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Solid-state drives (SSDs) have been replacing the traditional hard disk drives (HDDs) in the past few decades

because of their faster read and write speeds, along with superior random access performance. Unlike HDDs,

SSDs exhibit two distinct characteristics: (i) read/write asymmetry, where writes are slower than reads, and (ii)

access concurrency, allowing multiple I/O operations to run simultaneously and fully utilize device bandwidth.

Despite these, most storage-intensive applications are not optimized for SSD asymmetry and concurrency,

often leading to device underutilization. In this thesis, we uncover these crucial SSD properties and outline

how we can better exploit these properties from the application perspective.

First, we augment the traditional I/O modeling approaches with the Parametric I/O Model (PIO), a storage

model that faithfully represents storage devices by parameterizing read/write asymmetry (𝛼) and access

concurrency (k). Using this novel storage modeling, we propose a new Asymmetry & Concurrency-aware
bufferpool management (ACE) that batches writes based on device concurrency and performs them in parallel

to amortize the asymmetric write cost. Further, ACE performs parallel prefetching to exploit the device’s read

concurrency. ACE does not modify the existing bufferpool replacement policy, rather, it is a wrapper that can
be integrated with any replacement policy. We implement ACE in PostgreSQL and evaluate its benefits using a

synthetic benchmark and TPC-C for several popular eviction policies (Clock Sweep, LRU, CFLRU, LRU-WSR).

The ACE counterparts of all policies lead to significant performance improvements, exhibiting up to 32.1% lower

runtime for mixed workloads (33.8% for write-intensive TPC-C transactions) with a negligible increase in total

disk writes and buffer misses. We further present a concurrency-aware graph processing engine CAVE that
harnesses the parallelism supported by the underlying SSD device via concurrent I/Os. CAVE traverses multiple

paths and processes multiple nodes and edges concurrently without altering the fundamental graph traversal

algorithm guarantees. We apply this approach on five popular graph traversal algorithms: the ubiquitous

Breadth-First and Depth-First Search algorithms along with three algorithms that use BFS as a building block

(Weekly Connected Components, PageRank, and Random Walk). By experimenting with different types of

graphs on three SSD devices, we demonstrate that CAVE utilizes the available parallelism, and scales to diverse

real-world graph datasets while providing up to three orders of magnitude speedup in runtime compared to

the popular out-of-core system GraphChi and up to one order of magnitude speedup compared to GridGraph.

Overall, our analysis shows that more faithful storage modeling via incorporating asymmetry and concurrency

in algorithm design leads to higher performance and better device utilization.

1 INTRODUCTION

Modern Devices: Concurrency & Read/Write Asymmetry. The majority of today’s secondary

storage devices are solid-state disks (SSDs), while traditional hard-disk drives (HDDs) are used

primarily as cold or archival storage [29, 69, 81]. SSDs achieve their superior performance by

adopting NAND flash memory as their storage medium [4], thus eliminating the mechanical

overheads of HDDs (i.e., seek time, rotational delay), and consequently providing benefits like fast

random access, low energy consumption, and high chip density [36, 45, 71]. Furthermore, SSDs

exhibit a high degree of internal parallelism that can be harnessed to increase performance [12, 57].

In other words, an SSD needs to receive multiple concurrent I/Os (which can be distributed to

different components by the flash controller) to saturate its bandwidth [12]. The exact level of

concurrency (𝑘) needed to saturate the device depends on the request type (read or write) and

on the specifics of the device. On the other hand, due to the physics of the flash medium, the

cost of reading is considerably lower than the cost of writing which leads to an SSD read/write
asymmetry where writes can be up to one order of magnitude slower than reads [17].
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Fig. 1. (A) ACE addresses asymmetry by exploiting concurrency and amortizing writes. (B) The parallellized
version of BFS in CAVE takes fewer iterations to converge.

The Parametric I/O Model. With these two properties, i.e., concurrency (quantified by 𝑘) and

read/write asymmetry (quantified by 𝛼), SSD behavior departs from the one of traditional HDDs.

These characteristics have two key implications: (i) proper use of concurrency enables better

device utilization, and (ii) treating page reads and writes equally in an asymmetric environment

is suboptimal [64–66]. This raises the need for a new I/O model [66] that can incorporate these

device properties.

How should the I/O model be adapted in light of read/write asymmetry and concurrency?
We propose a simple yet expressive storage model termed Parametric I/O Model (PIO) [65] that

considers asymmetry (𝛼) and concurrency (𝑘) as parameters. Using the device properties, this richer

I/O model can accurately capture contemporary devices. We benchmark different types of state-of-

the-art storage devices to quantify their 𝛼 and 𝑘 . Our abstract analysis reveal that more informed
storage modeling leads to better overall application performance. However, many data-intensive

systems have not been thoroughly redesigned to account for SSD properties. We identify two use

cases where better storage modeling can enable better application performance.

Bufferpool Management. The part of a database management system (DBMS) that interacts

directly with storage devices is the bufferpool which works as the interface between memory and the

underlying storage device. We address two challenges of state-of-the-art bufferpool managers. (A)

First, existing bufferpool managers often assume that the underlying devices have no concurrency

(𝑘 = 1). When writing dirty pages to disk, state-of-the-art bufferpool managers write (evict) one

page at a time, hence missing the opportunity to exploit the device concurrency. (B) Second, page

replacement policies generally do not consider the device asymmetry (𝛼), instead, they treat read and

write requests equally (i.e., they consider 𝛼 = 1). Figure 1(A) shows that popular page replacement

policies are designed for devices with no asymmetry and concurrency (bottom left, blue). Recently

proposed flash-friendly policies [34, 49, 73, 94] try to minimize the number of writes by evicting

clean pages first, indirectly addressing the asymmetry (bottom middle, yellow). However, these

policies also exchange reads and writes interchangeably. There have been some efforts to utilize

the device concurrency via modifying the SSD internals [40, 79, 80] (top left, green). However,

these solutions lack general applicability because they require extensive redesigning of the SSD

controller and they do not target the DBMS bufferpool. Hence, to the best of our knowledge, no

bufferpool manager appropriately considers both asymmetry and concurrency.

We propose ACE [67], a new bufferpool manager that utilizes the underlying device concurrency

to bridge the device asymmetry (top right of Fig. 1(A) – colored red). Our approach uses asymmetry/
concurrency-aware write-back and eviction policies. The write-back policy always writes multiple

pages concurrently (utilizing the device’s write concurrency), hence amortizing the write cost.
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The eviction policy evicts one or multiple pages at the same time from the bufferpool to enable

prefetching. When multiple pages are evicted at once, ACE can concurrently prefetch pages to exploit

the device’s read concurrency. A key advantage of ACE is that it can be integrated with any existing

page replacement policy with low engineering effort, while, any prefetching technique can also be

integrated, essentially allowing any existing bufferpool manager to be augmented by our approach.

We integrate ACE with four page replacement policies and implement them in PostgreSQL to

evaluate ACE’s efficacy where we observe ACE can achieve upto 1.5× speedup.

Graph Management. With the unprecedented growth of interconnected data stemming from

various applications like machine learning, recommendation systems, physical sciences, and social

networks, analytics over large graphs is becoming increasingly popular in both academia and

industry [31, 51, 56? ]. Graph traversal operations can utilize SSD concurrency by parallelizing

node and edge accesses, effectively distributing the workload across the SSD’s parallel architec-

ture [6]. This idea takes advantage of the availability of multiple paths that can be explored during

graph traversal. While most out-of-core graph processing systems indirectly attempt to utilize

the underlying storage parallelism by reducing random (in favor of sequential) I/O, they do not

aggressively exploit opportunities for concurrent accesses. Our goal is to parallelize graph traversal

algorithms without changing their core properties while utilizing the underlying SSD concurrency.

We build an SSD-aware graph processing system, named CAVE1 [68] that is able to harness

the concurrency of the underlying storage devices. Specifically, CAVE provides the necessary in-

frastructure to parallelize graph traversal algorithms when several independent accesses can be

performed in parallel. A prime example is our Parallel Breadth-First Search (PBFS) implementation

which is outlined in Figure 1(B). The algorithm accesses the next wave of nodes (as we move on

a level-by-level fashion) in parallel since we have already identified the nodes of the next wave

while processing the current one. This leads to a faster response time of the BFS search simply by

carefully exploiting the underlying storage concurrency, resulting in faster convergence within

fewer iterations. CAVE uses a block-based file format based on adjacency lists, ensuring that graph

metadata, vertex information, and edge information are stored in aligned blocks. Furthermore, CAVE
employs a concurrent cache pool mechanism that enhances locality and ensures thread safety. We

develop in CAVE the parallelized versions of five popular graph algorithms. In addition to BFS, CAVE
offers parallelized, SSD-aware versions of Depth-First Search (DFS), Weakly Connected Components

(WCC), PageRank (PR), and Random Walk (RW). We CAVE with two popular out-of-core processing

system GraphChi [43] and GridGraph [99], as they are widely recognized for their efficiency in

handling large-scale graphs in a single machine. We observe that CAVE can be up to three orders of

magnitude faster than GraphChi and up to one order of magnitude faster than GridGraph.

Contributions. Our contributions are as follows:

• We investigate the importance of the key characteristics of modern devices. We seek to answer

the question: “how much are we missing in terms of performance if we do not exploit concurrency
and read/write asymmetry?”
• We introduce the Parametric I/O Model (PIO) which considers both 𝛼 and 𝑘 . We show the ben-

efits of adding these properties in our model with respect to device utilization and performance.

• We propose ACE, an asymmetry & concurrency-aware bufferpool manager that utilizes the device’s

concurrency. ACE is flexible enough to be combined with any existing page replacement policy

and prefetching technique.

• We implement ACE with PostgreSQL’s default replacement algorithm (Clock Sweep) and we add

three more replacement algorithms (LRU, CFLRU, LRU-WSR) and their ACE counterparts.

1CAVE: Concurrency-Aware Graph (V, E) system
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• We propose CAVE, an SSD-aware graph engine that extracts the most benefit from the underlying

SSD via concurrent I/O, its novel file structure, and a concurrent cache pool.

• We develop on CAVE the parallelized version of five popular graph algorithms (BFS, DFS, WCC,

PageRank, Random Walk) to showcase that its flexibility to implement diverse graph algorithms.

2 BACKGROUND
Wenow discuss the necessary backgrounds: SSD properties, bufferpool page replacement algorithms,

and graph traversal algorithms.

