltage is equivalent to solving Laplacian
system of linear equations

Lv = Â

31

1

1/2

1/2

1

1/3

one unit of electrical flow
Into vertex 1 and out of 3

Edge conductances we

Edge resistances re

 re= 1/we

General net flow
 vector Â :

ÂT~1 = 0

Laplacian Systems as Electrical Problems

Q: What is resulting electrical flow on the graph?

Given input currents Â, finding voltage is equivalent to solving Laplacian
system of linear equations

Lv = Â v = L+Â

Pseudo-inverse

Energy Intepretation

32

Lv = Â

min
x?~1

1
2
¢ xTLx¡ xTÂ

Optimality condition

Equivalent up to scaling

min
x?~1

1
2
¢ xTLx

s.t. xTÂ = 1

Energy Intepretation

33

Lv = Â

min
x?~1

1
2
¢ xTLx¡ xTÂ

Optimality condition

Equivalent up to scaling

min
x?~1

1
2
¢ xTLx =

P
(i;j)2E

(xi¡xj)2
rij

s.t. xTÂ = 1

Minimize energy
for a fixed
voltage gap

Why it matters

34

• Direct Applications

• Modeling electrical
networks

• Simulating random walks

• PageRank

Aggregate behavior of lazy random walk started at Â

Why it matters

35

• Direct Applications

• Modeling electrical
networks

• Simulating random walks

• PageRank

Numerical Applications
• Finite element [BHV08]

• Matrix exponential [OSV12]

• Largest eigenvalue [ST12]

• Image Smoothing

Why it matters: Faster Graph Algorithms

36

“The Laplacian Paradigm”

• Maximum flow [CKM+11,LRS13,KOLS12]

• Multicommodity flow [KMP12, KOLS12]

• Random spanning trees [KM09]

• Graph sparsification [SS11]

• Lossy flow, min-cost flow [DS08]

• Balanced partitioning [OSV12]

• Oblivious routing [KOLS12]

• … and more

Highlights of Previous Work

37

Direct solvers
for general
matrices

…

Iterative
methods for
PSD matrices

Conjugate
Gradient

Chebyshev
Method

On various
subclasses

Multigrid

Many many
others…

For SDD/
Laplacians

…

Spielman-Teng

O(m polylog n)

Our Result

38

Solve Lx = b in time ~O
¡
m log2 n log 1

²

¢

• Very different approach

• Simple and intuitive algorithm

• Proof fits on a single blackboard

• Easily shown to be numerically stable

Our Result

39

• Very different approach

• Simple and intuitive algorithm

• Proof fits on a single blackboard

• Easily shown to be numerically stable

Solve Lx = b in time ~O
¡
m log2 n log 1

²

¢

Which computational model?

Q: How do we account for running time of arithmetic operations?
A: Constant time for operations on word-size sequence of bits.

O(logc n)

1 0 0 0 0 1 1 1 1 1 1

Size of Word: Polynomial in size of input

Previous works:

Which computational model?

41

Q: How do we account for running time of arithmetic operations?
A: Constant time for operations on word-size sequence of bits.

O(logc n)

1 0 0 0 0 1 1 1 1 1 1

Size of Word: Polynomial in size of input

Previous works:

Our work: O(logn)

Size of Word: Linear in size of input

UNIT-COST RAM MODEL:
MORE REALISTIC MODEL

The Philosophy of This Talk

42

PROBLEM
REPRESENTATION

ITERATIVE
METHOD

The Philosophy of This Talk

43

PROBLEM
REPRESENTATION

ITERATIVE
METHOD

Not all representations created equally:
e.g. eigenvalue decompostion

Good representation often requires
combinatorial insight

The Philosophy of This Talk

44

Leverage large body of techniques
 in continuous optimization
 Regularization
 Gradient Descent
 Accelerated Gradient Descent
 Randomized Coordinate Descent

PROBLEM
REPRESENTATION

ITERATIVE
METHOD

Not all representations created equally:
e.g. eigenvalue decompostion

Good representation often requires
combinatorial insight

The Philosophy of This Talk

45

Leverage large body of techniques
 in continuous optimization
 Regularization
 Gradient Descent
 Accelerated Gradient Descent
 Randomized Coordinate Descent

