A Simple, Combinatorial Algorithm for Solving SDD Systems in Nearly-Linear Time

Lorenzo Orecchia, MIT Math

Joint work with Jonathan Kelner, Aaron Sidford and Zeyuan Allen Zhu

PROBLEM INPUT: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$.

$$Ax = b$$

SQUARE SYSTEM OF LINEAR EQUATIONS

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant

PROBLEM INPUT: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant

PROBLEM INPUT: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

GOAL: solve for x

Restriction: *A* is **S**ymmetric **D**iagonally-**D**ominant

• Symmetry: $A^{\mathrm{T}} = A$

PROBLEM INPUT: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$.

Γ	a_{11}	a_{12}	• • •	a_{1n}]	$\left(\begin{array}{c} x_1 \end{array} \right)$	\	$\int b_1$	
Γ	a_{12}	a_{22}	•••	a_{2n}		x_2		b_2	
Γ	•	•	•	• •		•	=	• •	
	a_{1n}	a_{2n}	•••	a_{nn}		$\langle x_n \rangle$)	$\left(\begin{array}{c} b_n \end{array} \right)$	Ϳ

GOAL: solve for x

Restriction: A is Symmetric Diagonally-Dominant

- Symmetry: $A^{\mathrm{T}} = A$
- Diagonal Dominance:

for all rows (and columns) *i*, diagonal entry dominates

$$a_{ii} \ge \sum_{j \neq i} |a_{ij}|$$

PROBLEM INPUT: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$.

$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}	• • •	a_{1n} -] /	$\langle x_1 \rangle$		$\left(\begin{array}{c} b_1 \end{array} \right)$
a_{12}	a_{22}	•••	a_{2n}		x_2		b_2
:	•	•	• •		•	=	• •
a_{1n}	a_{2n}	• • •	a_{nn}		$\langle x_n \rangle$	/	$\left(\begin{array}{c} b_n \end{array} \right)$

GOAL: solve for x

Restriction: *A* is **S**ymmetric **D**iagonally-**D**ominant

- Symmetry: $A^{\mathrm{T}} = A$
- Diagonal Dominance: for all i, $a_{ii} \ge \sum_{j \neq i} |a_{ij}|$

WHY SDD ? Practically important subcase of positive semidefinite matrices $A \vdash 0$ Easy-to-identify null space

PROBLEM INPUT: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$.

$\begin{bmatrix} a_{11} \end{bmatrix}$	a_{12}	•••	a_{1n} -] /	x_1		$\left(\begin{array}{c} b_1 \end{array} \right)$
a_{12}	a_{22}	• • •	a_{2n}		x_2		b_2
•	•	•••	• •		• •	=	•
a_{1n}	a_{2n}	• • •	a_{nn}		x_n)	$\left(b_n \right)$

GOAL: solve for x

Restriction: *A* is **S**ymmetric **D**iagonally-**D**ominant

- Symmetry: $A^{\mathrm{T}} = A$
- Diagonal Dominance: for all i, $a_{ii} \ge \sum_{j \neq i} |a_{ij}|$

WHY SDD ? Practically important subcase of positive semidefinite matrices $A \vdash 0$ Easy-to-identify null space

PROBLEM INPUT: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, b \in \text{Im}(A)$

GOAL: solve for x

• approximately: $\|x - x^*\|_A \cdot \|\epsilon\| \|x^*\|_A$

•in nearly-linear time in the sparsity $\mathrm{nnz}(A)$ and $\log(1/\epsilon)$, i.e.

 $\mathsf{RunTime} = O\left(\mathsf{nnz}(A) \cdot \mathsf{polylog}(n) \cdot \log(1/\epsilon)\right)$

Reduction to Laplacian Systems

SDD SYSTEM:

LAPLACIAN SYSTEM:

$$Ax = b$$
 $Lv = \chi$

[Gremban'96]

Reduction preserves approximation and sparsity

Graph Laplacian

G = (V, E, w) weighted undirected graph with n vertices and m edges

 $\operatorname{\mathbf{GRAPH}} G$

GRAPH LAPLACIAN L(G) $L(G) = \begin{bmatrix} 4 & -1 & 0 & -1 & -2 \\ -1 & 4 & -3 & 0 & 0 \\ 0 & -3 & 4 & -1 & 0 \\ -1 & 0 & -1 & 2 & 0 \\ -2 & 0 & 0 & 0 & 2 \end{bmatrix}$

Graph Laplacian

G = (V, E, w) weighted undirected graph with n vertices and m edges

Graph Laplacian

G = (V, E, w) weighted undirected graph with n vertices and m edges

$$L(G) = \sum_{e = \{i, j\} \in E} w_e \begin{pmatrix} 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 1 & \dots & -1 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & -1 & \dots & 1 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \end{pmatrix}^{j}$$

13

$$L(G) = \sum_{e = \{i, j\} \in E} w_e \begin{pmatrix} 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 1 & \dots & -1 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & -1 & \dots & 1 & \dots & 0 \\ \vdots & j \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \end{pmatrix}^{j}$$

Edge Matrix L_e

$$L(G) = \sum_{e = \{i, j\} \in E} w_e \begin{pmatrix} 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 1 & \dots & -1 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & -1 & \dots & 1 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \end{pmatrix}^{j}$$

