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Problem Definition: SDD Systems 
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PROBLEM INPUT: 

GOAL:  solve for x 

Restriction: A    is Symmetric Diagonally-Dominant 

A 2 Rn£n; b 2 Rn:

Ax= b SQUARE SYSTEM OF 
LINEAR EQUATIONS 
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PROBLEM INPUT: 

GOAL:  solve for x     

Restriction: A    is Symmetric Diagonally-Dominant 
•   Symmetry:   AT = A  
•   Diagonal Dominance:   

for all rows (and columns) i, diagonal entry dominates 

aii ¸
P
j 6=i jaijj

A 2 Rn£n; b 2 Rn:
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PROBLEM INPUT: 

GOAL:  solve for x  
•     approximately: 

 

•in nearly-linear time in the sparsity nnz(A) and log(1/²) , i.e. 

 RunTime =  

A 2 Rn£n; b 2 Rn; b 2 Im(A)

kx¡x¤kA · ²kx¤kA
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Reduction to Laplacian Systems 
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SDD SYSTEM: 

Ax= b

LAPLACIAN SYSTEM: 

Lv = Â

 
[Gremban’96] 

Reduction preserves approximation and sparsity 



Graph Laplacian 
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G =(V,E,w) weighted undirected graph with n vertices and m edges 
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L(G) =

GRAPH G 

GRAPH LAPLACIAN L(G) 



Graph Laplacian 

11 

G =(V,E,w) weighted undirected graph with n vertices and m edges 
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L(G) =

GRAPH G 

GRAPH LAPLACIAN L(G) 

Degree of vertex 2 
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G =(V,E,w) weighted undirected graph with n vertices and m edges 
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1 

2 

1 
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L(G) =

GRAPH G 

GRAPH LAPLACIAN L(G) 

- Weight of edge {2,3} 
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L(G) =
X
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More Graph Matrices: Incidence Matrix 
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G =(V,E,w) weighted undirected graph with n vertices and m edges 
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G =(V,E,w) weighted undirected graph with n vertices and m edges 

BT =

0
BBBBBBBB@
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Âem

1
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n 

L =
X

e=fi;jg2E

weÂeÂ
T
e = BTWB

diag(w) 
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G =(V,E,w) weighted undirected graph with n vertices and m edges 

BT =

0
BBBBBBBB@

Âe1
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...

Âei
...

Âem

1
CCCCCCCCA

m 

n 

L =
X

e=fi;jg2E

weÂeÂ
T
e = BTWB

diag(w) 
W1/2 B is square root of L 



Action of Incidence Matrix 
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G =(V,E,w) weighted undirected graph with n vertices and m edges 
 
 
 
 
 
 
 
 
Action of BT  on a vector f 2 Rm: 

 
 
 
 
Action of B on a vector v 2 Rn: 

  
 
 
 
 

(BTf)i = °ow out of i¡ °ow into of i = net °ow into graph at i

+1 -1 

+1 

-1 

(Bv)e=(i;j) = vi ¡ vj = change in v along (i; j)



Graphs as Electrical Circuits 
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Edge resistances re 
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1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 
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1 

1/2 

1/2 

1 

1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Q: What is resulting electrical flow on the graph? 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 
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1/2 

1/2 

1 

1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 

 
 

1. Ohm's Law: For every edge e = (i; j) 2 E:

f(i;j) =
vi ¡ vj

rij

2. Kircho®'s Conservation Law: For every vertex i 2 V :

°ow out of i¡ °ow into i = net °ow into network at i
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1/2 

1/2 

1 

1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 

 
 

1. Ohm's Law: For every edge e = (i; j) 2 E:

f(i;j) =
vi ¡ vj

rij

2. Kircho®'s Conservation Law: For every vertex i 2 V :

°ow out of i¡ °ow into i = net °ow into network at i

f =R¡1Bv =WBv
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1/2 

1/2 

1 

1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 

 
 

1. Ohm's Law:

f = R¡1Bv = WBv

2. Kircho®'s Conservation Law:

BT f = es ¡ et

Example above: Current source s is vertex 1. Current sink t is vertex 3  
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1 

1/2 

1/2 

1 

1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 

 
 

1. Ohm's Law:

f = R¡1Bv = WBv

2. Kircho®'s Conservation Law:

BT f = Â

Example above: Current source s is vertex 1. Current sink t is vertex 3  

General net flow 
 vector Â allowed: 

ÂT~1 = 0
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1 

1/2 

1/2 

1 

1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 

 
 

General net flow 
 vector Â : 

ÂT~1 = 0

Laplacian Systems as Electrical Problems 

Q: What is resulting electrical flow on the graph? 

f = R¡1Bv = WBv;

BTf = Â

¾
! BTWBv = Lv = Â
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1/2 

1/2 

1 

1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 

 
 

General net flow 
 vector Â : 

ÂT~1 = 0

Laplacian Systems as Electrical Problems 

Q: What is resulting electrical flow on the graph? 
 