PROBLEM
REPRESENTATION

ITERATIVE
METHOD

Not all representations created equally:
e.g. eigenvalue decompostion

Good representation often requires
combinatorial insight

Efficiency and simplicity of algorithm relies on combining these two tools in the right way

Techniques and Challenges in the
Solution of Laplacian Systems

46

Changing Representation:
 Gaussian Elimination

47

Simple Graphic Interpretation:

L =

0
BBBB@

4 ¡1 ¡1 ¡1 ¡1

¡1 1 0 0 0

¡1 0 1 0 0

¡1 0 0 1 0

¡1 0 0 0 1

1
CCCCA

Changing Representation:
 Gaussian Elimination

48

Simple Graphic Interpretation:

Eliminate (pivot) this node

0
BBBB@

4 ¡1 ¡1 ¡1 ¡1

¡1 1 0 0 0

¡1 0 1 0 0

¡1 0 0 1 0

¡1 0 0 0 1

1
CCCCA

Changing Representation:
 Gaussian Elimination

49

Simple Graphic Interpretation:

Eliminate (pivot) this node

0
BBBB@

4 ¡1 ¡1 ¡1 ¡1

¡1 1 0 0 0

¡1 0 1 0 0

¡1 0 0 1 0

¡1 0 0 0 1

1
CCCCA

0
BBBB@

1 0 0 0 0

0 3
4

¡1
4

¡1
4

¡1
4

0 ¡1
4

3
4

¡¡ 1
4

¡1
4

0 ¡1
4

¡1
4

3
4

¡1
4

0 ¡1
4

¡1
4

¡1 3
4

1
CCCCA

Changing Representation:
 Gaussian Elimination

50

Simple Graphic Interpretation:

Laplacian on
n-1 vertices

0
BBBB@

1 0 0 0 0

0 3
4

¡1
4

¡1
4

¡1
4

0 ¡1
4

3
4

¡¡ 1
4

¡1
4

0 ¡1
4

¡1
4

3
4

¡1
4

0 ¡1
4

¡1
4

¡1 3
4

1
CCCCA

Cholesky Decomposition

51

Simple Graphic Interpretation:

L =

0
BBBB@

4 0 0 0 0

¡1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCA

0
BBBB@

4 ¡1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCA

EASY TO INVERT
EASY TO INVERT

52

Changing Representation:
 Gaussian Elimination

Advantages:
• Gives exact algorithm
• Computes inverse matrix (can then be used on any b)
• Can choose elimination order

53

Changing Representation:
 Gaussian Elimination

Advantages:
• Gives exact algorithm
• Computes implicit representation of inverse matrix

 (can then be used on any b)
• Can choose elimination order

Disadvantages:
• Intermediate Laplacians can be very dense

SPARSE DENSE

54

Gaussian Elimination
and Nested Dissection

Combinatorial arguments can help preserve sparsity by selecting good order:

G

55

Gaussian Elimination
and Nested Dissection

Combinatorial arguments can help preserve sparsity by selecting good order:

G

Small Vertex Separator

56

Gaussian Elimination
and Nested Dissection

Combinatorial arguments can help preserve sparsity by selecting good order:

G

Small Vertex Separator Eliminate recursively Eliminate recursively

57

Gaussian Elimination
and Nested Dissection

Combinatorial arguments can help preserve sparsity by selecting good order:

Size of existing separators bounds sparsity
Works well if small separators always exist (and are easy to find)

G

58

Gaussian Elimination
and Nested Dissection

Combinatorial arguments can help preserve sparsity by selecting good order:

Size of existing separators bounds sparsity
Works well if small separators always exist (and are easy to find)

E.G.: Planar Graphs

G

59

Gaussian Elimination: the bad case

G sparse expander
All separators are large

Any elimination order requires producing a dense graph.

60

Changing Representation:
 Gaussian Elimination

Advantages:
• Gives exact algorithm
• Computes implicit representation of inverse matrix

 (can then be used on any b)
• Can choose elimination order to minimize running time

Disadvantages:
• Intermediate Laplacians can be very dense
• Very slow in worst case:

O(n3) O(nw)

FAR FROM NEARLY LINEAR!