2.1 SSD Properties
Concurrency. SSDs exhibit a high internal parallelism in their architecture [11, 12, 57]. Fig. 2

shows that multiple channels are connected to the flash controller, and each channel consists of a
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Fig. 2. Internal architecture of an SSD.

shared bus with multiple chips. Each chip

contains multiple dies, each die comprises

multiple planes, and finally, each plane con-

stitutes multiple blocks where the pages

reside [4]. This highly parallelized archi-

tecture creates opportunities to efficiently

support concurrent storage accesses [12,

57, 72, 82]. As a result, the device’s peak

bandwidth can only be achieved with mul-

tiple concurrent I/Os. The level of observed
concurrency varies among devices and on

the access type and block size [65]. Most

devices have a large number of channels (≥ 8) which is the fundamental form of internal parallelism.

Read/Write Asymmetry. Read/write asymmetry (𝛼) in SSDs is caused by (i) the erase-before-write
design, (ii) large erasure granularity, and (iii) garbage collection [8, 17, 61]. In flash-based SSDs,

logical page updates (at the file system level) are always performed as out-of-place updates. The
contents of a physical flash page can be updated only after an erasure [17, 71], i.e., once a page
is written, it cannot be updated until that whole block is erased [3]. Hence, when a page update
arrives, the controller has to invalidate the old page and write the updated page in a new block. As

a result, after a number of writes, the flash medium contains several invalidated pages. To reclaim

this invalidated space, the flash controller periodically triggers garbage collection which copies the

valid pages of a block, writes them in a new block and then erases the previous block. While the

read/write granularity is a flash page (typically with size 512B-32KB), the erasure granularity is

an erase block (4MB-64MB). The higher erasure granularity, the overhead of maintaining garbage

collection, and the extra writes garbage collection incurs, result in higher amortized write cost. The
asymmetry depends on the specific device and the access granularity.

2.2 DBMS Bufferpool Essentials
The bufferpool keeps in memory a set of pages to minimize the number of (slow) disk accesses. If a

requested page is already in the bufferpool, it can be served immediately without accessing the

disk. In contrast, if the requested page is not available, it has to be fetched from the disk and placed

in the bufferpool. If the bufferpool is already full, another page is first written back to disk (if dirty)

and evicted, based on a page replacement policy [75].

Page Replacement Algorithms. At the core of every bufferpool design is the page replacement

algorithm which decides which page needs to be replaced when the bufferpool runs out of space.
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Note that this decision essentially creates a virtual order of the pages to be evicted. The most

popular page replacement algorithm is Least Recently Used (LRU) [63] which tries to keep the most

recently accessed pages in the bufferpool. Some other popular algorithms are Clock [39], NFU [86],

2Q [32], NRU [23], FIFO [86], ARC [59], and Second Chance [38]. PostgreSQL adopts the Clock

Sweep algorithm [74], a variant of NFU. This algorithm and all the aforementioned algorithms do

not differentiate between reads and writes. Flash-friendly policies like CFLRU, LRU-WSR, and others

prioritize reads over writes to mitigate device wear caused by writes [34, 49, 73, 94] to address SSD

wear-off. While they indirectly address asymmetry up to a point, they do not explicitly consider

the specific device asymmetry and concurrency.

2.3 Graph Traversal Algorithms

Breadth-First Search (BFS). BFS is a graph traversal algorithm that starts from a designated

starting vertex and then explores all neighboring vertices in a level-by-level manner [16]. It begins

by visiting all the immediate neighbors of the starting vertex, then moves on to their neighbors

in subsequent levels. By traversing the graph in a level-wise manner, BFS uncovers the shortest

paths and analyzes the structural properties of the graph. Since BFS processes nodes in a level-by-

level manner, nodes of the same level can be processed independently (hence concurrently), thus

providing an opportunity for parallelizing and, in turn, harnessing the SSD’s concurrency.

Depth-First Search (DFS). DFS is a widely-used graph traversal algorithm that starts from a

specified vertex and systematically explores as deep as possible along each branch before back-

tracking [22]. DFS is particularly useful for tasks such as identifying cycles, determining connected

components, and finding paths between vertices. While the classical DFS is tricky to parallelize,

the pseudo DFS [1] algorithm offers the opportunity to parallelize by running multiple parallel

mini-DFSs. A parallel version of pseudo-DFS can dynamically split and distribute the vertex stack

among multiple threads, allowing concurrent exploration of different branches of the graph.

Weekly Connected Components (WCC). In an undirected graph, a connected component refers

to a subgraph where every vertex is connected to every other vertex through pathways within the

graph. WCC aims to identify and group together nodes that are weakly connected [41], meaning

they can be reached from each other by traversing the edges regardless of their direction. This

algorithm typically involves traversing the graph using techniques like BFS or DFS to identify the

connected components. The previous approaches used to exploit SSD concurrency can be used

to parallelize WCC. For example, while using BFS to discover WCCs, each subgraph’s connected

components can be computed concurrently, and the results from different subgraphs can be merged

to determine the weakly connected components.

PageRank (PR). PR is a well-known algorithm to estimate the importance of vertices in graphs,

originally developed by Google to rank webpages on the Internet [9]. It works by evaluating the

importance of a web page based on the number and quality of links pointing to it. The algorithm

assigns a numerical value, known as PR score, to each web page on the Internet and measures the

importance of a web page based on its backlinks and the quality of those links. PR employs an

iterative process. Initially, all pages are assigned an equal PR score. In each iteration, the scores are

updated based on the scores of linking pages. This process continues until PR scores converge or

after a certain number of iterations. Due to this iterative traversal nature, this algorithm can be

parallelized, similar to BFS.

RandomWalk (RW). RW is a probabilistic algorithm in which a walker moves through a network

(graph), taking steps based on random choices [52]. It is used to analyze the network structure

and understand properties such as connectivity and reachability. RW can be viewed as a Markov

Chain, where the probability of transitioning to the next state depends only on the current state.
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To accelerate RW, we can divide the graph into manageable subgraphs and simultaneously explore

multiple nodes within these subgraphs. This approach accelerates the exploration and allows

for parallelization of transition probability calculations, making it suitable for estimating node

importance through RWs on vast networks. Further, different subgraphs can be processed in parallel

while accounting for crossing into a different subgraph.

3 THE PARAMETRIC I/O MODEL
In this section, we present the Parametric I/OModel (PIO) [67], a new, simple yet expressive model

that takes asymmetry and (read and write) concurrency as parameters. PIO enables better algorithm

design and helps to accurately reason about the performance of storage-intensive algorithms and

data structures.

𝑷𝑰𝑶 (𝑴, 𝒌𝒓 , 𝒌𝒘, 𝜶 ) assumes a fast main memory with capacity𝑀 , and storage of unbounded
capacity that has read/write asymmetry 𝛼 , and read (write) concurrency 𝑘𝑟 (𝑘𝑤).

We consider that both memory and storage are divided into fixed-size blocks. Since the model

is device-specific, the values of 𝑘𝑟 , 𝑘𝑤 , and 𝛼 are either given by the device manufacturer, or by a

careful benchmarking [65]. PIO allows us to accurately describe a variety of devices, and reason for

their behavior at algorithm-design time. That way, we can make storage-aware optimizations part

of the design, as opposed to applying them as an additional ad hoc tuning step during deployment.

Next, we present how to use PIO to reason about the performance benefits of several fundamental

classes of applications.

3.1 Performance Analysis
To analyze the performance of a storage-intensive application, we focus on its interaction with

the storage device, that is, on the read and write requests it issues. We classify storage-intensive

applications into two classes.

• Unbatchable Reads, Batchable Writes. An application that batches writes and utilizes the write

concurrency of the device (example: concurrent eviction of dirty pages from a bufferpool).

• Batchable Reads, Unbatchable Writes. An application that batches reads and utilizes the read

concurrency (example: concurrent traversal of multiple paths in a graph or in a tree index).

To maintain the generality of the approach, we quantify the performance gain using the frequency

of reads (𝑓𝑟 ) and writes (𝑓𝑤), for which 𝑓𝑟 + 𝑓𝑤 = 1. We assume that read requests have unit cost

(1) and write requests have cost 𝛼 , where 𝛼 ≥ 1. A device with read concurrency of 𝑘𝑟 and write

concurrency of 𝑘𝑤 can concurrently perform 𝑘𝑟 reads and 𝑘𝑤 writes.
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Fig. 3. Speedup of an Unbatchable Reads, Batchable Writes application. The speedup is highest for write-
intensive workloads and it depends on the asymmetry – the higher the asymmetry, the higher the speedup.

Unbatchable Reads, Batchable Writes. This class of applications exploits the write concurrency
of the device to batch write requests. As an example, consider a modified DBMS bufferpool manager

that selects several dirty pages and writes them concurrently during an eviction. In this scenario,
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the application at hand attempts to fully exploit the device’s write concurrency via concurrent
flushing during a page eviction. To achieve this, it submits 𝑘𝑤 concurrent writes. Since the device

has 𝛼 asymmetry, the cost of a write following the standard approach of evicting one page at a

time, as indicated by the EM model would be 𝐶𝐸𝑀
𝑊

= 𝛼 . On the other hand, the amortized cost

per write when we batch 𝑘𝑤 writes following PIO is 𝐶𝑃𝐼𝑂
𝑊

= 𝛼
𝑘𝑤

. Since reads are not batchable

in this application class, each read will have unit cost in both the EM and PIO paradigm, hence,

𝐶𝐸𝑀
𝑅

= 𝐶𝑃𝐼𝑂
𝑅

= 1. We can now calculate the speedup 𝑆𝑃𝐼𝑂 of this application based on PIO:

𝑆𝑃𝐼𝑂 =
𝑓𝑟 ·𝐶𝐸𝑀

𝑅
+𝑓𝑤 ·𝐶𝐸𝑀

𝑊

𝑓𝑟 ·𝐶𝑃𝐼𝑂
𝑅
+𝑓𝑤 ·𝐶𝑃𝐼𝑂

𝑊

=
𝑓𝑟+𝑓𝑤 ·𝛼
𝑓𝑟+𝑓𝑤 · 𝛼

𝑘𝑤

=
𝑘𝑤 · (𝑓𝑟+𝑓𝑤 ·𝛼 )
𝑘𝑤 ·𝑓𝑟+𝑓𝑤 ·𝛼 = 1 + (𝑘𝑤−1) ·𝑓𝑤 ·𝛼

𝑘𝑤 ·𝑓𝑟+𝑓𝑤 ·𝛼

Since 𝛼 ≥ 1 and 𝑘𝑤 ≥ 1, then 𝑆𝑃𝐼𝑂 ≥ 1 where the maximum value of 𝑆𝑃𝐼𝑂 can be up to 𝑘𝑤 . Fig. 3

shows the speedup when following PIO for different 𝛼 and 𝑘𝑤 values as we change the read/write

ratio in the workload. We observe that the speedup increases as more concurrent I/Os are employed,

which is expected. Furthermore, we note that the speedup depends on the asymmetry of the device.

