N

MICROCHIP

16-BIT LANGUAGE TOOLS
LIBRARIES

55555555

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= I1S0/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEeLOQ, microlD, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of

Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerlInfo,
PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and Zena are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS51456C-page i

© 2005 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Table of Contents

o = = (o] =T PRSPPI 1
Chapter 1. Library Overview
It I o (o To [W o 1o] o R 7
1.2 OMF-Specific Libraries/Start-up Modulesccccceiiiiiii, 7
1.3 Start-Up COUE ..o 8
LA DSP LIBIary oooooooeiiieiiieee e 8
1.5 16-Bit Peripheral LIDrari€sccoiiiiiiiiiieieiiee et 8
1.6 Standard C Libraries (with Math FUNCLiONS)ooooiiii i, 8
1.7 MPLAB C30 Built-in FUNCLIONSeiiiiii i 8
Chapter 2. DSP Library
2% N 11 oo [Tt 1o o KPP UPPPPRRPPIN 9
2.2 UsiNg the DSP LIDIaryoooeuiiiii it e e e e e e e 10
2.3 VECIOr FUNCLIONS ..uiiiiiiiicieeeiiie ettt e s e e e e e e e et e e e e aeeeeenes 13
2.4 WINAOW FUNCHIONS ...ooveiiiii et 26
2.5 MatriX FUNCHONS .ouviiiiieiieieeiiiee ettt e e e e e e e e e et e e e e aeeeeeees 31
2.6 Filtering FUNCLIONScoiiiiiiiiii et e e e e e aea e e e e e e eeaenes 38
2.7 Transform FUNCHONSooiiiiiiiiei et e e e e e e e bbb e e e e e e aeeeans 58
2.8 CoNrol FUNCHIONS ...ooviiiiiee et 73
2.9 Miscellaneous FUNCLIONScciiiiiiiiiiiiiiiiee e e eeeeeeans 78
Chapter 3. 16-Bit Peripheral Libraries
G700 1)1 (o o [o2 170] o RS PORN 81
3.2 Using the 16-Bit Peripheral LIbrariescccccvveevevvieieiieiiieieieeeeeeieeeeeeeeeeeen 82
3.3 External LCD FUNCHONScoiiiiiiieiee ettt e 82
3.4 CAN FUNCLONS ...ttt ettt e e e e e e e e e et e e e e e e e eeeeees 89
3.5 ADCL2 FUNCLONS ..ovtiiiiiiiii et e e e e e e e e et e e e e e e 103
3.6 ADCL0 FUNCLIONS .. .ccoiiiiiiiiiiii ettt e e e e e e e e e et e e e e e e e eeseaeaes 110
3.7 TIMEr FUNCHIONS ...ttt et e e e 117
3.8 Reset/Control FUNCLIONScooieiiiiiiiiiiice et eeaaae 125
3.9 1/O POt FUNCHONS ..ottt ettt e e e e e e e e e e et e e e e e e e eeeeaeaes 128
3.10 Input Capture FUNCHONSciiiieiiiiieiiiii it e e e e e et e e e e e e e eeaes 133
3.11 Output Compare FUNCHONSuvuviuiiiiiiiiiiiiiiieieiereieeeeeeeeeereeereeereeereeseees 139
3,12 UART FUNCHONS .ooveiiciiiti ettt e e 149
B.A3 DCIFUNCLONS ...t e e e e aeeeaes 158
IR0] = I ¥ o T 10] 1P 166
3.15 QEI FUNCLONS ...t e e e e e e eeaeaes 174
3.16 PWIM FUNCHONS ..oovtiiiiiiic e et e 179
317 12C™ FUNCLIONS ...ccoiiieiiiiiiee ettt e e e e e e e et e e e e e e e e e e bbbt e e e e eeeeeeeseees 191

© 2005 Microchip Technology Inc. DS51456C-page iii

16-Bit Language Tools Libraries

Chapter 4. Standard C Libraries with Math Functions

N R 1 (0T [Tt 1o o IR PSPPI 201
4.2 Using the Standard C LIibrariesviiiiiiiiiiieieeiiiee e 202
4.3 <assert.h> diagnoSstiCS ...ooovvviviiiiiiiiii . 203
4.4 <ctype.h> character handlingcovvviiiii e 204
4.5 <EITNO.NS EITOIS ooviiiieeeieee e 213
4.6 <float.h> floating-point characteristiCsccccvviviiiiiiii e, 214
4.7 <limits.h> implementation-defined limitscccccc . 219
4.8 <locale.h> 10Calizationcciiiiiiiiiiic e 221
4.9 <setjimp.h> non-local JUMPSoovvvivviiiii 222
4.10 <signal.h> signal handlingcoooiiiiiiiii e 223
4.11 <stdarg.h> variable argument liStSccccccvviiiiii 229
4.12 <stddef.h> common definitionNscccocoiiiiiiiiiiiii e, 231
4.13 <stdio.h> input and OULPULooovviiiiiiiii e, 233
4.14 <stdlib.h> utility fuNCLIONSceiii i 278
4.15 <string.h> string funCtions ..., 302
4.16 <time.h> date and time funCtionSccccoiiiii i, 325
4.17 <math.h> mathematical functionsccccccccii 333
4.18 PIC30-IDS ... e 374
Chapter 5. MPLAB C30 Built-in Functions
5.1 INFOAUCHION ooveeiiiiiiieeeeeeeee e 383
5.2 BUIlt-INn FUNCLION LIStccoiieiiee et 384
Appendix A. ASCII CharaCter Set ..o e 401
1Yo 1= PP 403
Worldwide Sales and SEerVICEcoiii oo 424

DS51456C-page iv © 2005 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools
and documentation are constantly evolving to meet customer needs, so some actual
dialogs and/or tool descriptions may differ from those in this document. Please refer
to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom
of each page, in front of the page number. The numbering convention for the DS
number is “DSXXXXXA”, where “XXXXX" is the document number and “A” is the
revision level of the document.

For the most up-to-date information on development tools, see the MPLAB IDE
on-line help. Select the Help menu, and then Topics to open a list of available on-line
help files.

INTRODUCTION

The purpose of this document is to define and describe the libraries that are available
for use with Microchip Technology’s 16-bit language tools, based on GCC (GNU
Compiler Collection) technology. The related language tools are:

« MPLAB® ASM30 Assembler

* MPLAB C30 C Compiler

* MPLAB LINK3O0 Linker

* MPLAB LIB30 Archiver/Librarian

« Other Utilities

Items discussed in this chapter include:

» About This Guide

* Recommended Reading

» Troubleshooting

e The Microchip Web Site

» Development Systems Customer Change Notification Service
e Customer Support

© 2005 Microchip Technology Inc. DS51456C-page 1

16-Bit Language Tools Libraries

ABOUT THIS GUIDE

Document Layout

This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:

Chapter 1: Library Overview — gives an overview of libraries.
Chapter 2: DSP Library — lists the library functions for DSP operation.

Chapter 3: 16-Bit Peripherals Libraries — lists the library functions and macros for
16-bit device software and hardware peripheral operation.

Chapter 4: Standard C Library with Math Functions - lists the library functions
and macros for standard C operation.

Chapter 5: MPLAB C30 Built-in Functions — lists the built-in functions of the C
compiler, MPLAB C30.

DS51456C-page 2

© 2005 Microchip Technology Inc.

Preface

Conventions Used in this Guide

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User's Guide

Emphasized text

...Is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK
Atab Click the Power tab
‘bnnnn A binary number where nis a |'b00100, ‘b10

digit

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier

Sample source code

#define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1

Italic Courier A variable argument file.o,where file can be
any valid filename
0xnnnn A hexadecimal number where | 0xFFFF, 0x007A

n is a hexadecimal digit

Square brackets []

Optional arguments

mccl8 [options] file

[options]

Curly brackets and pipe
character: {| }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]|1}

Ellipses...

Replaces repeated text

var name [,
var_name...]

Represents code supplied by
user

void main

{
}

(void)

© 2005 Microchip Technology Inc.