61

Gaussian Elimination: the good case

Easily linear time for some graphs:

PATHS

62

Gaussian Elimination: the good case

Easily linear time for some graphs:

PATHS Eliminate in time O(1)

63

Gaussian Elimination: the good case

Easily linear time for some graphs:

PATHS O(n) time

64

Gaussian Elimination: the good case

Easily linear time for some graphs:

This works more in general for trees
by recursively eliminating a leaf.

PATHS O(n) time

Iterative Methods: Gradient Descent

65

Consider energy interpretation:

This is a convex optimization problem on which we can apply gradient
descent techniques.

min
x?~1

1
2
¢ xTLx¡ xTÂ

Consider energy interpretation:

This is a convex optimization problem on which we can apply gradient
descent techniques.

Iterative Methods: Gradient Descent

66

f(x)

rf(x) = Lx¡Â

r2f(x) = L
min
x?~1

1
2
¢ xTLx¡ xTÂ

Consider energy interpretation:

This is a convex optimization problem on which we can apply gradient
descent techniques.

Iterative Methods: Gradient Descent

67

f(x)

rf(x) = Lx¡Â

¸2D ¹r2f(x) ¹ 2D
min
x?~1

1
2
¢ xTLx¡ xTÂ

Use degree norm k ¢ kD

Iterative Methods: Gradient Descent

68

Consider energy interpretation:

This is a convex optimization problem on which we can apply gradient
descent techniques.

Construct iterative solutions:

x(t+1) = x(t) ¡hD¡1rf(x(t))

f(x)

Step length

rf(x) = Lx¡Â
min
x?~1

1
2
¢ xTLx¡ xTÂ

¸2D ¹r2f(x) ¹ 2D

x(0); x(1); x(2); : : : ; x(t); : : :

Iterative Methods: Gradient Descent

69

Consider energy interpretation:

This is a convex optimization problem on which we can apply gradient
descent techniques.

Construct iterative solutions:

By standard gradient descent analysis h = 1/2

For quadratic function, it can be optimized at every step.

f(x)

rf(x) = Lx¡Â
min
x?~1

1
2
¢ xTLx¡ xTÂ

¸2D ¹r2f(x) ¹ 2D

x(t+1) = x(t) ¡ 1
2
D¡1rf(x(t))

x(0); x(1); x(2); : : : ; x(t); : : :

Iterative Methods: Gradient Descent

70

Consider energy interpretation:

This is a convex optimization problem on which we can apply gradient
descent techniques.

Construct iterative solutions:

.

f(x)

rf(x) = Lx¡Â
min
x?~1

1
2
¢ xTLx¡ xTÂ

¸2D ¹r2f(x) ¹ 2D

x(t+1) =
Pt

j=0

¡
I+W
2

¢j
Â

UNRAVEL RECURSION TO OBTAIN TRUNCATED SERIES: t steps of random walk

x(0); x(1); x(2); : : : ; x(t); : : :

Iterative Methods: Gradient Descent

71

Consider energy interpretation:

This is a convex optimization problem on which we can apply gradient
descent techniques.

Construct iterative solutions:

Iterations necessary to converge to ²-approximate solution:

x(0); x(1); x(2); : : : ; x(t); : : :

f(x)

rf(x) = Lx¡Â

¸2D ¹r2f(x) ¹ 2D

T = O
³
2
¸2

log
¡
n
²

¢´

x(t+1) =
Pt

j=0

¡
I+W
2

¢j
Â

min
x?~1

1
2
¢ xTLx¡ xTÂ

Bad Example for Gradient Descent

72

PATH:

Iterations necessary to converge to ²-approximate solution:

T = O
³
2
¸2

log
¡
n
²

¢´
= O

¡
n2 log

¡
n
²

¢¢

¸2 = 1
n2

Bad Example for Gradient Descent

73

PATH:

Iterations necessary to converge to ²-approximate solution:

Each Iteration is a matrix-vector multiplication by , requiring time O(m)

T = O
³
2
¸2

log
¡
n
²

¢´
= O

¡
n2 log

¡
n
²

¢¢

¸2 = 1
n2

¡
I+W
2

¢

RunTime =O
¡
mn2 log

¡
n
²

¢¢

ESSENTIALLY TIGHT

1=2 1=2

S t

GAMBLER’S RUIN

Bad Example for Gradient Descent

74

PATH:

Iterations necessary to converge to ²-approximate solution:

Each Iteration is a matrix-vector multiplication by , requiring time O(m)

T = O
³
2
¸2

log
¡
n
²

¢´
= O

¡
n2 log

¡
n
²

¢¢

¸2 = 1
n2

¡
I+W
2

¢

RunTime =O
¡
mn2 log

¡
n
²

¢¢

75

Consider energy interpretation:

This is a convex optimization problem on which we can apply gradient
descent techniques.