 
 
 
Given input currents Â, finding voltage is equivalent to solving Laplacian 
system of linear equations 

Lv = Â
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1 

1/2 

1/2 

1 

1/3 

one unit of electrical flow 
Into vertex 1 and out of 3 

Edge conductances     we 

 
Edge resistances re 
 

 re= 1/we 

 
 

General net flow 
 vector Â : 

ÂT~1 = 0

Laplacian Systems as Electrical Problems 

Q: What is resulting electrical flow on the graph? 
 
 
 
 
Given input currents Â, finding voltage is equivalent to solving Laplacian 
system of linear equations 

Lv = Â v = L+Â

Pseudo-inverse 
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Lv = Â

min
x?~1

1
2
¢ xTLx¡ xTÂ

Optimality condition 

Equivalent up to scaling 

min
x?~1

1
2
¢ xTLx

s.t. xTÂ = 1
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Lv = Â

min
x?~1

1
2
¢ xTLx¡ xTÂ

Optimality condition 

Equivalent up to scaling 

min
x?~1

1
2
¢ xTLx =

P
(i;j)2E

(xi¡xj)2
rij

s.t. xTÂ = 1

Minimize energy 
for  a fixed  
voltage gap 



Why it matters 
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• Direct Applications 

• Modeling electrical 
networks 

• Simulating random walks 

• PageRank 

Aggregate behavior of lazy random walk started at Â 
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• Direct Applications 

• Modeling electrical 
networks 

• Simulating random walks 

• PageRank 

Numerical Applications 
• Finite element [BHV08] 

• Matrix exponential [OSV12] 

• Largest eigenvalue [ST12] 

•  Image Smoothing 



Why it matters: Faster Graph Algorithms 
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“The Laplacian Paradigm” 

• Maximum flow [CKM+11,LRS13,KOLS12] 

• Multicommodity flow [KMP12, KOLS12] 

• Random spanning trees [KM09] 

• Graph sparsification [SS11] 

• Lossy flow, min-cost flow [DS08] 

• Balanced partitioning [OSV12] 

• Oblivious routing [KOLS12] 

• … and more 



Highlights of Previous Work 
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Direct solvers 
for general 
matrices 

… 

Iterative 
methods for 
PSD matrices 

Conjugate 
Gradient 

Chebyshev 
Method 

On various 
subclasses 

Multigrid 

Many many 
others… 

For SDD/ 
Laplacians 

… 

Spielman-Teng 

O(m polylog n) 



Our Result 

38 

Solve Lx = b in time ~O
¡
m log2 n log 1

²

¢

• Very different approach 

• Simple and intuitive algorithm 

• Proof  fits on a single blackboard 

• Easily shown to be numerically stable 
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• Very different approach 

• Simple and intuitive algorithm 

• Proof  fits on a single blackboard 

• Easily shown to be numerically stable 

Solve Lx = b in time ~O
¡
m log2 n log 1

²

¢



Which computational model? 

Q: How do we account for running time of arithmetic operations? 
A: Constant time for operations on word-size sequence of bits. 

O(logc n)

1 0 0 0 0 1 1 1 1 1 1 

Size of Word: Polynomial in size of input 

Previous works: 
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Q: How do we account for running time of arithmetic operations? 
A: Constant time for operations on word-size sequence of bits. 

O(logc n)

1 0 0 0 0 1 1 1 1 1 1 

Size of Word: Polynomial in size of input 

Previous works: 

Our work: O(logn)

Size of Word: Linear in size of input 

UNIT-COST RAM MODEL: 
MORE REALISTIC MODEL 
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PROBLEM 
REPRESENTATION 

ITERATIVE  
METHOD 
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PROBLEM 
REPRESENTATION 

ITERATIVE  
METHOD 

Not all representations created equally: 
e.g. eigenvalue decompostion 
 
Good representation often requires 
combinatorial insight 
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Leverage large body of techniques 
 in continuous optimization 
 Regularization 
 Gradient Descent 
 Accelerated Gradient Descent 
 Randomized Coordinate Descent 
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The Philosophy of This Talk 
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Leverage large body of techniques 
 in continuous optimization 
 Regularization 
 Gradient Descent 
 Accelerated Gradient Descent 
 Randomized Coordinate Descent 

PROBLEM 
REPRESENTATION 

ITERATIVE  
METHOD 

Not all representations created equally: 
e.g. eigenvalue decompostion 
 
Good representation often requires 
combinatorial insight 

Efficiency and simplicity of algorithm relies on combining these two tools in the right way 