Edge Matrix L_e has rank 1

ARBITRARY ORIENTATION OF EDGES: WILL BE USEFUL WHEN DISCUSSING FLOWS

More Graph Matrices: Incidence Matrix

G = (V, E, w) weighted undirected graph with n vertices and m edges

More Graph Matrices: Incidence Matrix

G = (V, E, w) weighted undirected graph with *n* vertices and *m* edges

More Graph Matrices: Incidence Matrix

Action of Incidence Matrix

G = (V, E, w) weighted undirected graph with n vertices and m edges

Action of B^T on a vector $f \in \mathbb{R}^m$:

 $(B^T f)_i$ = flow out of i – flow into of i = net flow into graph at i

Action of Bon a vector $v \in \mathbb{R}^n$:

$$(Bv)_{e=(i,j)} = v_i - v_j =$$
change in v along (i,j)

Edge conductances w_e

Edge conductances w_e

Edge resistances r_e

$$r_e = 1/w_e$$

Edge conductances w_e

Edge resistances r_e

$$r_e = 1/w_e$$

one unit of electrical flow Into vertex 1 and out of 3

Edge conductances w_e

Edge resistances r_e

 $r_{e} = 1/w_{e}$

one unit of electrical flow Into vertex 1 and out of 3

Q: What is resulting electrical flow on the graph?

Edge conductances w_e

Edge resistances r_e

$$r_e = 1/w_e$$

one unit of electrical flow Into vertex 1 and out of 3

1. Ohm's Law: For every edge $e = (i, j) \in E$:

$$f_{(i,j)} = \frac{v_i - v_j}{r_{ij}}$$

2. Kirchoff's Conservation Law: For every vertex $i \in V$:

flow out of i – flow into i = net flow into network at i

Edge conductances w_e

Edge resistances r_e

one unit of electrical flow Into vertex 1 and out of 3

1. Ohm's Law: For every edge $e = (i, j) \in E$:

$$f_{(i,j)} = \frac{v_i - v_j}{r_{ij}} \longrightarrow f = R^{-1}Bv = WBv$$

2. Kirchoff's Conservation Law: For every vertex $i \in V$:

flow out of i – flow into i = net flow into network at i 26

Edge conductances w_e

Edge resistances r_e

one unit of electrical flow Into vertex 1 and out of 3

1. Ohm's Law:

$$f = R^{-1}Bv = WBv$$

2. Kirchoff's Conservation Law:

$$B^T f = e_s - e_t$$

Example above: Current source s is vertex 1. Current sink t is vertex 3

Edge conductances w_e

Edge resistances r_e

one unit of electrical flow Into vertex 1 and out of 3

1. Ohm's Law:

$$f = R^{-1}Bv = WBv$$

2. Kirchoff's Conservation Law:

General net flow vector χ allowed:

$$B^T f = \chi \qquad \qquad \chi^T \vec{1} = 0$$

Example above: Current source s is vertex 1. Current sink t is vertex 3

Laplacian Systems as Electrical Problems

Edge conductances w_e

Edge resistances r_e

$$r_e = 1/w_e$$

General net flow vector χ :

$$\chi^{\rm T}\vec{1}=0$$

one unit of electrical flow Into vertex 1 and out of 3

Q: What is resulting electrical flow on the graph?

$$\begin{cases} f = R^{-1}Bv = WBv, \\ B^{T}f = \chi \end{cases} \right\} \to B^{T}WBv = Lv = \chi$$

Laplacian Systems as Electrical Problems

Edge conductances w_e

Edge resistances r_e

$$r_e = 1/w_e$$

General net flow vector χ :

$$\chi^{\rm T}\vec{1}=0$$

one unit of electrical flow Into vertex 1 and out of 3

Q: What is resulting electrical flow on the graph?

$$Lv = \chi$$

Given input currents χ , finding voltage is equivalent to solving Laplacian system of linear equations

Laplacian Systems as Electrical Problems

Given input currents χ , finding voltage is equivalent to solving Laplacian system of linear equations

Energy Intepretation

Why it matters

- Direct Applications
 - Modeling electrical networks
 - Simulating random walks
 - PageRank

$$L^+ \chi = \sum_{t=0}^{\infty} \left(\frac{I+W}{2}\right)^t \chi$$

Aggregate behavior of lazy random walk started at χ

Why it matters

- Direct Applications
 - Modeling electrical networks
 - Simulating random walks
 - PageRank

Numerical Applications

- Finite element [BHV08]
- Matrix exponential [OSV12]
- Largest eigenvalue [ST12]
- Image Smoothing

Why it matters: Faster Graph Algorithms "The Laplacian Paradigm"

- Maximum flow [CKM+11,LRS13,KOLS12]
- Multicommodity flow [KMP12, KOLS12]
- Random spanning trees [KM09]
- Graph sparsification [SS11]
- Lossy flow, min-cost flow [DS08]
- Balanced partitioning [OSV12]
- Oblivious routing [KOLS12]
- ... and more
Highlights of Previous Work

...

Williams alg

 $O(n^{2.373})$

Gaussian

Iterative methods for PSD matrices

> Conjugate Gradient

Chebyshev Method

O(nm)

Multigrid

Many many others...