Accelerated gradient techniques achieve better convergence:

Improved iteration count:

min
x?~1

1
2
¢ xTLx¡ xTÂ

Accelerated Gradient Descent

CHEBYSHEV’S ITERATION CONJUGATE GRADIENT

rf(x) = Lx¡Â

¸2D ¹r2f(x) ¹ 2D

T = O

µr
2

¸2
log
³n
²

´¶

Still no luck, but …

76

PATH: ¸2 = 1
n2

T = O
³
n log

³n
²

´´

RunTime =O
¡
mn log

¡
n
²

¢¢

BEST POSSIBLE USING GRADIENT APPROACH

Still no luck, but …

77

PATH: ¸2 = 1
n2

T = O
³
n log

³n
²

´´

RunTime =O
¡
mn log

¡
n
²

¢¢

BEST POSSIBLE USING GRADIENT APPROACH

IT TAKES n STEPS FOR CHARGE TO TRAVEL ACROSS

Combining Representation and Iteration

78

Gaussian elimination and gradient methods seem complementary

• Gaussian elimination is nearly-linear on paths (and trees),
 but slow on expanders.

• Gradient methods are nearly-linear time on expanders,
 but slow on paths.

MAIN APPROACH TO FAST SOLVERS:

 Combine Gaussian elimination and gradient methods
 to obtain best of both worlds

Combining Representation and Iteration:
Combinatorial Preconditioning

79

 Lv = Â

Gradient methods fail when condition number is large.

IDEA: modify system to improve condition number

where H is a preconditioner graph.

DESIRED PROPERTIES OF H:

1. New matrix is well conditioned:

2. Linear systems in LH can be solved quickly by Gaussian elimination

L+HLv = L+HÂ

L+HL

Combining Representation and Iteration:
Combinatorial Preconditioning

80

 Lv = Â

Gradient methods fail when condition number is large.

IDEA: modify system to improve condition number

where H is a preconditioner graph.

DESIRED PROPERTIES OF H:

1. New matrix is well conditioned:

2. Linear systems in LH can be solved quickly by Gaussian elimination

L+HLv = L+HÂ

L+HL
IMPROVES

ITERATION COUNT

KEEPS ITERATIONS
LINEAR TIME

Preconditioning: Low-Stretch Trees

81

G

Preconditioning: Low-Stretch Trees

82

Gspanning tree T

Preconditioning: Low-Stretch Trees

83

Gspanning tree T

e

Preconditioning: Low-Stretch Trees

84

Gspanning tree T

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e

Preconditioning: Low-Stretch Trees

85

Gspanning tree T

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e

st(e) = 5

Preconditioning: Low-Stretch Trees

86

Gspanning tree T

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e

st(e) =
p
n

Preconditioning: Low-Stretch Trees

87

Gspanning tree T

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e

Total Stretch of e

st(T) =
X

e2E
st(e)

Preconditioning: Low-Stretch Trees

88

Gspanning tree T

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e

Total Stretch of e

st(T) =
X

e2E
st(e)

st(T) =O(n1:5)

Preconditioning: Low-Stretch Trees

89

Gspanning tree T

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e

Total Stretch of e

st(T) =
X

e2E
st(e)

st(T) =O(n1:5)

Preconditioning: Low-Stretch Trees

90

Q: How does this help?

