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Modeling Performance

“Algorithm/Data Structure X has O " # performance, 
where # is the number of data pages on disk”

… is probably one of the most commonly read phrases in SIGMOD papers.
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Transfer cost 
1 unit

0 access cost

total cost @ total # reads/writes to disk
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Two (outdated) assumptions

o Symmetric cost for Read & Write to disk

o One I/O at a time



HDD vs. SSD
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Read/Write a page from/to HDD

read or write page 5



Accessing a page from SSD

read page 5

Navigate to
• Channel
• Chip
• Die
• Plane
• Block

Image Source: Garrett et al. “Enabling Intra-Plane ParallelBlock Erase in NAND Flash to Alleviate the Impact of Garbage Collection”



Accessing a page from SSD

read page 5

Opportunities for concurrently reading or writing multiple pages

Navigate to
• Channel
• Chip
• Die
• Plane
• Block

Image Source: Garrett et al. “Enabling Intra-Plane ParallelBlock Erase in NAND Flash to Alleviate the Impact of Garbage Collection”



Out-of-place updates cause invalidation

Invalidation causes garbage collection
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Writes on SSD

14



Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Writing in a free page isn’t costly!
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Writes on SSD



…

What if there is no space?
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What if there is no space?

Garbage Collection!
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What if there is no space?

Garbage Collection!
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Higher average update cost (due to GC) à Read/Write asymmetry
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Writes on SSD



Measuring Asymmetry/Concurrency in off-the-shelf SSD

22

0

10

20

30

40

50

60

70

0 10 20 30 40 50

IO
PS

 

# Threads

4K Random Read
4K Random Write
8K Random Read
8K Random Write

×103

1.5x

1.3x

Asymmetry: 

Concurrency: 13



0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

# Threads

4K Random Read 4K Random Write

8K Random Read 8K Random Write
×103

2.8x

1.8x

Measuring Asymmetry/Concurrency in NVMe SSD

Asymmetry: 

Concurrency: 70



Make asymmetry and concurrency part of algorithm design

… not simply an engineering optimization

Build algorithms/data structures for storage devices
with asymmetry ! and concurrency "

index structures graph traversal algorithms bufferpool management
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exploit device parallelism 

concurrent write-back
without evicting

bridge read/write asymmetry

Asymmetry & Concurrency Aware
Bufferpool Strategy

Thank you!
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