The gain is higher for a device with higher asymmetry. For example, for 𝑓𝑟 = 0.5 and when fully

exploiting the concurrency of 𝑘𝑤 = 8 by issuing 8 concurrent I/Os, the speedup for a device with

𝛼 = 8 is 4.5× whereas the speedup for a device with 𝛼 = 1 is 1.78× (Fig. 3B). Since the application

batches writes, the gain is maximized for a write-intensive workload (Fig. 3A), when the benefit

from efficient writing is more pronounced. For a workload that contains only reads or only writes,

the speedup from the PIO paradigm is the same irrespective of 𝛼 . The key observation is that for

an application with batchable writes, a higher asymmetry between expensive writes and cheap

reads leads to a higher speedup.

	1

	1.2

	1.4

	1.6

	1.8

	2

	1 	2 	3 	4 	5 	6 	7 	8
Conc.	Read	I/Os

Sp
ee
du

p

α	=	1
α	=	2

α	=	4
α	=	8

(A) 1% reads

	1

	1.2

	1.4

	1.6

	1.8

	2

	1 	2 	3 	4 	5 	6 	7 	8
Conc.	Read	I/Os

Sp
ee
du

p

α	=	1
α	=	2

α	=	4
α	=	8

(B) 50% reads

	1
	2
	3
	4
	5
	6
	7
	8

	1 	2 	3 	4 	5 	6 	7 	8
Conc.	Read	I/Os

Sp
ee
du

p

α	=	1
α	=	2

α	=	4
α	=	8

(C) 90% reads

	1
	2
	3
	4
	5
	6
	7
	8

	1 	2 	3 	4 	5 	6 	7 	8
Conc.	Read	I/Os

Sp
ee
du

p

α	=	1
α	=	2

α	=	4
α	=	8

(D) 99% reads

Fig. 4. Speedup of a Batchable Reads, Unbatchable Writes application. The speedup is highest for read-intensive
workloads. The lower the asymmetry, the higher the speedup.

Batchable Reads, Unbatchable Writes. The second class of applications models scenarios where

reads can be issued concurrently to exploit read concurrency, but not writes. As an example,

consider a graph store that traverses multiple paths concurrently, thus can accelerate various

algorithms including graph search and shortest path. Essentially, the algorithm can visit multiple

nodes in parallel instead of one node at a time, and offer faster search time with the same worst-case

guarantees. Another example is concurrent traversal of tree indexes [76]. The application performs

𝑘𝑟 reads concurrently, thus,𝐶
𝐸𝑀
𝑅

= 1 and𝐶𝑃𝐼𝑂
𝑅

= 1

𝑘𝑟
. The cost of a write request is𝐶𝐸𝑀

𝑊
= 𝐶𝑃𝐼𝑂

𝑊
= 𝛼

for both paradigms since the writes are not batched. The speedup of this class of applications:

𝑆 ′
𝑃𝐼𝑂

=
𝑓𝑟 ·1+𝑓𝑤 ·𝛼
𝑓𝑟 · 1

𝑘𝑟
+𝑓𝑤 ·𝛼

=
𝑘𝑟 · (𝑓𝑟+𝑓𝑤 ·𝛼 )
𝑓𝑟+𝑘𝑟 ·𝑓𝑤 ·𝛼 = 1 + (𝑘𝑟 −1) ·𝑓𝑟

𝑓𝑟+𝑘𝑟 ·𝑓𝑤 ·𝛼

Since 𝛼 ≥ 1 and 𝑘𝑟 ≥ 1, then 𝑆 ′
𝑃𝐼𝑂
≥ 1, and also 𝑆 ′

𝑃𝐼𝑂
≤ 𝑘𝑟 . Fig. 4 presents the speedup of such

an application based on PIO. Like before, the speedup increases as more concurrent I/Os are used.

However, this time the gain is higher for a device with lower asymmetry. For instance, with 𝑓𝑟 = 0.5

and 𝑘𝑟 = 8, the speedup for a device with 𝛼 = 1 is 1.78× and it drops to 1.11× for 𝛼 = 8 (Fig. 4B).

Note that, the overall speedup is lower than the previous application class because, while writes
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are still more expensive than reads (for 𝛼 > 1), this class of applications can only utilize read

concurrency. The speedup is maximized when the workload is read-heavy (Fig. 4A), showing the

benefit of batching reads.

The above analysis reveals that the degree of the performance gain/loss depends on the asymme-

try and the application type, whereas the gain is achieved through exploiting concurrency.

4 ACE BUFFERPOOL MANAGER
Using this novel storage modeling, we now propose a new Asymmetry & Concurrency-aware

bufferpool management (ACE) [67] that batches writes based on device concurrency and performs

them in parallel to amortize the asymmetric write cost.

4.1 An Augmented Bufferpool Design Space
Traditionally, the design space of bufferpool management includes primarily a page replacement
policy and optionally a read-ahead policy. The page replacement policy decides the order that pages

are evicted and written back , and it is a topic with significant prior work [23, 32, 34, 38, 39, 49, 59, 63,

73, 86, 94]. If the evicted page is dirty, a write-back is issued for that page. Since traditional systems

Bufferpool Manager

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential
- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Concurrently

Read-ahead Policy

How many pages to write?
- 1 page
- n pages (exploit kw)

Write-back Policy

Which pages to write-back? 

When & how to write-back?

- dirty pages following
replacement policy

- background &
concurrently

Optional

Eviction Policy

How many page(s) to evict?
- 1 page

- n pages

Which page(s) to evict?
- follow page 

replacement policy

Flash-
friendly
policies

- LRU
- NRU
- Clock
- Second Chance

- FIFO
- 2Q
- ARC

- CFLRU
- LRU-WSR
- CCF-LRU

- CFLRU/C
- CFLRU/E
- DL-CFLRU/E

Replacement Algorithm

Fig. 5. Bufferpool design space in terms of the design deci-
sions and various options (RED denotes new components)

have a single policy for both eviction and

write-back, they essentially make one deci-

sion for two separate questions:which page
to evict? and which page to write-back? We

separate these two questions by introduc-

ing a new write-back policy, thus, decou-
pling write-backs from eviction. We main-

tain one overall virtual page ordering of

eviction (which is typically outsourced to

the existing replacement algorithm), how-

ever, we have a different virtual order for
writing-back pages, which depends on (a)

the replacement algorithm, (b) whether the

page is dirty, and (c) the support write con-

currency of the storage device.

A bufferpool management approach can be described by four design decisions: (i) replacement
algorithm, (ii) write-back policy, (iii) eviction policy, and (iv) read-ahead policy.

In this augmented design space, the replacement algorithm inform both the write-back and the

eviction policies, however, in a different manner. The write-back policy uses the virtual order of

pages dictated by the replacement algorithm and the degree of write concurrency of the device

to write-back multiple dirty pages. The eviction policy uses the virtual order of pages dictated by

the replacement algorithm to evict only clean pages (which may have been just written back or

were already clean). The decision of how many pages to evict is decided from the application as a

decision between prioritizing locality (evict only one page) vs. prefetching (evict multiple pages,

but use the read-ahead policy to populate the free spots).

Design Goals. With this refactored bufferpool design space, we set the following design goals :

• Exploit concurrency to ensure proper utilization of the underlying device parallelism.

• Bridge asymmetry via write-amortization to ensure that there is no imbalance when the

bufferpool is saturated.
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• Ease of adoption, so that systems can quickly benefit from our design without extensive

engineering effort.

4.2 Overview of ACE Bufferpool Management
We now present in detail the proposed asymmetry & concurrency-aware bufferpool manager (ACE)
that addresses the read/write asymmetry via write-amortization. As depicted in Figure 6, ACE is com-

prised of three components: (i) the Evictor, (ii) theWriter, and (iii) the Reader. The evictor determines

Buffer Pool
p1 p2 p4 p9
p5 p12 p18 p10
p13 p7 p24 p21

ReaderEvictor

p2 p1 p5 p9…

Candidates

Seq. Stream 
Prefetcher

History-based 
Prefetcher

Writer

Concurrent 
Device-aware

Writing

Concurrently write 
back nw dirty pages

Parallelly prefetch 
ne - 1 pages

p

p

Dirty page

Clean page

Fig. 6. Abstract overview of ACE components

which page(s) to evict, the writer writes-
back concurrently dirty pages and the

reader prefetches pages. When a request

for reading or writing a page 𝑃 is received,

we first search through the bufferpool. If 𝑃

is not found and the bufferpool is full, then

(at least) one page has to be evicted. The

page replacement algorithm determines

the page to be evicted (termed top page).
If the top page is clean, it is evicted and

page 𝑃 is fetched. Up until this part, ACE is

identical to any state-of-the-art bufferpool

management. However, if the top page is

dirty, ACE proceeds as follows:

• ACE without prefetching: concurrently write 𝒏𝒘 dirty pages and evict a single page.

• ACE with prefetching: concurrently write 𝒏𝒘 dirty pages, evict 𝒏𝒆 pages, and concurrently

prefetch 𝒏𝒆 − 1 pages.

The values 𝑛𝑤 and 𝑛𝑒 depend on the underlying device concurrency and the potential benefits of

prefetching. When prefetching is enabled, ACE evicts 𝑛𝑒 pages in order to prefetch 𝑛𝑒 − 1 pages
exploiting the read concurrency of the device. While we anticipate that the prefetching will allow us

to have pages that will be accessed by the immediate next requests, the eviction somewhat reduces

the locality, so 𝑛𝑒 has to carefully balance the read concurrency and the accuracy of the prefetching.

We tune ACE to use 𝑛𝑤 equal to the optimal write concurrency of the device (𝑘𝑤 ). We experimentally

tested values for 𝑛𝑒 between 1 and 𝑘𝑟 , and we empirically set 𝑛𝑒 to be also 𝑘𝑤 , because evicting 𝑘𝑟
pages was hurting locality. Note that for most devices, the read concurrency is significantly higher

than the write concurrency (𝑘𝑟 >> 𝑘𝑤). Regarding the pages that are selected for write-back and

for eviction, both decisions are influenced by the page replacement algorithm. As such, ACE can be

combined with any replacement algorithm. Figure 7 shows the effect of incorporating ACE with
LRU (Fig. 7a), CFLRU (Fig. 7b), and LRU-WSR (Fig. 7c). Note that ACE always writes 𝑛𝑤 dirty pages

concurrently irrespectively of prefetching. The full ACE algorithm is listed in Algorithm 1.