Preconditioning: Low-Stretch Trees

91

Q: How does this help?
A: Can help to bound condition number of system preconditioned by T

1 ¢ I ¹ L+TLG ¹ st(T) ¢ I

Preconditioning: Low-Stretch Trees

92

Q: How does this help?
A: Can help to bound condition number of system preconditioned by T

1 ¢ I ¹ L+TLG ¹ st(T) ¢ I
Spanning tree

property
Low-stretch-tree

property

[SW09]

Preconditioning: Low-Stretch Trees

93

Q: How does this help?
A: Can help to bound condition number of system preconditioned by T

EASY PROOF:
1 ¢ I ¹ L+TLG ¹ st(T) ¢ I

¸max
¡
L+TLG

¢
· Tr

¡
L+TLG

¢
=
P
e2E Â

T
e L

+
TÂe = st(T)

[SW09]

Preconditioning: Low-Stretch Trees

94

Q: How does this help?
A: Can help to bound condition number of system preconditioned by T

EASY PROOF:
1 ¢ I ¹ L+TLG ¹ st(T) ¢ I

¸max
¡
L+TLG

¢
· Tr

¡
L+TLG

¢
=
P
e2E Â

T
e L

+
TÂe = st(T)

Trace bounds eigenvalue

[SW09]

Preconditioning: Low-Stretch Trees

95

Q: How does this help?
A: Can help to bound condition number of system preconditioned by T

EASY PROOF:
1 ¢ I ¹ L+TLG ¹ st(T) ¢ I

¸max
¡
L+TLG

¢
· Tr

¡
L+TLG

¢
=
P
e2E Â

T
e L

+
TÂe = st(T)

Tree resistance is path length

[BH01]

Preconditioning: Partial Results

96

1. Preconditioning by low-stretch spanning trees[BH01]

Condition number

RunTime = ~O(
p
m logn log

¡
n
²

¢
) ¢ [O(m) +O(n)]

Preconditioning: Partial Results

97

1. Preconditioning by low-stretch spanning trees[BH01]

RunTime = ~O(
p
m logn log

¡
n
²

¢
) ¢ [O(m) +O(n)]

Condition number L+TLMultiplication by

Preconditioning: Partial Results

98

1. Preconditioning by low-stretch spanning trees[BH01]

2. Improved analysis using Conjugate Gradient and Trace bound [SW09]

RunTime = ~O(
p
m logn log

¡
n
²

¢
) ¢ [O(m) +O(n)]

Condition number L+TLMultiplication by

RunTime = ~O(m4=3polylog n)

NB: Low-stretch is a trace bound, stronger than eigenvalue bound!

Recursive Preconditioning:
Spielman-Teng and Koutis-Miller-Peng

99

Nearly-linear-time algorithms at last: [ST04], [KMP10],[KMP11]

IDEA: Low-stretch trees do not provide good enough condition number.
 Use better preconditioner graphs

Recursive Preconditioning:
Spielman-Teng and Koutis-Miller-Peng

100

Nearly-linear-time algorithms at last: [ST04], [KMP10],[KMP11]
-
IDEA: Low-stretch trees do not provide good enough condition number.
 Use better preconditioner graphs

PROBLEM: Hard to solve system for G1.

SOLUTION: Solve recursively.

L+G1Lv = L+G1Â

Recursive Preconditioning:
Spielman-Teng and Koutis-Miller-Peng

101

Nearly-linear-time algorithms at last: [ST04], [KMP10],[KMP11]
-
IDEA: Low-stretch trees do not provide good enough condition number.
 Use better preconditioner graphs

PROBLEM: Hard to solve system for G1.

SOLUTION: Solve recursively.

MAIN IDEA: At every recursive level, Gi becomes smaller as some low-
degree vertices are eliminated via Gaussian elimination.

L+G1Lv = L+G1Â

L+G2LG1x = L+G2b

Our Algorithm

102

Our Algorithm
(at last)

103

Choosing the Right Representation
Solve for the Flow

104

All algorithms discussed so far aim to solve voltage problem .

This is particularly problematic for gradient-based methods:

min
x?~1

1
2
¢ vTLv¡ vTÂ

CURSE OF LONG PATHS

Choosing the Right Representation
Solve for the Flow

105

All algorithms discussed so far aim to solve voltage problem .

Our algorithm targets the minimum-energy flow problem:

min
x?~1

1
2
¢ vTLv¡ vTÂ

min fTRf

s.t BT f = Â

Choosing the Right Representation
Solve for Electrical Flow

All algorithms discussed so far aim to solve voltage problem .

