
ACEing the Bufferpool Management Paradigm for
Modern Storage Devices

Tarikul Islam Papon
Boston University

papon@bu.edu

Manos Athanassoulis
Boston University

mathan@bu.edu

Abstract—Over the past few decades, solid-state drives (SSDs)
have been replacing hard disk drives (HDDs) due to their
faster reads and writes, as well as their superior random access
performance. Further, when compared to HDDs, SSDs have
two fundamentally different properties: (i) read/write asymme-
try (writes are slower than reads) and (ii) access concurrency
(multiple I/Os can be executed in parallel to saturate the device
bandwidth). However, several database operators are designed
without considering storage asymmetry and concurrency resulting
in device underutilization, which is typically addressed oppor-
tunistically by device-specific tuning during deployment. As a key
example and the focus of our work, the bufferpool management
of a Database Management System (DBMS) is tightly connected
to the underlying storage device, yet, state-of-the-art approaches
treat reads and writes equally, and do not expressly exploit the
device concurrency, leading to subpar performance.

In this paper, we propose a new Asymmetry & Concurrency-
aware bufferpool management (ACE) that batches writes based
on device concurrency and performs them in parallel to amortize
the asymmetric write cost. In addition, ACE performs parallel
prefetching to exploit the device’s read concurrency. ACE does
not modify the existing bufferpool replacement policy, rather, it
is a wrapper that can be integrated with any replacement policy.
We implement ACE in PostgreSQL and evaluate its benefits using
a synthetic benchmark and TPC-C for several popular eviction
policies (Clock Sweep, LRU, CFLRU, LRU-WSR). The ACE
counterparts of all four policies lead to significant performance
improvements, exhibiting up to 32.1% lower runtime for mixed
workloads (33.8% for write-intensive TPC-C transactions) with
a negligible increase in total disk writes and buffer misses,
which shows that incorporating asymmetry and concurrency in
algorithm design leads to more faithful storage modeling and,
ultimately, to better device utilization.

Index Terms—bufferpool, write asymmetry, concurrency, SSD

I. INTRODUCTION

Modern Devices: Concurrency & Read/Write Asymmetry.
The majority of today’s secondary storage devices are solid-
state disks (SSDs), while traditional hard-disk drives (HDDs)
are used primarily as cold or archival storage [20, 62]. SSDs
achieve their superior performance by adopting NAND flash
memory as their storage medium [2], thus eliminating the me-
chanical overheads of HDDs (i.e., seek time, rotational delay),
and consequently providing benefits like fast random access,
low energy consumption, and high chip density [28, 34, 54].
Furthermore, SSDs exhibit a high degree of internal paral-
lelism that can be harnessed to increase performance [7, 41].
In other words, an SSD needs to receive multiple concurrent
I/Os (which can be distributed to different components by the

LRU

Clock
Sweep

FIFO

NRU

Second 
Chance

2QARC

SSD Controller 
Optimization

CFLRU

LRU-WSR

CFLRU/C
CFLRU/E

DL-CFLRU/E

CCF-LRU

ACE

Addressing 𝛼

Exploiting k & Addressin
g 𝛼

Do not address 
Asymmetry (𝛼)

D
o 

no
t c

on
si

de
r 

C
on

cu
rr

en
cy

Address 𝛼 via 
write-avoidance

C
on

si
de

r 
C

on
cu

rr
en

cy

Ex
pl

oi
ti

ng
 k

Address 𝛼 via 
write-amortization

Fig. 1: ACE addresses asymmetry by exploiting concurrency
and amortizing writes.

flash controller) to saturate its bandwidth [7]. On the other
hand, due to the physics of the flash medium, the cost of
reading is considerably lower than the cost of writing which
leads to an SSD read/write asymmetry where writes can be
up to one order of magnitude slower than reads [10]. With
these two properties, i.e., concurrency (quantified by k) and
read/write asymmetry (quantified by α), SSD behavior departs
from the one of traditional HDDs. These characteristics have
two key implications: (i) proper use of concurrency enables
better device utilization, and (ii) treating page reads and writes
equally in an asymmetric environment is suboptimal [50, 51].
However, many data-intensive systems have not been thor-
oughly redesigned to account for these characteristics.
Bufferpool Manager. The part of a database management
system (DBMS) that interacts directly with storage devices is
the bufferpool which works as the interface between memory
and the underlying storage device. The bufferpool keeps in
memory a set of pages to minimize the number of (slow)
disk accesses. If a requested page is already in the bufferpool,
it can be served immediately without accessing the disk. In
contrast, if the requested page is not available, it has to be
fetched from the disk and placed in the bufferpool. If the
bufferpool is already full, another page is first written back
to disk (if dirty) and evicted, based on a page replacement
policy [58]. In this work, we show that a bufferpool manager
which is carefully tailored to the underlying storage device
can significantly improve the system’s performance.
The Challenge. In this work, we attempt to address two
challenges of state-of-the-art bufferpool managers. (A) First,
existing bufferpool managers often assume that the underlying
devices have no concurrency (k = 1). When writing dirty



pages to disk, state-of-the-art bufferpool managers write (evict)
one page at a time, hence missing the opportunity to exploit
the device concurrency. Although durability mechanisms like
logging and checkpointing attempt to ameliorate the effect
of random I/Os by converting them to sequential I/Os, the
physical page writes from the bufferpool are performed one
I/O at a time, which is our primary focus. Furthermore, some
systems employ data prefetching [43, 69], however, they pri-
marily rely on sequential I/O instead of concurrent reading. (B)
Second, page replacement policies generally do not consider
the device asymmetry (α), instead, they treat read and write
requests equally (i.e., they consider α = 1). Hence, the to-
be-evicted page’s status (dirty or clean) does not depend on
whether the requested page is a read or a write. As a result,
it is entirely possible that the bufferpool evicts a dirty page
(writes to disk) when the incoming page request is a read,
essentially exchanging a read for a write irrespective of the
device asymmetry, leading to suboptimal performance [50].

Figure 1 shows that popular page replacement policies are
designed for devices with no asymmetry and concurrency
(bottom left, blue). Recently proposed flash-friendly policies
like CFLRU [53], LRU-WSR [26], and others [38, 73] try
to minimize the number of writes by evicting clean pages
first, indirectly addressing the asymmetry (bottom middle,
yellow). However, these policies also exchange reads and
writes interchangeably. There have been some efforts to utilize
the device concurrency via modifying the SSD internals [32,
60, 61] (top left, green). However, these solutions lack general
applicability because they require extensive redesigning of the
SSD controller and they do not target the DBMS bufferpool.
Hence, to the best of our knowledge, no bufferpool manager
appropriately considers both asymmetry and concurrency.
A New Bufferpool Design Space. Traditionally, the design
space of bufferpool management includes primarily a page re-
placement policy and optionally a read-ahead policy. The page
replacement policy decides the order that pages are evicted and
written back. If the evicted page is dirty, a write-back is issued
for that page. Since traditional systems have a single policy
for both eviction and write-back, they essentially make one
decision for two separate questions: which page to evict? and
which page to write-back? We separate these two questions by
introducing a new write-back policy, thus, decoupling write-
backs from eviction. We maintain one overall virtual page
ordering of eviction (which is typically outsourced to the
existing replacement algorithm), however, we have a different
virtual order for writing-back pages, which depends on (a) the
replacement algorithm, (b) whether the page is dirty, and (c)
the support write concurrency of the storage device.

A bufferpool management approach can be described by four
design decisions: (i) replacement algorithm, (ii) write-back

policy, (iii) eviction policy, and (iv) read-ahead policy.

In this augmented design space, the replacement algorithm
inform both the write-back and the eviction policies, however,
in a different manner. The write-back policy uses the virtual
order of pages dictated by the replacement algorithm and the

degree of write concurrency of the device to write-back only
dirty pages. The eviction policy uses the virtual order of pages
dictated by the replacement algorithm to evict only clean pages
(which may have been just written back or were already clean).
The decision of how many pages to evict is decided from the
application as a decision between prioritizing locality (evict
only one page) vs. prefetching (evict multiple pages, but use
the read-ahead policy to populate the free spots).
Design Goals. With this refactored bufferpool design space,
we set the following design goals :

• Exploit concurrency to ensure proper utilization of the
underlying device parallelism.

• Bridge asymmetry via write-amortization to ensure that
there is no imbalance when the bufferpool is saturated.

• Ease of adoption, so that systems can quickly benefit from
our design without extensive engineering effort.

Asymmetry & Concurrency-Aware Bufferpool Manager
(ACE). To fulfill these goals, we propose ACE, a new buffer-
pool manager that utilizes the underlying device concurrency
to bridge the device asymmetry (top right of Fig. 1 – colored
red). Our approach uses asymmetry/concurrency-aware write-
back and eviction policies. The write-back policy always
writes multiple pages concurrently (utilizing the device’s write
concurrency), hence amortizing the write cost. The eviction
policy evicts one or multiple pages at the same time from
the bufferpool to enable prefetching. When multiple pages are
evicted at once, ACE can concurrently prefetch pages to exploit
the device’s read concurrency. A key advantage of ACE is
that it can be integrated with any existing page replacement
policy with low engineering effort, while, any prefetching
technique can also be integrated, essentially allowing any
existing bufferpool manager to be augmented by our approach.

	0

	0.5

	1

	1.5

	2

	2.5

	3

1 2 4

Sp
ee
du

p

Asymmetry	(α)

#Concurrent	I/Os	=	2
#Concurrent	I/Os	=	4
#Concurrent	I/Os	=	8

Fig. 2: ACE outperforms state-of-the-
art due to better device utilization.

Figure 2 shows the ideal
speedup of such an
asymmetry/concurrency-
aware bufferpool manager
where the baseline system
uses LRU. The benefit of
ACE is higher for devices
with higher asymmetry
(up to 2.5×) showing
that the asymmetry gap
is increasingly important
to bridge. We integrate ACE with four page replacement
policies and implement them in PostgreSQL to evaluate
ACE’s efficacy. Our asymmetry/concurrency-aware bufferpool
manager (i) batches write-back requests (from bufferpool to
the disk) in a storage-aware manner and (ii) prefetches pages
in parallel leading to substantial performance gains with a
negligible increase in buffer miss and total writes.
Contributions. Our contributions are as follows:

• We identify the importance of SSD read/write asymmetry
and concurrency with respect to bufferpool management.