Techniques and Challenges in the 
Solution of Laplacian Systems 

46 



Changing Representation: 
 Gaussian Elimination 
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Simple Graphic Interpretation: 

L =

0
BBBB@

4 ¡1 ¡1 ¡1 ¡1

¡1 1 0 0 0

¡1 0 1 0 0

¡1 0 0 1 0

¡1 0 0 0 1

1
CCCCA



Changing Representation: 
 Gaussian Elimination 
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Simple Graphic Interpretation: 

Eliminate (pivot) this node 

0
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4 ¡1 ¡1 ¡1 ¡1
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¡1 0 0 0 1

1
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 Gaussian Elimination 
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Simple Graphic Interpretation: 

Eliminate (pivot) this node 
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Changing Representation: 
 Gaussian Elimination 
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Simple Graphic Interpretation: 

Laplacian on 
n-1 vertices 
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Cholesky Decomposition 
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Simple Graphic Interpretation: 

L =

0
BBBB@

4 0 0 0 0

¡1 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCA

0
BBBB@

4 ¡1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1
CCCCA

EASY TO INVERT 
EASY TO INVERT 
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Changing Representation: 
 Gaussian Elimination 

Advantages: 
• Gives exact algorithm 
• Computes inverse matrix (can then be used on any b) 
• Can choose elimination order   
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Changing Representation: 
 Gaussian Elimination 

Advantages: 
• Gives exact algorithm 
• Computes implicit representation of inverse matrix  

   (can then be used on any b) 
• Can choose elimination order   

 

Disadvantages: 
• Intermediate Laplacians can be very dense  

 

SPARSE DENSE 
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Gaussian Elimination  
and Nested Dissection 

Combinatorial arguments can help preserve sparsity by selecting good order:  
 
 
 
 
 
 
 
 

G
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Gaussian Elimination  
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Combinatorial arguments can help preserve sparsity by selecting good order:  
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Small Vertex Separator 
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Gaussian Elimination  
and Nested Dissection 

Combinatorial arguments can help preserve sparsity by selecting good order:  
 
 
 
 
 
 
 
 

G

Small Vertex Separator Eliminate recursively Eliminate recursively 
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Gaussian Elimination  
and Nested Dissection 

Combinatorial arguments can help preserve sparsity by selecting good order:  
 
 
 
 
 
 
 
 
 
 
 
 

Size of existing separators bounds sparsity 
Works well if small separators always exist (and are easy to find) 

G
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Gaussian Elimination  
and Nested Dissection 

Combinatorial arguments can help preserve sparsity by selecting good order:  
 
 
 
 
 
 
 
 
 
 
 
 

Size of existing separators bounds sparsity 
Works well if small separators always exist (and are easy to find) 

E.G.: Planar Graphs 

G
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Gaussian Elimination: the bad case 

G sparse expander 
All separators are large 

Any elimination order requires producing a dense graph. 
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Changing Representation: 
 Gaussian Elimination 

Advantages: 
• Gives exact algorithm 
• Computes implicit representation of inverse matrix  

   (can then be used on any b) 
• Can choose elimination order to minimize running time  

 

Disadvantages: 
• Intermediate Laplacians can be very dense 
• Very slow in worst case: 

 
 

O(n3) O(nw)

FAR FROM NEARLY LINEAR! 
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Gaussian Elimination: the good case 

Easily linear time for some graphs: 

PATHS 
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Gaussian Elimination: the good case 

Easily linear time for some graphs: 

PATHS Eliminate in time O(1) 
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Gaussian Elimination: the good case 

Easily linear time for some graphs: 
 
 
 
 
 
 
 
 

PATHS O(n) time
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Gaussian Elimination: the good case 

Easily linear time for some graphs: 
 
 
 
 
 
 
 
 

This works more in general for trees  
by recursively eliminating a leaf. 

PATHS O(n) time



Iterative Methods: Gradient Descent 
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Consider energy interpretation: 
 
 
 
 
 
This is a convex optimization problem on which we can apply gradient 
descent techniques. 
 

min
x?~1

1
2
¢ xTLx¡ xTÂ



Consider energy interpretation: 
 
 
 
 
 
This is a convex optimization problem on which we can apply gradient 
descent techniques. 
 
 

Iterative Methods: Gradient Descent 
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f(x)

rf(x) = Lx¡Â

r2f(x) = L
min
x?~1

1
2
¢ xTLx¡ xTÂ



Consider energy interpretation: 
 
 
 
 
 
This is a convex optimization problem on which we can apply gradient 
descent techniques. 
 