4.2.1 Writer. The Writer is responsible for concurrently writing-back 𝑛𝑤 pages. State-of-the-art

systems often write-back pages using a background process, however, these writes are issued one

at a time, hence missing out on the opportunity to exploit the parallelism of the underlying storage

device. Instead, ACEWriter writes concurrently 𝑛𝑤 dirty pages. By making sure that 𝑛𝑤 = 𝑘𝑤 , the

concurrent writes take place at the same latency as a single write, thus amortizing the cost of 𝑘𝑤
writes and fully bridging the read/write asymmetry if 𝛼 < 𝑘𝑤 . The pages that are selected for

write-back are the next 𝑛𝑤 dirty pages that the underlying page replacement algorithm would

eventually evict. As a result, these carefully batched writes make the subsequent page evictions

free (since, with high probability, the following evictions will target clean pages).
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D
1
C D

0
D
1
C D

1
B

Initial State (Before ‘write p7’)
lrumru

p2 p3 p4 p5 p6p1

LRU-WSR ACE-LRUW(w/o PF) ACE-LRUW(w/ PF)

D
1
C D

0
D
1
C D

1

p2 p3 p4 p5 p6p1

D
1
C D

0
D
1
C D

1

Intermediate State

Final State (After ‘write p7’)

prefetched

LRU-WSR ACE-LRUW(w/o PF) ACE-LRUW(w/ PF)

LRU-WSR ACE-LRUW(w/o PF) ACE-LRUW(w/ PF)

p2 p3 p4 p5 p6p1

Cold

D
1
C D

0
D
1
C CB

p2 p3 p4 p5 p6p1

D
1
C C C C C

p1 p2 p4 p5 p6p3

D
1
C C C C C

p1 p2 p4 p5 p6p3

Cold

D
0
D
1
C D

0
D
1
CB

p1 p2 p3 p4 p5p7

D
0
D
1
C C C C

p3 p1 p2 p4 p5p7

D
0
D
1
C C C C

p3 p1 p2 p8 p9p7
Cold

(C) ACE on top of LRU-WSR

Fig. 7. ACE page selection policies for 𝑛𝑤 = 3 and 𝑛𝑒 = 3. (a) ACE writes three dirty pages (p6, p4, p2) following
the LRU order; if prefetching is enabled three pages (p6, p5, p4) are evicted, otherwise one page (p6) is evicted.
(b) Similarly for CFLRU, ACE writes three dirty pages (p6, p5, p4) from the clean-first region and depending
on prefetching either three pages (p6, p5, p4) are evicted or one (p6). (c) For LRU-WSR, ACE finds a dirty page
with cold flag not set (p3). This page is moved to the front setting its cold flag. The dirty pages with set cold
flag (p6, p4, p1) are selected for concurrent writing.

4.2.2 Evictor. Following the completion of the write-back process, the Evictor will evict either one

or 𝑛𝑒 pages. Since at this point, the top page is by definition clean (because the Writer has already

written it), it will be evicted to read the requested page 𝑃 . If prefetching is enabled, the Evictor

evicts 𝑛𝑒 pages in total to allow for an equal number of pages to be prefetched. Note that after the

write-back process, there will be at least 𝑛𝑤 contiguous clean pages following the order dictated by

the page replacement algorithm. Hence, the Evictor can now evict 𝑛𝑒 clean pages to create space

for the incoming pages. Essentially, the Writer writes back the 𝑛𝑤 first dirty pages according to the

page replacement algorithm order, and the Evictor evicts the 𝑛𝑒 first clean pages (after the writing

has been performed) according to the page replacement algorithm order. For example, Figure 7a

shows that ACE with prefetching will write three dirty pages following the LRU order (p6, p4, p2)

and evict the last three (now clean) pages (p6, p5, p4) following the LRU order.

4.2.3 Reader. The reader is an optional component whose job is to prefetch pages from disk in

case of a buffer miss. Note that for many workloads prefetching does not attain much benefit,

hence, commercial systems either do not use any prefetcher, or they use very simple prefetching

techniques. The strength of ACE is that any prefetching technique can be employed by the Reader.

In fact, we use two prefetchers in our design: a sequential prefetcher and a history-based prefetcher.

4.2.4 Putting Everything Together. Traditional bufferpool strategies “exchange” one read for one

write when evicting a dirty page from a saturated bufferpool. This approach is not optimal when a

write is 𝛼× more expensive than a read. However, it is not possible to exchange 𝛼 reads for one

write, since (i) this would grow the bufferpool perpetually, and (ii) unless we batch – thus delay

reads, a system receives one request at a time. Hence, ACE tries to amortize the cost of writes by
concurrently issuing 𝒏𝒘 writes, where 𝑛𝑤 = 𝑘𝑤 . The complete ACE bufferpool manager’s policy

is presented in Algorithm 1. If the page to evict is clean, ACE follows the classical approach of

simply dropping it from the bufferpool (Line 20). Otherwise, the ACEWriter identifies the pages

to be cleaned and writes them concurrently (Lines 25–27). Depending on whether prefetching is

enabled, ACE Evictor either evicts multiple (Lines 32–33) or one page (Line 39). The referenced

page is placed in the most recently used position while the prefetched pages are placed in the least
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Algorithm 1: ACE
Input: 𝑃 , 𝑛𝑤 , 𝑛𝑒 𝑖𝑠_𝑝𝑓 _𝑒𝑛𝑎𝑏𝑙𝑒𝑑

1 // 𝑃 is the accessed page

2 // 𝑛𝑤 is the maximum effective write concurrency (𝑛𝑤 = 𝑘𝑤)

3 // 𝑛𝑒 is the number of concurrent reads during prefetching

4 // 𝑖𝑠_𝑝𝑓 _𝑒𝑛𝑎𝑏𝑙𝑒𝑑 determines if prefetching is enabled or not

5 if 𝑃 in buferpool then
6 return 𝑃

7 else
8 // miss! need to bring P from disk

9 if buferpool not full then
10 if 𝑖𝑠_𝑝𝑓 _𝑒𝑛𝑎𝑏𝑙𝑒𝑑 == 𝑡𝑟𝑢𝑒 then
11 // reads P and prefetches up to 𝑛𝑒 − 1 pages from disk (depending on available slots)

12 - prefetch_pages (𝑃 , 𝑛𝑒 − 1)

13 else
14 - read 𝑃 from disk

15 end if
16 else
17 𝑡𝑜𝑝_𝑝𝑎𝑔𝑒 = replacement_policy.get_one_page_to_evict()

18 if 𝑡𝑜𝑝_𝑝𝑎𝑔𝑒 is clean then
19 // follow classical approach if page is clean

20 - drop 𝑡𝑜𝑝_𝑝𝑎𝑔𝑒 from bufferpool

21 - read 𝑃 from disk

22 else
23 // 𝑡𝑜𝑝_𝑝𝑎𝑔𝑒 is dirty. concurrently write 𝑛𝑤 dirty pages

24 // 𝑃𝑤𝑏 is a vector containing the candidate dirty pages

25 - 𝑃𝑤𝑏 = populate_pages_to_writeback( )
26 - issue ∥ length(𝑃𝑤𝑏 ) ∥ concurrent writes, ∀𝑝 ∈ 𝑃𝑤𝑏

27 - mark ∥ length(𝑃𝑤𝑏 ) ∥ pages as clean, ∀𝑝 ∈ 𝑃𝑤𝑏

28 if 𝑖𝑠_𝑝𝑓 _𝑒𝑛𝑎𝑏𝑙𝑒𝑑 == 𝑡𝑟𝑢𝑒 then
29 // evict 𝑛𝑒 pages

30 // pages written and to be evicted can be different

31 // 𝑃𝑒𝑣 is a vector containing the pages to evict

32 𝑃𝑒𝑣 = replacement_policy.get_n_pages_to_evict()

33 - drop ∥ length(𝑃𝑒𝑣 ) ∥ pages from bufferpool, ∀𝑝 ∈ 𝑃𝑒𝑣
34 // Now, prefetch

35 - prefetch_pages (𝑃 , 𝑛𝑒 − 1)

36 - empty 𝑃𝑒𝑣
37 else
38 // evict 1 page

39 - drop 𝑡𝑜𝑝_𝑝𝑎𝑔𝑒 from bufferpool

40 - read 𝑃 from disk

41 end if
42 - empty 𝑃𝑤𝑏

43 end if
44 end if
45 end if

1 Procedure populate_pages_to_writeback()
2 // follow the underlying page replacement policy to generate 𝑃𝑤𝑏

3 - select next 𝑛𝑤 dirty pages based on the underlying page replacement policy

4 - return this vector

1 Procedure prefetch_pages(page 𝑃 , int 𝑥)
2 if P in Sequential_Table then
3 // start of a sequential stream!

4 // read 𝑃 and the next 𝑥 pages concurrently

5 - prefetch_sequential (𝑃 )

6 else
7 // use the history based prefetcher

8 // read 𝑃 and 𝑥 pages (selected by prefetcher) concurrently

9 - prefetch_history (𝑃 )

10 end if
11 /* note that 𝑃 should be placed in the most recently used position in the bufferpool whereas other pages should be

placed in the least recently used positions */

12 - place these 𝑥 + 1 pages into bufferpool
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recently used positions (following the page replacement policy) so that even if the prefetcher’s

prediction is wrong, the prefetched page can be simply dropped from the bufferpool.

4.3 Evaluation
We implement ACE in PostgreSQL 11.5 and now discuss the benefits of the ACE paradigm when

applied on four state-of-the-art page replacement policies (LRU, CFLRU, LRU-WSR, and Clock

Sweep) using both a synthetic benchmark and the standard TPC-C benchmark.

Experimental Setup.We use a machine with two Intel Xeon Gold 6230 2.1GHz processors each

having 20 cores with virtualization enabled and with 384GB of main memory. Our experiments

involve three storage devices: (i) a 375GB Optane P4800X SSD, (ii) a 1TB PCIe P4510 SSD, and

(iii) a 240GB SATA S4610 SSD. We refer to these devices as Optane SSD, PCIe SSD and SATA SSD
respectively. In addition, we use a virtualized device from Amazon AWS that has 1.2TB SSD capacity

and 60000 provisioned IOPS (high-performance SSD). We refer to this device as Virtual SSD, and we
attach it to a machine from the t2.micro family having 2GB main memory with one virtual CPU. For

all four devices, we quantify the asymmetry and concurrency through careful benchmarking [65]

(summarized in Table 1a). Unless otherwise mentioned, we use 𝑛𝑤 = 𝑘𝑤 of the device in use. In

most of our experiments, we employ the PCIe SSD, hence we use 𝑛𝑤 = 8.