• We refactor the bufferpool design space by including a
write-back policy that consider device-specific properties.



• We propose ACE, an asymmetry & concurrency-aware
bufferpool manager that utilizes the device’s concurrency.
ACE is flexible enough to be combined with any existing
page replacement policy and prefetching technique.

• We implement ACE with PostgreSQL’s default replacement
algorithm (Clock Sweep) and we add three more replace-
ment algorithms (LRU, CFLRU, LRU-WSR) and their ACE
counterparts in PostgreSQL.

• We evaluate the efficacy of ACE against these four algo-
rithms in PostgreSQL. ACE achieves up to 32.1% lower
runtime for a mixed workload with negligible increase in
total writes and buffer misses. For the TPC-C mix, ACE
reduces runtime by up to 24.2% while attaining 33.8%
lower runtime for the write-heavy transaction.

II. SSD PROPERTIES

We now discuss the two key properties of SSDs – asymmetry
and concurrency; why they exist, and their implications.

A. Read/Write Asymmetry
Read/write asymmetry (α) in SSDs is caused by (i) the

erase-before-write design, (ii) large erasure granularity, and
(iii) garbage collection [4, 10, 46]. In flash-based SSDs, logical
page updates (at the file system level) are always performed
as out-of-place updates. The contents of a physical flash
page can be updated only after an erasure [10, 54], i.e., once
a page is written, it cannot be updated until that whole
block is erased [1]. Hence, when a page update arrives,
the controller has to invalidate the old page and write the
updated page in a new block. As a result, after a number of
writes, the flash medium contains several invalidated pages. To
reclaim this invalidated space, the flash controller periodically
triggers garbage collection which copies the valid pages
of a block, writes them in a new block and then erases
the previous block. Note that flash cells generally wear out
after a certain number of program/erase cycles, which is a
measure of the device’s endurance [2, 45]. Techniques like
wear-leveling, overprovisioning, and bad block skipping are
commonly used to mitigate the wear-out effect and expand
the SSD lifetime [23, 29, 44]. While the read/write granularity
is a flash page (typically with size 512B-32KB), the erasure
granularity is an erase block (4MB-64MB). The higher erasure
granularity, the overhead of maintaining garbage collection,
and the extra writes garbage collection incurs, result in higher
amortized write cost. The asymmetry depends on the specific
device and the access granularity. We empirically measure the
asymmetry of the devices that we use in our experimental
setup (an Optane SSD, a PCIe SSD, a SATA SSD and a Virtual
SSD) and summarize them in Table I (in §VI). We observe
that all NAND-based SSDs (PCIe, SATA, and Virtual SSD)
exhibit significant asymmetry. Optane SSDs generally exhibit
low asymmetry because of their 3D XPoint technology [72].

B. Device Concurrency
Modern flash-based SSDs have parallelism in many different

levels [6, 41]. Typically, an SSD has multiple channels that are
connected to the flash controller. Each channel consists of a

Bufferpool Manager

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential
- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Concurrently

Read-ahead Policy

How many pages to write?
- 1 page
- n pages (exploit kw)

Write-back Policy

Which pages to write-back? 

When & how to write-back?

- dirty pages following
replacement policy

- background &
concurrently

Optional

Eviction Policy

How many page(s) to evict?
- 1 page

- n pages

Which page(s) to evict?
- follow page 

replacement policy

Flash-
friendly
policies

- LRU
- NRU
- Clock
- Second Chance

- FIFO
- 2Q
- ARC

- CFLRU
- LRU-WSR
- CCF-LRU

- CFLRU/C
- CFLRU/E
- DL-CFLRU/E

Replacement Algorithm

Fig. 3: Bufferpool design space in terms of the design deci-
sions and various options (RED denotes new components)

shared bus with multiple chips, and each chip contains multiple
dies. Each die comprises multiple planes, and each plane
constitutes multiple blocks where pages reside. This highly
parallelized architecture creates opportunities to efficiently
support concurrent storage accesses [7]. If multiple I/Os are
issued in parallel, the flash controller tries to parallelize them
by distributing them to different parts of the device [41, 55, 63].
As a result, the device’s peak bandwidth can only be achieved
with multiple concurrent I/Os. The level of observed con-
currency varies among devices and it also depends on the
access type and block size [50]. Most devices have a large
number of channels (≥ 8) which is the fundamental form
of internal parallelism. Table I (in §VI) reports the empirical
read concurrency (kr) and write concurrency (kw) of the four
SSDs we experiment with, showing that kr is generally much
higher than kw. Note that for the virtual SSD, kr and kw
reflect the impact of the cloud provider limiting the device’s
IOPS allowed. To summarize, both α and k vary across
devices depending on the device internals, access granularity,
and access pattern, while all NAND-based SSDs exhibit a
significant degree of both asymmetry and concurrency.

III. AN AUGMENTED BUFFERPOOL DESIGN SPACE

Traditional bufferpool designs have one main component: the
page replacement policy (that may lead to a write-back if a
dirty page is evicted), which is driven by the replacement
algorithm and one optional component: a prefetching module.
We depart from this paradigm and separate the write-back
decision from the replacement policy. We propose a new
bufferpool design paradigm that makes four decisions for every
bufferpool design: (i) a replacement algorithm that decides
the to-be-evicted page order and influences the to-be-written
page order, (ii) a write-back policy that decides when, how
many, and with which criteria to write back pages, (iii) an
eviction policy that decides how many and with which criteria
to evict pages, and (iv) a read-ahead policy that decides when,
how many, which pages, and how to prefetch. Figure 3 presents
the proposed augmented bufferpool design space along with
the various options for each design decision.



D C D D C D

CFLRU

B

oldest

Clean-first 
region

Working
region

Candidate

D
1

C D
0

D
0

C D
0

LRU-WSR

B

p1 p2 p3 p4 p5 p6

p1 p2 p3 p4 p5 p6

Cold flag

newest

D
0

D
1

D
1

C D
0

D
0

B
p7 p6 p1 p2 p3 p4

Cold flag

D D C D D D
p7 p1 p2 p3 p4 p6

After Eviction:
After Eviction: p6 moved to front 

setting cold flag

D
1

C D
0

D
0

C D
1

p1 p2 p3 p4 p5 p6

since the cold flag is set, 
p6 is the candidate

D
0

D
1

C D
0

D
0

C
p7 p1 p2 p3 p4 p5

After Eviction:

Case 1 Case 2

Candidate

Clean-first 
region

Working
region

B

D Dirty Page

Clean PageC

D Dirty Page

Clean PageC

Clock Sweep

3 2
0

2
14

2
0

Candidate

p1

p2

p3

p4
p5

p6

p7

p8

3 1
0

2
14

2

0

p1

p2

p3

p4
p5

p6

p7

p8

3 1
1

2
14

2

0

p1

p9

p3

p4
p5

p6

p7

p8After Eviction:

Usage count

(a) (b) (c)
Fig. 4: Popular eviction policies: (a) Clock Sweep evicts pages based on usage count; (b) CFLRU tries to evict clean pages
first [window size N/2 used for brevity]; (c) LRU-WSR keeps a cold flag to delay dirty page eviction.

A. Background on Page Replacement Algorithm

At the core of every bufferpool design is the page re-
placement algorithm which decides which page needs to be
replaced when the bufferpool runs out of space. Note that this
decision essentially creates a virtual order of the pages to
be evicted. The most popular page replacement algorithm is
Least Recently Used (LRU) [49] which tries to keep the most
recently accessed pages in the bufferpool. Some other popular
algorithms are Clock [31], NFU [66], 2Q [24], NRU [16],
FIFO [66], ARC [42], and Second Chance [30]. PostgreSQL
adopts the Clock Sweep algorithm [56], a variant of NFU. The
algorithm maintains the bufferpool pages as a circular list with
each page’s usage count, while the candidate pointer rotates
clockwise. If the candidate unpinned page’s usage count is 0,
the page is selected for eviction. Otherwise, its usage count
is reduced by 1, and the pointer moves ahead clockwise
(Figure 4a). This algorithm and all the aforementioned algo-
rithms do not differentiate between reads and writes. In recent
literature, when optimizing for SSDs, flash-friendly policies
reduce device wear by absorbing more writes in memory
before evicting a dirty page.
Flash-friendly Policies. Clean-First LRU (CFLRU) maintains
the LRU order of the pages and divides the LRU list into
two regions: working region and clean-first region [53]. The
working region contains the recently accessed pages, while
the clean-first region contains the candidate pages for eviction
(Figure 4b). To minimize the number of writes, CFLRU evicts
clean pages from the clean-first region and when there are
no clean pages left in this region, CFLRU evicts dirty pages
following LRU. The size of the clean-first region is decided
by the window size parameter. Although the optimal window
size depends on the workload, a rule of thumb is that if N is
the size of the bufferpool, N

3 is a good window size [53].
Another flash-friendly algorithm is LRU with Write Se-

quence Reordering or LRU-WSR [26]. LRU-WSR delays
evicting cold dirty pages to reduce the number of writes. Each
page in LRU-WSR has a cold flag which is cleared every
time the page is referenced. If the candidate page for eviction
is dirty, it is evicted only if its cold flag is set; otherwise the

page is moved to the most recently used position while setting
the cold flag and another candidate page is selected based on
the LRU order. If the candidate page is clean, it is evicted
irrespectively of its cold flag. Figure 4c shows two examples
of LRU-WSR. Both CFLRU and LRU-WSR outperform LRU
for flash devices, because they prioritize evicting clean pages
over dirty pages, indirectly addressing the underlying device
asymmetry. Other flash-aware policies [38, 73] adopt similar
strategies while considering the access frequency and wear-
leveling. All these policies prioritize reads over writes to
mitigate device wear caused by writes. While they indirectly
address asymmetry up to a point, they do not explicitly
consider the specific device asymmetry and concurrency.
B. Write-back Policy

Once a dirty page is selected for replacement, the bufferpool
has to write the page back to disk. In practice, state-of-the-art
systems like PostgreSQL have a separate dirty page buffer
to which dirty pages for replacement are first moved, and
flushed in the background. Further, page updates are also
written in the write-ahead log (WAL) sequentially to make
the database crash-resilient, and dirty pages are written-back
during checkpointing as well. However, all these write-backs
are performed one page at a time following the underlying
assumption that storage devices can perform one I/O at a
time, and rely on the operating system to re-order or batch
disk writes. In this way, the read request of a new (not
buffered) page is countered by one write-back when the page
for replacement is dirty, exchanging one write for one read.
Since writes are more expensive than reads in modern storage
devices, this is an unfair decision that leads to performance
degradation, which we also observe experimentally. To address
this, we augment the write-back policy to write multiple
dirty pages at once following the virtual order provided
by the page replacement algorithm. Note that we can write-
back multiple pages concurrently without a penalty due to the
underlying write concurrency of the device (kw). In order to
bridge the asymmetry (α), we parallelize at least α writes to
amortize their cost for the single read that caused this write-
back, or more if the device concurrency permits (if kw > α).