DS51456C-page 3

16-Bit Language Tools Libraries

RECOMMENDED READING

This document describes 16-bit library functions and macros. For more information on
16-bit language tools and the use of other tools, the following are recommended
reading:

README Files

For the latest information on Microchip tools, read the associated README files (ASCII
text files) included with the software.

dsPIC® Language Tools Getting Started (DS70094)

A guide to installing and working with the Microchip language tools (MPLAB ASM30,
MPLAB LINK30 and MPLAB C30) for 16-bit devices. Examples using the 16-bit
simulator, MPLAB SIM30, are provided.

MPLAB® ASM30, MPLAB® LINK30 and Utilities User's Guide (DS51317)

A guide to using the 16-bit assembler, MPLAB ASM30, 16-bit linker, MPLAB LINK30
and various 16-bit utilities, including MPLAB LIB30 archiver/librarian.

MPLAB® C30 C Compiler User's Guide (DS51284)

A guide to using the 16-bit C compiler. MPLAB LINK30 is used with this tool.
dsPIC30F Family Overview (DS70043)

An overview of the dsPIC30F devices and architecture.

dsPIC30F/33F Programmer’s Reference Manual (DS70157)

Programmer’s guide to dsPIC30F/33F devices. Includes the programmer’s model and
instruction set.

Microchip Web Site

The Microchip web site (http://www.microchip.com) contains a wealth of
documentation. Individual data sheets, application notes, tutorials and user’s guides
are all available for easy download. All documentation is in Adobe Acrobat (PDF)
format.

TROUBLESHOOTING

See the README files for information on common problems not addressed in this
document.

DS51456C-page 4

© 2005 Microchip Technology Inc.

Preface

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

« General Technical Support — Frequently Asked Questions (FAQ), technical
support requests, online discussion groups, Microchip consultant program
member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail natification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

e Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers; MPASM™
and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB LIB30 object librarians.

* Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

 In-Circuit Debuggers — The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

« MPLAB IDE — The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM and MPLAB SIM30 simulators, MPLAB
IDE Project Manager and general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® Il device programmers and the PICSTART®
Plus development programmer.

© 2005 Microchip Technology Inc. DS51456C-page 5

16-Bit Language Tools Libraries

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)

 Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DS51456C-page 6 © 2005 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 1. Library Overview

1.1 INTRODUCTION

A library is a collection of functions grouped for reference and ease of linking. See the
“MPLAB ASM30, MPLAB LINK30 and Utilities User's Guide” (DS51317) for more
information about making and using libraries.

1.1.1 Assembly Code Applications

Free versions of the 16-bit language tool libraries are available from the Microchip web
site. DSP and 16-bit peripheral libraries are provided with object files and source code.
A math library containing functions from the standard C header file <math.h>is
provided as an object file only. The complete standard C library is provided with the
MPLAB C30 C compiler.

1.1.2 C Code Applications

The 16-bit language tool libraries are included in the ¢: \Program Files\Micro-
chip\MPLAB C30\1lib directory, where c:\Program Files\Microchip\MPLAB
€30 isthe MPLAB C30 C compiler install directory. These can be linked directly into an
application with MPLAB LINK30.

1.1.3 Chapter Organization

This chapter is organized as follows:

* OMF-Specific Libraries/Start-up Modules
 Start-up Code

e DSP Library

» 16-Bit Peripheral Libraries

» Standard C Libraries (with Math Functions)
* MPLAB C30 Built-in Functions

1.2 OMF-SPECIFIC LIBRARIES/START-UP MODULES

Library files and start-up modules are specific to OMF (Object Module Format). An
OMEF can be one of the following:

* COFF - This is the default.

* ELF — The debugging format used for ELF object files is DWARF 2.0.

There are two ways to select the OMF:

1. Setan environment variable called P1Cc30_OMF for all tools.

2. Select the OMF on the command line when invoking the tool, i.e., -omf=omf or
-momf=omf .

16-bit tools will first look for generic library files when building your application (no OMF
specification). If these cannot be found, the tools will look at your OMF specifications
and determine which library file to use.

As an example, if 1ibdsp. a is not found and no environment variable or
command-line option is set, the file 1ibdsp-coff.a will be used by default.

© 2005 Microchip Technology Inc. DS51456C-page 7

16-Bit Language Tools Libraries

1.3 START-UP CODE

In order to initialize variables in data memory, the linker creates a data initialization
template. This template must be processed at start-up, before the application proper
takes control. For C programs, this function is performed by the start-up modules in
libpic30-coff.a (eithercrto.oo0rcrtl.o)or libpic30-elf.a (either
crt0.eo Or crtl.eo). Assembly language programs can utilize these modules
directly by linking with the desired start-up module file. The source code for the start-up
modules is provided in corresponding . s files.

The primary start-up module (crt 0) initializes all variables (variables without initializers
are set to zero as required by the ANSI standard) except for variables in the persistent
data section. The alternate start-up module (crt1) performs no data initialization.

For more on start-up code, see the “MPLAB ASM30, MPLAB LINK30 and Utilities
User’s Guide” (DS51317) and, for C applications, the “MPLAB C30 C Compiler User’s
Guide” (DS51284).

1.4 DSP LIBRARY

The DSP library (1ibdsp-omf.a) provides a set of digital signal processing opera-
tions to a program targeted for execution on a dsPIC30F digital signal controller (DSC).
In total, 49 functions are supported by the DSP Library.

1.5 16-BIT PERIPHERAL LIBRARIES

The 16-hit (software and hardware) peripheral libraries provide functions and macros
for setting up and controlling 16-bit peripherals. Examples of use are also provided in
each related chapter of this book.

These libraries are processor-specific and of the form 1ibpDevice-omf . a, where
Device = 16-bit device number (e.g., 1ibp30F6014-coff.a for the dsPIC30F6014
device).

1.6 STANDARD C LIBRARIES (WITH MATH FUNCTIONS)

A complete set of ANSI-89 conforming libraries are provided. The standard C library
files are 1ibc-omf . a (written by Dinkumware, an industry leader) and 1ibm-omf.a
(math functions, written by Microchip).

Additionally, some 16-bit standard C library helper functions, and standard functions
that must be modified for use with 16-bit devices, are in 1ibpic30-omf.a.

A typical C application will require all three libraries.

1.7 MPLAB C30 BUILT-IN FUNCTIONS

The MPLAB C30 C compiler contains built-in functions that, to the developer, work like
library functions.

DS51456C-page 8 © 2005 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 2. DSP Library

2.1 INTRODUCTION

The DSP Library provides a set of digital signal processing operations to a program tar-
geted for execution on a dsPIC30F/33F digital signal controller. The library has been
designed to provide you, the C software developer, with efficient implementation of the
most common signal processing functions. In total, 52 functions are supported by the
DSP Library.

A primary goal of the library is to minimize the execution time of each function. To
achieve this goal, the DSP Library is predominantly written in optimized assembly
language. By using the DSP Library, you can realize significant gains in execution
speed over equivalent code written in ANSI C. Additionally, since the DSP Library has
been rigorously tested, using the DSP Library will allow you to shorten your application
development time.

211 Assembly Code Applications

A free version of this library and its associated header file is available from the
Microchip web site. Source code is included.

2.1.2 C Code Applications

The MPLAB C30 C compiler install directory (c: \program files\micro-
chip\mplab ¢30) contains the following subdirectories with library-related files:

e 1ib — DSP library/archive files

» src\dsp — source code for library functions and a batch file to rebuild the library
« support\h — header file for DSP library

2.1.3 Chapter Organization

This chapter is organized as follows:

 Using the DSP Library

« Vector Functions

« Window Functions

« Matrix Functions

* Filtering Functions

e Transform Functions

e Control Functions

¢ Miscellaneous Functions

© 2005 Microchip Technology Inc. DS51456C-page 9

16-Bit Language Tools Libraries

2.2 USING THE DSP LIBRARY

2.2.1 Building with the DSP Library

Building an application which utilizes the DSP Library requires only two files: dsp.h
and libdsp-omf.a.dsp.his a header file which provides all the function prototypes,
#defines and typedefs used by the library. 1ibdsp-omf. a is the archived library
file which contains all the individual object files for each library function. (See
Section 1.2 “OMF-Specific Libraries/Start-up Modules” for more on OMF-specific
libraries.)