Table 1. Experimental setup for ACE: Devices & Workloads

(a) Empirical 𝛼 and 𝑘 of our SSDs.

Device 𝜶 𝒌𝒓 𝒌𝒘

Optane SSD 1.1 6 5

PCIe SSD 2.8 80 8

SATA SSD 1.5 25 9

Virtual SSD 2.0 11 19

(b) Properties of the synthetic workloads

Workload Database Size R/W Ratio Locality

Mixed Skewed (MS) 15GB 50/50 90/10

Write-Intensive

Skewed (WIS)

15GB 10/90 90/10

Read-Intensive

Skewed (RIS)

15GB 90/10 90/10

Mixed Uniform (MU) 15GB 50/50 50/50

Workload.We use four synthetic workloads as outlined in Table 1b inspired by prior work [49, 94].

We refer to them asMS (Mixed Skewed),WIS (Write-Intensive Skewed), RIS (Read-Intensive Skewed)

and MU (Mixed Uniform). A locality 90/10 means that 90% of all the operations are performed on

10% of the pages. We use pgbench for our synthetic workloads which is loosely based on TPC-B.

We use a scaling factor of 1000 which results in a database size of approximately 15GB. We also

show the benefits of our approach with the TPC-C benchmark [88].

Experimental Methodology. We run every workload for the default PostgreSQL implementation

(Clock Sweep as replacement policy) for 10 minutes and then run the same workload for the other

replacement policies and their ACE counterparts. For every experiment, we measure (i) workload

latency, (ii) transactions per second, (iii) buffer misses/hits, and (iv) total writes. The experiment

results are averaged over 5 iterations and the standard deviation was less than 5%. We generally

configure PostgreSQL shared_buffers (bufferpool) as 1GB (∼6% of the data size). WAL is enabled

and the WAL file is written in a separate device following common practice.

ACE Improves Runtime without Any Penalty. Our first experiment shows that ACE bufferpool

management (either with or without prefetching) reduces the total workload latency by up to

32.1%. For this set of experiments we use the PCIe SSD that has 𝑘𝑤 = 8 and 𝛼 = 2.8. Figures 8A-D

show the workload execution time for the baseline Clock Sweep, LRU, CFLRU, and LRU-WSR

along with their ACE counterparts with and without prefetching for the 4 synthetic workloads in
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Fig. 8. ACE reduces total workload latency for all Clock Sweep, LRU, CFLRU, and LRU-WSR in the PCIe SSD.
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Fig. 9. (A) ACE is beneficial across a wide range of bufferpool size w.r.t. data size. (B) Speedup increases as
concurrent I/Os are increased until device gets saturated. (C) Higher asymmetry has higher gain for ACE.

PostgreSQL. The runtime of the ACE policies both with and without prefetching is consistently

faster than the baseline. Since ACE policies utilize the device’s write parallelism, it writes back pages

more aggressively (but hidden due to the device concurrency), resulting in better performance. ACE
with prefetching reduces latency by 22.6%, 21.8%, 22.5% and 26.1% for baseline Clock Sweep, LRU,

CFLRU and LRU-WSR respectively when running workload MS (Figure 8A), while ACE without

prefetching reduces latency by 20.6%, 19.7%, 22.0%, and 23.5% respectively. Since the workload

is skewed, the prefetching helps avoid some disk access, resulting in slightly better performance.

We highlight that the overall workload latency improvement observed in these experiments (up

to 32.1%) does not come at a hidden cost. The maximum increase in buffer misses is 0.003% for

ACE-LRU on workload MU, and the maximum increase in total writes is 0.12% for LRU-WSR on

workload RIS, thus being negligible.

Write-Intensive Workloads Have Higher Gains. ACE’s gain is higher for the write-intensive

workload WIS. ACE with prefetching achieves 28.8%, 29.3%, 30.1% and 32.1% lower runtime than

baseline Clock Sweep, LRU, CFLRU and LRU-WSR respectively (Figure 8B). This is expected, because

for a write-intensive workload, the benefit of efficient writing is pronounced. In contrast, for the

read-intensive skewed workload RIS, ACE has smaller benefit since ACE does not have enough writes

to optimize. However, the gain is still significant (Figure 8C); ACE achieves 8.1% to 13.9% lower

runtime. Now, the benefit of prefetching alone is substantial (up to 5%). Finally, the mixed workload

MU causes a small increase in total writes (≤ 0.1%), however, this does not affect the overall trends

of performance gains, which range from 14.5% to 15.7% (Figure 8D).

Higher Benefits Under Memory Pressure. ACE achieves higher speedup for smaller bufferpool

size because a smaller bufferpool causes more evictions, hence more writes. Figure 9A show the

impact of ACE under memory pressure for a mixed skewed workload like MS in the PCIe SSD.
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We observe that as the bufferpool size grows beyond 6%, the speedup decreases because larger

bufferpool causes fewer evictions (and fewer writes). For a bufferpool size of more than 10%, the

speedup (and latency) of all approaches drop drastically because the bufferpool is large enough

to hold the working set, resulting in very few disk accesses. On the other side of the spectrum,

the speedup for smaller bufferpool sizes (2%, 4%) is slightly less (than that of 6%) because if the

bufferpool size is too small, there are too many read I/Os to the disk. Nonetheless, even for a smaller

bufferpool, the gain is substantial. For example, for 2% bufferpool size, the speedup for ACE-CFLRU
is 1.29×, while for 10%, the speedup is 1.25×.
Device Concurrency Plays A Crucial Role. We run the mixed-skewed workload MS in the

PCIe SSD while varying 𝑛𝑤 to capture the impact of the write-back concurrency vs. the device

concurrency as shown in Figure 9B. Each line shows the speedup of ACE over the corresponding
baseline algorithm. As concurrency increases, the speedup increases in all cases, which is expected.

However, after a certain point (𝑛𝑤 = 8), the speedup starts decreasing because (i) as the number

of concurrent I/O increases, the overhead of thread management increases, (ii) the ideal device

write concurrency is 𝑘𝑤 = 8 in this experiment, and (iii) going over the ideal concurrency does not

yield any benefit since the bandwidth gets saturated and attempting to submit more concurrent

I/Os does not further increase write throughput. We highlight that even with a small degree of

concurrency (𝑛𝑤 = 4 or 𝑛𝑤 = 6), the speed is substantial (1.2× – 1.3×).
Performance Gain Increases with Asymmetry. Our last experiment highlights that asymmetry

impacts the attained gains of the ACE policies. We run an experiment to show this empirically

where we vary the read/write ratio with ACE on top of LRU-WSR in all four of our devices (PCIe

SSD, SATA SSD, Virtual SSD, Optane SSD). The 𝑛𝑤 values were set according to the device 𝑘𝑤 .

Figure 9C shows that when everything else is the same, the performance gain is higher for devices

with higher asymmetry. This is because the benefit of amortizing the asymmetric write cost is

higher for a device with a higher write cost. The speedup for the PCIe SSD (𝛼 = 2.8) is up to 1.63×
(write-only workload) while the speedup is limited to 1.48×, 1.41× and 1.33× for the Virtual SSD

(𝛼 = 2.0), SATA SSD (𝛼 = 1.5), Optane SSD (𝛼 = 1.1), respectively.

Experimental Analysis with TPC-C Benchmark.We further use the TPC-C benchmark [88]

to demonstrate ACE’s efficacy. A TPC-C database consists of nine tables (Warehouse, Stock, Item,

District, Customer, History, Order, New-Order, and Order-Line), and the data size depends on

the number ofWarehouses. The benchmark consists of five transactions at different frequencies:

NewOrder, Payment, OrderStatus, StockLevel, Delivery.

ACEAccelerates TPC-C by 24%.We run the standard TPC-C benchmark in PostgreSQL for the four

page replacement policies and their ACE counterparts. Each baseline run is 10 minutes long and is

configured with 500 warehouses, and 20 users and the resulting database size is approximately 50GB.
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Fig. 10. ACE achieves high speedup for TPC-C mixed transac-
tion, while benefiting the write-intensive transaction the most.

PostgreSQL shared_buffers parameter is

configured to be 3GB (6%). Figure 10

shows the performance gain of ACE for

the TPC-C mix, and for five workloads

each consisting of one of the TPC-C

transactions. ACE achieves significant

performance gain when integrated with

any page replacement policy. For exam-

ple, the speedup of ACE for the mixed

transaction (combination of all five) is

1.29×, 1.27×, 1.30× and 1.32× when im-

plemented on top of Clock Sweep, LRU,
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Fig. 11. Example of Intra/Inter-Subgraph Parallelization. (A) { B, D, E, F } are at the same level of BFS and are
processed concurrently by 4 threads. (B) As pseudo DFS progresses, the stack is split and two subgraphs ({ D,
E } and { G, H }), which are processed in parallel by 2 threads.

CFLRU, LRU-WSR, respectively. The highest speedup, 1.51×, is obtained when running the Delivery
transaction which is an update-heavy transaction. In addition, as expected, there is no performance

gain for the two read-only transactions: OrderStatus and StockLevel. We observe that the perfor-

mance results for the TPC-C benchmark corroborate our findings for the synthetic benchmark:

(i) ACE offers significant performance benefits when the workload contains even a small fraction

of writes, (ii) write-heavy workloads have higher gain, (iii) flash-friendly policies like CFLRU and

LRU-WSR outperform other policies. Overall, ACE reduces the TPC-Cmix transaction runtime
on modern storage devices by 24% without any significant penalty or other tradeoff.

5 CAVE GRAPH MANAGER
We now present a concurrency-aware graph processing engine CAVE [68] that utilizes SSD paral-

lelism via concurrent I/Os.

5.1 Parallelizing Graph Traversal Operations
Our objective is to (i) achieve efficient parallelization of graph traversal operations within out-of-

core systems, and (ii) ensure that the core properties of the graph algorithms are maintained. In this

section, we discuss how to achieve this with intra-subgraph and inter-subgraph parallelization.

We present these two techniques with examples and discuss how they can be seamlessly integrated

and leveraged alongside SSD parallelization.

5.1.1 Intra-Subgraph Parallelization. For this approach, we identify subgraphs, the nodes of which

can be processed independently so that we can access them in parallel. This means that the

processing of one node does not depend on the results or state of other nodes outside the subgraph.

Thus, multiple nodes within the subgraph can be processed concurrently by different computing

units (threads), allowing for concurrent I/Os, leading to better device utilization. After processing

their respective nodes, the results obtained by each thread are aggregated or combined to produce

the final result of the algorithm. This ensures efficient efficient exploitation of the underlying device

which can speed up the execution of graph processing tasks.