C. Eviction Policy
Following the write-back phase, the eviction policy now

decides which and how many pages to evict. Traditionally,
systems evict always one page which leads to the one read
for one write approach. Since following the new write-back
policy we have already written back more than one page, the
eviction policy may opt to evict more (now clean) pages to
make room for additional pages to be prefetched, assuming the
prefetcher has high confidence for its predictions. Hence, we
include one additional design choice: the number of pages
to be evicted. The exact pages to be evicted still follow
the virtual order imposed by the replacement algorithm. By
splitting the page replacement policy into a write-back and
an eviction phase, we exploit the underlying concurrency of
the storage device to bridge the asymmetry between reads and
writes, using the replacement algorithm as the core decision
throughout both phases. This is exactly why our approach
benefits any bufferpool page replacement policy.

D. Read-ahead Policy
The goal of prefetching is to make data available in memory

before it is requested, consequently improving the bufferpool
hit rate. The prefetching policy determines when to prefetch,
how many and which pages to prefetch. The most common
prefetching approach is sequential prefetching like One Page
Lookahead (OPL) and N-Page Lookahead (NPL), where ei-
ther a single page (OPL) or multiple pages (NPL) beyond
the requested page is prefetched [12, 43, 65]. History-based
prefetching uses previous access patterns to predict the next
pages to be accessed [18, 25, 36]. This type of prefetching
improves performance when accesses are localized. Most com-
mercial systems use simple prefetching policies like sequential
prefetching [21, 57], especially when the bufferpool has empty
slots. However, systems generally prefetch one page at a time
instead of issuing multiple parallel I/Os, hence missing the
opportunity to exploit the device’s read concurrency. Since
prefetching is not as effective without good workload knowl-
edge, it is often treated as an optional choice.

IV. ACE BUFFERPOOL MANAGER

We now present in detail the proposed asymmetry &
concurrency-aware bufferpool manager (ACE) that addresses
the read/write asymmetry via write-amortization. As depicted
in Figure 5, ACE is comprised of three components: (i) the
Evictor, (ii) the Writer, and (iii) the Reader. The evictor
determines which page(s) to evict, the writer writes-back
concurrently dirty pages and the reader prefetches pages.

A. Overview of ACE Bufferpool Management

When a request for reading or writing a page P is received,
we first search through the bufferpool. If P is not found and the
bufferpool is full, then (at least) one page has to be evicted.
The page replacement algorithm determines the page to be
evicted (termed top page). If the top page is clean, it is evicted
and page P is fetched. Up until this part, ACE is identical to
any state-of-the-art bufferpool management. However, if the
top page is dirty, ACE proceeds as follows:

Buffer Pool
p1 p2 p4 p9
p5 p12 p18 p10
p13 p7 p24 p21

ReaderEvictor

p2 p1 p5 p9…

Candidates

Seq. Stream 
Prefetcher

History-based 
Prefetcher

Writer

Concurrent 
Device-aware

Writing

Concurrently write 
back nw dirty pages

Parallelly prefetch 
ne - 1 pages

p

p

Dirty page

Clean page

Fig. 5: Abstract overview of ACE components

• ACE without prefetching: concurrently write nw dirty
pages and evict a single page.

• ACE with prefetching: concurrently write nw dirty pages,
evict ne pages, and concurrently prefetch ne − 1 pages.

The values nw and ne depend on the underlying device
concurrency and the potential benefits of prefetching. When
prefetching is enabled, ACE evicts ne pages in order to
prefetch ne − 1 pages exploiting the read concurrency of the
device. While we anticipate that the prefetching will allow
us to have pages that will be accessed by the immediate
next requests, the eviction somewhat reduces the locality, so
ne has to carefully balance the read concurrency and the
accuracy of the prefetching. We tune ACE to use nw equal
to the optimal write concurrency of the device (kw). We
experimentally tested values for ne between 1 and kr, and
we empirically set ne to be also kw, because evicting kr
pages was hurting locality. Note that for most devices, the read
concurrency is significantly higher than the write concurrency
(kr >> kw). Regarding the pages that are selected for write-
back and for eviction, both decisions are influenced by the
page replacement algorithm. As such, ACE can be combined
with any replacement algorithm. In our experiments, we use
four popular approaches (LRU, Clock Sweep, CFLRU, and
LRU-WSR) that all benefit from the ACE paradigm. Figure 6
shows the effect of incorporating ACE with LRU (Fig. 6a),
CFLRU (Fig. 6b), and LRU-WSR (Fig. 6c). Note that ACE
always writes nw dirty pages concurrently irrespectively of
prefetching. The full ACE algorithm is listed in Algorithm 1.

B. Writer
The Writer is responsible for concurrently writing-back nw

pages. State-of-the-art systems often write-back pages using
a background process, however, these writes are issued one
at a time, hence missing out on the opportunity to exploit
the parallelism of the underlying storage device. Instead, ACE
Writer writes concurrently nw dirty pages. By making sure that
nw = kw, the concurrent writes take place at the same latency
as a single write, thus amortizing the cost of kw writes and
fully bridging the read/write asymmetry if α < kw. The pages
that are selected for write-back are the next nw dirty pages that
the underlying page replacement algorithm would eventually
evict. As a result, these carefully batched writes make the
subsequent page evictions free (since, with high probability,
the following evictions will target clean pages).



D CDirty page Clean page Pages to be written back Eviction window

D D C D C DB

Initial State (Before ‘write p7’)

B

lrumru

eviction 
window

pages to be written

p2 p3 p4 p5 p6p1

LRU ACE-LRU(w/o PF) ACE-LRU(w/ PF)

D D C D C D

p2 p3 p4 p5 p6p1

D D C D C D

LRU ACE-LRU(w/o PF) ACE-LRU(w/ PF)

D D C D C C

lrumru

p2 p3 p4 p5 p6p1

D C C C C C

p2 p3 p4 p5 p6p1

D C C C C C

Intermediate State

p2 p3 p4 p5 p6p1

B

LRU ACE-LRU(w/o PF) ACE-LRU(w/ PF)

D D D C D C

lrumru

p1 p2 p3 p4 p5p7

D D C C C C

p1 p2 p3 p4 p5p7

D D C C C C

Final State (After ‘write p7’)

p1 p2 p3 p8 p9p7

prefetched

p2 p3 p4 p5 p6p1

(a) ACE on top of LRU

C D C D D DB

Initial State (Before ‘write p7’)

B

lrumru

p2 p3 p4 p5 p6p1

CFLRU ACE-CFLRU(w/o PF) ACE-CFLRU(w/ PF)

C D C D D D

p2 p3 p4 p5 p6p1

C D C D D D

C D C D D C
p2 p3 p4 p5 p6p1

C D C C C C

p2 p3 p4 p5 p6p1

C D C C C C

Intermediate State

p2 p3 p4 p5 p6p1

B D C D C D D
p1 p2 p3 p4 p5p7

D C D C C C

p1 p2 p3 p4 p5p7

D C D C C C

Final State (After ‘write p7’)

p1 p2 p3 p8 p9p7

prefetched

CFLRU ACE-CFLRU(w/o PF) ACE-CFLRU(w/ PF)

CFLRU ACE-CFLRU(w/o PF) ACE-CFLRU(w/ PF)

clean-first region clean-first region clean-first region

p2 p3 p4 p5 p6p1

(b) ACE on top of CFLRU

D
1
C D

0
D
1
C D

1
B

Initial State (Before ‘write p7’)
lrumru

p2 p3 p4 p5 p6p1

LRU-WSR ACE-LRUW(w/o PF) ACE-LRUW(w/ PF)

D
1
C D

0
D
1
C D

1

p2 p3 p4 p5 p6p1

D
1
C D

0
D
1
C D

1

Intermediate State

Final State (After ‘write p7’)

prefetched

LRU-WSR ACE-LRUW(w/o PF) ACE-LRUW(w/ PF)

LRU-WSR ACE-LRUW(w/o PF) ACE-LRUW(w/ PF)

p2 p3 p4 p5 p6p1

Cold

D
1
C D

0
D
1
C CB

p2 p3 p4 p5 p6p1

D
1
C C C C C

p1 p2 p4 p5 p6p3

D
1
C C C C C

p1 p2 p4 p5 p6p3

Cold

D
0
D
1
C D

0
D
1
CB

p1 p2 p3 p4 p5p7

D
0
D
1
C C C C

p3 p1 p2 p4 p5p7

D
0
D
1
C C C C

p3 p1 p2 p8 p9p7
Cold

(c) ACE on top of LRU-WSR

Fig. 6: ACE page selection policies for nw = 3 and ne = 3. (a) ACE writes three dirty pages (p6, p4, p2) following the
LRU order; if prefetching is enabled three pages (p6, p5, p4) are evicted, otherwise one page (p6) is evicted. (b) Similarly
for CFLRU, ACE writes three dirty pages (p6, p5, p4) from the clean-first region and depending on prefetching either three
pages (p6, p5, p4) are evicted or one (p6). (c) For LRU-WSR, ACE finds a dirty page with cold flag not set (p3). This page
is moved to the front setting its cold flag. The dirty pages with set cold flag (p6, p4, p1) are selected for concurrent writing.