Our algorithm targets the minimum-energy flow problem:

min
x?~1

1
2
¢ vTLv¡ vTÂ

min fTRf

s.t BT f = Â

Minimize energy

Route correct net flow

Choosing the Right Representation
Solve for Electrical Flow

107

All algorithms discussed so far aim to solve voltage problem .

Our algorithm targets the minimum-energy flow problem:

This choice opens up different representational questions:

Could this be a flow path in our basic representation?

min
x?~1

1
2
¢ vTLv¡ vTÂ

min fTRf

s.t BT f = Â

1 1 1 1 1 1

Minimize energy

Route correct net flow

Optimality Conditions for Flow Problem

108

1. Ohm's Law:

9v : f = R¡1Bv

2. Kircho®'s Conservation Law:

BT f = Â

Optimality Conditions for Flow Problem

109

1. Ohm's Law:

9v : f = R¡1Bv

2. Kircho®'s Conservation Law:

BT f = Â

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Flow-induced voltage drop along cycle is 0.

Optimality Conditions for Flow Problem

110

1. Ohm's Law:

9v : f = R¡1Bv

2. Kircho®'s Conservation Law:

BT f = Â

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Optimality Conditions for Flow Problem

111

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Flow values
Unit resistances

1

2
1

1

1

1

1

1

Optimality Conditions for Flow Problem

112

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Flow values
Unit resistances

Obeys KCL

1

2
1

1

1

1

1

1

Optimality Conditions for Flow Problem

113

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Flow values
Unit resistances

Obeys KCL

Set voltages
using spanning tree

1

2
1

1

1

1

1

1

0

1

1

2

4

2

3 2

Optimality Conditions for Flow Problem

114

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Flow values
Unit resistances

Obeys KCL

Set voltages
using spanning tree

KCL ensures that off-tree edges respect Ohm’s Law

1

2
1

1

1

1

1

1

0

1

1

2

4

2

3 2

115

1. Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow

has X

e2C
refe = 0

2. Kircho®'s Conservation Law:

BT f = Â

Algorithmic Approach

MAINTAIN SATISFIED

ITERATIVELY FIX BY
ADDING/REMOVING
FLOW ALONG CYCLES

1 1

1
1 1

0

0

0

0
0

0

1
s t

Initialize:

• Pick a cycle Improve:

Algorithmic Approach

1 1

1
1 1

0

0

0

0
0

0

1
s t

Initialize:

• Pick a cycle Improve: • Pick a cycle
• Fix it

Algorithmic Approach

1/4

1/4

1/4

1/4

Initialize:

Improve: • Pick a cycle
• Fix it

Algorithmic Approach

Send ¢
R

°ow in opposite direction

1 1

1
1 3/4

1/4

0

0

1/4

0

1/4

1
Initialize:

s
t

• Pick a cycle
• Fix it

Improve: • Pick a cycle
• Fix it
• Repeat

Algorithmic Approach

Initialize:

• Pick a cycle
• Fix it
• Repeat

Improve:

Output:

1 1

1

5/8 9/16

7/16

0

3/8

1/16

3/8

1/16

1

s
t

51/16

35/16
1

25/16 0

24/16

23/16

23/16

29/16

Which
cycle?

How many
iterations?

How to
implement?

Algorithmic Approach

Initialize:

• Pick a cycle
• Fix it
• Repeat

Improve:

Output:

1 1

1

5/8 9/16

7/16

0

3/8

1/16

3/8

1/16

1

s
t

51/16

35/16
1

25/16 0

24/16

23/16

23/16

29/16

Which
cycle?

How many
iterations?

How to
implement?

Algorithmic Approach

IDEA: A nearly-linear number of cheap (i.e. O(log n) iterations!

