
The Need for a New I/O Model

Tarikul Islam Papon Manos Athanassoulis
papon@bu.edu mathan@bu.edu

presentation at CIDR 2021

mailto:papon@bu.edu
mailto:mathan@bu.edu

Modeling Performance

“Algorithm/Data Structure X has O " # performance,
where # is the number of data pages on disk”

… is probably one of the most commonly read phrases in SIGMOD papers.

Small, fast main memory
(size M)

Traditional I/O Model

3

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

4

Small, fast main memory
(size M) Large, slow external memory

One I/O at a time

Traditional I/O Model

5

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

6

0 access cost

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

7

Transfer cost
1 unit

0 access cost

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

8

Transfer cost
1 unit

0 access cost

total cost @ total # reads/writes to disk

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

9

Two (outdated) assumptions

o Symmetric cost for Read & Write to disk

o One I/O at a time

HDD vs. SSD

10

Read/Write a page from/to HDD

read or write page 5

Accessing a page from SSD

read page 5

Navigate to
• Channel
• Chip
• Die
• Plane
• Block

Image Source: Garrett et al. “Enabling Intra-Plane ParallelBlock Erase in NAND Flash to Alleviate the Impact of Garbage Collection”

Accessing a page from SSD

read page 5

Opportunities for concurrently reading or writing multiple pages

Navigate to
• Channel
• Chip
• Die
• Plane
• Block

Image Source: Garrett et al. “Enabling Intra-Plane ParallelBlock Erase in NAND Flash to Alleviate the Impact of Garbage Collection”

Out-of-place updates cause invalidation

Invalidation causes garbage collection

Block 0 Block 1

Plane

Page 0

Page 1

Page 2

Page 0

Page 1

Page 2

Writes on SSD

14

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Writing in a free page isn’t costly!
15

Writes on SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

16

Writes on SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

E F

G H A’

B’ C’ D’

Block 1

Not all updates are costly!

Update

A, B, C, D

A B C

D

17

Writes on SSD

…

What if there is no space?

Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

18

Writes on SSD

…

What if there is no space?

Garbage Collection!
Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

19

Writes on SSD

What if there is no space?

Garbage Collection!
Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

20

Writes on SSD

What if there is no space?

Garbage Collection!
Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Higher average update cost (due to GC) à Read/Write asymmetry
21

Writes on SSD

Measuring Asymmetry/Concurrency in off-the-shelf SSD

22

0

10

20

30

40

50

60

70

0 10 20 30 40 50

IO
PS

Threads

4K Random Read
4K Random Write
8K Random Read
8K Random Write

×103

1.5x

1.3x

Asymmetry:

Concurrency: 13

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

4K Random Read 4K Random Write

8K Random Read 8K Random Write
×103

2.8x

1.8x

Measuring Asymmetry/Concurrency in NVMe SSD

Asymmetry:

Concurrency: 70

Make asymmetry and concurrency part of algorithm design

… not simply an engineering optimization

Build algorithms/data structures for storage devices
with asymmetry ! and concurrency "

index structures graph traversal algorithms bufferpool management

0.0

0.5

1.0

1.5

2.0

Speedup

Speedup on TPCC vs. LRUAsymmetry & Concurrency Aware
Bufferpool Strategy

exploit device parallelism

concurrent write-back
without evicting

bridge read/write asymmetry

N
ew

 O
rd

er

De
liv

er
y

1.4×

1.7×

SSD with asymmetry: 1.5x & concurrency: 9

exploit device parallelism

concurrent write-back
without evicting

bridge read/write asymmetry

Asymmetry & Concurrency Aware
Bufferpool Strategy

Thank you!

disc.bu.edu/pio

N
ew

 O
rd

er

De
liv

er
y

0.0

0.5

1.0

1.5

2.0

Speedup

Speedup on TPCC vs. LRU

N
ew

 O
rd

er

De
liv

er
y

1.4×

1.7×

SSD with asymmetry: 1.5x & concurrency: 9