C. Evictor
Following the completion of the write-back process, the

Evictor will evict either one or ne pages. Since at this point,
the top page is by definition clean (because the Writer has
already written it), it will be evicted to read the requested
page P . If prefetching is enabled, the Evictor evicts ne pages
in total to allow for an equal number of pages to be prefetched.
Note that after the write-back process, there will be at least
nw contiguous clean pages following the order dictated by the
page replacement algorithm. Hence, the Evictor can now evict
ne clean pages to create space for the incoming pages. Earlier,
we mentioned that we empirically set ne = nw, however, even
if we allow ne to be greater than nw, the Evictor will always be
able to evict ne pages as long as in total the bufferpool has at
least ne clean pages. Essentially, the Writer writes back the nw
first dirty pages according to the page replacement algorithm
order, and the Evictor evicts the ne first clean pages (after the
writing has been performed) according to the page replacement
algorithm order. For example, Figure 6a shows that ACE with
prefetching will write three dirty pages following the LRU
order (p6, p4, p2) and evict the last three (now clean) pages
(p6, p5, p4) following the LRU order.

D. Reader
The reader is an optional component whose job is to

prefetch pages from disk in case of a buffer miss. Note that
for many workloads prefetching does not attain much benefit,
hence, commercial systems either do not use any prefetcher,
or they use very simple prefetching techniques. The strength
of ACE is that any prefetching technique can be employed by
the Reader. In fact, we use two prefetchers in our design: a
sequential prefetcher and a history-based prefetcher.
Sequential Prefetcher. We use a sequential prefetcher named
TaP [36] that uses a table to detect sequential access patterns.

The prefetcher uses a sequential detection module to determine
whether a page miss is part of a sequential stream. Only
after detecting a sequential stream, ACE uses the sequential
prefetcher, otherwise, ACE uses the history-based prefetcher.
When a page miss occurs, the sequential detection module
searches the page address in the TaP table. If it is not found
in the table, then the address of the next page is inserted in
the table, expecting that the current page miss is part of a new
sequential stream. In case of a sequential stream, the newly
inserted page in the TaP table will be found in the workload
soon. Then, the TaP prefetcher starts sequential prefetching,
however, ACE does not immediately start prefetching. Instead,
if at least 4 sequential page requests are found, then ACE
triggers the prefetcher and concurrently reads the next ne − 1
pages along with the page that caused the buffer miss (P ).
Old page addresses that are not part of any sequential stream
are evicted in a FIFO manner.

History-based Prefetcher. This prefetcher also uses a large
table-based structure to store the page access history and
predicts the next most probable access [18]. The organization

{2, 5, 7} {10, 4, 2}

{10, 3, 18} {3, 9, 1}

{6, 9} {8, 0}

NextPages WeightsIndex
0

1

2
...

...

Fig. 7: Table structure of the
history-based prefetcher

of the table is shown in
Figure 7. Row i of the ta-
ble contains the next proba-
ble page addresses and their
likelihood (in form of a
weight) after page i is ac-
cessed. For example, given a
reference for page 1, the best
candidate for prefetching is
page 3 since page 3 has a higher weight (9). ACE prefetches
only if the weight is more than a certain fetch threshold.
The table generation is straightforward: given the current and
previous page references, we go to the row in the table indexed



Algorithm 1: ACE
Input: P , nw , ne is pf enabled

1 // P is the accessed page
2 // nw is the maximum effective write concurrency (nw = kw)
3 // ne is the number of concurrent reads during prefetching
4 // is_pf_enabled determines if prefetching is enabled or not
5 if P in buferpool then
6 return P
7 else
8 // miss! need to bring P from disk
9 if buferpool not full then

10 if is pf enabled == true then
11 // reads P and prefetches up to ne − 1 pages from

disk (depending on available slots)
12 - prefetch pages (P , ne − 1)
13 else
14 - read P from disk
15 end if
16 else
17 top page = replacement policy.get one page to evict()
18 if top page is clean then
19 // follow classical approach if page is clean
20 - drop top page from bufferpool
21 - read P from disk
22 else
23 // top_page is dirty. concurrently write nw dirty

pages
24 // Pwb is a vector containing the candidate dirty

pages
25 - Pwb = populate pages to writeback()
26 - issue ‖length(Pwb)‖ concurrent writes, ∀p ∈ Pwb
27 - mark ‖length(Pwb)‖ pages as clean, ∀p ∈ Pwb
28 if is pf enabled == true then
29 // evict ne pages
30 // pages written and to be evicted can be

different
31 // Pev is a vector containing the pages to

evict
32 Pev = replacement policy.get n pages to evict()
33 - drop ‖length(Pev)‖ pages from bufferpool, ∀p ∈ Pev
34 // Now, prefetch
35 - prefetch pages (P , ne − 1)
36 - empty Pev
37 else
38 // evict 1 page
39 - drop top page from bufferpool
40 - read P from disk
41 end if
42 - empty Pwb
43 end if
44 end if
45 end if

1 Procedure populate_pages_to_writeback()
2 // follow the underlying page replacement policy to

generate Pwb
3 - select next nw dirty pages based on the underlying page replacement policy
4 - return this vector

1 Procedure prefetch_pages(page P , int x)
2 if P in Sequential Table then
3 // start of a sequential stream!
4 // read P and the next x pages concurrently
5 - prefetch sequential (P )
6 else
7 // use the history based prefetcher
8 // read P and x pages (selected by prefetcher)

concurrently
9 - prefetch history (P )

10 end if
11 /* note that P should be placed in the most recently used

position in the bufferpool whereas other pages should
be placed in the least recently used positions */

12 - place these x + 1 pages into bufferpool

by the page number of the previous access. If the NextPages
vector contains the current page, we increase its corresponding
weight in the Weights vector. Otherwise, if the NextPages
vector does not point to the current page and its weight is zero,
we place a pointer to the current page in the vector with weight
1. If the weight field is nonzero, we decrease the weight.
To prevent growing the NextPages vector perpetually, ACE
keeps track of the next 3 most probable pages. This table
structure takes approximately 0.6% space of the database size.

E. Putting Everything Together

Traditional bufferpool strategies “exchange” one read for
one write when evicting a dirty page from a saturated buffer-
pool. This approach is not optimal when a write is α× more
expensive than a read. However, it is not possible to exchange
α reads for one write, since (i) this would grow the bufferpool
perpetually, and (ii) unless we batch – thus delay reads, a
system receives one request at a time. Hence, ACE tries to
amortize the cost of writes by concurrently issuing nw writes,
where nw = kw. The complete ACE bufferpool manager’s
policy is presented in Algorithm 1. If the page to evict is
clean, ACE follows the classical approach of simply dropping
it from the bufferpool (Line 20). Otherwise, the ACE Writer
identifies the pages to be cleaned and writes them concurrently
(Lines 25–27). Depending on whether prefetching is enabled,
ACE Evictor either evicts multiple (Lines 32–33) or one page
(Line 39). The referenced page is placed in the most recently
used position while the prefetched pages are placed in the
least recently used positions (following the page replacement
policy) so that even if the prefetcher’s prediction is wrong, the
prefetched page can be simply dropped from the bufferpool.

V. IMPLEMENTATION & INTEGRATION

We now discuss the implementation effort and the integration
with a full-blown relational system, PostgreSQL 11.5. We first
discuss the bufferpool manager structure and its operation. We
then discuss the implementation effort to make PostgreSQL
bufferpool asymmetry and concurrency aware.
PostgreSQL Buffer Manager. The PostgreSQL buffer man-
ager consists of a buffer table, buffer descriptors, and a
bufferpool. The buffer table and the buffer descriptors hold
page metadata and the mapping information between the data
pages and bufferpool frames. The bufferpool layer keeps track
of file pages (i.e., data, indexes). The bufferpool is organized
as an array, where each slot stores one page of a data file,
and is referenced by a buffer_id. In PostgreSQL, each
page is assigned a unique tag (buffer_tag), which contains
the file mapping and block location and is used when the
buffer manager receives a request. During an eviction, the
buffer manager uses the Clock Sweep page replacement algo-
rithm. Dirty pages are flushed to storage by two background
processes: the background writer and the checkpointer.
Both processes flush dirty pages, however, they have different
roles and behaviors. Checkpointer writes a checkpoint record
to the WAL file and flushes all the buffered dirty pages
during checkpointing. The background writer continues to
flush dirty pages in the background to offload the burden of
the checkpointer. PostgreSQL uses light-weight locks (of type
content lock, spin lock and io in progress lock) to protect
shared resources and data consistency.
Implementation. To ensure an apples-to-apples comparison
we integrate LRU, CFLRU, LRU-WSR, and their ACE coun-
terparts (including the default Clock Sweep) in PostgreSQL.
Since all three algorithms are LRU variants, we first implement
LRU using an LRU freelist queue and then build on it for



CFLRU and LRU-WSR. The window size for CFLRU is set
to 1/3 of the bufferpool size as suggested by its authors [53].
For LRU-WSR, we added a cold bit with each page descriptor
which is checked during eviction. The buffer_tag of the
pages were used to get metadata information of the corre-
sponding page. We follow the default Clock Sweep imple-
mentation’s locking mechanism to ensure data consistency.
ACE is implemented as a wrapper on top of the underlying

page replacement policy. If the candidate page for eviction
is dirty, ACE first identifies which nw pages to write follow-
ing the replacement policy. We implement a method named
FlushNBuffer() in bufmgr.c which takes the candidate
pages as input and flush them out to kernel. Further, we modify
the background writer and checkpointer’s writing mechanism
(which is separate from the bufferpool code) to ensure that
they always perform nw writes concurrently. To do this, we
augment several PostgreSQL’s low-level writing methods (i.e.,
pg_pwrite()) and their corresponding wrapper functions.
After the pages are flushed, the eviction (of one or multiple
pages depending on prefetching) is performed as described in
Section IV-C. Each of the two prefetchers employed by ACE
uses a hash table: the sequential prefetcher to implement the
TaP table structure and the history-based one to keep track of
the accesses following each page. Throughout the bufferpool
implementation, the buffer_id and the buffer_tag are
frequently used to identify each page, the frame it is stored,
and which relation is associated with.