 

Iterative Methods: Gradient Descent 
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f(x)

rf(x) = Lx¡Â

¸2D ¹r2f(x) ¹ 2D
min
x?~1

1
2
¢ xTLx¡ xTÂ

Use degree  norm k ¢ kD
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Consider energy interpretation: 
 
 
 
 
 
This is a convex optimization problem on which we can apply gradient 
descent techniques. 
 
Construct iterative solutions: 
 

x(t+1) = x(t) ¡hD¡1rf(x(t))

f(x)

Step length 

rf(x) = Lx¡Â
min
x?~1

1
2
¢ xTLx¡ xTÂ

¸2D ¹r2f(x) ¹ 2D

x(0); x(1); x(2); : : : ; x(t); : : :
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Consider energy interpretation: 
 
 
 
 
 
This is a convex optimization problem on which we can apply gradient 
descent techniques. 
 
Construct iterative solutions: 
 
 
 
By standard gradient descent analysis h = 1/2 

For quadratic function,  it can be optimized at every step. 
 
 

f(x)

rf(x) = Lx¡Â
min
x?~1

1
2
¢ xTLx¡ xTÂ

¸2D ¹r2f(x) ¹ 2D

x(t+1) = x(t) ¡ 1
2
D¡1rf(x(t))

x(0); x(1); x(2); : : : ; x(t); : : :
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Consider energy interpretation: 
 
 
 
 
 
This is a convex optimization problem on which we can apply gradient 
descent techniques. 
 
Construct iterative solutions: 
 
 
 
.  

 
 

f(x)

rf(x) = Lx¡Â
min
x?~1

1
2
¢ xTLx¡ xTÂ

¸2D ¹r2f(x) ¹ 2D

x(t+1) =
Pt

j=0

¡
I+W
2

¢j
Â

UNRAVEL RECURSION TO OBTAIN TRUNCATED SERIES: t steps of random walk 

x(0); x(1); x(2); : : : ; x(t); : : :
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Consider energy interpretation: 
 
 
 
 
 
This is a convex optimization problem on which we can apply gradient 
descent techniques. 
 
Construct iterative solutions: 
 
 
 
Iterations necessary to converge to ²-approximate solution: 
 
 
 
 
 

x(0); x(1); x(2); : : : ; x(t); : : :

f(x)

rf(x) = Lx¡Â

¸2D ¹r2f(x) ¹ 2D

T = O
³
2
¸2

log
¡
n
²

¢´

x(t+1) =
Pt

j=0

¡
I+W
2

¢j
Â

min
x?~1

1
2
¢ xTLx¡ xTÂ



Bad Example for Gradient Descent 
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PATH: 

Iterations necessary to converge to ²-approximate solution: 

T = O
³
2
¸2

log
¡
n
²

¢´
= O

¡
n2 log

¡
n
²

¢¢

¸2 = 1
n2



Bad Example for Gradient Descent 
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PATH: 

Iterations necessary to converge to ²-approximate solution: 
 
 
 
 
Each Iteration is a matrix-vector multiplication by                   , requiring time O(m)  

T = O
³
2
¸2

log
¡
n
²

¢´
= O

¡
n2 log

¡
n
²

¢¢

¸2 = 1
n2

¡
I+W
2

¢

RunTime =O
¡
mn2 log

¡
n
²

¢¢

ESSENTIALLY TIGHT 

1=2 1=2

S t 

GAMBLER’S RUIN 
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PATH: 

Iterations necessary to converge to ²-approximate solution: 
 
 
 
 
Each Iteration is a matrix-vector multiplication by                   , requiring time O(m)  

T = O
³
2
¸2

log
¡
n
²

¢´
= O

¡
n2 log

¡
n
²

¢¢

¸2 = 1
n2

¡
I+W
2

¢

RunTime =O
¡
mn2 log

¡
n
²

¢¢
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Consider energy interpretation: 
 
 
 
 
This is a convex optimization problem on which we can apply gradient 
descent techniques. 
 
Accelerated gradient techniques achieve better convergence: 
 
 
 
Improved iteration count: 
 

min
x?~1

1
2
¢ xTLx¡ xTÂ

Accelerated Gradient Descent 

CHEBYSHEV’S ITERATION CONJUGATE GRADIENT 

rf(x) = Lx¡Â

¸2D ¹r2f(x) ¹ 2D

T = O

µr
2

¸2
log
³n
²

´¶



Still no luck, but … 
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PATH: ¸2 = 1
n2

T = O
³
n log

³n
²

´´

RunTime =O
¡
mn log

¡
n
²

¢¢

BEST POSSIBLE USING GRADIENT APPROACH 
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PATH: ¸2 = 1
n2

T = O
³
n log

³n
²

´´

RunTime =O
¡
mn log

¡
n
²

¢¢

BEST POSSIBLE USING GRADIENT APPROACH 

IT TAKES n    STEPS FOR CHARGE TO TRAVEL ACROSS 



Combining Representation and Iteration 
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Gaussian elimination and gradient methods seem complementary 
 
• Gaussian elimination is nearly-linear on paths (and trees),  
   but slow on expanders. 
 