When compiling an application, dsp . h must be referenced (using #include) by all
source files which call a function in the DSP Library or use its symbols or typedefs.
When linking an application, 1ibdsp-omf . a must be provided as an input to the linker
(using the - -1ibrary or -1 linker switch) such that the functions used by the
application may be linked into the application.

The linker will place the functions of the DSP library into a special text section named
.libdsp. This may be seen by looking at the map file generated by the linker.

2.2.2 Memory Models

The DSP Library is built with the “small code” and “small data” memory models to cre-
ate the smallest library possible. Since a few DSP library functions are written in C and
make use of the compiler’s floating-point library, the MPLAB C30 linker script files place
the .1ibmand .1ibdsp text sections next to each other. This ensures that the DSP

library may safely use the RCALL instruction to call the required floating-point routines
in the floating-point library.

2.2.3 DSP Library Function Calling Convention

All the object modules within the DSP Library are compliant with the C compatibility
guidelines for the dsPIC30F/33F DSC and follow the function call conventions docu-
mented in the Microchip “MPLAB® C30 C Compiler User’s Guide” (DS51284). Specif-
ically, functions may use the first eight working registers (WO through W7) as function
arguments. Any additional function arguments are passed through the stack.

The working registers WO to W7 are treated as scratch memory, and their values may
not be preserved after the function call. On the other hand, if any of the working regis-
ters W8 to W13 are used by a function, the working register is first saved, the register
is used and then its original value is restored upon function return. The return value of
a (non void) function is available in working register WO (also referred to as WREG).
When needed, the run time software stack is used following the C system stack rules
described in the “MPLAB® C30 Compiler User’s Guide”. Based on these guidelines,
the object modules of the DSP Library can be linked to either a C program, an assembly
program or a program which combines code in both languages.

224 Data Types

The operations provided by the DSP Library have been designed to take advantage of
the DSP instruction set and architectural features of the dsPIC30F/33F DSC. In this
sense, most operations are computed using fractional arithmetic.

The DSP Library defines a fractional type from an integer type:

#ifndef fractional
typedef int fractiomnal;
#endif

The fractional data type is used to represent data that has 1 sign bit, and 15
fractional bits. Data which uses this format is commonly referred to as “1.15” data.

DS51456C-page 10

© 2005 Microchip Technology Inc.

DSP Library

For functions which use the multiplier, results are computed using the 40-bit accumu-
lator, and “9.31" arithmetic is utilized. This data format has 9 sign/magnitude bits and
31 fractional bits, which provides for extra computational headroom above the range
(-1.00 to ~+1.00) provided by the 1.15 format. Naturally when these functions provide
a result, they revert to a fractional data type, with 1.15 format.

The use of fractional arithmetic imposes some constraints on the allowable set of val-
ues to be input to a particular function. If these constraints are ensured, the operations
provided by the DSP Library typically produce numerical results correct to 14 bits. How-
ever, several functions perform implicit scaling to the input data and/or output results,
which may decrease the resolution of the output values (when compared to a
floating-point implementation).

A subset of operations in the DSP Library, which require a higher degree of numerical
resolution, do operate in floating-point arithmetic. Nevertheless, the results of these
operations are transformed into fractional values for integration with the application.
The only exception to this is the MatrixInvert function which computes the inver-
sion of a floating-point matrix in floating-point arithmetic, and provides the results in
floating-point format.

2.2.5 Data Memory Usage

The DSP Library performs no allocation of RAM, and leaves this task to you. If you do
not allocate the appropriate amount of memory and align the data properly, undesired
results will occur when the function executes. In addition, to minimize execution time,
the DSP Library will do no checking on the provided function arguments (including
pointers to data memory), to determine if they are valid. The user may refer to example
projects that utilize the DSP library functions, in order to ascertain proper usage of func-
tions. MPLAB IDE-based example projects/workspaces have been provided in the
installation folder of the MPLAB C30 toolsuite.

Most functions accept data pointers as function arguments, which contain the data to
be operated on, and typically also the location to store the result. For convenience,
most functions in the DSP Library expect their input arguments to be allocated in the
default RAM memory space (X-Data or Y-Data), and the output to be stored back into
the default RAM memory space. However, the more computational intensive functions
require that some operands reside in X-Data and Y-Data (or program memory and
Y-Data), so that the operation can take advantage of the dual data fetch capability of
the 16-bit architecture.

2.2.6 CORCON Register Usage

Many functions of the DSP Library place the dsPIC30F/33F device into a special oper-
ating mode by modifying the CORCON register. On the entry of these functions, the
CORCON register is pushed to the stack. It is then modified to correctly perform the
desired operation, and lastly the CORCON register is popped from the stack to pre-
serve its original value. This mechanism allows the library to execute as correctly as
possible, without disrupting CORCON setting.

When the CORCON register is modified, it is typically set to 0xO0FO. This places the
dsPIC30F/33F device into the following operational mode:

« DSP multiplies are set to used signed and fractional data

» Accumulator saturation is enabled for Accumulator A and Accumulator B
 Saturation mode is set to 9.31 saturation (Super Saturation)

» Data Space Write Saturation is enabled

« Program Space Visibility disabled

« Convergent (unbiased) rounding is enabled

© 2005 Microchip Technology Inc. DS51456C-page 11

16-Bit Language Tools Libraries

For a detailed explanation of the CORCON register and its effects, refer to the
“dsPIC30F Family Reference Manual” (DS70046).

2.2.7 Overflow and Saturation Handling

The DSP Library performs most computations using 9.31 saturation, but must store the
output of the function in 1.15 format. If during the course of operation the accumulator
in use saturates (goes above 0x7F FFFF FFFF or below 0x80 0000 0000), the corre-
sponding saturation bit (SA or SB) in the STATUS register will be set. This bit will stay
set until it is cleared. This allows you to inspect SA or SB after the function executes
and to determine if action should be taken to scale the input data to the function.

Similarly, if a computation performed with the accumulator results in an overflow (the
accumulator goes above 0x00 7FFF FFFF or below OxFF 8000 0000), the correspond-
ing overflow bit (OA or OB) in the STATUS register will be set. Unlike the SA and SB
status bits, OA and OB will not stay set until they are cleared. These bits are updated
each time an operation using accumulator is executed. If exceeding this specified
range marks an important event, you are advised to enable the Accumulator Overflow
Trap via the OVATE, OVBTE and COVTE bits in the INTCONL1 register. This will have
the effect of generating an Arithmetic Error Trap as soon as the Overflow condition
occurs, and you may then take the required action.

2.2.8 Integrating with Interrupts and an RTOS

The DSP Library may easily be integrated into an application which utilizes interrupts
or an RTOS, yet certain guidelines must be followed. To minimize execution time, the
DSP Library utilizes DO loops, REPEAT loops, Modulo addressing and Bit-Reversed
addressing. Each of these components is a finite hardware resource on the 16-bit
device, and the background code must consider the use of each resource when
disrupting execution of a DSP Library function.

When integrating with the DSP Library, you must examine the Function Profile of each
function description to determine which resources are used. If a library function will be
interrupted, it is your responsibility to save and restore the contents of all registers used
by the function, including the state of the DO, REPEAT and special addressing hard-
ware. Naturally this also includes saving and restoring the contents of the CORCON
and Status registers.

2.2.9 Rebuilding the DSP Library

A batch file named makedsplib.bat is provided to rebuild the DSP library. The
MPLAB C30 compiler is required to rebuild the DSP library, and the batch file assumes
that the compiler is installed in the default directory, c: \Program Files\Micro-
chip\MPLAB C30\. If your language tools are installed in a different directory, you
must modify the directories in the batch file to match the location of your language tools.