VI. EVALUATION

We now show the benefits of the ACE paradigm when ap-
plied on four state-of-the-art page replacement policies (LRU,
CFLRU, LRU-WSR, and Clock Sweep) using both a synthetic
benchmark and the standard TPC-C benchmark.
Experimental Setup. We use a machine with two Intel Xeon
Gold 6230 2.1GHz processors each having 20 cores with
virtualization enabled and with 384GB of main memory.
Our experiments involve three storage devices: (i) a 375GB
Optane P4800X SSD, (ii) a 1TB PCIe P4510 SSD, and
(iii) a 240GB SATA S4610 SSD. We refer to these devices
as Optane SSD, PCIe SSD and SATA SSD respectively. In
addition, we use a virtualized device from Amazon AWS that
has 1.2TB SSD capacity and 60000 provisioned IOPS (high-
performance SSD). We refer to this device as Virtual SSD,
and we attach it to a machine from the t2.micro family having
2GB main memory with one virtual CPU. For all four devices,
we quantify the asymmetry and concurrency through careful
benchmarking [50] (summarized in Table I). Unless otherwise
mentioned, we use nw = kw of the device in use. In most
of our experiments, we employ the PCIe SSD, hence we use
nw = 8. Before running the experiments, all devices were pre-
conditioned by sequentially writing on the entire device three
times to ensure that they have stable performance [13].
Workload. We use four synthetic workloads inspired by prior
work [38, 73]. We refer to them as MS (Mixed Skewed),
WIS (Write-Intensive Skewed), RIS (Read-Intensive Skewed)
and MU (Mixed Uniform). The properties of the workloads

TABLE I: Empirical α and k of our SSDs.

Device α kr kw

Optane SSD 1.1 6 5
PCIe SSD 2.8 80 8
SATA SSD 1.5 25 9
Virtual SSD 2.0 11 19

are described in Table II. A read/write ratio of 90/10 indicates
read (write) operations are 90% (10%) of the total number
of operations. A locality 90/10 means that 90% of all the
operations are performed on 10% of the pages. We use
pgbench for our synthetic workloads which is loosely based
on TPC-B. We use a scaling factor of 1000 which results in
a database size of approximately 15GB. We also show the
benefits of our approach with the TPC-C benchmark [68].

TABLE II: Properties of the synthetic workloads

Workload Database Size R/W Ratio Locality

Mixed Skewed (MS) 15GB 50/50 90/10

Write-Intensive
Skewed (WIS) 15GB 10/90 90/10

Read-Intensive
Skewed (RIS) 15GB 90/10 90/10

Mixed Uniform (MU) 15GB 50/50 50/50

Experimental Methodology. We run every workload for the
default PostgreSQL implementation (Clock Sweep as replace-
ment policy) for 10 minutes and then run the same workload
for the other replacement policies and their ACE counterparts.
For every experiment, we measure (i) workload latency, (ii)
transactions per second, (iii) buffer misses/hits, and (iv) total
writes. The experiment results are averaged over 5 iterations
and the standard deviation was less than 5%. We generally
configure PostgreSQL shared buffers (bufferpool) as 1GB
(∼6% of the data size). WAL is enabled and the WAL file
is written in a separate device following common practice.

A. Experimental Analysis with Synthetic Data

ACE Improves Runtime. Our first experiment shows that ACE
bufferpool management (either with or without prefetching)
reduces the total workload latency by up to 32.1%. For this set
of experiments we use the PCIe SSD that has kw = 8 and α =
2.8. Figures 8a-d show the workload execution time for the
baseline Clock Sweep, LRU, CFLRU, and LRU-WSR along
with their ACE counterparts with and without prefetching for
the 4 synthetic workloads in PostgreSQL. The runtime of the
ACE policies both with and without prefetching is consistently
faster than the baseline. Since ACE policies utilize the device’s
write parallelism, it writes back pages more aggressively (but
hidden due to the device concurrency), resulting in better
performance. ACE with prefetching reduces latency by 22.6%,
21.8%, 22.5% and 26.1% for baseline Clock Sweep, LRU,
CFLRU and LRU-WSR respectively when running workload
MS (Figure 8a), while ACE without prefetching reduces la-
tency by 20.6%, 19.7%, 22.0%, and 23.5% respectively. Since
the workload is skewed, the prefetching helps avoid some
disk access, resulting in slightly better performance. ACE’s



 0

 100

 200

 300

 400

 500

 600

 700

Clock LRU CFLRU LRUW

La
te

nc
y 

(s
)

SOA ACE w/o PF ACE w/ PF

(a) ACE achieves high gain in
the mixed workload MS.

 0

 100

 200

 300

 400

 500

 600

 700

Clock LRU CFLRU LRUW

La
te

nc
y 

(s
)

SOA ACE w/o PF ACE w/ PF

(b) Gain of ACE is higher in the
write-intensive workload WIS.

 0

 100

 200

 300

 400

 500

 600

 700

Clock LRU CFLRU LRUW

La
te

nc
y 

(s
)

SOA ACE w/o PF ACE w/ PF

(c) ACE improves runtime even
in read-heavy workload RIS

 0

 100

 200

 300

 400

 500

 600

 700

Clock LRU CFLRU LRUW

La
te

nc
y 

(s
)

SOA ACE w/o PF ACE w/ PF

(d) ACE has significant gain for
mixed uniform workload MU.

Fig. 8: ACE reduces total workload latency for all Clock Sweep, LRU, CFLRU, and LRU-WSR in the PCIe SSD.

TABLE III: Comparison of buffer miss, logical writes and physical writes

WL ACE - Clock ACE - LRU ACE - CFLRU ACE - LRU-WSR
∆miss ∆l-writes ∆p-writes ∆miss ∆l-writes ∆p-writes ∆miss ∆l-writes ∆p-writes ∆miss ∆l-writes ∆p-writes

MS -0.001% 0.07% 0.10% -0.001% 0.06% 0.09% -0.001% 0.08% 0.12% -0.001% 0.09% 0.14%
WIS -0.001% 0.08% 0.12% -0.001% 0.08% 0.14% -0.001% 0.08% 0.14% -0.001% 0.11% 0.17%
RIS -0.008% 0.06% 0.09% -0.008% 0.06% 0.09% -0.008% 0.07% 0.11% -0.009% 0.12% 0.16%
MU 0.002% 0.09% 0.14% 0.003% 0.10% 0.15% 0.002% 0.09% 0.14% 0.002% 0.10% 0.17%

gain is higher for the write-intensive workload WIS. ACE
with prefetching achieves 28.8%, 29.3%, 30.1% and 32.1%
lower runtime than baseline Clock Sweep, LRU, CFLRU and
LRU-WSR respectively (Figure 8b). This is expected, because
for a write-intensive workload, the bufferpool needs to write
more pages back to the disk, hence the benefits that come
from efficient writing are pronounced. In contrast, for the
read-intensive skewed workload RIS, ACE has smaller benefit
since ACE does not have enough writes to optimize. However,
the gain is still significant (Figure 8c); ACE achieves 8.1% to
13.9% lower runtime. Now, the benefit of prefetching alone
is substantial (up to 5%). Finally, the mixed workload MU
causes a small increase in total writes (≤ 0.1%), however, this
does not affect the overall trends of performance gains, which
range from 14.5% to 15.7% (Figure 8d). Since the workload is
uniform, the impact of prefetching is insignificant, however,
because the prefetched pages are placed last in the virtual
order, prefetching does not hurt performance either. In the
remainder of our experiments, unless otherwise mentioned,
prefetching is enabled.
Performance Gains Do Not Come at a Cost. We highlight
that the overall workload latency improvement observed in
these experiments (up to 32.1%) does not come at a hidden
cost. Table III compares the buffer misses, application writes
and total physical writes for ACE with prefetching enabled for
different workloads. The table shows the percentage difference
in buffer miss, logical writes and physical writes between
ACE1 and the baseline values. The maximum increase in buffer
misses is 0.003% for ACE-LRU on workload MU, and the
maximum increase in total writes is 0.12% for LRU-WSR
on workload RIS, thus being negligible. Since ACE writes
multiple pages at once, it is possible that after writing a page
(but not evicting), another write comes in for the same page,
consequently, increasing the total number of logical writes
slightly. The table also shows that for skewed workloads, ACE

1We report the numbers of ACE policies with prefetching enabled as they
cause a higher number of writes.

with prefetching attains lower buffer misses (up to 0.009%)
compared to the baseline algorithms. In contrast, the number
of buffer misses increases slightly for the uniform workload
because prefetching can not help much in that case.
Impact on SSD Wear Out. We now analyze the impact of
ACE on SSD wear out. Since every cell in a NAND flash
can sustain a certain number of erases, the total number of
writes primarily contributes to an SSD’s wear out. We again
refer to Table III where we list the percentage difference of
both logical and physical writes for different workloads with
different page replacement policies. We capture the SMART
(Self-Monitoring, Analysis and Reporting Technology) [64]
attributes to collect the number of physical writes on the SSD.

 0

 5

 10

 15

 20

MS RIS WIS MU

# 
W
ri
te
s 
(in

 M
ill
io
ns
) SOA-LW

ACE-LW
SOA-PW
ACE-PW

Fig. 9: ACE causes very small increase
in total number of writes

The table shows that
the maximum increase in
physical writes is 0.17%
while the maximum in-
crease in logical writes is
0.14%. Figure 9 shows
the logical and physical
writes (LW and PW) on
our PCIe SSD as we run
our synthetic workloads
in PostgreSQL for an extended period (30 mins) with LRU-
WSR and ACE-LRU-WSR. Note that, the physical writes
are approximately 5-6× higher than logical writes due to
flash’s garbage collection and wear-leveling [22]. While the
total number of writes (logical and physical) for ACE and
its baseline replacement policy remains almost the same, the
speedup for ACE can be as high as 1.35×, with a negligible in-
crease in physical writes (0.17%). For a read-heavy workload,
ACE’s performance benefit is small but still comparable to the
negligible increase in physical writes. At any rate, the ACE
paradigm is always beneficial regarding the overall workload
latency, even with a very small fraction of writes. On the
other hand, for a purely read-only workload, there will be no
performance benefit (but also no increased write amplification
or SSD wear out since there will be no writes).