• Gradient methods are nearly-linear time on expanders,  
   but slow on paths. 
 
MAIN APPROACH TO FAST SOLVERS: 

 Combine Gaussian elimination and gradient methods  
 to obtain best of both worlds 



Combining Representation and Iteration: 
Combinatorial Preconditioning 
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  Lv = Â

Gradient methods fail when condition number is large. 
 
IDEA: modify system to improve condition number 
 
 
 
where H is a preconditioner graph.  
  
DESIRED PROPERTIES OF H: 

1. New matrix is well conditioned: 
 

2. Linear systems in LH  can be solved quickly by Gaussian elimination    
 
 

L+HLv = L+HÂ

L+HL
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Combinatorial Preconditioning 
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  Lv = Â

Gradient methods fail when condition number is large. 
 
IDEA: modify system to improve condition number 
 
 
 
where H is a preconditioner graph.  
  
DESIRED PROPERTIES OF H: 

1. New matrix is well conditioned: 
 

2. Linear systems in LH  can be solved quickly by Gaussian elimination    
 
 

L+HLv = L+HÂ

L+HL
IMPROVES 

ITERATION COUNT 

KEEPS ITERATIONS 
LINEAR TIME 
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G
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Gspanning tree T 
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Gspanning tree T 

e
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Gspanning tree T 

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e 
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Gspanning tree T 

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e 

st(e) = 5
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Gspanning tree T 

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e 

st(e) =
p
n
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Gspanning tree T 

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e 

Total Stretch of e 

st(T ) =
X

e2E
st(e)
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Gspanning tree T 

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e 

Total Stretch of e 

st(T ) =
X

e2E
st(e)

st(T) =O(n1:5)
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Gspanning tree T 

ePe

st(e) =
1

re

X

e02Pe

re0

Stretch of e 

Total Stretch of e 

st(T ) =
X

e2E
st(e)

st(T) =O(n1:5)
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Q: How does this help?  
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Q: How does this help? 
A: Can help to bound condition number of system preconditioned by T 

1 ¢ I ¹ L+TLG ¹ st(T) ¢ I
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Q: How does this help? 
A: Can help to bound condition number of system preconditioned by T 

1 ¢ I ¹ L+TLG ¹ st(T) ¢ I
Spanning tree 

property 
Low-stretch-tree 

property 

[SW09] 
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Q: How does this help? 
A: Can help to bound condition number of system preconditioned by T 
 

 

EASY PROOF: 
1 ¢ I ¹ L+TLG ¹ st(T) ¢ I

¸max
¡
L+TLG

¢
· Tr

¡
L+TLG

¢
=
P
e2E Â

T
e L

+
TÂe = st(T)

[SW09] 



Preconditioning: Low-Stretch Trees 
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Q: How does this help? 
A: Can help to bound condition number of system preconditioned by T 
 

 

EASY PROOF: 
1 ¢ I ¹ L+TLG ¹ st(T) ¢ I

¸max
¡
L+TLG

¢
· Tr

¡
L+TLG

¢
=
P
e2E Â

T
e L

+
TÂe = st(T)

Trace bounds eigenvalue 

[SW09] 



Preconditioning: Low-Stretch Trees 
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Q: How does this help? 
A: Can help to bound condition number of system preconditioned by T 
 

 

EASY PROOF: 
1 ¢ I ¹ L+TLG ¹ st(T) ¢ I

¸max
¡
L+TLG

¢
· Tr

¡
L+TLG

¢
=
P
e2E Â

T
e L

+
TÂe = st(T)

Tree resistance is path length 

[BH01] 



Preconditioning: Partial Results 
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1. Preconditioning by low-stretch spanning trees[BH01] 

Condition number 

RunTime = ~O(
p
m logn log

¡
n
²

¢
) ¢ [O(m) +O(n)]
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1. Preconditioning by low-stretch spanning trees[BH01] 
 
 
 
 
 
 

RunTime = ~O(
p
m logn log

¡
n
²

¢
) ¢ [O(m) +O(n)]

Condition number L+TLMultiplication by 



Preconditioning: Partial Results 
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1. Preconditioning by low-stretch spanning trees[BH01] 
 
 
 
 
 
 

2. Improved analysis using Conjugate Gradient and Trace bound [SW09] 

RunTime = ~O(
p
m logn log

¡
n
²

¢
) ¢ [O(m) +O(n)]

Condition number L+TLMultiplication by 

RunTime = ~O(m4=3polylog n)

NB: Low-stretch is  a trace bound, stronger than eigenvalue bound!  