Example. A prime example of this type of parallelization is a parallel BFS. BFS explores the graph
level by level, where each level represents a set of equidistant vertices from the source vertex.

Since vertices of the same level can be accessed independently of each other, all vertices within the

same level can be processed concurrently, and thus accessed in parallel using multiple threads. A

queue maintains the nodes to be visited next, which are ordered on a per-level basis. Each thread

dequeues nodes from the shared queue and processes them independently. The edges of each node
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Fig. 12. CAVE’s Architecture: block-based file structure (right side) and concurrent cache pool (left side)

are accessed from the underlying SSD concurrently. Figure 11(A) illustrates the application of this

technique for parallelizing the BFS algorithm. Once nodes A and C have been traversed, nodes B,

D, E, and F are all at the same level (a subgraph where nodes are independent), enabling them to be

processed concurrently. Other BFS-based algorithms (e.g., PageRank, WCC) can also be parallelized

with this approach as a building block.

5.1.2 Inter-Subgraph Parallelization. The subtle difference between Inter-Subgraph and Intra-

Subgraph Parallelization is that it identifies subgraphs that can be independently accessed (like

two different branches of DFS) and processes them in parallel. That way, multiple subgraphs

(or paths) can be traversed concurrently, thus covering the entire graph faster and allowing for

faster convergence. The algorithmic correctness and other properties (like the order of accessing

nodes) can be ensured by communication and synchronization between the threads processing

independent subgraphs. This approach is particularly useful for large-scale graphs that cannot fit

entirely in memory or when distributing the computation across multiple threads.

Example.We now use as an example the pseudo-DFS [1]. In the classical DFS algorithm, a stack

keeps track of nodes to be explored and maintains the visiting order. In the pseudo-DFS algorithm,

the stack can be split into smaller stacks when its size goes beyond a predefined threshold, and

the smaller stacks are processed in parallel. This allows for multiple threads to work on different

subgraphs (e.g., paths) concurrently. Figure 11(B) shows an example of this approach. In this pseudo-

DFS example, after traversing nodes A and C, the stack size grows to four and (assuming this is the

threshold) is split in two. The first stack contains nodes D and E, while the second contains G and

H. These smaller stacks are processed in parallel, leading to two independent graph traversals with

the additional need for communication to avoid crossing from one subgraph (path) to another.

5.2 CAVE Physical Data Layout
CAVE uses a memory-mapped binary file format, with three main parts: the metadata block, the

vertex block, and the edge block – right part of Figure 12. They are stored using 4KB aligned blocks

to support direct reading and writing from/to the SSDs.

Metadata Block. The metadata block serves as a repository for essential graph information such

as the number of vertices, the total number of blocks, edge blocks, and vertex blocks, each of which

is stored as a 32-bit integer. The remaining space is reserved for future utilization, allowing for

additional usage-specific information to be incorporated when necessary.

Vertex Block. Each vertex block, sized at 4KB, stores information about up to 512 vertices. Within

each vertex, 8 bytes are allocated, encompassing two 32-bit unsigned integers:𝑑𝑒𝑔𝑟𝑒𝑒 , 𝑒𝑏_𝑎𝑑𝑑𝑟 (edge

block index and offset). The low 10-bit of 𝑒𝑏_𝑎𝑑𝑑𝑟 represents the offset 𝑒𝑏_𝑜 𝑓 𝑓 𝑠𝑒𝑡 inside of an edge
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block, which just fits its capacity of 1024. The high 22-bit states the index of the edge block 𝑒𝑏_𝑖𝑑𝑥 .

The reading process can start by calculating the appropriate address ((𝑒𝑏_𝑖𝑑𝑥 · 4KB) + 𝑒𝑏_𝑜 𝑓 𝑓 𝑠𝑒𝑡).
Edge Block. We utilize a compact representation of edges where each edge is represented by a

4-byte integer denoting the index of the ending vertex. Hence, each edge block can store up to

1024 edges (adding up to 4KB). The edges of vertices with a degree less than 1024 are contained

within a single edge block (note that in many datasets, most nodes have indeed a degree of less

than 1024). This ensures efficient single read I/O access, while the starting index inside the block

(𝑒𝑏_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ) can vary. However, vertices with a degree over 1024, will occupy multiple edge blocks.

In this case, the first block always has an 𝑒𝑏_𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0 to simplify the packing and subsequent

reading process. The number of edge blocks per vertex is given by its degree divided by 1024.

5.3 Concurrent Graph Traversal Algorithms
The core idea of our approach is to implement parallel graph algorithms that take advantage of

concurrency at the storage level. Our system, CAVE, identifies and parallelizes independent I/Os,

similar to how out-of-order processors parallelize load and store commands that are not dependent

on each other. This enables parallel graph data processing, allowing multiple nodes to be accessed

simultaneously, thus significantly reducing the number of iterations required. We carefully tune

CAVE to employ the optimal concurrency [65] for the underlying storage devices to guarantee

maximum benefit. To demonstrate the benefits of our approach, we parallelize five of the most

common graph traversal algorithms: BFS, WCC, PageRank, Random Walk, and DFS. We implement

two variants for BFS, WCC, PageRank and Random Walk.

ProcessQueue function. In the context of BFS, WCC, PR, and RW algorithms, the parallelization

process is structured as an iterative procedure. Each iteration involves processing a list of vertices

(known as the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ), accessing the neighbors of each vertex, updating vertex values, and

determining which vertices should be visited in the next iteration, which are stored in the 𝑛𝑒𝑥𝑡

queue. This iterative process can be naturally parallelized by having multiple threads working

on individual vertices of the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 (intra-subgraph parallelization). We achieve this using a

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒 function, which takes the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , a user-defined 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 function and the device’s

read concurrency 𝑘𝑟 as parameters. The 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 function specifies the actions the algorithm should

perform for each vertex and its neighbors. The 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒 function parallelizes at the vertex

level based on the 𝑘𝑟 value where each thread is responsible for processing a vertex and executes

a 𝑔𝑒𝑡𝐸𝑑𝑔𝑒 operation to retrieve the edge block from the cache pool. Since each edge block stores

neighbors of multiple vertices, it is possible that an edge block swapped out from the cache will

need to be read again from the disk, especially when the cache size is limited.

ProcessQueueBlock function. To avoid multiple accesses of the same edge blocks, we provide a

new variation that processes data at the granularity of edge blocks to benefit from caching. Initially,

all edge blocks associated with vertices in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 are found. Next, each thread is assigned to

work on one of the edge blocks. That block, in turn, may contain (i) the edges of a single vertex

where the execution will be the same as before, or (ii) the edges of multiple vertices where the

processing of those vertices will now be completed with a single I/O. By simultaneously processing

all vertices connected to a specific block, the approach ensures that each edge block is only read

once in each iteration. While this strategy involves some overhead in terms of preprocessing the

𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , it offers the advantage of being minimally impacted by the size of the cache. Further,

the edge block retrieval is performed concurrently, which contributes to its superior runtime

performance. The two building-block algorithms are outlined in Algorithm 2.

5.3.1 Parallel Breadth-First Search. We develop a parallel BFS (PBFS for short) algorithm using two

queues: the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue that contains the indices of vertices in the current level and the 𝑛𝑒𝑥𝑡
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Algorithm 2: Parallelization Building Blocks

1: function ProcessQueue(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , Func 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑘𝑟 )

2: 𝑛𝑒𝑥𝑡 ← ∅
3: // Process vertices in parallel with max 𝑘𝑟 threads
4: for 𝑣1 in 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 do
5: // Read neighbors from the cache pool
6: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← GetEdges(𝑣1)
7: // Process 𝑣1 with its neighbors, get 𝑛𝑒𝑥𝑡𝑣 queue
8: 𝑛𝑒𝑥𝑡𝑣 ← Process(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
9: 𝑚𝑡𝑥.lock()
10: 𝑛𝑒𝑥𝑡 .insert(𝑛𝑒𝑥𝑡𝑣)
11: 𝑚𝑡𝑥.unlock()
12: end for
13: return 𝑛𝑒𝑥𝑡

14: end function
15: function ProcessQueueBlock(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , Func 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑘𝑟 )

16: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑒𝑡 ← HashSet()
17: for 𝑣1 in 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 do
18: 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥 ← GetBlockIdx(𝑣1)
19: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑒𝑡 .Insert(𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥)
20: 𝑏𝑙𝑜𝑐𝑘 [𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥] .Insert(𝑣1)
21: end for
22: 𝑛𝑒𝑥𝑡 ← ∅
23: // Process blocks in parallel with max 𝑘𝑟 threads
24: for 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥 in 𝑏𝑙𝑜𝑐𝑘_𝑠𝑒𝑡 do
25: // 𝑛𝑒𝑥𝑡 queue of this block
26: 𝑛𝑒𝑥𝑡𝑏 ← ∅
27: // Read edge block
28: 𝑏𝑙𝑜𝑐𝑘_𝑑𝑎𝑡𝑎 ← GetBlock(𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥)
29: // For each 𝑣1 associated with this edge block
30: for 𝑣1 in 𝑏𝑙𝑜𝑐𝑘 [𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥] do
31: // Get 𝑣1 neighbors from this block locally and process
32: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← ReadFromBlock(𝑏𝑙𝑜𝑐𝑘_𝑑𝑎𝑡𝑎, 𝑣1)
33: 𝑛𝑒𝑥𝑡𝑣 ← Process(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
34: 𝑛𝑒𝑥𝑡𝑏 .insert(𝑛𝑒𝑥𝑡𝑣)
35: end for
36: // Merge 𝑛𝑒𝑥𝑡𝑏 in final 𝑛𝑒𝑥𝑡 queue
37: 𝑚𝑡𝑥.lock()
38: 𝑛𝑒𝑥𝑡 .Insert(𝑛𝑒𝑥𝑡𝑏)
39: 𝑚𝑡𝑥.unlock()
40: end for
41: return 𝑛𝑒𝑥𝑡

42: end function

queue to store the indices of the neighbors of vertices in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue, which correspond

to the vertices in the next level. To leverage parallelism, each vertex in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue is
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Algorithm 3: Parallel Breadth-first Search

1: function BFSprocess(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

2: 𝑛𝑒𝑥𝑡𝑣 ← ∅
3: for 𝑣2 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
4: if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣2].CAS(False, True) then
5: // Add 𝑣2 to the next queue of 𝑣1
6: 𝑛𝑒𝑥𝑡𝑣 .insert(𝑣2)

7: end if
8: end for
9: return 𝑛𝑒𝑥𝑡𝑣
10: end function
11:

12: function PBFS(𝑣𝑠 , 𝑘𝑟 )

13: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← {𝑣𝑠 }
14: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0

15: while 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 .size > 0 do
16: 𝑛𝑒𝑥𝑡 ← ProcessQueue(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟, 𝐵𝐹𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑘𝑟 )
17: // Or call ProcessQueueBlock()
18: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑐𝑜𝑢𝑛𝑡 + 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 .size
19: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 𝑛𝑒𝑥𝑡

20: end while
21: return 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑐𝑜𝑢𝑛𝑡

22: end function

assigned to a separate thread so that multiple I/Os can be issued in parallel as shown in Figure 1(A).