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

MS WIS RIS MU

Sp
ee

du
p

ACE-Clock
ACE-LRU

ACE-CFLRU
ACE-LRUW

(a) ACE improves latency for all
workloads in the SATA SSD

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

MS WIS RIS MU

Sp
ee

du
p

ACE-Clock
ACE-LRU

ACE-CFLRU
ACE-LRUW

(b) ACE improves latency for all
workloads in the Virtual SSD

0
100
200
300
400
500
600
700
800
900

1000

0 1 2 3 4 5 6 7 8 9 10 11

La
te

nc
y 

(s
)

Read/Write Ratio

Clock ACE-Clock

LRU ACE-LRU

CFLRU ACE-CFLRU

LRUW ACE-LRUW

0:100 10:90  20:80  30:70  40:60  50:50  60:40 70:30  80:20  90:10  100:0

(c) Impact of r/w ratio (PCIe SSD –
BP size:6%, locality: 90/10)

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10 11

Sp
ee

du
p

Read/Write Ratio

ACE-Clock ACE-LRU
ACE-CFLRU ACE-LRUW

0:100  10:90  20:80 30:70  40:60  50:50  60:40 70:30  80:20  90:10  100:0

(d) Higher gain for write-heavy workloads
(PCIe SSD – BP size:6%, locality: 90/10)

0
100
200
300
400
500
600
700
800
900

0.9 1.8 3.6 7.2

La
te

nc
y 

(s
)

Bufferpool size (%)

Clock ACE-Clock
LRU ACE-LRU
CFLRU ACE-CFLRU
LRUW ACE-LRUW

2                            4               6           8      10    20   50 100  

(e) Impact of bufferpool size (PCIe SSD –
r/w: 50/50, locality: 90/10)

1

1.1

1.2

1.3

1.4

0.9 1.8 3.6 7.2

Sp
ee

du
p

Bufferpool size (%)

ACE-Clock ACE-LRU
ACE-CFLRU ACE-LRUW

2                          4               6        8      10    20  50  100

(f) More gain under memory pressure (PCIe
SSD – r/w: 50/50, locality: 90/10)

1

1.1

1.2

1.3

1.4

0 2 4 6 8 10 12 14 16

Sp
ee
du

p

nw

ACE-Clock ACE-LRU
ACE-CFLRU ACE-LRUW

(g) Impact of concurrency (PCIe SSD – r/w:
50/50, BP size: 6%, locality: 90/10)

1.50 1.93 2.31 2.64 2.94 3.20 3.44 3.66

1.48 1.89 2.25 2.55 2.82 3.06 3.28 3.47

1.46 1.85 2.17 2.45 2.69 2.90 3.08 3.25

1.44 1.79 2.07 2.31 2.52 2.69 2.85 2.98

1.40 1.70 1.94 2.14 2.30 2.44 2.55 2.65

1.34 1.58 1.76 1.90 2.01 2.10 2.18 2.24

1.23 1.38 1.48 1.55 1.60 1.65 1.68 1.71

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

𝛼

nw

1

3.7

Speedup

(h) Ideal speedup of ACE in the
(α,n) continuum

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10 11

Sp
ee

du
p

Read/Write Ratio

PCIe SSD Virtual SSD
SATA SSD Optane SSD

0:100  10:90  20:80 30:70  40:60  50:50  60:40 70:30  80:20  90:10  100:0

(i) Benefit is higher for devices with higher
asymmetry (Algo: LRU-WSR, BP size: 6%)

Fig. 10: (a, b) ACE improves runtime significantly for device with low asymmetry. (c, d) Workloads with higher fraction of
writes lead to greater benefits. (e, f) ACE is beneficial across a wide range of bufferpool size w.r.t. data size. (g) Speedup
increases as concurrent I/Os are increased until device gets saturated. (h) Spectrum of (α,n) – as we move towards higher
asymmetry, ACE has higher gain. (i) Empirical evidence showing that devices with higher asymmetry has higher gain for ACE.

Better Performance Even in Low Asymmetry Devices. To
analyze the impact of ACE for devices with low asymmetry,
we run our synthesized workloads on the SATA SSD (α = 1.5)
and the Virtual SSD (α = 2.0). Figures 10a and 10b show
the speedup of ACE (with prefetching) when integrated with
the four page replacement algorithms, on the SATA SSD and
Virtual SSD, respectively. Both devices are significantly slower
than the PCIe SSD, however, the trend of overall performance
gain remains. For the regular SSD, the speedup of ACE is
1.12− 1.28× and for the virtual SSD, it is 1.14− 1.34×. In
contrast, the speedup for the PCIe SSD is 1.19− 1.46× (Fig-
ure 8). We observe that for a device with higher asymmetry,
the benefit of amortizing the high write cost is more than that
of a device with lower asymmetry. This supports our thesis
that the benefits are larger for higher asymmetry, however,
even when there is low/no asymmetry, better utilization of the

device’s internal parallelism still leads to significant gains.
Write-Intensive Workloads Have Higher Gains. A com-
mon observation from the above experiments is that a write-
intensive workload benefits more from the ACE bufferpool
(Figure 8b). To verify this, we run an experiment varying the
read/write ratio from 0/100 (write-intensive) to 100/0 (read-
intensive) where the locality is 90/10. Figures 10c and 10d
illustrate that the performance of ACE improves drastically as
we shift to more write-intensive workloads. For example, as
we move away from the most write-intensive workload (0/100)
to a balanced workload (50/50), the speedup for ACE (with
Clock Sweep) drops from 1.57× to 1.34×. As we further
move to more read-intensive workloads (towards 100/0), the
speedup eventually diminishes. This is because the benefit of
ACE stems from efficient concurrent writing, and in a workload
with no (fewer) writes, there will be no (less) gain. However,



the benefit never fall behind the classical approach since for
a read-only workload, ACE behaves exactly the same as a
state-of-the-art bufferpool. Figures 8b, 10c and 10d also show
that LRU-WSR performs much better than both LRU and
CFLRU for a write-intensive workload with high locality. This
is because LRU-WSR gives the dirty pages a second chance
with the cold flag, thus saving a lot of unnecessary disk writes.
Figures 10c and 10d also show that CFLRU performs well
in a read-intensive setting because it evicts clean pages first,
and in a read-heavy workload there will be fewer dirty pages.

Higher Benefits Under Memory Pressure. ACE achieves
higher speedup for smaller bufferpool size because a smaller
bufferpool causes more evictions, hence more writes. Fig-
ures 10e and 10f show the impact of ACE under memory
pressure for a mixed skewed workload like MS in the PCIe
SSD. Figure 10e shows the actual runtime while Figure 10f
shows the speedup of the four ACE policies over the baseline
counterparts, as we vary the bufferpool size with respect to
the data size. We observe that as the bufferpool size grows
beyond 6%, the speedup decreases because larger bufferpool
causes fewer evictions (and fewer writes). For a bufferpool
size of more than 10%, the latency (and speedup) of all
approaches drop drastically because the bufferpool is large
enough to hold the working set, resulting in very few disk
accesses. On the other side of the spectrum, the speedup
for smaller bufferpool sizes (2%, 4%) is slightly less (than
that of 6%) because if the bufferpool size is too small, there
are too many read I/Os to the disk. Nonetheless, even for a
smaller bufferpool, the gain is substantial. For example, for
2% bufferpool size, the speedup for ACE-CFLRU is 1.29×,
while for 10%, the speedup is 1.25×. Figure 10e also shows
that CFLRU performs better than both LRU and LRU-WSR
for smaller buffer size. As the buffer size increases, the benefit
of CFLRU drops because of its lower hit ratio. On the other
hand, LRU-WSR always performs better than LRU and Clock
Sweep because of its write-optimization policy. In all cases,
the ACE policies outperform their baseline counterparts.

Device Concurrency Plays A Crucial Role. We run the
mixed-skewed workload MS in the PCIe SSD while varying
nw to capture the impact of the write-back concurrency vs.
the device concurrency as shown in Figure 10g. Each line
shows the speedup of ACE over the corresponding baseline
algorithm. As concurrency increases, the speedup increases in
all cases, which is expected. However, after a certain point
(nw = 8), the speedup starts decreasing. There are several
factors contributing to this: (i) as the number of concurrent
I/O increases, the overhead of thread management increases,
(ii) the ideal device write concurrency is kw = 8 in this
experiment, and (iii) going over the ideal concurrency does
not yield any benefit since the bandwidth gets saturated and
attempting to submit more concurrent I/Os does not further
increase write throughput. As a result, the overall speedup
starts reducing after reaching this threshold. We highlight that
even with a small degree of concurrency (nw = 4 or nw = 6),
the speed is substantial (1.2× – 1.3×).

 0

 0.5

 1

 1.5

ACE-LRU ACE-CFLRU ACE-LRUW ACE-Clock

Sp
ee

du
p

Read-Write Read-Only Write-Heavy

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

Read-Write Read-Only Write-Heavy

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

 2
Read-Write Read-Write Read-Only

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

Fig. 11: ACE achieves high speedup for TPC-C mixed transac-
tion, while benefiting the write-intensive transaction the most.

Performance Gain Increases with Asymmetry. Our last
experiment highlights that asymmetry impacts the attained
gains of the ACE policies. We implement a bufferpool manager
with LRU and ACE-LRU without prefetching, and we test
them on an emulated device that has ideal asymmetry varied
between α = 1 (no asymmetry) and α = 8, while the device
concurrency is kw = 8. We run the mixed-skewed workload
MS and normalize the emulated latency of ACE-LRU with
respect to that of the baseline LRU for the respective emulated
device. Figure 10h shows the ideal speedup of ACE for
different values of α and nw. The continuum of (α, nw) shows
that as we move towards higher asymmetry, the gain increases
and it is highest when both asymmetry and concurrency value
are maximized. We run an experiment to show this empirically
where we vary the read/write ratio with ACE on top of LRU-
WSR in all four of our devices (PCIe SSD, SATA SSD, Virtual
SSD, Optane SSD). The nw values were set according to
the device kw. Figure 10i shows that when everything else
is the same, the performance gain is higher for devices with
higher asymmetry. This is because the benefit of amortizing
the asymmetric write cost is higher for a device with a higher
write cost. The speedup for the PCIe SSD (α = 2.8) is up
to 1.63× (write-only workload) while the speedup is limited
to 1.48×, 1.41× and 1.33× for the Virtual SSD (α = 2.0),
SATA SSD (α = 1.5), Optane SSD (α = 1.1), respectively.

