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Rise of Big Data. Data generation is growing at an unprecedented rate due to sources like social media, digital transac-
tions, sensors, and the expanding network of Internet of Things (IoT) devices. As a result, a key challenge relates to data
storage, retrieval, and maintenance, leading to the need for new scalable storage architectures that balance performance
with cost while providing near-optimal performance.

Tiered Storage Architecture for Big Data Management. To address these needs, cost-effective storage solutions
have been developed that scale (i) horizontally, resulting in distributed storage (file) systems (DFS) such as GFS, Cas-
sandra, HDFS, Ceph; and (ii) vertically, resulting in the development of tiered storage systems like HP AutoRAID, IBM
Storage Tank. Data-intensive applications are increasingly employing tiered-storage systems that offer a unified interface
to a collection of devices organized in tiers, each with varying levels of performance, capacity, and cost similar to the
classical memory hierarchy. Generally, the top tier’s devices are faster and smaller, where the lower tier devices are
slower and larger. However, unlike the classical memory hierarchy, applications can read from any tier directly without
always having to push to a higher level [1]]. An effective tiered storage management strategy is essential for balanc-
ing costs between infrastructures and end-user demands while maximizing resource utilization and performance [2]]. It
achieves this balance by dynamically prioritizing frequently accessed and important data for placement on faster, more
expensive storage devices while relegating less critical and infrequently accessed data to slower, low-cost devices. We
now ask the question: How do modern storage device properties affect the performance of a tiered storage system?

Storage Devices and Their Properties. Modern tiered storage systems typically incorporate a variety of storage
devices like Solid State Drives (SSDs) with variable performance and cost and Hard Disk Drives (HDDs) for slow or
archival storage. Since SSDs are the fastest secondary storage device, multiple (or all) tiers of a tiered storage system
typically employ SSDs, hence, we focus on how to better exploit these devices. Typically, SSDs exhibit a high degree
of internal parallelism (termed concurrency in this paper) that can be harnessed to increase performance [3} 4]. On the
other hand, for flash-based SSDs, the cost of reading is generally lower than the (amortized) cost of writing, leading to an
SSD read/write asymmetry where writes can be up to one order of magnitude slower than reads. These two properties
of SSDs are crucial: (i) proper use of SSD concurrency enables better device utilization, and (ii) special care of expensive
writes can optimize overall workload execution [5}[6] [7]. Hence, proper performance modeling of SSDs that captures
(and exploits) device properties can help tiered storage systems improve resource utilization and performance.

Challenges of Tiered Storage Management. The best strategy for managing a multi-tiered environment depends on
data type, access patterns, storage device, and long- and short-term availability of the data. A recurring challenge is
the cost associated with the data stores. Data access patterns typically evolve over time, and keeping the data on the
fastest storage devices is economically challenging as faster tiers are generally expensive and small. On the contrary,
pushing all the data on the slow tiers (slow SSD, HDD, or even an object store) degrades the overall performance of
the applications. Therefore, it is essential to have an effective data migration policy in multi-tiered storage that governs
when and how data is moved between tiers. Most common migration policies are recency-based, frequency-based, or a
hybrid of these two approaches, and all face three major challenges.

Challenge 1: Optimal Data Placement. For many applications the optimal data placement strategy depends on the
workload. The data placement strategy or migration strategy (across tiers) is the most crucial design decision for any
multi-tiered storage system. Ideally, we want the hot data in the faster tiers while the cold data should be in the slower
tiers. In case of dynamic workloads, this is not straightforward as data hotness can vary drastically over time. Systems
that rely on simple rule-based strategies (e.g., LRU-style or LFU-style policies) for data placement are designed primarily
for a simpler problem setting (e.g., two tiers), leading to suboptimal performance when workloads drift.

Challenge 2: Capturing Storage Device Properties. SSD concurrency and asymmetry have not been exploited in
tiered storage systems. As an example, there is a 40 increase in the read bandwidth of the 1TB PCle Intel P4510 SSD
when using full concurrency compared to no concurrency and 4KB writes are 3x slower than 4KB reads [4]. Without
capturing these storage properties accurately, the devices can remain vastly underutilized.

Challenge 3: Finer Migration Granularity. Existing data migration policies for tiered storage are designed for data
files/objects. However, many applications (i.e., DBMS, KV-store) running on tiered storage operate on pages, creating
the need for new page migration policies for tiered storage systems. To work on such finer granularity, data migration
policies must be lightweight while capturing workload and device properties.

Overall, existing tiered storage systems rely on predefined rules (e.g., recency-based, frequency-based) for data files/object
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Figure 1: State-of-the-art policies like EXD [[8] and LRFU [9] that rely on a utility function to capture workload features,
ignore device properties, and struggle with workload drift. tLRU and tLFU that adapt the LRU and LFU caching policies
for migration capture access statistics, but are slow to adapt to drift and do not consider device properties. Our approach
captures workload features and device properties and quickly adapts to workload drift. From the three different work-
loads, A is more skewed, and YCSB has more drift. Our approach always outperforms the state of the art by up to 2.2x.

placement and migration, which do not work well for page-level migration and do not adapt well to changing workload
patterns and access frequencies. Further, rule-based approaches do not interact with the system and, thus, do not take into
account device properties, rather, rely on basic heuristics that lead to suboptimal data placement.

Reinforcement Learning to the Rescue. Reinforcement Learning (RL) uses intelligent agents to make decisions by
interacting with the environment and receiving feedback in the form of rewards or penalties aiming to maximize a
cumulative reward. The RL formulation typically represents the state of the modeled system, and, thus, is well-suited
for learning how to migrate data in tiered storage systems, as it can adapt to changing workloads and an evolving
device state to optimize data placement. Further, an RL-based data migration approach can incorporate new storage
technologies as they emerge, providing a future-proof solution.

ReStore: An RL-Based Tiered Storage Migration Policy. To address the above challenges, we propose ReStore,
an RL-based multi-tiered storage migration policy, which can be integrated into any multi-tiered storage system that
allows for page-level accesses using multiple storage devices. As part of the RL formulation, we define state variables
that capture the workload features (recency and frequency) and device properties (concurrency and asymmetry), and use
areward function tied to system runtime. The policy is then optimized by maximizing the accumulated rewards through
value functions that quantify the quality of the current system state, which in turn minimizes workload execution cost.
To ensure adaptability, we employ Temporal Difference learning to update the value functions dynamically. A prime
benefit of ReStore is that its RL-based data migration gets feedback from the system through interaction and adapts
accordingly. Compared to state-of-the-art approaches, ReStore is the only policy that considers device properties
and responds well to dynamic workloads.

We compare ReStore with different rule-based policies, highlighting that while both approaches can achieve similar
data placement, the RL approach accomplishes this with significantly fewer data migrations, maximizing efficiency
and reducing cost. This is because ReStore (i) takes into account storage device properties like concurrency and
asymmetry to ensure optimal device utilization, and (ii) balances the tradeoff between cost, performance, and resource
utilization. Figure [1| compares ReStoxre with other baseline migration policies in case of workload drift. The figure
shows that ReStore achieves up to 2.2x speedup compared to other baselines for changing workloads, showcasing
ReStore’s flexibility to adapt to dynamic workloads.
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