Choosing the Right Representation:
Cycle Space

122

BTf = Â

f0

f1

f =R¡1Bv

0

f*
f2

Choosing the Right Representation:
Cycle Space

123

BTf = Â

f0

f1

f =R¡1Bv

0

f*
f2

Cycle updates

An affine translation of span of cycles (cycle space CG)

CG = fc : BTc = 0g

Choosing the Right Representation:
Cycle Space

124

BTf = Â

f0

f1

f =R¡1Bv

0

f*
f2

Cycle updates

An affine translation of span of cycles (cycle space CG)

CG = fc : BTc = 0g

RESTRICT OUR ATTENTION TO CYCLE SPACE
GOAL: FIND A GOOD BASIS TO WORK ON

Choosing the Right Representation:
Basis of Cycle Space

125

Fact:
Fundamental cycles of spanning tree give a basis of cycle space

Fix spanning tree T

Choosing the Right Representation:
Basis of Cycle Space

126

Fact:
Fundamental cycles of spanning tree give a basis of cycle space

Fix spanning tree T

e

ce

Our New Representation

127

ORIGINAl PROBLEM

Use spanning tree T
basis for CG

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

8c 2 CG : cTR(f0 + f) = 0

BT f = 0

Our New Representation

128

ORIGINAl PROBLEM

8c 2 CG : cTR(f0 + f) = 0

BT f = 0

Use spanning tree T
basis for CG

m – n + 1 constraints 8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

m – n + 1 variables

Our New Representation

129

ORIGINAl PROBLEM

8c 2 CG : cTR(f0 + f) = 0

BT f = 0

Use spanning tree T
basis for CG

m – n + 1 constraints

Iteratively fix fundamental cycles of T

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

m – n + 1 variables

Our New Representation

130

ORIGINAl PROBLEM

8c 2 CG : cTR(f0 + f) = 0

BT f = 0

Use spanning tree T
basis for CG

m – n + 1 constraints

Iteratively fix fundamental cycles of T WHAT ITERATIVE METHOD IS THIS?

m – n + 1 variables

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

Initialize:

• Pick a cycle
• Fix it
• Repeat

Improve:

Output:

1 1

1

5/8 9/16

7/16

0

3/8

1/16

3/8

1/16

1

s
t

51/16

35/16
1

25/16 0

24/16

23/16

23/16

29/16

How many
iterations?

How to
implement?

Algorithmic Approach

IDEA: A nearly-linear number of cheap (i.e. O(log n) iterations!

Which
cycle?

Choosing the Right Iteration
 Gradient Descent?

132 132

BTf = Â

ft

f =R¡1Bv

0

f*

An affine translation of span of cycles (cycle space CG)

CG = fc : BTc = 0g

Basis of fundamental cycles

Choosing the Right Iteration
 Gradient Descent?

133 133

BTf = Â

ft

f =R¡1Bv

0

f*

An affine translation of span of cycles (cycle space CG)

CG = fc : BTc = 0g
Basis of fundamental cycles

Gradient descent would update all cycles at once.
Requires linear time at each iteration.

rf

Choosing the Right Iteration
 Randomized Cordinate Descent!

134 134

BTf = Â

ft

f =R¡1Bv

0

f*

An affine translation of span of cycles (cycle space CG)

CG = fc : BTc = 0g
Basis of fundamental cycles

Move along one coordinate direction at a time.
Choose basis vector ce w.p. proportional to

Convergence analysis?

cTe Rce
re

= st(e) + 1

[SV09]

Coordinate Descent: Convergence

135

min
x?~1

1
2
¢ xTAx¡ bTx

Iteration count for gradient descent:

Iteration count for randomized coordinate descent:

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´

T = O
³
¸max(A)

¸min(A)
log
¡
n
²

¢´

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

Coordinate Descent: Convergence

136

min
x?~1

1
2
¢ xTAx¡ bTx

Iteration count for gradient descent:

Iteration count for randomized coordinate descent:

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´

T = O
³
¸max(A)

¸min(A)
log
¡
n
²

¢´

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

Worse by a factor of m – n + 1 in our case

Convergence

137

min
x?~1

1
2
¢ xTAx¡ bTx

Same calculation as for voltage preconditioning.

Iteration count for randomized coordinate descent:

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

¸min(A) = 1 ¸max(A) · Tr(A) = st(T) +O(n)

Tree stretch

New Condition Numbers

138

min
x?~1

1
2
¢ xTAx¡ bTx

Same calculation as for voltage preconditioning.