DS51456C-page 12 © 2005 Microchip Technology Inc.

DSP Library

2.3 VECTOR FUNCTIONS

This section presents the concept of a fractional vector, as considered by the DSP
Library, and describes the individual functions which perform vector operations.

23.1 Fractional Vector Operations

A fractional vector is a collection of numerical values, the vector elements, allocated
contiguously in memory, with the first element at the lowest memory address. One word
of memory (two bytes) is used to store the value of each element, and this quantity
must be interpreted as a fractional number represented in the 1.15 data format.

A pointer addressing the first element of the vector is used as a handle which provides
access to each of the vector values. The address of the first element is referred to as
the base address of the vector. Because each element of the vector is 16 bits, the base
address must be aligned to an even address.

The one dimensional arrangement of a vector accommodates to the memory storage
model of the device, so that the nth element of an N-element vector can be accessed
from the vector's base address BA as:

BA+ 2(n-1),for1<n<N.
The factor of 2 is used because of the byte addressing capabilities of the 16-bit device.

Unary and binary fractional vector operations are implemented in this library. The oper-
and vector in a unary operation is called the source vector. In a binary operation the

first operand is referred to as the source one vector, and the second as the source two
vector. Each operation applies some computation to one or several elements of the

source vector(s). Some operations produce a result which is a scalar value (also to be
interpreted as a 1.15 fractional number), while other operations produce a result which
is a vector. When the result is also a vector, this is referred to as the destination vector.

Some operations resulting in a vector allow computation in place. This means the
results of the operation are placed back into the source vector (or the source one vector
for binary operations). In this case, the destination vector is said to (physically) replace
the source (one) vector. If an operation can be computed in place, itis indicated as such
in the comments provided with the function description.

For some binary operations, the two operands can be the same (physical) source
vector, which means the operation is applied to the source vector and itself. If this type
of computation is possible for a given operation, it is indicated as such in the comments
provided with the function description.

Some operations can be both self applicable and computed in place.

All the fractional vector operations in this library take as an argument the cardinality
(number of elements) of the operand vector(s). Based on the value of this argument the
following assumptions are made:

a) The sum of sizes of all the vectors involved in a particular operation falls within
the range of available data memory for the target device.

b) Inthe case of binary operations, the cardinalities of both operand vectors must
obey the rules of vector algebra (particularly, see remarks for the
VectorConvolve and VectorCorrelate functions).

c) The destination vector must be large enough to accept the results of an
operation.

© 2005 Microchip Technology Inc. DS51456C-page 13

16-Bit Language Tools Libraries

2.3.2 User Considerations

a) No boundary checking is performed by these functions. Out of range cardinalities
(including zero length vectors) as well as nonconforming use of source vector
sizes in binary operations may produce unexpected results.

b) The vector addition and subtraction operations could lead to saturation if the sum
of corresponding elements in the source vector(s) is greater than 1-21° or
smaller than -1.0. Analogously, the vector dot product and power operations
could lead to saturation if the sum of products is greater than 1-2-1° or smaller
than -1.0.

c) Itisrecommended that the STATUS Register (SR) be examined after completion
of each function call. In particular, users can inspect the SA, SB and SAB flags
after the function returns to determine if saturation occurred.

d) All the functions have been designed to operate on fractional vectors allocated
in default RAM memory space (X-Data or Y-Data).

e) Operations which return a destination vector can be nested, so that for instance
if:
a =0p1l (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a = 0pl (Op2 (d), Op3 (e, f))

2.3.3 Additional Remarks

The description of the functions limits its scope to what could be considered the regular
usage of these operations. However, since no boundary checking is performed during
computation of these functions, you have the freedom to interpret the operation and its
results as it fits some particular needs.

For instance, while computing the VectorMax function, the length of the source vector
could be greater than numElems. In this case, the function would be used to find the
maximum value only among the first numElems elements of the source vector.

As another example, you may be interested in replacing numElems elements of a des-
tination vector located between N and N+numElems - 1, with numElems elements from
a source vector located between elements M and M+numElems-1. Then, the
VectorCopy function could be used as follows:

fractional* dstV[DST ELEMS] = {...};

fractional* srcV[SRC_ELEMS] = {...};

int n = NUM_ELEMS;

int N = N_PLACE; /* NUM_ELEMS+N < DST ELEMS */
int M = M_PLACE; /* NUM_ELEMS+M < SRC_ELEMS */
fractional* dstVector = dstV+N;

fractional* srcVector = srcV+M;

dstVector = VectorCopy (n, dstVector, srcVector);

Also in this context, the VectorZzeroPad function can operate in place, where now
dstV = srcV, numElens is the number of elements at the beginning of source vector
to preserve, and numZeros the number of elements at the vector tail to set to zero.

Other possibilities can be exploited from the fact that no boundary checking is
performed.

DS51456C-page 14 © 2005 Microchip Technology Inc.

DSP Library

2.3.4 Individual Functions

In what follows, the individual functions implementing vector operations are described.

VectorAdd

Description: VectorAdd adds the value of each element in the source one vector
with its counterpart in the source two vector, and places the result in the
destination vector.

Include: dsp.h

Prototype: extern fractional* VectorAdd (
int numElems,
fractional* dstV,
fractional* srcVi,
fractional* srcv2
)
Arguments: numklems number of elements in source vectors
dstV pointer to destination vector
srcvi pointer to source one vector
srcv2 pointer to source two vector

Return Value: Pointer to base address of destination vector.

Remarks: If the absolute value of srcvi[n] + srcvz[n] is larger than 1-2715,
this operation results in saturation for the n-th element.
This function can be computed in place.
This function can be self applicable.

Source File: vadd.s

Function Profile: System resources usage:
WO0..W4 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
17 + 3(numElems)

© 2005 Microchip Technology Inc. DS51456C-page 15

16-Bit Language Tools Libraries

VectorConvolve

Description: VectorConvolve computes the convolution between two source
vectors, and stores the result in a destination vector. The result is
computed as follows:

n

y(n) = Z x(k)h(n=k),for0<n<M
k=0
n
y(n) = Z x(k)h(n=k),forM<n<N
k=n-M+1
N-1
y(n) = Z x(K)h(n—=k),forN<n<N+M-1
k=n-M+1

where x(k) = source one vector of size N, h(k) = source two vector of
size M (with M < N).

Include: dsp.h

Prototype: extern fractional* VectorConvolve (
int numElemsl1,
int numElems2,
fractional* dstV,
fractional* srcVi,
fractional* srcV2

)i

Arguments: numElems1 number of elements in source one vector
numElems2 number of elements in source two vector
dstV pointer to destination vector
srcVi pointer to source one vector
srcv2 pointer to source two vector
Return Value: Pointer to base address of destination vector.
Remarks: The number of elements in the source two vector must be less than or

equal to the number of elements in the source one vector.
The destination vector must already exist, with exactly
numElemsl+numEIlems2-1 number of elements.

This function can be self applicable.

Source File: vcon.s

DS51456C-page 16 © 2005 Microchip Technology Inc.

DSP Library

VectorConvolve (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored
W8..W10 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
58

Cycles (including C-function call and return overheads):
For N = numElems1, and M = numEIlems2,

M

28+13M +6 Z m+ (N-M)(7+3M),forM<N
m=1
M

28+13M+6Z m, forM =N
m=1

VectorCopy

Description:

Include:

Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Function Profile:

VectorCopy copies the elements of the source vector into the
beginning of an (already existing) destination vector, so that:
dstV[n] = srcV[n], 0 £ n < numElems

dsp.h

extern fractional* VectorCopy (
int numElems,
fractional* dstV,
fractional* srcV
)i
numElems number of elements in source vector
dstV pointer to destination vector
srcVv pointer to source vector

Pointer to base address of destination vector.

The destination vector must already exist. Destination vectors must
have, at least, numEIems elements, but could be longer.