For SDD/ Laplacians

 $O(m^{1.75})$ started by [Vaidya'90]

Spielman-Teng O(m polylog n)

. . .

Sped up by [KMP'12] to $\tilde{O}(m \log n)$

Our Result

Solve Lx = b in time $\tilde{O}\left(m\log^2 n\log\frac{1}{\epsilon}\right)$

- Very different approach
- Simple and intuitive algorithm
- Proof fits on a single blackboard
- Easily shown to be numerically stable

Our Result

Solve Lx = b in time $\tilde{O}\left(m\log^2 n\log\frac{1}{\epsilon}\right)$

- Very different approach
- Simple and intuitive algorithm
- Proof fits on a single blackboard
- Easily shown to be numerically stable

Previous methods are not as stable, need $\log^{c} n$ -bit precision (although $\tilde{O}(m \log n)$ is achieved, an extra $\log^{c} n$ factor is hidden) In unit-cost RAM model, our algorithm is faster.

Which computational model?

Q: How do we account for running time of arithmetic operations?A: Constant time for operations on word-size sequence of bits.

Size of Word: Polynomial in size of input

Which computational model?

Q: How do we account for running time of arithmetic operations?A: Constant time for operations on word-size sequence of bits.

Size of Word: Polynomial in size of input

Our work:

$$O(\log n)$$

UNIT-COST RAM MODEL: MORE REALISTIC MODEL

Size of Word: Linear in size of input

PROBLEM REPRESENTATION

ITERATIVE METHOD

PROBLEM REPRESENTATION

Not all representations created equally: e.g. eigenvalue decomposition

Good representation often requires combinatorial insight

ITERATIVE METHOD

PROBLEM REPRESENTATION

Not all representations created equally: e.g. eigenvalue decomposition

Good representation often requires combinatorial insight

ITERATIVE METHOD

Leverage large body of techniques in **continuous optimization**

Regularization Gradient Descent Accelerated Gradient Descent Randomized Coordinate Descent

PROBLEM REPRESENTATION

Not all representations created equally: e.g. eigenvalue decomposition

Good representation often requires combinatorial insight

Leverage large body of techniques in **continuous optimization**

Regularization Gradient Descent Accelerated Gradient Descent Randomized Coordinate Descent

Efficiency and simplicity of algorithm relies on combining these two tools in the right way

Techniques and Challenges in the Solution of Laplacian Systems

Cholesky Decomposition

Advantages:

- Gives exact algorithm
- Computes inverse matrix (can then be used on any b)
- Can choose elimination order

Advantages:

- Gives exact algorithm
- Computes implicit representation of inverse matrix

(can then be used on any b)

Can choose elimination order

Disadvantages:

• Intermediate Laplacians can be very dense

Combinatorial arguments can help preserve sparsity by selecting good order:

Combinatorial arguments can help preserve sparsity by selecting good order:

Small Vertex Separator

Combinatorial arguments can help preserve sparsity by selecting good order:

Combinatorial arguments can help preserve sparsity by selecting good order:

Size of existing separators bounds sparsity Works well if small separators always exist (and are easy to find)

Combinatorial arguments can help preserve sparsity by selecting good order:

Size of existing separators bounds sparsity Works well if small separators always exist (and are easy to find) E.G.: Planar Graphs

Any elimination order requires producing a dense graph.

Advantages:

- Gives exact algorithm
- Computes implicit representation of inverse matrix (can then be used on any b)
- Can choose elimination order to minimize running time

Disadvantages:

- Intermediate Laplacians can be very dense
- Very slow in worst case:

$$O(n^3) \longrightarrow O(n^w)$$

FAR FROM NEARLY LINEAR!

Easily linear time for some graphs:

This works more in general for trees by **recursively eliminating a leaf.**

Consider energy interpretation:

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot x^{\mathrm{T}} L x - x^{\mathrm{T}} \chi$$

This is a **convex optimization problem** on which we can apply gradient descent techniques.

Consider energy interpretation:

$$\min_{x \perp \vec{1}} \quad \frac{\frac{1}{2} \cdot x^{\mathrm{T}} L x - x^{\mathrm{T}} \chi}{f(x)}$$

$$\nabla f(x) = Lx - \chi$$
$$\nabla^2 f(x) = L$$

This is a **convex optimization problem** on which we can apply gradient descent techniques.

Consider energy interpretation:

$$\min_{x \perp \vec{1}} \quad \frac{\frac{1}{2} \cdot x^{\mathrm{T}} L x - x^{\mathrm{T}} \chi}{f(x)}$$

$$\nabla f(x) = Lx - \chi$$
$$\lambda_2 D \preceq \nabla^2 f(x) \preceq 2D$$

Use degree norm $\|\cdot\|_D$

This is a **convex optimization problem** on which we can apply gradient descent techniques.

Consider energy interpretation:

$$\min_{x \perp \vec{1}} \quad \frac{\frac{1}{2} \cdot x^{\mathrm{T}} L x - x^{\mathrm{T}} \chi}{f(x)}$$

$$\nabla f(x) = Lx - \chi$$

 $\lambda_2 D \preceq \nabla^2 f(x) \preceq 2D$

This is a **convex optimization problem** on which we can apply gradient descent techniques.