The complete algorithm is listed in Alg. 3. For each vertex in 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , as 𝐵𝐹𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠 defines,

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒 will assign threads to vertices. Each thread accesses the assigned vertex, retrieves the

indices of its neighbors, checks and flags the index of every neighbor as 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , inserts it to 𝑛𝑒𝑥𝑡𝑣
queue of this vertex, and merges 𝑛𝑒𝑥𝑡𝑣 of all vertices to the final 𝑛𝑒𝑥𝑡 protected by a global lock𝑚𝑡𝑥

to prevent data races and ensure thread safety. The PBFS level of concurrency is controlled by the

number of threads, which we tune according to the physical specification of the SSD (i.e., optimal

concurrency). Once all the vertices in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue have been processed, the contents of the

𝑛𝑒𝑥𝑡 queue are copied back to the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue, and the 𝑛𝑒𝑥𝑡 queue is cleared. This process is

repeated until the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue becomes empty, signifying the completion of the BFS traversal.

We also developed a blocked variant of the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 processing which uses the ProcessQueueBlock
function. As discussed in §5.3, this approach discovers the edge blocks of the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 vertices and

allocates threads to edge blocks, parallelizing at the edge block level while ensuring that each edge

block is read only once. This results in two benefits: (i) overall runtime improvement since edge

blocks are not read multiple times, and (ii) performance does not depend on cache pool size.

5.3.2 Parallel Weakly Connected Components. Computing WCC entails repeatedly searching from

each vertex in the graph. Since we utilize the adjacency list format, the most efficient approach to

computing WCC involves repeatedly applying the search algorithm starting from each vertex in

the graph. During the search process, a visited vertex is marked as true and avoided in subsequent

iterations. We parallelize WCC by performing multiple concurrent searches using PBFS due to

its low overhead and well-established efficiency. Due to space constraints, we do not include the

complete algorithm.
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Algorithm 4: Parallel PageRank

1: function PRprocess(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

2: 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1] ← 0

3: for 𝑣2 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
4: // Sum up last 𝑝𝑟 value of neighbors
5: 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1] ← 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1] + 𝑝𝑟 [𝑣2]
6: end for
7: // Add damping factor and divide by its degree
8: 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1] ← 𝑑+(1−𝑑 ) ·𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1 ]

GetDegree(𝑣1 )
9: return ∅
10: end function
11:

12: function ParallelPageRank(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , 𝑘𝑟 )

13: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← {0, 1, . . . , 𝑁 − 1}
14: for 𝑖 ← 0 to 𝑁 − 1 do
15: 𝑝𝑟 [𝑖] ← 1

GetDegree(𝑖 )
16: 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑖] ← 𝑝𝑟 [𝑖]
17: end for
18: // We run it for a number of iterations
19: while iterations > 0 do
20: ProcessQueue(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟, 𝑃𝑅𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑘𝑟 )
21: 𝑝𝑟 ← 𝑝𝑟𝑛𝑒𝑥𝑡
22: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 − 1
23: end while
24: return 𝑝𝑟

25: end function

5.3.3 Parallel PageRank. We consider the topology approach for PR, which involves updating the

PR values (𝑝𝑟 ) of all vertices based on the values of their neighbors from the previous iteration

(Algorithm 4). Since all vertices need to be processed in each iteration, the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue always

contains the entire list of vertices, and there is no need for a 𝑛𝑒𝑥𝑡 queue. Initially, the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟

queue includes all vertices, from vertex 0 to vertex 𝑁 − 1. In every iteration, the 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒

is called with the desired concurrency to parallelize each step of the algorithm. For the blocked

implementation, the 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒𝐵𝑙𝑜𝑐𝑘 function is called. The initial PageRank values, 𝑝𝑟 [𝑖] and
𝑝𝑟𝑛𝑒𝑥𝑡 [𝑖], are assigned as the inverses of the degrees of their respective vertices 𝑣𝑖 . It is worth noting
that in the original PageRank algorithm, the initial PageRank value for each vertex is set to 1, and

its neighbors are assigned values of
𝑝𝑟 [𝑖 ]
𝑑𝑒𝑔[𝑖 ] . To optimize the computation, we perform this division

in advance so it does not need to be repeatedly calculated by the neighbors in each iteration.

5.3.4 Parallel Random Walk. A single random walk is inherently a serial process and does not

significantly benefit from data concurrency. However, an effective strategy is to run multiple

random walks concurrently, which not only improves the precision of the results but also reduces

the overall running time. Initially, 𝑘 vertices are randomly chosen from the whole vertex set and

put in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue. In each iteration, the 𝑅𝑊𝑝𝑟𝑜𝑐𝑒𝑠𝑠 function randomly selects one of the

neighbors for each vertex in 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 as the successor in the next iteration. Due to space constraints,

we do not include the complete algorithm.
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Algorithm 5: Parallel Pseudo Depth-first Search

1: function DFStask(𝑠𝑡𝑎𝑐𝑘, 𝑘𝑟 )

2: 𝑚𝑎𝑥_𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ← 𝑘𝑟
3: while 𝑠𝑡𝑎𝑐𝑘.size() > 0 do
4: // Get and pop vertex at the stack top
5: 𝑣1 ← 𝑠𝑡𝑎𝑐𝑘.top()
6: 𝑠𝑡𝑎𝑐𝑘.pop()
7: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 + 1
8: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← GetEdges(𝑣1)
9: // Push all unvisited neighbors on stack
10: for 𝑣2 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
11: if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣2] .CAS(𝐹𝑎𝑙𝑠𝑒,𝑇𝑟𝑢𝑒) then
12: 𝑠𝑡𝑎𝑐𝑘.push(𝑣2)
13: end if
14: end for
15: // Check if stack size is larger than threshold
16: while 𝑠𝑡𝑎𝑐𝑘.size() > 𝑚𝑎𝑥_𝑠𝑡𝑎𝑐𝑘_𝑠𝑖𝑧𝑒 do
17: if 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 < 𝑚𝑎𝑥_𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 then
18: 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ← 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 + 1
19: // Split the stack and generate new task
20: 𝑛𝑒𝑤_𝑠𝑡𝑎𝑐𝑘, 𝑠𝑡𝑎𝑐𝑘 ← 𝑠𝑡𝑎𝑐𝑘.split()
21: 𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙 .push(𝐷𝐹𝑆𝑡𝑎𝑠𝑘, 𝑛𝑒𝑤_𝑠𝑡𝑎𝑐𝑘)
22: end if
23: end while
24: end while
25: 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ← 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 − 1
26: end function
27:

28: function ParallelPseudoDFS(𝑣𝑠 , 𝑘𝑟 )

29: 𝑖𝑛𝑖𝑡_𝑠𝑡𝑎𝑐𝑘 ← {𝑣𝑠 }
30: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣𝑠 ] ← 𝑇𝑟𝑢𝑒

31: 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ← 1

32: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 0

33: 𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙 .push(𝐷𝐹𝑆𝑡𝑎𝑠𝑘 (𝑖𝑛𝑖𝑡_𝑠𝑡𝑎𝑐𝑘, 𝑘𝑟 ))
34: 𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙 .WaitAll()
35: return 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡

36: end function

5.3.5 Parallel Pseudo Depth-First Search. While DFS is inherently a serialized algorithm, it is

possible to enhance its performance by introducing parallelism through a technique known as

unordered or pseudo-DFS [1]. We take inspiration from this idea, and we incorporate a mechanism

to monitor the size of the vertex stack for each thread in our implementation (Algorithm 5). In

the beginning, only one stack is active with the starting vertex 𝑣𝑠 . We create a new 𝐷𝐹𝑆𝑡𝑎𝑠𝑘

with this stack in the thread pool. The 𝐷𝐹𝑆𝑡𝑎𝑠𝑘 continuously pops the stack, reads its neighbors,

and pushes them into the stack as a normal DFS does. After visiting the neighbors of a vertex,

we check if the size of the stack exceeds a predefined threshold. If it does, the stack is evenly
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Fig. 13. (A) - (C) Performance graph for BFS on our PCIe SSD. CAVE outperforms GraphChi and GridGraph.

divided into two smaller stacks, and one of these stacks is assigned to a new thread for further

exploration. This approach allows each thread to independently perform DFS on its allocated

stack and split it when necessary. By dynamically splitting the stacks in this manner, we achieve

increased concurrency during the DFS traversal. The choice of the threshold value determines the

trade-off between concurrency and thread creation overhead. Setting a smaller threshold allows for

higher concurrency but may result in a larger number of threads being created. On the other hand,

a larger threshold reduces the number of thread creations but may limit the degree of parallelism.

The selection of an appropriate threshold is crucial to strike a balance between concurrency and

overhead, ensuring efficient execution of the algorithm.

5.4 Evaluation
We now present the experimental evaluation of CAVE for the five algorithms and compare it with

two storage-optimized graph processing system GraphChi [43] and GridGraph [99].

Experimental Setup. We use the same server and storage devices described in Section 4.3. Unless

otherwise mentioned, we match the number of concurrent I/Os to 𝑘𝑟 of the corresponding device

for optimal device utilization [65]. All experimental results are averaged over three iterations, and

the standard deviation was less than 1%.

Table 2. Dataset Description

Dataset Description #Nodes #Edges Diameter Size

FS Friendster Social Network 65M 1.8B 32 32 GB

RN RoadNet Network of PA 1M 1.5M 786 47 MB

LJ LiveJournal Social Network 5M 69M 16 1 GB

YT YouTube Social Network 1.1M 3M 20 39 MB

SD Synthetic data 50M 1.25B 6 42 GB

Dataset.We use four datasets of different sizes and types from the Stanford Large Network Dataset

Collection [46]: Friendster Social Network (FS), RoadNet Network of PA (RN), LiveJournal Social

Network (LJ) and YouTube Social Network (YT). FS is the largest dataset among these with 65M

nodes and 32GB size. We also experiment with a synthetic dataset (SD) generated by us which has

50M nodes and 42GB size. The basic properties of the datasets are presented in Table 2. Due to

space limit, while we conduct a comprehensive set of experiments across 5 algorithms, 3 devices,

and 5 datasets, we present only the most noteworthy findings mainly focusing BFS and DFS.