B. TPC-C Benchmark

We further use the TPC-C benchmark [68] to demonstrate
ACE’s efficacy. A TPC-C database consists of nine tables
(Warehouse, Stock, Item, District, Customer, History, Order,
New-Order, and Order-Line), and the data size depends on
the number of Warehouses. The benchmark consists of five
transactions at different frequencies:
• NewOrder (45%): This transaction involves both reads and

writes (RW) with 1% failure rate due to invalid inputs.
• Payment (43%): This transaction has both reads and writes.
• OrderStatus (4%): This is a read-only transaction.
• StockLevel (4%): This is a read-only transaction.
• Delivery (4%): This is a write-heavy transaction
ACE Accelerates TPC-C by 24%. For the first experiment,
we run the standard TPC-C benchmark in PostgreSQL for the
four page replacement policies and their ACE counterparts.
Each baseline run is 10 minutes long and is configured with
500 warehouses, and 20 users and the resulting database size



is approximately 50GB. PostgreSQL shared buffers param-
eter is configured to be 3GB (6%). Figure 11 shows the
performance gain of ACE for the TPC-C mix, and for five
workloads each consisting of one of the TPC-C transactions.
ACE achieves significant performance gain when integrated
with any page replacement policy. For example, the speedup
of ACE for the mixed transaction (combination of all five) is
1.29×, 1.27×, 1.30× and 1.32× when implemented on top
of Clock Sweep, LRU, CFLRU, LRU-WSR, respectively. The
highest speedup, 1.51×, is obtained when running the Delivery
transaction which is an update-heavy transaction. In addition,
as expected, there is no performance gain for the two read-only
transactions: OrderStatus and StockLevel. We observe that the
performance results for the TPC-C benchmark corroborate our
findings for the synthetic benchmark: (i) ACE offers significant
performance benefits when the workload contains even a small
fraction of writes, (ii) write-heavy workloads have higher
gain, (iii) flash-friendly policies like CFLRU and LRU-WSR
outperform other policies. Overall, ACE reduces the TPC-
C mix transaction runtime on modern storage devices by
24% without any significant penalty or other tradeoff.
ACE Scales with Data Size. Our last experiment shows
that the benefits of ACE scale with data size. We again
run the TPC-C mix and we increase the number of ware-
houses, varying the database size from 15GB to 84GB.

 0

 1000

 2000

 3000

 4000

 5000

 6000

125 250 500 1000

tp
m

C
 (t

xn
s 

pe
r 

m
in

ut
e)

Number of Warehouses

LRU ACE-LRU

Fig. 12: Gain of ACE scales with data size.

The bufferpool
size is always
configured
to be 6% of
the database
size. Figure 12
presents the
transactions per
minute count
(tpmC) of this experiment when running with LRU and ACE-
LRU (similar trends were observed for the other policies).
The figure shows that ACE’s benefits remain as we increase
the database size. Specifically, the performance gain of ACE
for 125 warehouses is 1.33× while for 1000 warehouses it
is 1.24× compared to LRU’s tpmC. This small decrease is
attributed to the overhead of managing a high volume of data.
Overall, this experiment shows that ACE policies scale which
makes them ideal for large-scale deployments.

VII. RELATED WORK

Addressing Asymmetry and Concurrency. Read/write asym-
metry has been identified as an optimization goal for index-
ing [3, 8, 9, 37, 39, 70], flash-aware storage engines [5, 27, 47],
and other data management operations [14, 15, 19, 52]. Recent
research has focused on developing new I/O schedulers for
SSDs [41, 55, 59, 63] and on modifying SSD internals to
exploit the parallelism [6, 7]. In the same spirit, our work aims
to make SSD asymmetry and concurrency a first-class citizen
when designing database bufferpool for external memory.
Bufferpool Management. There have been several efforts
that focus on developing efficient page replacement poli-

cies [16, 24, 30, 31, 42, 49, 66]. However, they are primarily
designed for traditional HDDs, hence, they do not address
asymmetry or concurrency. Recent work on bufferpool on top
of flash devices prioritizes the eviction of clean pages and re-
duces page writes to minimize device wear-off [26, 38, 53, 73].
Other flash-friendly policies, like FOR and FOR+ [40] use
an operation-aware page weight determination for buffer re-
placement. All these techniques indirectly address asymmetry,
however, they do not exploit the device concurrency. Recently
proposed works also attempt to exploit the device parallelism
by redesigning the SSD controller [32, 60, 61]. In contrast to
these approaches, our goal is to develop a bufferpool that
expressly utilizes the device concurrency and consequently
addresses asymmetry via write-amortization.
In-Memory Database Systems. Systems like LeanStore [35]
and Umbra [48] target modern storage devices and depart
from the classical bufferpool paradigm using pointer swizzling,
variable-size pages, low-overhead replacement strategies, etc.
ACE can benefit such systems even further as long as the
underlying storage has asymmetry and concurrency.
Prefetching. The most popular prefetching technique is se-
quential prefetching [12, 36, 67] which is adopted by many
commercial systems. Stride-based prefetching is also widely
studied primarily for processor caches [17, 33]. History-based
prefetching techniques attempt to predict future access patterns
based on past access patterns by using history-based table [18],
Markov predictor [25], and data compression techniques [11,
71]. In the augmented design space that we propose, any
prefetching technique(s) can be integrated.

VIII. CONCLUSION

Modern solid-state drives are characterized by a read-write
asymmetry and an access concurrency, both of which are
essential to fully utilize the device. However, buffer man-
agement for DBMS does not explicitly focus on these two
properties. In this work, we first refactor the bufferpool design
space by separating the eviction policy from the write-back
policy. We propose ACE, a novel asymmetry/concurrency-
aware bufferpool manager paradigm that batches writes based
on device concurrency to amortize the asymmetric write cost.
Incorporating concurrency into the write-back policy allows
us to custom-tailor any bufferpool manager to the device-at-
hand, thus utilizing the device’s full potential. ACE can be
integrated with any existing page replacement and prefetching
policy with low engineering effort. We implement ACE in
PostgreSQL and measure its benefit when integrated with four
state-of-the-art page replacement algorithms. ACE improve-
ments performance by up to 32.1% for synthetic workloads
and up to 24.2% for the standard TPC-C mixed transaction
(33.8% for write-heavy transactions) without any penalty.

ACKNOWLEDGMENT

We sincerely thank the reviewers for their constructive feed-
back and the members of DiSC lab for their useful remarks.
This work is funded by NSF Grant IIS-2144547, a Facebook
Faculty Research Award, and a Meta gift.



REFERENCES

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient pattern
matching over event streams,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2008, pp. 147–160.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design Tradeoffs for SSD Performance,” in Proceedings
of the USENIX Annual Technical Conference (ATC), 2008, pp. 57–70.

[3] M. Athanassoulis and A. Ailamaki, “BF-Tree: Approximate Tree Index-
ing,” Proceedings of the VLDB Endowment, vol. 7, no. 14, pp. 1881–
1892, 2014.

[4] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun,
“Efficient Algorithms with Asymmetric Read and Write Costs,” in
Proceedings of the Annual European Symposium on Algorithms (ESA),
2016, pp. 14:1–14:18.

[5] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang,
“SSD Bufferpool Extensions for Database Systems,” Proceedings of the
VLDB Endowment, vol. 3, no. 1-2, pp. 1435–1446, 2010.

[6] F. Chen, B. Hou, and R. Lee, “Internal Parallelism of Flash Memory-
Based Solid-State Drives,” ACM Transactions on Storage (TOS), vol. 12,
no. 3, pp. 13:1–13:39, 2016.

[7] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing,” in Proceedings of the IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2011, pp. 266–277.

[8] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking Database Algorithms
for Phase Change Memory,” in Proceedings of the Biennial Conference
on Innovative Data Systems Research (CIDR), 2011.

[9] S. Chen and Q. Jin, “Persistent B+-Trees in Non-Volatile Main Memory,”
Proceedings of the VLDB Endowment, vol. 8, no. 7, pp. 786–797, 2015.

[10] M. Cornwell, “Anatomy of a Solid-State Drive,” Communications of the
ACM (CACM), vol. 55, no. 12, pp. 59–63, 2012.

[11] K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practical Prefetching via
Data Compression,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1993, pp. 257–266.

[12] F. Dahlgren, M. Dubois, and P. Stenström, “Fixed and Adaptive Sequen-
tial Prefetching in Shared Memory Multiprocessors,” in Proceedings of
the International Conference on Parallel Processing (ICPP), Volume I:
Architecture, 1993, pp. 56–63.

[13] D. Didona, N. Ioannou, R. Stoica, and K. Kourtis, “Toward a Better
Understanding and Evaluation of Tree Structures on Flash SSDs,”
Proceedings of the VLDB Endowment, vol. 14, no. 3, pp. 364–377, 2020.

[14] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F. Naughton, and A. Halver-
son, “Turbocharging DBMS buffer pool using SSDs,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data,
2011, pp. 1113–1124.

[15] P. Dubs, I. Petrov, R. Gottstein, and A. P. Buchmann, “FBARC: I/O
Asymmetry Aware Buffer Replacement Strategy,” in Proceedings of
the International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures (ADMS), 2013, pp.
58–69.

[16] M. Z. Farooqui, M. Shoaib, and M. Z. Khan, “A comprehensive survey
of page replacement algorithms,” International Journal of Advanced
Research in Computer Engineering & Technology (IJARCET) Volume,
vol. 3, 2014.

[17] J. W. C. Fu and J. H. Patel, “Data Prefetching in Multiprocessor Vector
Cache Memories,” in Proceedings of the 18th Annual International
Symposium on Computer Architecture. Toronto, Canada, May, 27-30
1991, 1991, pp. 54–63.

[18] K. S. Grimsrud, J. K. Archibald, and B. E. Nelson, “Multiple Prefetch
Adaptive Disk Caching,” IEEE Trans. Knowl. Data Eng., vol. 5, no. 1,
pp. 88–103, 1993.

[19] Y. Gu, Y. Sun, and G. E. Blelloch, “Algorithmic building blocks
for asymmetric memories,” in Leibniz International Proceedings in
Informatics, LIPIcs, vol. 112, 2018, pp. 44:1—-44:15.

[20] G. Haas, M. Haubenschild, and V. Leis, “Exploiting Directly-Attached
NVMe Arrays in DBMS,” in Proceedings of the Conference on Inno-
vative Data Systems Research (CIDR), 2020.

[21] IBM, “Db2: Prefetching Data into The Bufferpool,”
https://www.ibm.com/docs/en/db2/9.7?topic=management-prefetching-
data-into-buffer-pool, 2012.

[22] Z. Jiao, J. Bhimani, and B. S. Kim, “Wear leveling in SSDs considered
harmful,” in HotStorage ’22: 14th ACM Workshop on Hot Topics in
Storage and File Systems, Virtual Event, June 27 - 28, 2022, 2022, pp.
72–78.