Construct iterative solutions: $x^{(0)}, x^{(1)}, x^{(2)}, \ldots, x^{(t)}, \ldots$

$$x^{(t+1)} = x^{(t)} - hD^{-1}\nabla f(x^{(t)})$$

Step length

Consider energy interpretation:

$$\min_{x \perp \vec{1}} \quad \frac{\frac{1}{2} \cdot x^{\mathrm{T}} L x - x^{\mathrm{T}} \chi}{f(x)}$$

$$\nabla f(x) = Lx - \chi$$
$$\lambda_2 D \preceq \nabla^2 f(x) \preceq \underline{2D}$$

This is a **convex optimization problem** on which we can apply gradient descent techniques.

Construct iterative solutions: $x^{(0)}, x^{(1)}, x^{(2)}, \ldots, x^{(t)}, \ldots$

$$x^{(t+1)} = x^{(t)} - \frac{1}{2}D^{-1}\nabla f(x^{(t)})$$

By standard gradient descent analysis h = 1/2For quadratic function, it can be optimized at every step.

Consider energy interpretation:

$$\min_{x \perp \vec{1}} \quad \frac{\frac{1}{2} \cdot x^{\mathrm{T}} L x - x^{\mathrm{T}} \chi}{f(x)}$$

$$\nabla f(x) = Lx - \chi$$

 $\lambda_2 D \preceq \nabla^2 f(x) \preceq \underline{2D}$

This is a **convex optimization problem** on which we can apply gradient descent techniques.

Construct iterative solutions: $x^{(0)}, x^{(1)}, x^{(2)}, \ldots, x^{(t)}, \ldots$

$$x^{(t+1)} = \sum_{j=0}^{t} \left(\frac{I+W}{2}\right)^{j} \chi$$

UNRAVEL RECURSION TO OBTAIN TRUNCATED SERIES: t steps of random walk

Consider energy interpretation:

$$\min_{x \perp \vec{1}} \quad \frac{\frac{1}{2} \cdot x^{\mathrm{T}} L x - x^{\mathrm{T}} \chi}{f(x)}$$

$$\nabla f(x) = Lx - \chi$$
$$\underline{\lambda_2 D \preceq \nabla^2 f(x) \preceq 2D}$$

This is a **convex optimization problem** on which we can apply gradient descent techniques.

Construct iterative solutions:
$$x^{(0)}, x^{(1)}, x^{(2)}, \dots, x^{(t)}, \dots$$

 $x^{(t+1)} = \sum_{j=0}^{t} \left(\frac{I+W}{2}\right)^{j} \chi$

Iterations necessary to converge to ϵ -approximate solution:

$$T = O\left(\frac{2}{\lambda_2}\log\left(\frac{n}{\epsilon}\right)\right)$$

Bad Example for Gradient Descent

Iterations necessary to converge to ϵ -approximate solution:

$$T = O\left(\frac{2}{\lambda_2}\log\left(\frac{n}{\epsilon}\right)\right) = O\left(n^2\log\left(\frac{n}{\epsilon}\right)\right)$$
Bad Example for Gradient Descent

Iterations necessary to converge to ϵ -approximate solution:

$$T = O\left(\frac{2}{\lambda_2}\log\left(\frac{n}{\epsilon}\right)\right) = O\left(n^2\log\left(\frac{n}{\epsilon}\right)\right)$$

Each Iteration is a matrix-vector multiplication by $\left(\frac{I+W}{2}\right)$, requiring time $\mathcal{O}(m)$

RunTime =
$$O\left(mn^2 \log\left(\frac{n}{\epsilon}\right)\right)$$

ESSENTIALLY TIGHT

Bad Example for Gradient Descent

PATH:
$$\lambda_2=rac{1}{n^2}$$

Iterations necessary to converge to ϵ -approximate solution:

$$T = O\left(\frac{2}{\lambda_2}\log\left(\frac{n}{\epsilon}\right)\right) = O\left(n^2\log\left(\frac{n}{\epsilon}\right)\right)$$

Each Iteration is a matrix-vector multiplication by $\left(\frac{I+W}{2}\right)$, requiring time $\mathrm{O}(m)$

RunTime =
$$O\left(mn^2 \log\left(\frac{n}{\epsilon}\right)\right)$$

Accelerated Gradient Descent

Consider energy interpretation:

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot x^{\mathrm{T}} L x - x^{\mathrm{T}} \chi$$

$$\nabla f(x) = Lx - \chi$$
$$\lambda_2 D \preceq \nabla^2 f(x) \preceq 2D$$

This is a **convex optimization problem** on which we can apply gradient descent techniques.

Accelerated gradient techniques achieve better convergence:

CHEBYSHEV'S ITERATION

CONJUGATE GRADIENT

Improved iteration count:

$$T = O\left(\sqrt{\frac{2}{\lambda_2}}\log\left(\frac{n}{\epsilon}\right)\right)$$

Still no luck, but ...

RunTime = $O\left(mn\log\left(\frac{n}{\epsilon}\right)\right)$ BEST POSSIBLE USING GRADIENT APPROACH

Still no luck, but ...