Recursive Preconditioning:  
Spielman-Teng and Koutis-Miller-Peng 
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Nearly-linear-time algorithms at last: [ST04], [KMP10],[KMP11] 
 
IDEA: Low-stretch trees do not provide good enough condition number. 
            Use better preconditioner graphs 
 
 



Recursive Preconditioning:  
Spielman-Teng and Koutis-Miller-Peng 
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Nearly-linear-time algorithms at last: [ST04], [KMP10],[KMP11] 
- 
IDEA: Low-stretch trees do not provide good enough condition number. 
            Use better preconditioner graphs 
 
 
 
PROBLEM: Hard to solve system for G1. 
 
SOLUTION: Solve recursively. 
 
 

L+G1Lv = L+G1Â
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Nearly-linear-time algorithms at last: [ST04], [KMP10],[KMP11] 
- 
IDEA: Low-stretch trees do not provide good enough condition number. 
            Use better preconditioner graphs 
 
 
 
PROBLEM: Hard to solve system for G1. 
 
SOLUTION: Solve recursively. 
 
 
 
MAIN IDEA: At every recursive level, Gi becomes smaller as some low-
degree vertices are eliminated via Gaussian elimination. 
 
 

L+G1Lv = L+G1Â

L+G2LG1x = L+G2b



Our Algorithm 
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Our Algorithm 
(at last) 
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Choosing the Right Representation 
Solve for the Flow 
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All algorithms discussed so far aim to solve voltage problem . 
 
 
 
 
This is particularly problematic for gradient-based methods: 
 
 

min
x?~1

1
2
¢ vTLv¡ vTÂ

CURSE OF LONG PATHS 
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All algorithms discussed so far aim to solve voltage problem . 
 
 
 
 
Our algorithm targets the minimum-energy flow problem: 
 
 
 
 
 
 

min
x?~1

1
2
¢ vTLv¡ vTÂ

min fTRf

s.t BT f = Â



Choosing the Right Representation 
Solve for  Electrical Flow 

All algorithms discussed so far aim to solve voltage problem . 
 
 
 
 
Our algorithm targets the minimum-energy flow problem: 
 
 
 
 
 

min
x?~1

1
2
¢ vTLv¡ vTÂ

min fTRf

s.t BT f = Â

Minimize energy 
 
Route correct net flow 



Choosing the Right Representation 
Solve for  Electrical Flow 
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All algorithms discussed so far aim to solve voltage problem . 
 
 
 
 
Our algorithm targets the minimum-energy flow problem: 
 
 
 
 
This choice opens up different representational questions: 
 
 
 
Could this be a flow path in our basic representation? 
 

min
x?~1

1
2
¢ vTLv¡ vTÂ

min fTRf

s.t BT f = Â

1 1 1 1 1 1

Minimize energy 
 
Route correct net flow 



Optimality Conditions for Flow Problem 
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1. Ohm's Law:

9v : f = R¡1Bv

2. Kircho®'s Conservation Law:

BT f = Â
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1. Ohm's Law:

9v : f = R¡1Bv

2. Kircho®'s Conservation Law:

BT f = Â

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Flow-induced voltage drop along cycle is 0.
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1. Ohm's Law:

9v : f = R¡1Bv

2. Kircho®'s Conservation Law:

BT f = Â

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law
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We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Flow values 
Unit resistances 

1 

2 
1 

1 

1 

1 

1 
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We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Flow values 
Unit resistances 
 
 
Obeys KCL 

1 

2 
1 

1 

1 

1 

1 
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Optimality Conditions for Flow Problem 
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We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Flow values 
Unit resistances 
 
 
Obeys KCL 
 
Set voltages 
using spanning tree 

1 

2 
1 

1 

1 

1 

1 

1 

0 

1 

1 

2 

4 

2 

3 2 



 
 
 
 
 
 
 
 
 
 
 

Optimality Conditions for Flow Problem 

114 

We eliminate dependence on voltages in Ohm's Law:

Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow has

X

e2C
refe = 0

Fact: Ohm's Law $ Kircho®'s Cycle Law

Flow values 
Unit resistances 
 
 
Obeys KCL 
 
Set voltages 
using spanning tree 
 
KCL ensures that off-tree edges respect Ohm’s Law 
 

1 

2 
1 

1 

1 

1 

1 

1 

0 

1 

1 

2 

4 

2 

3 2 
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1. Kircho®'s Cycle Law: For any cycle C in G; the optimal electrical °ow

has X

e2C
refe = 0

2. Kircho®'s Conservation Law:

BT f = Â

Algorithmic Approach 

MAINTAIN SATISFIED 

ITERATIVELY FIX BY  
ADDING/REMOVING 
FLOW ALONG CYCLES 
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• Pick a cycle Improve: 