CAVE outperforms GraphChi &GridGraph.We evaluate the performance of CAVE, GraphChi and
GridGraph as we vary the cache size for three datasets. Figures 13(A) - (C) show the performance

of the three systems for BFS when the underlying device is the PCIe SSD. Since the datasets have

different sizes, the cache value is set accordingly. The results show that CAVE (both blocked and
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Fig. 14. CAVE performs well across all datasets for both PBFS and PWCC. It performs particularly well for
sparse graphs (RN dataset). On the other hand, GridGraph works best for dense graphs (SD dataset)

non-blocked) significantly outperforms GraphChi for any cache ratio and any dataset. For example,

Figure 13(A) presents a performance comparison of the BFS implementation of the three systems

for the Friendster dataset (65M nodes, 32GB size). The non-blocked implementation benefits from a

higher cache size while the blocked implementation remains unaffected by the cache size. This is

due to the design techniques of the blocked implementation as it ensures all edge blocks are read

only once during an iteration. We observe that the blocked CAVE implementation of BFS provides

up to 8.3× speedup compared to GraphChi. GridGraph is faster than GraphChi, however, both

CAVE implementations outperform GridGraph. The blocked version provides up to 3.4× speedup
across various cache sizes, while the non-blocked variant delivers comparable performance for

smaller cache sizes and up to 5.14× speedup for higher cache sizes.

CAVE is Well-suited for Sparse Graphs. In Figure 13(B) we see that in a sparse graph with

unusually high diameter (RN dataset), CAVE performs better than both GraphChi and GridGraph. In

particular, the non-blocked implementation works well for this graph because, in sparse graphs with

lower average degrees where edge blocks can be associated with multiple vertices, all required edge

blocks for an iteration can fit in the cache pool without swapping. With a sufficiently large cache,

the non-blocked variant benefits from multiple threads working on cache data. Figure 13(B) shows

that the blocked implementation (black line) outperforms both GraphChi and GridGraph while the

non-blocked implementation (green line) can be up to 3.8× faster than the blocked implementation.

CAVE Provides Good Performance for Dense Graphs. Our synthetic SD dataset is an unusually

dense graph (the diameter is only 6 with 50M nodes and 1.25B edges). Figure 13(C) shows that CAVE-
blocked provides marginal benefit compared to GridGraph for the SD dataset. The reason behind

this is that GridGraph is designed for dense graphs because its data structures and algorithms are

optimized to efficiently handle the high connectivity and dense nature of such graphs. GridGraph

achieves this by utilizing a grid structure to partition and manage the graph’s data.

CAVE Excels Across Different Datasets. A summary of the results is presented in Figure 14(A)

which shows CAVE’s speedup compared to GraphChi and GridGraph for all five datasets for a specific

cache size depending on the dataset on the PCIe SSD device (around 3% for each workload). The

speedup of CAVE’s BFS compared to GraphChi ranges from 7 − 984× while the speedup compared

to GridGraph ranges from 1.1 − 22×. The high run time for the RN dataset in Figure 13(B) and the

unusually high speedup for this dataset shown in Figure 14(A) is attributed to the high diameter

of the graph. For dense graphs like SD, GridGraph performs well because of its grid structure

to partition and manage dense graphs, however, CAVE still outperforms GridGraph. Figure 14(B)

presents a summary result of WCC for all five datasets on the PCIe SSD (around 3% for each

workload) which shows CAVE can achieve 22 − 850× speedup compared to GraphChi and 0.6 − 22×
speedup compared to GridGraph. GridGraph performs better than CAVE only for the SD dataset.
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Fig. 15. (A) As number of concurrent I/Os increases, the benefit of CAVE increases until the device gets saturated.
(B, C) CAVE’s PDFS can attain the maximum benefit of the device by exploiting its optimal concurrency value.

CAVE Utilizes Concurrent I/Os. To analyze how the concurrent I/O affects the performance for

various devices and datasets for the algorithms, we now vary the number of concurrent I/Os in the

blocked PBFS implementation. Since GraphChi or GridGraph does not have the support of varying

concurrent I/Os, we do not include them in this experiment. Figure 15(A) shows CAVE’s performance

graph for the FS dataset for all three of our devices. The figure shows that as we increase the number

of concurrent I/Os, the runtime of PBFS decreases until the device gets saturated. For example, the

SATA SSD gets saturated when using 16-32 concurrent I/Os (red line), which is consistent with the

device’s optimal concurrency value (25). However, if we issue more concurrent I/Os, performance

starts to degrade because of the thread management overhead while the device is already saturated.

The PCIe SSD curve is moved towards higher concurrency, as expected, and Optane SSD has a

flatter curve, which is consistent with prior work [65, 67].

CAVE’s PDFS Exploits Device Concurrency. We now focus on the impact of I/O concurrency on

the PDFS algorithm. We generate a list of target keys at random and run the algorithm to search

each key multiple times in a depth-first manner. It is worth mentioning that, GraphChi, GridGraph

and most graph processing systems do not support DFS. Figures 15(B) and (C) show the performance

of CAVE’s PDFS as we vary the number of concurrent I/Os for the FS, and SD datasets across three

devices. We observe that for all datasets and devices, as we increase the number of concurrent I/Os,

we have improvements in runtime until the device performance plateaus. For example, for the FS

dataset, CAVE’s PDFS achieves 7.7×, 12.6×, 7.6× speedup on the Optane SSD, SATA SSD, and PCIe

SSD, compared to using sequential I/Os (one I/O at a time) as shown in Figure 15(B). We can also

reason about each device’s concurrency values from the graphs as the runtime flattens out when

the device bandwidth is saturated. The figures also show that the fastest device (Optane SSD) has a

much lower runtime than the slowest device (SATA SSD). Overall, these experiments show that

CAVE can perform parallel pseudo-DFS while leveraging the underlying SSD’s concurrency.

6 RELATEDWORK

Existing I/O Models. External storage has been traditionally modeled as a simple collection of

blocks following the simplicity of the design of a hard disk (EM Model [2]). Blelloch et al. [7, 8]

proposed the Asymmetric RAM (ARAM) model to analyze algorithms for asymmetric read and

write costs, targeting asymmetric non-volatile main memory devices. The main goal of ARAM is to

develop write-efficient main memory algorithms. On the contrary, the goal of PIO is to capture the

inherent asymmetry and concurrency of storage devices, and study how we can use these in the

design process of storage-intensive algorithms.
Addressing Asymmetry and Concurrency. Read/write asymmetry has been identified as an

optimization goal for indexing [5, 14, 15, 48, 50, 89], flash-aware storage engines [10, 35, 62], and
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other data management operations [20, 21, 28, 70]. Recent research has focused on developing new

I/O schedulers for SSDs [57, 72, 76, 82] and on modifying SSD internals to exploit the parallelism [11,

12]. In the same spirit, our work aims to make SSD asymmetry and concurrency a first-class citizen

when designing database bufferpool for external memory.

Bufferpool Management. There have been several efforts that focus on developing efficient page

replacement policies [23, 32, 38, 39, 59, 63, 86]. However, they are primarily designed for traditional

HDDs, hence, they do not address asymmetry or concurrency. Recent work on bufferpool on top of

flash devices prioritizes the eviction of clean pages and reduces page writes to minimize device

wear-off [34, 49, 73, 94]. Other flash-friendly policies, like FOR and FOR+ [54] use an operation-

aware page weight determination for buffer replacement. All these techniques indirectly address

asymmetry, however, they do not exploit the device concurrency. Recently proposed works also

attempt to exploit the device parallelism by redesigning the SSD controller [40, 79, 80]. In contrast to

these approaches, our goal is to develop a bufferpool that expressly utilizes the device concurrency

and consequently addresses asymmetry via write-amortization.

Prefetching. The most popular prefetching technique is sequential prefetching [19, 47, 84, 87]

which is adopted by many commercial systems. Stride-based prefetching is also widely studied

primarily for processor caches [24, 44, 60]. History-based prefetching techniques attempt to predict

future access patterns based on past access patterns by using history-based table [27, 47], Markov

predictor [33], and data compression techniques [18, 90]. In the augmented design space that we

propose, any prefetching technique(s) can be integrated.

Graph Processing Systems.Many scalable graph processing systems like PowerLyra [13], Power-

Graph [25], GraphX [26], GBase [37], TurboGraph++ [42], Chaos [77], GraphLab [53], Pregel [56],

Gemini [98] can process large graphs in a distributed manner which requires finding optimal

partitioning, load-balancing, fault tolerance, and managing the communication overhead. There

are some single-node shared-memory systems like Ligra [83], GraphMat [85], GRACE [93], Poly-

mer [95], CGraph [96] that process graphs in memory, and as expected, these systems are highly

CPU bound. There are several popular out-of-core processing systems including GraphChi [43],

TurboGraph [30], Mosaic [55], X-Stream [78], GridGraph [99], Graspan [91], RStream [92], and

FlashGraph [97]. These systems attempt to minimize random disk access while relying on sequential

I/O, extensive preprocessing, and optimal data placement. GraphSSD [58] is a graph semantic aware

SSD framework where the SSD controller is made aware of the graph data structures stored on the

SSD, hence, this approach requires extensive modification of the SSD controller. In contrast, our

goal is to develop a general approach for parallelizing graph traversal algorithms and develop the

necessary infrastructure to exploit SSD concurrency.

7 CONCLUSION
Modern solid-state drives are characterized by a read-write asymmetry and an access concurrency,
both of which are essential to fully utilize the device. We propose a simple yet expressive parametric

I/Omodel, termed PIO, that considers the asymmetry (𝛼) between reads and writes, and concurrency

(𝑘) that different devices may support to enable better algorithm design. By capturing 𝛼 and 𝑘 ,

device-specific decisions can be tuned at both algorithm design time and during deployment and

testing. Inspired from PIO, we propose ACE, a novel asymmetry/concurrency-aware bufferpool

manager paradigm that batches writes based on device concurrency to amortize the asymmetric

write cost. We refactor the bufferpool design space by separating the eviction policy from the

write-back policy. Incorporating concurrency into the write-back policy allows us to custom-tailor

any bufferpool manager to the device-at-hand, thus utilizing the device’s full potential. ACE can be

integrated with any existing page replacement and prefetching policy with low engineering effort.
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Further, we propose CAVE, a concurrency-aware graph processing system designed to leverage the

underlying SSD concurrency. CAVE parallelizes independent I/Os through its concurrent cache pool

design, supported by its file structure, enabling the implementation of storage-aware parallel graph

algorithms. In both cases, we observe from extensive experimental evaluations that better storage

modeling leads to better device utilization and, ultimately, better performance.
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