IT TAKES n STEPS FOR CHARGE TO TRAVEL ACROSS

RunTime = $O\left(mn\log\left(\frac{n}{\epsilon}\right)\right)$

BEST POSSIBLE USING GRADIENT APPROACH

Combining Representation and Iteration

Gaussian elimination and gradient methods seem complementary

- Gaussian elimination is nearly-linear on paths (and trees), but slow on expanders.
- Gradient methods are nearly-linear time on **expanders**, but slow on **paths**.

MAIN APPROACH TO FAST SOLVERS:

Combine Gaussian elimination and gradient methods to obtain **best of both worlds**

Combining Representation and Iteration: Combinatorial Preconditioning

$Lv = \chi$

Gradient methods fail when condition number is large.

IDEA: modify system to improve condition number

$$L_H^+ L v = L_H^+ \chi$$

where H is a **preconditioner** graph.

DESIRED PROPERTIES OF H:

1. New matrix is well conditioned: $L_H^+ L$

2. Linear systems in L_H can be solved quickly by Gaussian elimination

Combining Representation and Iteration: Combinatorial Preconditioning

$Lv = \chi$

Gradient methods fail when condition number is large.

IDEA: modify system to improve condition number

$$L_H^+ L v = L_H^+ \chi$$

where H is a **preconditioner** graph.

DESIRED PROPERTIES OF H:

1. New matrix is well conditioned: $L_H^+ L$

IMPROVES ITERATION COUNT

2. Linear systems in L_H can be solved quickly by Gaussian elimination **KEEPS ITERATIONS**

LINEAR TIME

spanning tree T

spanning tree T

88

spanning tree T G

 ${\rm Stretch} \ {\rm of} \ e$

$$\operatorname{st}(T) = \sum_{e \in E} \operatorname{st}(e)$$

Total Stretch of e

Thm [AN12]: In $O(m \log n \log \log n)$ time can compute spanning tree T with:

 $\operatorname{st}(T) = O(m \log n \log \log n)$

 $\operatorname{st}(T) = O(n^{1.5})$

Thm [AN12]: In $O(m \log n \log \log n)$ time can compute spanning tree T with:

 $\operatorname{st}(T) = O(m \log n \log \log n)$

Q: How does this help?

Thm [AN12]: In $O(m \log n \log \log n)$ time can compute spanning tree T with:

 $\operatorname{st}(T) = O(m \log n \log \log n)$

Q: How does this help? A: Can help to bound condition number of system preconditioned by T

$$1 \cdot I \preceq L_T^+ L_G \preceq \operatorname{st}(T) \cdot I$$

Thm [AN12]: In $O(m \log n \log \log n)$ time can compute spanning tree T with:

 $\operatorname{st}(T) = O(m \log n \log \log n)$

Q: How does this help? A: Can help to bound condition number of system preconditioned by T

$$1 \cdot I \preceq L_T^+ L_G \preceq \operatorname{st}(T) \cdot I$$
 [swo9]

Spanning tree property

Low-stretch-tree property

Thm [AN12]: In $O(m \log n \log \log n)$ time can compute spanning tree T with:

 $\operatorname{st}(T) = O(m \log n \log \log n)$

Q: How does this help? **A**: Can help to bound condition number of system preconditioned by T

$$1 \cdot I \preceq L_T^+ L_G \preceq \operatorname{st}(T) \cdot I$$
 [SW09]

EASY PROOF:

$$\lambda_{\max} \left(L_T^+ L_G \right) \cdot \operatorname{Tr} \left(L_T^+ L_G \right) = \sum_{e \in E} \chi_e^T L_T^+ \chi_e = \operatorname{st}(T)$$

Thm [AN12]: In $O(m \log n \log \log n)$ time can compute spanning tree T with:

 $\operatorname{st}(T) = O(m \log n \log \log n)$

Q: How does this help? **A**: Can help to bound condition number of system preconditioned by T

$$1 \cdot I \preceq L_T^+ L_G \preceq \operatorname{st}(T) \cdot I$$
 [SW09]

EASY PROOF:

$$\lambda_{\max} \left(L_T^+ L_G \right) \cdot \operatorname{Tr} \left(L_T^+ L_G \right) = \sum_{e \in E} \chi_e^T L_T^+ \chi_e = \operatorname{st}(T)$$

Trace bounds eigenvalue

Thm [AN12]: In $O(m \log n \log \log n)$ time can compute spanning tree T with:

 $\operatorname{st}(T) = O(m \log n \log \log n)$

Q: How does this help? **A**: Can help to bound condition number of system preconditioned by T

$$1 \cdot I \preceq L_T^+ L_G \preceq \operatorname{st}(T) \cdot I$$
[BH01]

EASY PROOF:

$$\lambda_{\max} \left(L_T^+ L_G \right) \cdot \operatorname{Tr} \left(L_T^+ L_G \right) = \sum_{e \in E} \chi_e^T L_T^+ \chi_e = \operatorname{st}(T)$$

Tree resistance is path length 95

Preconditioning: Partial Results

1. Preconditioning by low-stretch spanning trees[BH01]

RunTime =
$$\tilde{O}(\sqrt{m \log n} \log \left(\frac{n}{\epsilon}\right)) \cdot [O(m) + O(n)]$$