This function can be computed in place. See Additional Remarks at the
end of the section for comments on this mode of operation.

vVCopy . s

System resources usage:
WO0..W3 used, not restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
6

Cycles (including C-function call and return overheads):
12 + numElems

© 2005 Microchip Technology Inc.

DS51456C-page 17

16-Bit Language Tools Libraries

VectorCorrelate

Description: VectorCorrelate computes the correlation between two source
vectors, and stores the result in a destination vector. The result is
computed as follows:

N-1
r(n) = Z x(k)y(k+n),for0O<n<N+M-1
k=0
where x(k) = source one vector of size N, y(k) = source two vector of
size M (with M < N).
Include: dsp.h

Prototype: extern fractional* VectorCorrelate (
int numElemsl1,
int numElems2,
fractional* dstV,
fractional* srcVi,
fractional* srcV2

)i

Arguments: numElems1 number of elements in source one vector
numElems2 number of elements in source two vector
dstV pointer to destination vector
srcVil pointer to source one vector
srcvV2 pointer to source two vector
Return Value: Pointer to base address of destination vector.
Remarks: The number of elements in the source two vector must be less than or

equal to the number of elements in the source one vector.
The destination vector must already exist, with exactly
numElemsl+numElems2-1 number of elements.

This function can be self applicable.

This function uses VectorConvolve.

Source File: veor.s.s
Function Profile: System resources usage:
WO..W7 used, not restored,

plus resources from VectorConvolve

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions,
plus DO/REPEAT instructions from
VectorConvolve

Program words (24-bit instructions):
14,
plus program words from VectorConvolve

Cycles (including C-function call and return overheads):
19 + floor(M / 2) * 3, with M = numEIems2,
plus cycles from VectorConvolve.

Note: In the description of VectorConvolve the number of cycles
reported includes 4 cycles of C-function call overhead. Thus, the
number of actual cycles from VectorConvolve to add to
VectorCorrelate is 4 less than whatever number is reported for a
stand-alone VectorConvolve.

DS51456C-page 18 © 2005 Microchip Technology Inc.

DSP Library

VectorDotProduct
Description: VectorDotProduct computes the sum of the products between
corresponding elements of the source one and source two vectors.
Include: dsp.h
Prototype: extern fractional VectorDotProduct (
int numElems,
fractional* srcVi,
fractional* srcVv2
)
Arguments: numklems number of elements in source vectors
srcVil pointer to source one vector
srcv2 pointer to source two vector

Return Value:
Remarks:

Source File:

Function Profile:

Value of the sum of products.

If the absolute value of the sum of products is larger than 1-2715, this
operation results in saturation.
This function can be self applicable.

vdot.s
System resources usage:

WO0..W2 used, not restored
W4..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
17 + 3(numElems)

VectorMax
Description: VectorMax finds the last element in the source vector whose value is
greater than or equal to any previous vector element. Then, it outputs
that maximum value and the index of the maximum element.
Include: dsp.h
Prototype: extern fractional VectorMax (
int numElems,
fractional* srcV,
int* maxIndex
)
Arguments: numklems number of elements in source vector

Return Value:
Remarks:

Source File:

srcv pointer to source vector
maxIndex pointer to holder for index of (last) maximum element

Maximum value in vector.

If srcV[i] = srcV[j] = maxVal,and i < j,then
*maxIndex = j.

vmax.s

© 2005 Microchip Technology Inc.

DS51456C-page 19

16-Bit Language Tools Libraries

VectorMax (Continued)

Function Profile:

System resources usage:
WO0..W5 used, not restored

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
14
if numElems =1
20 + 8(numElems —2)
if srcv[n] <srcvin + 1],0<n<numkElems—1
19 + 7(numElems —2)
if srcv[n] >srcVin + 1]1,0<n<numElems -1

VectorMin
Description: VectorMin finds the last element in the source vector whose value is
less than or equal to any previous vector element. Then, it outputs that
minimum value and the index of the minimum element.
Include: dsp.h
Prototype: extern fractional VectorMin (
int numElems,
fractional* srcV,
int* minIndex
)
Arguments: numklems number of elements in source vector

Return Value:
Remarks:

Source File:
Function Profile:

srcv pointer to source vector
minIndex pointer to holder for index of (last) minimum element

Minimum value in vector.

If srev[i] = srcV[j] = minval,andi < 7, then
*minIndex = j.

vmin.s

System resources usage:
WO0..W5 used, not restored

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
14
if numElems =1
20 + 8(numElems —2)
if srcv[n] = srcvin + 1]1,0<n<numElems —1
19 + 7(numElems — 2)
if srev[n] < srcVin + 1],0<n<numkElems —1

DS51456C-page 20

© 2005 Microchip Technology Inc.

DSP Library

VectorMultiply

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

VectorMultiply multiplies the value of each element in source one
vector with its counterpart in source two vector, and places the result in
the corresponding element of destination vector.
dsp.h
extern fractional* VectorMultiply (

int numElems,

fractional* dstV,

fractional* srcVi,

fractional* srcV2

)i

numElems number of elements in source vector
dstV pointer to destination vector
srcVi pointer to source one vector
srcv2 pointer to source two vector

Pointer to base address of destination vector.

This operation is also known as vector element-by-element
multiplication.

This function can be computed in place.

This function can be self applicable.

vmul.s

System resources usage:

WO0..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
17 + 4(numElems)

VectorNegate
Description: VectorNegate negates (changes the sign of) the values of the
elements in the source vector, and places them in the destination
vector.
Include: dsp.h
Prototype: extern fractional* VectorNeg (
int numElems,
fractional* dstV,
fractional* srcV
)
Arguments: numElems number of elements in source vector
dstV pointer to destination vector
srcvV pointer to source vector

Return Value:
Remarks:

Source File:

Pointer to base address of destination vector.

The negated value of 0x8000 is set to Ox7FFF.
This function can be computed in place.

vneg.s

© 2005 Microchip Technology Inc.

DS51456C-page 21

16-Bit Language Tools Libraries

VectorNegate (Continued)

Function Profile: System resources usage:
WO0..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
16

Cycles (including C-function call and return overheads):
19 + 4(numElems)

VectorPower
Description: VectorPower computes the power of a source vector as the sum of
the squares of its elements.
Include: dsp.h
Prototype: extern fractional VectorPower (
int numElems,
fractional* srcV
)
Arguments: numElems number of elements in source vector
srcv pointer to source vector
Return Value: Value of the vector’s power (sum of squares).
Remarks: If the absolute value of the sum of squares is larger than 1-2715, this
operation results in saturation
This function can be self applicable.
Source File: vVpow. s
Function Profile: System resources usage:
WO0..W2 used, not restored
W4 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
12

Cycles (including C-function call and return overheads):
16 + 2(numElems)

DS51456C-page 22 © 2005 Microchip Technology Inc.

DSP Library

VectorScale

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

VectorScale scales (multiplies) the values of all the elements in the
source vector by a scale value, and places the result in the destination
vector.

dsp.h

extern fractional* VectorScale (
int numElems,
fractional* dstV,
fractional* srcV,
fractional sclVal
)i
numElems number of elements in source vector

dstV pointer to destination vector
srcv pointer to source vector
sclval value by which to scale vector elements

Pointer to base address of destination vector.

sclVal must be a fractional number in 1.15 format.
This function can be computed in place.

vscl.s

System resources usage:

WO0..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
18 + 3(numElems)

VectorSubtract

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

VectorSubtract subtracts the value of each element in the source
two vector from its counterpart in the source one vector, and places the
result in the destination vector.
dsp.h
extern fractional* VectorSubtract (
int numElems,
fractional* dstV,
fractional* srcVi,
fractional* srcV2
)i
numElems number of elements in source vectors

dstV pointer to destination vector
srcVi pointer to source one vector (minuend)
srcv2 pointer to source two vector (subtrahend)

Pointer to base address of destination vector.

If the absolute value of srcvi[n] - srcvzIn] is larger than 1-2715,
this operation results in saturation for the n-th element.

This function can be computed in place.

This function can be self applicable.