[23] Z. Jiao and B. S. Kim, “Generating realistic wear distributions for SSDs,”
in HotStorage ’22: 14th ACM Workshop on Hot Topics in Storage and
File Systems, Virtual Event, June 27 - 28, 2022, 2022, pp. 65–71.

[24] T. Johnson and D. Shasha, “2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm,” in Proceedings of the
International Conference on Very Large Data Bases (VLDB), 1994, pp.
439–450.

[25] D. Joseph and D. Grunwald, “Prefetching Using Markov Predictors,”
IEEE Trans. Computers, vol. 48, no. 2, pp. 121–133, 1999.

[26] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, “LRU-WSR: integration
of LRU and writes sequence reordering for flash memory,” IEEE Trans.
Consumer Electron., vol. 54, no. 3, pp. 1215–1223, 2008.

[27] A. Kakaraparthy, J. M. Patel, K. Park, and B. Kroth, “Optimizing
Databases by Learning Hidden Parameters of Solid State Drives,”
Proceedings of the VLDB Endowment, vol. 13, no. 4, pp. 519–532, 2019.

[28] J.-U. Kang, H. Jo, J. Kim, and J. Lee, “A superblock-based flash
translation layer for NAND flash memory,” in Proceedings of the 6th
ACM & IEEE International conference on Embedded software, EMSOFT
2006, October 22-25, 2006, Seoul, Korea, 2006, pp. 161–170.

[29] M. Kang, W. Lee, and S. Kim, “Subpage-Aware Solid State Drive for
Improving Lifetime and Performance,” IEEE Trans. Computers, vol. 67,
no. 10, pp. 1492–1505, 2018.

[30] K. Kedzierski, M. Moretó, F. J. Cazorla, and M. Valero, “Adapting
cache partitioning algorithms to pseudo-LRU replacement policies,”
in Proceedings of the IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), 2010, pp. 1–12.

[31] S. Khuri and H.-C. Hsu, “Visualizing the CPU scheduler and page
replacement algorithms,” in Proceedings of the SIGCSE Technical Sym-
posium on Computer Science Education (SIGCSE), 1999, pp. 227–231.

[32] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” in Proceedings of the
USENIX Conference on File and Storage Technologies (FAST), 2008,
pp. 239–252.

[33] R. L. Lee, P.-C. Yew, and D. H. Lawrie, “Data Prefetching In Shared
Memory Multiprocessors,” in Proceedings of the International Confer-
ence on Parallel Processing (ICPP), 1987, pp. 28–31.

[34] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A log buffer-based flash translation layer using fully-associative
sector translation,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 6, no. 3, 2007.

[35] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann, “LeanStore: In-
Memory Data Management beyond Main Memory,” in Proceedings of
the IEEE International Conference on Data Engineering (ICDE), 2018,
pp. 185–196.

[36] M. Li, E. Varki, S. Bhatia, and A. Merchant, “TaP: Table-based Prefetch-
ing for Storage Caches,” in Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), 2008, pp. 81–96.

[37] Y. Li, B. He, J. Yang, Q. Luo, K. Yi, and R. J. Yang, “Tree Indexing on
Solid State Drives,” Proceedings of the VLDB Endowment, vol. 3, no.
1-2, pp. 1195–1206, 2010.

[38] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, “CCF-LRU: a new buffer
replacement algorithm for flash memory,” IEEE Trans. Consumer Elec-
tron., vol. 55, no. 3, pp. 1351–1359, 2009.

[39] J. Liu, S. Chen, and L. Wang, “LB+-Trees: Optimizing Persistent
Index Performance on 3DXPoint Memory,” Proceedings of the VLDB
Endowment, vol. 13, no. 7, pp. 1078–1090, 2020.

[40] Y. Lv, B. Cui, B. He, and X. Chen, “Operation-aware buffer management
in flash-based systems,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 2011, pp. 13–24.

[41] B. Mao, S. Wu, and L. Duan, “Improving the SSD Performance
by Exploiting Request Characteristics and Internal Parallelism,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 37, no. 2, pp.
472–484, 2018.

[42] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), 2003, pp. 115–130.

[43] S. Mittal, “A Survey of Recent Prefetching Techniques for Processor
Caches,” ACM Computing Surveys, vol. 49, no. 2, pp. 35:1—-35:35,
2016.

[44] J. Moon, M. Kang, W. Lee, and S. Kim, “Salvaging Runtime Bad
Blocks by Skipping Bad Pages for Improving SSD Performance,” in
Proceedings of the Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2022, pp. 576–579.



[45] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasubra-
maniam, B. Cutler, J. Liu, B. M. Khessib, and K. Vaid, “SSD Failures in
Datacenters: What? When? and Why?” in Proceedings of the 9th ACM
International on Systems and Storage Conference, SYSTOR 2016, Haifa,
Israel, June 6-8, 2016, 2016, pp. 7:1—-7:11.

[46] S. Nath and P. B. Gibbons, “Online Maintenance of Very Large Random
Samples on Flash Storage,” Proceedings of the VLDB Endowment,
vol. 1, no. 1, pp. 970–983, 2008.

[47] S. Nath and A. Kansal, “FlashDB: dynamic self-tuning database for
NAND flash,” Proceedings of the International Symposium on Informa-
tion Processing in Sensor Networks (IPSN), 2007.

[48] T. Neumann and M. J. Freitag, “Umbra: A Disk-Based System with In-
Memory Performance,” in Proceedings of the Conference on Innovative
Data Systems Research (CIDR), 2020.

[49] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K page replace-
ment algorithm for database disk buffering,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1993, pp.
297–306.

[50] T. I. Papon and M. Athanassoulis, “A Parametric I/O Model for Modern
Storage Devices,” in Proceedings of the International Workshop on Data
Management on New Hardware (DAMON), 2021.

[51] T. I. Papon and M. Athanassoulis, “The Need for a New I/O Model,”
in Proceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR), 2021.

[52] H. Park and K. Shim, “FAST: Flash-aware external sorting for mobile
database systems,” Journal of Systems and Software, vol. 82, no. 8, pp.
1298–1312, 2009.

[53] S.-Y. Park, D. Jung, J.-U. Kang, J. Kim, and J. Lee, “CFLRU: a replace-
ment algorithm for flash memory,” in Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), 2006, pp. 234–241.

[54] S. Park and K. Shen, “A performance evaluation of scientific I/O work-
loads on Flash-based SSDs,” in Proceedings of the IEEE International
Conference on Cluster Computing (CLUSTER), 2009, pp. 1–5.

[55] S. Park and K. Shen, “FIOS: a fair, efficient flash I/O scheduler,” in Pro-
ceedings of the USENIX Conference on File and Storage Technologies
(FAST), 2012, p. 13.

[56] PostgreSQL, “The Internals of PostgreSQL,”
http://www.interdb.jp/pg/pgsql08.html, 2015.

[57] PostgreSQL, “PostgreSQL: The pg prewarm module,”
https://www.postgresql.org/docs/current/pgprewarm.html, 2016.

[58] R. Ramakrishnan and J. Gehrke, Database Management Systems.
McGraw-Hill Higher Education, 3rd edition, 2002.

[59] H. Roh, S. Park, S. Kim, M. Shin, and S.-W. Lee, “B+-Tree Index
Optimization by Exploiting Internal Parallelism of Flash-based Solid

State Drives,” Proceedings of the VLDB Endowment, vol. 5, no. 4, pp.
286–297, 2011.

[60] J. Seol, H. Shim, J. Kim, and S. Maeng, “A buffer replacement algorithm
exploiting multi-chip parallelism in solid state disks,” in Proceedings of
the International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), 2009, pp. 137–146.

[61] Z. Sha, Z. Cai, F. Trahay, J. Liao, and D. Yin, “Unifying temporal and
spatial locality for cache management inside SSDs,” in Proceedings of
the Design, Automation and Test in Europe Conference and Exposition
(DATE). IEEE, 2022, pp. 1–6.

[62] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United States
Data Center Energy Usage Report,” Ernest Orlando Lawrence Berkeley
National Laboratory, vol. LBNL-10057, 2016.

[63] K. Shen and S. Park, “FlashFQ: A Fair Queueing I/O Scheduler for
Flash-Based SSDs,” in Proceedings of the USENIX Annual Technical
Conference (ATC), 2013, pp. 67–78.

[64] Smartmontools, “Smart Monitoring Tools,”
https://www.smartmontools.org/.

[65] A. J. Smith, “Sequentiality and Prefetching in Database Systems,” ACM
Trans. Database Syst., vol. 3, no. 3, pp. 223–247, 1978.

[66] A. S. Tanenbaum, Modern Operating Systems. Prentice-Hall, 1992.
[67] M. K. Tcheun, H. Yoon, and S. R. Maeng, “An adaptive sequential

prefetching scheme in shared-memory multiprocessors,” in Proceedings
of the International Conference on Parallel Processing (ICPP), 1997,
pp. 306–313.

[68] TPC, “Specification of TPC-C benchmark,” http://www.tpc.org/tpcc/,
2022.

[69] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM
Computing Surveys, vol. 32, no. 2, pp. 174–199, 2000.

[70] S. D. Viglas, “Adapting the B +-tree for asymmetric I/O,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 7503 LNCS,
2012, pp. 399–412.

[71] J. S. Vitter and P. Krishnan, “Optimal Prefetching via Data Compres-
sion,” J. ACM, vol. 43, no. 5, pp. 771–793, 1996.

[72] K. Wu, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Towards an
Unwritten Contract of Intel Optane SSD,” in Proceedings of the USENIX
Conference on Hot Topics in Storage and File Systems (HotStorage),
2019.

[73] Y.-S. Yoo, H. Lee, Y. Ryu, and H. Bahn, “Page Replacement Algorithms
for NAND Flash Memory Storages,” in Proceedings of the International
Conference on Computational Science and Applications (ICCSA), ser.
Lecture Notes in Computer Science, 2007, pp. 201–212.


	Introduction
	SSD Properties
	Read/Write Asymmetry
	Device Concurrency

	An Augmented Bufferpool Design Space
	Background on Page Replacement Algorithm
	Write-back Policy
	Eviction Policy
	Read-ahead Policy

	ACE Bufferpool Manager
	Overview of ACE Bufferpool Management
	Writer
	Evictor
	Reader
	Putting Everything Together

	Implementation & Integration
	Evaluation
	Experimental Analysis with Synthetic Data
	TPC-C Benchmark

	Related Work
	Conclusion
	References