Condition number

Preconditioning: Partial Results

1. Preconditioning by low-stretch spanning trees[BH01]

RunTime =
$$\tilde{O}(\sqrt{m \log n} \log \left(\frac{n}{\epsilon}\right)) \cdot [O(m) + O(n)]$$

Condition number

Multiplication by L_T^+L

Preconditioning: Partial Results

1. Preconditioning by low-stretch spanning trees[BH01]

$$\begin{aligned} \text{RunTime} &= \tilde{O}(\sqrt{m \log n} \log \left(\frac{n}{\epsilon}\right)) \cdot \left[O(m) + O(n)\right] \\ \text{Condition number} & \text{Multiplication by } L_T^+L \end{aligned}$$

2. Improved analysis using Conjugate Gradient and Trace bound [SW09]

RunTime =
$$\tilde{O}(m^{4/3}$$
 polylog $n)$

NB: Low-stretch is a trace bound, stronger than eigenvalue bound!

Recursive Preconditioning: Spielman-Teng and Koutis-Miller-Peng

Nearly-linear-time algorithms at last: [ST04], [KMP10], [KMP11]

IDEA: Low-stretch trees do not provide good enough condition number. Use better preconditioner graphs

Recursive Preconditioning: Spielman-Teng and Koutis-Miller-Peng

Nearly-linear-time algorithms at last: [ST04], [KMP10], [KMP11]

IDEA: Low-stretch trees do not provide good enough condition number. Use better preconditioner graphs

$$L_{G_{1}}^{+}Lv = L_{G_{1}}^{+}\chi$$

PROBLEM: Hard to solve system for G_1 .

SOLUTION: Solve recursively.

Recursive Preconditioning: Spielman-Teng and Koutis-Miller-Peng

Nearly-linear-time algorithms at last: [ST04], [KMP10], [KMP11]

IDEA: Low-stretch trees do not provide good enough condition number. Use better preconditioner graphs

$$L_{G_1}^+ Lv = L_{G_1}^+ \chi$$

PROBLEM: Hard to solve system for G_1 .

SOLUTION: Solve recursively.

$$L_{G_2}^+ L_{G_1} x = L_{G_2}^+ b$$

MAIN IDEA: At every recursive level, G_i becomes smaller as some lowdegree vertices are eliminated via Gaussian elimination.

Our Algorithm

Our Algorithm (at last)

Choosing the Right Representation Solve for the Flow

All algorithms discussed so far aim to solve voltage problem.

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot v^{\mathrm{T}} L v - v^{\mathrm{T}} \chi$$

This is particularly problematic for gradient-based methods:

Choosing the Right Representation Solve for the Flow

All algorithms discussed so far aim to solve voltage problem.

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot v^{\mathrm{T}} L v - v^{\mathrm{T}} \chi$$

Our algorithm targets the minimum-energy <u>flow problem</u>:

$$\begin{array}{ll} \min & f^T R f \\ \text{s.t} & B^T f = \chi \end{array}$$

Choosing the Right Representation Solve for Electrical Flow

All algorithms discussed so far aim to solve voltage problem.

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot v^{\mathrm{T}} L v - v^{\mathrm{T}} \chi$$

Our algorithm targets the minimum-energy <u>flow problem</u>:

$$\min \ f^T R f$$
 Minimize energy ${
m s.t} \ B^T f = \chi$ Route correct net flow

Choosing the Right Representation Solve for Electrical Flow

All algorithms discussed so far aim to solve voltage problem.

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot v^{\mathrm{T}} L v - v^{\mathrm{T}} \chi$$

Our algorithm targets the minimum-energy <u>flow problem</u>:

$$\begin{array}{ccc} \min & f^T R f & {}^{\text{Minimize energy}} \\ \text{s.t} & B^T f = \chi & {}^{\text{Route correct net flow}} \end{array}$$

Could this be a flow path in our basic representation?

Optimality Conditions for Flow Problem

1. Ohm's Law:

$$\exists v: \qquad f = R^{-1}Bv$$

2. Kirchoff's Conservation Law:

$$B^T f = \chi$$
1. Ohm's Law:

$$\exists v: \qquad f = R^{-1}Bv$$

2. Kirchoff's Conservation Law:

$$B^T f = \chi$$

We eliminate dependence on voltages in Ohm's Law: **Kirchoff's Cycle Law**: For any cycle C in G, the optimal electrical flow has

$$\sum_{e \in C} r_e f_e = 0$$

Flow-induced voltage drop along cycle is 0.