© 2005 Microchip Technology Inc.

DS51456C-page 23

16-Bit Language Tools Libraries

VectorSubtract (Continued)

Source File:
Function Profile:

vsub.s

System resources usage:

WO0..W4 used, not restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
17 + 4(numElems)

VectorZeroPad

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

VectorZeroPad copies the source vector into the beginning of the
(already existing) destination vector, and then fills with zeros the
remaining numZeros elements of destination vector:

dstV[n] = srcVinl, 0<n< numElems

dstV[n] =0, numElems<n<numElems+numZeros

dsp.h

extern fractional* VectorZeroPad (
int numElems,
int numZeros,
fractional* dstV,
fractional* srcV
)i
numElems number of elements in source vector
numZeros number of elements to fill with zeros at the tail of
destination vector
dstV pointer to destination vector
srcv pointer to source vector
Pointer to base address of destination vector.
The destination vector must already exist, with exactly
numElems + numZeros number of elements.
This function can be computed in place. See Additional Remarks at the
beginning of the section for comments on this mode of operation.
This function uses VectorCopy.

vzpad.s

DS51456C-page 24

© 2005 Microchip Technology Inc.

DSP Library

VectorZeroPad (Continued)

Function Profile:

System resources usage:
WO0..W6 used, not restored
plus resources from VectorCopy

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions
plus DO/REPEAT from VectorCopy

Program words (24-bit instructions):
13,
plus program words from VectorCopy

Cycles (including C-function call and return overheads):
18 + numZeros
plus cycles from VectorCopy.

Note: In the description of VectorCopy, the number of cycles reported
includes 3 cycles of C-function call overhead. Thus, the number of
actual cycles from VectorCopy to add to VectorCorrelate is 3 less
than whatever number is reported for a stand-alone VectorCopy.

© 2005 Microchip Technology Inc.

DS51456C-page 25

16-Bit Language Tools Libraries

2.4 WINDOW FUNCTIONS

A window is a vector with a specific value distribution within its domain (0 <n <
numElems). The particular value distribution depends on the characteristics of the
window being generated.

Given a vector, its value distribution may be modified by applying a window to it. In
these cases, the window must have the same number of elements as the vector to
modify.

Before a vector can be windowed, the window must be created. Window initialization
operations are provided which generate the values of the window elements. For higher
numerical precision, these values are computed in floating-point arithmetic, and the
resulting quantities stored as 1.15 fractionals.

To avoid excessive overhead when applying a window operation, a particular window
could be generated once and used many times during the execution of the program.
Thus, itis advisable to store the window returned by any of the initialization operations
in a permanent (static) vector.

24.1 User Considerations

a) All the window initialization functions have been designed to generate window
vectors allocated in default RAM memory space (X-Data or Y-Data).

b) The windowing function is designed to operate on vectors allocated in default
RAM memory space (X-Data or Y-Data).

c) Itisrecommended that the STATUS Register (SR) be examined after completion
of each function call.

d) Since the window initialization functions are implemented in C, consult the
electronic documentation included in the release for up-to-date cycle count

information.
2.4.2 Individual Functions
In what follows, the individual functions implementing window operations are
described.
Bartlettinit
Description: BartlettInit initializes a Barlett window of length numEIems.
Include: dsp.h
Prototype: extern fractional* BartlettInit (
int numElems,
fractional* window
)
Arguments: numklems number of elements in window
window pointer to window to be initialized
Return Value: Pointer to base address of initialized window.
Remarks: The window vector must already exist, with exactly numEIems number
of elements.
Source File: initbart.c

DS51456C-page 26 © 2005 Microchip Technology Inc.

DSP Library

Bartlettinit (Continued)

Function Profile:

System resources usage:
WO0..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “Readme for dsPIC Language Tools Libraries.txt” for
this information.

Cycles (including C-function call and return overheads):
See the file “Readme for dsPIC Language Tools Libraries.txt” for
this information.

Blackmaninit

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

BlackmanInit initializes a Blackman (3 terms) window of length
numElems.
dsp.h

extern fractional* BlackmanInit (
int numElems,
fractional* window
)i
numElems number of elements in window
window pointer to window to be initialized

Pointer to base address of initialized window.

The window vector must already exist, with exactly numEIems number
of elements.

initblck.c

System resources usage:
WO0..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

© 2005 Microchip Technology Inc.

DS51456C-page 27

16-Bit Language Tools Libraries

Hamminglnit

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

HammingInit initializes a Hamming window of length numEIems.
dsp.h

extern fractional* HammingInit (
int numElems,
fractional* window
)i
numElems
window

number of elements in window
pointer to window to be initialized

Pointer to base address of initialized window.

The window vector must already exist, with exactly numEIems number
of elements.

inithamm.c

System resources usage:

WO..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Hanninglnit
Description: HanningInit initializes a Hanning window of length numEIems.
Include: dsp.h
Prototype: extern fractional* HanningInit (
int numElems,
fractional* window
)
Arguments: numElems number of elements in window
window pointer to window to be initialized

Return Value:
Remarks:

Source File:
Function Profile:

Pointer to base address of initialized window.

The window vector must already exist, with exactly numEIems number
of elements.

inithann.c

System resources usage:

WO0..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

DS51456C-page 28

© 2005 Microchip Technology Inc.

DSP Library

Kaiserlnit

Description:

Include:
Prototype:

Arguments:
Return Value:
Remarks:

Source File:
Function Profile:

KaiserInit initializes a Kaiser window with shape determined by
argument betaval and of length numElems.
dsp.h
extern fractional* KaiserInit (

int numElems,

fractional* window,

float betaVal
)i
numElems number of elements in window
window pointer to window to be initialized
betaVal window shaping parameter
Pointer to base address of initialized window.

The window vector must already exist, with exactly numEIems number
of elements.

initkais.c

System resources usage:

WO0..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

VectorWindow

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

VectorWindow applies a window to a given source vector, and stores
the resulting windowed vector in a destination vector.
dsp.h
extern fractional* VectorWindow (
int numElems,
fractional* dstV,
fractional* srcV,
fractional* window
)i
numElems number of elements in source vector

dstV pointer to destination vector
srcv pointer to source vector
window pointer to initialized window

Pointer to base address of destination vector.

The window vector must have already been initialized, with exactly
numEIems number of elements.

This function can be computed in place.

This function can be self applicable.

This function uses VectorMultiply.

dowindow. s

© 2005 Microchip Technology Inc.

DS51456C-page 29

16-Bit Language Tools Libraries

VectorWindow (Continued)

Function Profile: System resources usage:
resources from VectorMultiply

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions,
plus DO/REPEAT from VectorMultiply

Program words (24-bit instructions):
3,
plus program words from VectorMultiply

Cycles (including C-function call and return overheads):
9,
plus cycles from VectorMultiply.

Note: In the description of VvectorMultiply the number of cycles
reported includes 3 cycles of C-function call overhead. Thus, the
number of actual cycles from VectorMultiply to add to
VectorWindow is 3 less than whatever number is reported for a
stand-alone VectorMultiply.

DS51456C-page 30 © 2005 Microchip Technology Inc.

DSP Library

2.5 MATRIX FUNCTIONS

This section presents the concept of a fractional matrix, as considered by the DSP
Library, and describes the individual functions which perform matrix operations.

25.1 Fractional Matrix Operations

A fractional matrix is a collection of numerical values, the matrix elements, allocated
contiguously in memory, with the first element at the lowest memory address. One word
of memory (two bytes) is used to store the value of each element, and this quantity
must be interpreted as a fractional number represented in 1.15 format.

A pointer addressing the first element of the matrix is used as a handle which provides
access to each of the matrix values. The address of the first element is referred to as
the base address of the matrix. Because each element of the matrix is 16 bits, the base
address must be aligned to an even address.