Iteration count for randomized coordinate descent:

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

¸min(A) = 1 ¸max(A) · Tr(A) = st(T) +O(n)

Tree stretch

Worse by a factor of m – n + 1 in our case
We start with a trace guarantee,
Not an eigenvalue one

Final Convergence

139

min
x?~1

1
2
¢ xTAx¡ bTx

Same calculation as for voltage preconditioning.

Pick spanning tree T to be low stretch.

Iteration count for randomized coordinate descent:

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´
= ~O

¡
m logn log

¡
n
²

¢¢

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

¸min(A) = 1 ¸max(A) · Tr(A) = st(T) +O(n)

Tree stretch

Final Convergence

140

min
x?~1

1
2
¢ xTAx¡ bTx

Same calculation as for voltage preconditioning.

Pick spanning tree T to be low stretch.

Iteration count for randomized coordinate descent:

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´
= ~O

¡
m logn log

¡
n
²

¢¢

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

¸min(A) = 1 ¸max(A) · Tr(A) = st(T) +O(n)

Tree stretch

NEARLY-LINEAR

Initialize:

• Pick a cycle
• Fix it
• Repeat

Improve:

Output:

1 1

1

5/8 9/16

7/16

0

3/8

1/16

3/8

1/16

1

s
t

51/16

35/16
1

25/16 0

24/16

23/16

23/16

29/16

How many
iterations?

How to
implement?

Algorithmic Approach

IDEA: A nearly-linear number of cheap (i.e. O(log n) iterations!

Which
cycle?

Implement updates efficiently

5/7

3/7

2/7

2/7

2/7

2/7 -2/7

0

0

0

• When the tree is balanced

• Otherwise

decompose the tree recursively, i.e. nested dissection,
gives O(log n) sparse representation

142

• Pick a cycle
• Fix it
• Repeat

How many
iterations?

How to
implement?

Resulting Algorithm

Which
cycle?

Fundamental cycle from low-stretch
spanning tree T, sampled with

probability proprtional to stretch.

• Pick a cycle
• Fix it
• Repeat

How many
iterations?

How to
implement?

Resulting Algorithm

Which
cycle?

Fundamental cycle from low-stretch
spanning tree T, sampled with

probability proprtional to stretch.

~O
¡
m logn log

¡
n
²

¢¢

Randomized coordinate
descent analysis

• Pick a cycle
• Fix it
• Repeat

How many
iterations?

How to
implement?

Resulting Algorithm

Which
cycle?

Fundamental cycle from low-stretch
spanning tree T, sampled with

probability proprtional to stretch.

~O
¡
m logn log

¡
n
²

¢¢

Randomized coordinate
descent analysis

O(logn)
Exploiting separators

 of size 1 in tree

• Pick a cycle
• Fix it
• Repeat

How many
iterations?

How to
implement?

Resulting Algorithm

Which
cycle?

Fundamental cycle from low-stretch
spanning tree T, sampled with

probability proprtional to stretch.

~O
¡
m logn log

¡
n
²

¢¢

Randomized coordinate
descent analysis

O(logn)
Exploiting separators

 of size 1 in tree

TOTAL RUNNING TIME: ~O
¡
m log2 n log

¡
n
²

¢¢

Running Time Improvements

~O
¡
m log2 n log

¡
n
²

¢¢

Multiple phases with restarts

~O
¡
m log2 n log

¡
1
²

¢¢

~O
¡
m log1:5 n log

¡
1
²

¢¢

Accelerated Coordinate Descent Lee, Sidford at FOCS’13

Running Time Improvements

~O
¡
m log2 n log

¡
n
²

¢¢

Multiple phases with restarts

~O
¡
m log2 n log

¡
1
²

¢¢

~O
¡
m log1:5 n log

¡
1
²

¢¢

Accelerated Coordinate Descent Lee, Sidford at FOCS’13

Open Questions

149

RELATED TO THIS ALGORITHM:

• Can this algorithm be parallelized? Practically important.

• Can it be made deterministic? Random order works on any RHS with high probability.

MORE GENERAL:

• Other application of idea about many cheap iterations?

E.g. cycle update view of undirected maximum flow result?

• Other applications of underlying idea: right representation + right iterative method
 Almost-linear-time undirected maximum flow falls in this framework
 Can we tackle other important graph problems?
 e.g. directed maximum flow, better multicommodity flows, …