1. Ohm's Law:

$$\exists v: \qquad f = R^{-1}Bv$$

2. Kirchoff's Conservation Law:

$$B^T f = \chi$$

We eliminate dependence on voltages in Ohm's Law: **Kirchoff's Cycle Law**: For any cycle C in G, the optimal electrical flow has

$$\sum_{e \in C} r_e f_e = 0$$

Fact: Ohm's Law \leftrightarrow Kirchoff's Cycle Law

We eliminate dependence on voltages in Ohm's Law: **Kirchoff's Cycle Law**: For any cycle C in G, the optimal electrical flow has

$$\sum_{e \in C} r_e f_e = 0$$

Fact: Ohm's Law \leftrightarrow Kirchoff's Cycle Law

We eliminate dependence on voltages in Ohm's Law: **Kirchoff's Cycle Law**: For any cycle C in G, the optimal electrical flow has

$$\sum_{e \in C} r_e f_e = 0$$

Fact: Ohm's Law \leftrightarrow Kirchoff's Cycle Law

We eliminate dependence on voltages in Ohm's Law: **Kirchoff's Cycle Law**: For any cycle C in G, the optimal electrical flow has

$$\sum_{e \in C} r_e f_e = 0$$

Fact: Ohm's Law \leftrightarrow Kirchoff's Cycle Law

We eliminate dependence on voltages in Ohm's Law: **Kirchoff's Cycle Law**: For any cycle C in G, the optimal electrical flow has

$$\sum_{e \in C} r_e f_e = 0$$

Fact: Ohm's Law \leftrightarrow Kirchoff's Cycle Law

KCL ensures that off-tree edges respect Ohm's Law

1. Kirchoff's Cycle Law: For any cycle C in G, the optimal electrical flow has

$$\sum_{e \in C} r_e f_e = 0$$
 ITERATIVELY FIX BY
ADDING/REMOVING
FLOW ALONG CYCLES

2. Kirchoff's Conservation Law:

$$B^T f = \chi$$
 MAINTAIN SATISFIED

IDEA: A nearly-linear number of cheap (i.e. $O(\log n)$ iterations!

Choosing the Right Representation: Cycle Space

Choosing the Right Representation: Cycle Space

Choosing the Right Representation: Basis of Cycle Space

Fact:

Fundamental cycles of spanning tree give a basis of cycle space

Fix spanning tree T

Choosing the Right Representation: Basis of Cycle Space

Fact:

Fundamental cycles of spanning tree give a basis of cycle space

Fix spanning tree T

ORIGINAI PROBLEM

$$\forall c \in C_G : \quad c^T R(f_0 + f) = 0$$
$$B^T f = 0$$

Use spanning tree T basis for $C_{\cal G}$

$$\forall e \in E \setminus T : \quad c_e^T R(f_0 + f) = 0$$
$$f = \sum_{e \in E \setminus T} f_e c_e$$

ORIGINAI PROBLEM

$$\forall c \in C_G: \quad c^T R(f_0 + f) = 0$$
$$B^T f = 0$$

ORIGINAI PROBLEM

$$\forall c \in C_G: \quad c^T R(f_0 + f) = 0$$
$$B^T f = 0$$

Iteratively fix fundamental cycles of T

ORIGINAI PROBLEM

$$\forall c \in C_G: \quad c^T R(f_0 + f) = 0$$
$$B^T f = 0$$

WHAT ITERATIVE METHOD IS THIS? Iteratively fix fundamental cycles of T

IDEA: A nearly-linear number of cheap (i.e. $O(\log n)$ iterations!

Choosing the Right Iteration Gradient Descent?

Choosing the Right Iteration Gradient Descent? An affine translation of span of cycles (cycle space C_G) $f = R^{-1}Bv$

0

Choosing the Right Iteration Randomized Cordinate Descent!

Convergence analysis?

Coordinate Descent: Convergence

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot x^{\mathsf{T}} A x - b^{\mathsf{T}} x \qquad \qquad \forall e \in E \setminus T : \quad c_e^T R(f_0 + f) = 0 \\ f = \sum_{e \in E \setminus T} f_e c_e$$

Iteration count for gradient descent:

$$T = O\left(\frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}\log\left(\frac{n}{\epsilon}\right)\right)$$

Iteration count for randomized coordinate descent:

$$T = O\left(\frac{\operatorname{Tr}(A)}{\lambda_{\min}(A)}\log\left(\frac{n}{\epsilon}\right)\right)$$

Coordinate Descent: Convergence

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot x^{\mathsf{T}} A x - b^{\mathsf{T}} x \qquad \qquad \forall e \in E \setminus T : \quad c_e^T R(f_0 + f) = 0 \\ f = \sum_{e \in E \setminus T} f_e c_e$$

Iteration count for gradient descent:

$$T = O\left(\frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}\log\left(\frac{n}{\epsilon}\right)\right)$$

Iteration count for randomized coordinate descent:

$$T = O\left(\frac{\operatorname{Tr}(A)}{\lambda_{\min}(A)}\log\left(\frac{n}{\epsilon}\right)\right)$$

Worse by a factor of m - n + 1 in our case

$$\begin{array}{ll} \underset{x \perp \vec{1}}{\min} & \frac{1}{2} \cdot x^{\mathrm{T}} A x - b^{\mathrm{T}} x & & & \\ \lambda_{\min}(A) = 1 & \lambda_{\max}(A) \cdot & \mathrm{Tr}(A) = \mathrm{st}(T) + O(n) \end{array}$$

Same calculation as for voltage preconditioning.