Algorithmic Approach 
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Initialize: 

 
 

 
 

 

 

• Pick a cycle Improve: • Pick a cycle 
• Fix it 

Algorithmic Approach 



1/4 

1/4 

1/4 

1/4 

Initialize: 

 
 

 
 

 

 

Improve: • Pick a cycle 
• Fix it 

Algorithmic Approach 

Send ¢
R

°ow in opposite direction
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• Pick a cycle 
• Fix it 

Improve: • Pick a cycle 
• Fix it   
• Repeat  

Algorithmic Approach 
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• Pick a cycle 
• Fix it   
• Repeat  

Improve: 

Output: 

1 1 
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5/8 9/16 

7/16 
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3/8 

1/16 
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1/16 
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51/16 

35/16 
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25/16 0 

24/16 

23/16 
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Which 
cycle? 

How many 
iterations? 

How to 
implement? 

Algorithmic Approach 



Initialize: 

 
 

 
 

 

 

• Pick a cycle 
• Fix it   
• Repeat  

Improve: 

Output: 

1 1 

1 

5/8 9/16 

7/16 

0 

3/8 

1/16 

3/8 

1/16 

1 

s 
t 

51/16 

35/16 
1 

25/16 0 

24/16 

23/16 

23/16 

29/16 

Which 
cycle? 

How many 
iterations? 

How to 
implement? 

Algorithmic Approach 

IDEA: A nearly-linear number of cheap (i.e. O(log n) iterations! 
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f2 



Choosing the Right Representation: 
Cycle Space 

123 

BTf = Â

f0 

f1 

f =R¡1Bv

0 

f* 
f2 

Cycle updates 

An affine translation of span of cycles (cycle space CG)  

CG = fc : BTc = 0g



Choosing the Right Representation: 
Cycle Space 
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BTf = Â

f0 

f1 

f =R¡1Bv

0 

f* 
f2 

Cycle updates 

An affine translation of span of cycles (cycle space CG)  

CG = fc : BTc = 0g

RESTRICT OUR ATTENTION TO CYCLE SPACE 
GOAL: FIND A GOOD BASIS TO WORK ON 



Choosing the Right Representation: 
Basis of Cycle Space 
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Fact:  
Fundamental cycles of spanning tree give a basis of cycle space 

Fix spanning tree T 



Choosing the Right Representation: 
Basis of Cycle Space 
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Fact:  
Fundamental cycles of spanning tree give a basis of cycle space 

Fix spanning tree T 

e 

ce 



Our New Representation 
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ORIGINAl PROBLEM 

Use spanning tree T 
basis for CG  

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

8c 2 CG : cTR(f0 + f) = 0

BT f = 0



Our New Representation 
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ORIGINAl PROBLEM 

8c 2 CG : cTR(f0 + f) = 0

BT f = 0

Use spanning tree T 
basis for CG  

m – n + 1 constraints 8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

m – n + 1 variables 
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ORIGINAl PROBLEM 

8c 2 CG : cTR(f0 + f) = 0

BT f = 0

Use spanning tree T 
basis for CG  

m – n + 1 constraints 

Iteratively fix fundamental cycles of T 

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

m – n + 1 variables 



Our New Representation 
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ORIGINAl PROBLEM 

8c 2 CG : cTR(f0 + f) = 0

BT f = 0

Use spanning tree T 
basis for CG  

m – n + 1 constraints 

Iteratively fix fundamental cycles of T WHAT ITERATIVE METHOD IS THIS? 

m – n + 1 variables 

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece



Initialize: 

 
 

 
 

 

 

• Pick a cycle 
• Fix it   
• Repeat  

Improve: 

Output: 

1 1 
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5/8 9/16 
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25/16 0 
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29/16 

How many 
iterations? 

How to 
implement? 

Algorithmic Approach 

IDEA: A nearly-linear number of cheap (i.e. O(log n) iterations! 

Which 
cycle? 



Choosing the Right Iteration 
 Gradient Descent? 
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BTf = Â

ft 

f =R¡1Bv

0 

f* 

An affine translation of span of cycles (cycle space CG)  

CG = fc : BTc = 0g

Basis of fundamental cycles 



Choosing the Right Iteration 
 Gradient Descent? 
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BTf = Â

ft 

f =R¡1Bv

0 

f* 

An affine translation of span of cycles (cycle space CG)  

CG = fc : BTc = 0g
Basis of fundamental cycles 

Gradient descent would update all cycles at once. 
Requires linear time at each iteration. 
 