The two dimensional arrangement of a matrix is emulated in the memory storage area
by placing its elements organized in row major order. Thus, the first value in memory is
the first element of the first row. It is followed by the rest of the elements of the first row.
Then, the elements of the second row are stored, and so on, until all the rows are in
memory. This way, the element at row r and column ¢ of a matrix with R rows and C
columns is located from the matrix base address BA at:

BA+2(Cr—1)+c—-1),for1<r<R,1<c<C.

Note that the factor of 2 is used because of the byte addressing capabilities of the 16-bit
device.

Unary and binary fractional matrix operations are implemented in this library. The
operand matrix in a unary operation is called the source matrix. In a binary operation
the first operand is referred to as the source one matrix, and the second matrix as the
source two matrix. Each operation applies some computation to one or several
elements of the source matrix(ces). The operations result in a matrix, referred to as the
destination matrix.

Some operations resulting in a matrix allow computation in place. This means the
results of the operation is placed back into the source matrix (or the source one matrix
for a binary operation). In this case, the destination matrix is said to (physically) replace
the source (one) matrix. If an operation can be computed in place, it is indicated as
such in the comments provided with the function description.

For some binary operations, the two operands can be the same (physical) source
matrix, which means the operation is applied to the source matrix and itself. If this type
of computation is possible for a given operation, it is indicated as such in the comments
provided with the function description.

Some operations can be self applicable and computed in place.

© 2005 Microchip Technology Inc. DS51456C-page 31

16-Bit Language Tools Libraries

All the fractional matrix operations in this library take as arguments the number of rows
and the number of columns of the operand matrix(ces). Based on the values of these
argument the following assumptions are made:

a) The sum of sizes of all the matrices involved in a particular operation falls within
the range of available data memory for the target device.

b) Inthe case of binary operations the number of rows and columns of the operand
matrices must obey the rules of vector algebra; i.e., for matrix addition and sub-
traction the two matrices must have the same number of rows and columns,
while for matrix multiplication, the number of columns of the first operand must
be the same as the number of rows of the second operand. The source matrix to
the inversion operation must be square (the same number of rows as of
columns), and non-singular (its determinant different than zero).

¢) The destination matrix must be large enough to accept the results of an operation.

252 User Considerations

a) No boundary checking is performed by these functions. Out of range dimensions
(including zero row and/or zero column matrices) as well as nonconforming use
of source matrix sizes in binary operations may produce unexpected results.

b) The matrix addition and subtraction operations could lead to saturation if the sum
of corresponding elements in the source(s) matrix(ces) is greater than 1-215 or
smaller than -1.

¢) The matrix multiplication operation could lead to saturation if the sum of products
of corresponding row and column sets results in a value greater than 1-271° or
smaller than -1.

d) Itis recommended that the STATUS Register (SR) is examined after completion
of each function call. In particular, users can inspect the SA, SB and SAB flags
after the function returns to determine if saturation occurred.

e) Allthe functions have been designed to operate on fractional matrices allocated
in default RAM memory space (X-Data or Y-Data).

f) Operations which return a destination matrix can be nested, so that for instance
if:
a=0p1l (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a=0p1 (Op2 (d), Op3 (e, f))

2.5.3 Additional Remarks

The description of the functions limits its scope to what could be considered the regular
usage of these operations. However, since no boundary checking is performed during
computation of these functions, you have the freedom to interpret the operation and its
results as it fits some particular needs.

For instance, while computing the MatrixMultiply function, the dimensions of the
intervening matrices does not necessarily need to be {numrows1, numCos1Rows2} for
source one matrix, {numColsiRows2, numCols2} for source two matrix, and {numrows1,
numCols2} for destination matrix. In fact, all that is needed is that their sizes are large
enough so that during computation the pointers do no exceed over their memory range.

As another example, when a source matrix of dimension {numrows, numCols} is
transposed, the destination matrix has dimensions {numco1ls, numrows}. Thus, properly
speaking the operation can be computed in place only if source matrix is square.
Nevertheless, the operation can be successfully applied in place to non square
matrices; all that needs to be kept in mind is the implicit change of dimensions.

DS51456C-page 32

© 2005 Microchip Technology Inc.

DSP Library

Other possibilities can be exploited from the fact that no boundary checking is

performed.

254 Individual Functions

In what follows, the individual functions implementing matrix operations are described.

MatrixAdd

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Function Profile:

MatrixAdd adds the value of each element in the source one matrix
with its counterpart in the source two matrix, and places the result in the
destination matrix.

dsp.h

extern fractional* MatrixAdd (
int numRows,
int numCols,
fractional* dstM,
fractional* srcMl,
fractional* srcM2
)i
numRows number of rows in source matrices
numCols number of columns in source matrices

dstM pointer to destination matrix
srcM1 pointer to source one matrix
srcM2 pointer to source two matrix

Pointer to base address of destination matrix.

If the absolute value of srcM1 [r] [c] +sreM2[r] [c] is larger than
1-2'15, this operation results in saturation for the (r, c¢) -th element.
This function can be computed in place.

This function can be self applicable.

madd.s

System resources usage:
WO0..W4 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
20 + 3(numRows * numCols)

© 2005 Microchip Technology Inc.

DS51456C-page 33

16-Bit Language Tools Libraries

MatrixMultiply

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

MatrixMultiply performs the matrix multiplication between the
source one and source two matrices, and places the result in the
destination matrix. Symbolically:

dstMI[i][j] = Z(srCM1[i][k])(srCM2i[k][j])
k

where:

0 £i< numRows1

0<j<numCols2

0 £k < numColslRows2

dsp.h

extern fractional* MatrixMultiply (
int numRowsl,
int numColslRows2,
int numCols2,
fractional* dstM,
fractional* srcMl,
fractional* srcM2
)i
numRows1 number of rows in source one matrix
numColslRows2 number of columns in source one matrix; which
must be the same as number of rows in source

two matrix
numCols2 number of columns in source two matrix
dstM pointer to destination matrix
srcMi pointer to source one matrix
srcM2 pointer to source two matrix

Pointer to base address of destination matrix.
If the absolute value of

Z(srcM 1[Ik (sreM2i[k][j1)

k
is larger than 1-271°, this operation results in saturation for the
(i,7)-th element.
If the source one matrix is squared, then this function can be computed
in place and can be self applicable. See Additional Remarks at the
beginning of the section for comments on this mode of operation.

mmul.s

System resources usage:

WO0..W7 used, not restored
W8..W13 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
35

Cycles (including C-function call and return overheads):
36 + numRows1 * (8 + numCols2* (7 + 4 * numColslRows2))

DS51456C-page 34

© 2005 Microchip Technology Inc.

DSP Library

MatrixScale

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:
Source File:
Function Profile:

MatrixScale scales (multiplies) the values of all elements in the
source matrix by a scale value, and places the result in the destination
matrix.
dsp.h
extern fractional* MatrixScale (
int numRows,
int numCols,
fractional* dstM,
fractional* srcM,
fractional sclVal
)i
numRows number of rows in source matrix
numCols number of columns in source matrix
dstM pointer to destination matrix
srcM pointer to source matrix
sclVal value by which to scale matrix elements

Pointer to base address of destination matrix.
This function can be computed in place.
mscl.s

System resources usage:

WO0..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
20 + 3(numRows * numCols)

MatrixSubtract

Description:

Include:
Prototype:

Arguments:

Return Value:

MatrixSubtract subtracts the value of each element in the source
two matrix from its counterpart in the source one matrix, and places the
result in the destination matrix.

dsp.h

extern fractional* MatrixSubtract (
int numRows,
int numCols,
fractional* dstM,
fractional* srcMl,
fractional* srcM2

)i

numRows number of rows in source matrix(ces)
numCols number of columns in source matrix(ces)
dstM pointer to destination matrix

srcMi pointer to source one matrix (minuend)
srcM2 pointer to source two matrix (subtrahend)

Pointer to base address of destination matrix.

© 2005 Microchip Technology Inc.

DS51456C-page 35

16-Bit Language Tools Libraries

MatrixSubtract (Continued)

Remarks:

Source File:
Function Profile:

If the absolute value of srcM1 [r] [c] -sreM2[r] [c] is larger than
1-2°15_ this operation results in saturation for the (r, c) -th element.
This function can be computed in place.