Tree stretch

Iteration count for randomized coordinate descent:

$$T = O\left(\frac{\operatorname{Tr}(A)}{\lambda_{\min}(A)}\log\left(\frac{n}{\epsilon}\right)\right)$$

New Condition Numbers
$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot x^{T} A x - b^{T} x \quad \longleftarrow \quad \forall e \in E \setminus T : \quad c_{e}^{T} R(f_{0} + f) = 0$$
$$f = \sum_{e \in E \setminus T} f_{e} c_{e}$$

$$\lambda_{\min}(A) = 1$$
 $\lambda_{\max}(A) \cdot \operatorname{Tr}(A) = \operatorname{st}(T) + O(n)$

Tree stretch

Same calculation as for voltage preconditioning.

Iteration count for randomized coordinate descent:

$$T = O\left(\frac{\operatorname{Tr}(A)}{\lambda_{\min}(A)}\log\left(\frac{n}{\epsilon}\right)\right)$$

We start with a trace guarantee, Not an eigenvalue one

Final Convergence

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot x^{T} A x - b^{T} x \quad \longleftarrow \quad \forall e \in E \setminus T: \quad c_{e}^{T} R(f_{0} + f) = 0 \\ f = \sum_{e \in E \setminus T} f_{e} c_{e}$$

$$\lambda \quad (A) = 1 \qquad \lambda \quad (A) \quad \operatorname{Tr}(A) = \operatorname{st}(T) + O(n)$$

$$\lambda_{\min}(A) = 1$$
 $\lambda_{\max}(A) \cdot \operatorname{Tr}(A) = \operatorname{st}(T) + O(n)$

Tree stretch

Same calculation as for voltage preconditioning.

Pick spanning tree T to be low stretch.

Iteration count for randomized coordinate descent:

$$T = O\left(\frac{\operatorname{Tr}(A)}{\lambda_{\min}(A)}\log\left(\frac{n}{\epsilon}\right)\right) = \tilde{O}\left(m\log n\log\left(\frac{n}{\epsilon}\right)\right)$$

Final Convergence

$$\min_{x \perp \vec{1}} \quad \frac{1}{2} \cdot x^{T} A x - b^{T} x \quad \longleftarrow \quad \forall e \in E \setminus T: \quad c_{e}^{T} R(f_{0} + f) = 0 \\ f = \sum_{e \in E \setminus T} f_{e} c_{e}$$

$$\lambda_{\min}(A) = 1$$
 $\lambda_{\max}(A) \cdot \operatorname{Tr}(A) = \operatorname{st}(T) + O(n)$

Tree stretch

Same calculation as for voltage preconditioning.

Pick spanning tree T to be low stretch.

Iteration count for randomized coordinate descent:

$$T = O\left(\frac{\operatorname{Tr}(A)}{\lambda_{\min}(A)}\log\left(\frac{n}{\epsilon}\right)\right) = \tilde{O}\left(m\log n\log\left(\frac{n}{\epsilon}\right)\right)$$

NEARLY-LINEAR

IDEA: A nearly-linear number of cheap (i.e. $O(\log n)$ iterations!

Implement updates efficiently

- Need to compute the potential drop along a tree cycle C_e $\sum_{e' \in C_e} f_e r_e$
- Need to add a constant α to a tree cycle C_e $\forall e' \in C_e$, $f_e \leftarrow f_e + \alpha$;
- When the tree is balanced $\sum_{e \in C} f_e r_e$ requires $O(\log n)$ time to walk over the tree
- Otherwise

decompose the tree recursively, i.e. η sted dissection, gives $O(\log n)$ sparse representation

3/7

entiardro

Resulting Algorithm

Fundamental cycle from low-stretch spanning tree T, sampled with probability proprtional to stretch.

How to implement?

Resulting Algorithm

Fundamental cycle from low-stretch spanning tree T, sampled with probability proprtional to stretch.

 $O\left(m\log n\log\left(\frac{n}{\epsilon}\right)\right)$

Randomized coordinate descent analysis

How to implement?
Resulting Algorithm

Fundamental cycle from low-stretch spanning tree T, sampled with probability proprtional to stretch.

 $\tilde{O}\left(m\log n\log\left(\frac{n}{\epsilon}\right)\right)$

Randomized coordinate descent analysis

Exploiting separators of size 1 in tree

Resulting Algorithm

Fundamental cycle from low-stretch spanning tree T, sampled with probability proprtional to stretch.

 $O\left(m\log n\log\left(\frac{n}{\epsilon}\right)\right)$

Randomized coordinate descent analysis

Exploiting separators of size 1 in tree

TOTAL RUNNING TIME: $\tilde{O}\left(m\log^2 n\log\left(\frac{n}{\epsilon}\right)\right)$

Running Time Improvements

 $\tilde{O}\left(m\log^2 n\log\left(\frac{n}{\epsilon}\right)\right)$

Running Time Improvements

 $\tilde{O}\left(m\log^2 n\log\left(\frac{n}{\epsilon}\right)\right)$

Open Questions

RELATED TO THIS ALGORITHM:

- Can this algorithm be <u>parallelized</u>? **Practically important**.
- Can it be made <u>deterministic</u>? Random order works on any RHS with high probability.

MORE GENERAL:

- Other application of idea about many cheap iterations?
 E.g. cycle update view of undirected maximum flow result?
- Other applications of underlying idea: right representation + right iterative method Almost-linear-time undirected maximum flow falls in this framework Can we tackle other important graph problems?
 e.g. directed maximum flow, better multicommodity flows, ...