 

rf



Choosing the Right Iteration 
 Randomized Cordinate Descent! 
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BTf = Â

ft 

f =R¡1Bv

0 

f* 

An affine translation of span of cycles (cycle space CG)  

CG = fc : BTc = 0g
Basis of fundamental cycles 

Move along one coordinate direction at a time. 
Choose basis vector ce w.p. proportional to 
 

 

 

Convergence analysis?  
 

cTe Rce
re

= st(e) + 1

[SV09] 
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min
x?~1

1
2
¢ xTAx¡ bTx

Iteration count for gradient descent: 
 
 
 
 
Iteration count for randomized coordinate descent: 
 
 
 
 
 

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´

T = O
³
¸max(A)

¸min(A)
log
¡
n
²

¢´

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece
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min
x?~1

1
2
¢ xTAx¡ bTx

Iteration count for gradient descent: 
 
 
 
 
Iteration count for randomized coordinate descent: 
 
 
 
 
 

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´

T = O
³
¸max(A)

¸min(A)
log
¡
n
²

¢´

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

Worse by a factor of m – n + 1 in our case 
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min
x?~1

1
2
¢ xTAx¡ bTx

 
 
 
Same calculation as for voltage preconditioning. 
 
Iteration count for randomized coordinate descent: 
 
 
 
 
 

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

¸min(A) = 1 ¸max(A) · Tr(A) = st(T) +O(n)

Tree stretch 



New Condition Numbers 
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min
x?~1

1
2
¢ xTAx¡ bTx

 
 
 
Same calculation as for voltage preconditioning. 
 
Iteration count for randomized coordinate descent: 
 
 
 
 
 

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

¸min(A) = 1 ¸max(A) · Tr(A) = st(T) +O(n)

Tree stretch 

Worse by a factor of m – n + 1 in our case 
We start with a trace guarantee, 
Not an eigenvalue one 
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min
x?~1

1
2
¢ xTAx¡ bTx

 
 
 
Same calculation as for voltage preconditioning. 
 
Pick spanning tree T to be low stretch. 
 
Iteration count for randomized coordinate descent: 
 
 
 
 
 

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´
= ~O

¡
m logn log

¡
n
²

¢¢

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

¸min(A) = 1 ¸max(A) · Tr(A) = st(T) +O(n)

Tree stretch 
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min
x?~1

1
2
¢ xTAx¡ bTx

 
 
 
Same calculation as for voltage preconditioning. 
 
Pick spanning tree T to be low stretch. 
 
Iteration count for randomized coordinate descent: 
 
 
 
 
 

T = O
³

Tr(A)
¸min(A)

log
¡
n
²

¢´
= ~O

¡
m logn log

¡
n
²

¢¢

8e 2 E n T : cTe R(f0 + f) = 0

f =
P
e2EnT fece

¸min(A) = 1 ¸max(A) · Tr(A) = st(T) +O(n)

Tree stretch 

NEARLY-LINEAR 
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Improve: 
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How to 
implement? 

Algorithmic Approach 

IDEA: A nearly-linear number of cheap (i.e. O(log n) iterations! 

Which 
cycle? 



Implement updates efficiently 

5/7 

3/7 

2/7 

2/7 

2/7 

2/7 -2/7 

0 

0 

0 

• When the tree is balanced 

• Otherwise 

decompose the tree recursively, i.e. nested dissection, 
gives O(log n) sparse representation 
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• Pick a cycle 
• Fix it   
• Repeat  

How many 
iterations? 

How to 
implement? 

Resulting Algorithm 

Which 
cycle? 

Fundamental cycle from low-stretch 
spanning tree T, sampled with 

probability proprtional to stretch.  
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• Pick a cycle 
• Fix it   
• Repeat  

How many 
iterations? 

How to 
implement? 

Resulting Algorithm 

Which 
cycle? 

Fundamental cycle from low-stretch 
spanning tree T, sampled with 

probability proprtional to stretch.  

~O
¡
m logn log

¡
n
²

¢¢

Randomized coordinate 
descent analysis 

O(logn)
Exploiting separators 

 of size 1 in tree 

TOTAL RUNNING TIME: ~O
¡
m log2 n log

¡
n
²

¢¢
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Open Questions 
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RELATED TO THIS ALGORITHM:  
  
• Can this algorithm be parallelized? Practically important. 
 
• Can it be made deterministic? Random order works on any RHS with high probability. 
 

 
MORE GENERAL: 
 
• Other application of idea about many cheap iterations?  

E.g. cycle update view of undirected maximum flow result? 
 
 

• Other applications of underlying idea: right representation + right iterative method 
 Almost-linear-time undirected maximum flow falls in this framework 
 Can we tackle other important graph problems? 
  e.g. directed maximum flow, better multicommodity flows, … 
 
 
  