This function can be self applicable.

msub.s

System resources usage:

WO0..W4 used, not restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
15

Cycles (including C-function call and return overheads):
20 + 4(numRows * numCols)

MatrixTranspose

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

MatrixTranspose transposes the rows by the columns in the source
matrix, and places the result in destination matrix. In effect:

dstM[i] [j] = srcM[]j] [1],

0 <i< numRows, 0 <j < numCols.

dsp.h

extern fractional* MatrixTranspose (
int numRows,
int numCols,
fractional* dstM,
fractional* srcM

)i

numRows humber of rows in source matrix
numCols number of columns in source matrix
dstM pointer to destination matrix

srcM pointer to source matrix

Pointer to base address of destination matrix.

If the source matrix is square, this function can be computed in place.
See Additional Remarks at the beginning of the section for comments
on this mode of operation.

mtrp.s

System resources usage:
WO0..W5 used, not restored

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
16 + numCols * (6 + (numRows-1) * 3)

DS51456C-page 36

© 2005 Microchip Technology Inc.

DSP Library

255 Matrix Inversion

The result of inverting a non-singular, square, fractional matrix is another square matrix
(of the same dimension) whose element values are not necessarily constrained to the
discrete fractional set {-1, ..., 1-2"15}. Thus, no matrix inversion operation is provided for

fractional matrices.

However, since matrix inversion is a very useful operation, an implementation based
on floating-point number representation and arithmetic is provided within the DSP
Library. Its description follows.

Matrixinvert

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:
Function Profile:

MatrixInvert computes the inverse of the source matrix, and places
the result in the destination matrix.

dsp.h

extern float* MatrixInvert (
int numRowsCols,
float* dstM,
float* srcM,
float* pivotFlag,
int* swappedRows,
int* swappedCols
)i

numRowCols number of rows and columns in (square) source
matrix

dstM pointer to destination matrix

srcM pointer to source matrix

Required for internal use:

pivotFlag pointer to a length numRowsCols vector

swappedRows pointer to a length numRowsCols vector
swappedCols pointer to a length numRowsCols vector

Pointer to base address of destination matrix, or NULL if source matrix
is singular.

Even though the vectors pivotFlag, swappedRows, and
swappedCols, are for internal use only, they must be allocated prior to
calling this function.

If source matrix is singular (determinant equal to zero) the matrix does
not have an inverse. In this case the function returns NULL.

This function can be computed in place.

minv.s (assembled from C code)

System resources usage:
WO0..W7 used, not restored
W8, W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

© 2005 Microchip Technology Inc.

DS51456C-page 37

16-Bit Language Tools Libraries

2.6 FILTERING FUNCTIONS

This section presents the concept of a fractional filter, as considered by the DSP
Library, and describes the individual functions which perform filter operations. The user
may refer to example projects that utilize the DSP library filtering functions, in order to
ascertain proper usage of functions. MPLAB IDE-based example projects/workspaces
have been provided in the installation folder of the MPLAB C30 toolsuite.

2.6.1 Fractional Filter Operations

Filtering the data sequence represented by fractional vector x[n] (0 < n < N) is
equivalent to solving the difference equation:

P-1 M-1
ylnl+ %" (=alph(yln—pl) = > (b[m])(x[n—m])
p=1 m=0

for every nth sample, which results into the filtered data sequence y[n]. In this sense,
the fractional filter is characterized by the fractional vectors a[p] (0 < p < P) and b[m] (0
<m < M), referred to as the set of filter coefficients, which are designed to induce some
pre-specified changes in the signal represented by the input data sequence.

When filtering it is important to know and manage the past history of the input and out-
put data sequences (x[n], -M + 1 <n < 0, and y[n], -P + 1 < n < 0), which represent the
initial conditions of the filtering operation. Also, when repeatedly applying the filter to
contiguous sections of the input data sequence it is necessary to remember the final
state of the last filtering operation (X[n, N—-M+1<n<N-1,andy[n, N-P+1<n
<N —1). This final state is then taken into consideration for the calculations of the next
filtering stage. Accounting for the past history and current state is required in order to
perform a correct filtering operation.

The management of the past history and current state of a filtering operation is com-
monly implemented via additional sequences (also fractional vectors), referred to as
the filter delay line. Prior to applying the filter operation, the delay describes the past
history of the filter. After performing the filtering operation, the delay contains a set of
the most recently filtered data samples, and of the most recent output samples. (Note
that to ensure correct operation of a particular filter implementation, it is advisable to
initialize the delay values to zero by calling the corresponding initialization function.)

In the filter implementations provided with the DSP Library the input data sequence is
referred to as the sequence of source samples, while the resulting filtered sequence is
called the destination samples. The filter coefficients (a,b) and delay are usually
thought of as making up a filter structure. In all filter implementations, the input and
output data samples may be allocated in default RAM memory space (X-Data or
Y-Data). Filter coefficients may reside either in X-Data memory or program memory,
and filter delay values must be accessed only from Y-Data.

2.6.2 FIR and IIR Filter Implementations

The properties of afilter depend on the value distribution of its coefficients. In particular,
two types of filters are of special interest: Finite Impulse Response (FIR) filters, for
which a[m] = 0 when 1 < m < M, and Infinite Impulse Response (lIR) filters, those such
that a[0] # 0, and a[m] # 0 for some m in {1, ..., M}. Other classifications within the FIR
and IIR filter families account for the effects that the operation induces on input data
sequences.

Furthermore, even though filtering consists on solving the difference equation stated
above, several implementations are available which are more efficient than direct com-
putation of the difference equation. Also, some other implementations are designed to
execute the filtering operation under the constrains imposed by fractional arithmetic.

DS51456C-page 38

© 2005 Microchip Technology Inc.

DSP Library

All these considerations lead to a proliferation of filtering operations, of which a subset
is provided by the DSP Library.

2.6.3 Single Sample Filtering

The filtering functions provided in the DSP Library are designed for block processing.
Each filter function accepts an argument named numSamps which indicates the num-
ber of words of input data (block size) to operate on. If single sample filtering is desired,
you may set numSamps to 1. This will have the effect of filtering one input sample, and
the function will compute a single output sample from the filter.

2.6.4 User Considerations

All the fractional filtering operations in this library rely on the values of either input
parameters or data structure elements to specify the number of samples to process,
and the sizes of the coefficients and delay vectors. Based on these values the following
assumptions are made:

a) The sum of sizes of all the vectors (sample sequences) involved in a particular
operation falls within the range of available data memory for the target device.

b) The destination vector must be large enough to accept the results of an
operation.

¢) No boundary checking is performed by these functions. Out of range sizes
(including zero length vectors) as well as nonconforming use of source vectors
and coefficient sets may produce unexpected results.

d) Itis recommended that the STATUS Register (SR) is examined after completion
of each function call. In particular, users can inspect the SA, SB and SAB flags
after the function returns to determine if saturation occurred.

e) Operations which return a destination vector can be nested, so that for instance
if:
a=0p1l (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a = 0p1l (Op2 (d), Op3 (e, f))

© 2005 Microchip Technology Inc. DS51456C-page 39

16-Bit Language Tools Libraries

2.6.5 Individual Functions

In what follows, the individual functions implementing filtering operations are
described. For further discussions on digital filters, please consult Alan Oppenheim and
Ronald Schafer’s “Discrete-Time Signal Processing”, Prentice Hall, 1989. For imple-
mentation details of Least Mean Square FIR filters, please refer to T. Hsia’s “Conver-
gence Analysis of LMS and NLMS Adaptive Algorithms”, Proc. ICASSP, pp. 667-670,
1983, as well as Sangil Park and Garth Hillman’s “On Acoustic-Echo Cancellation
Implementation with Multiple Cascadable Adaptive FIR Filter Chips”, Proc. ICASSP,
1989.

FIRStruct

Structure: FIRStruct describes the filter structure for any of the FIR filters.
Include: dsp.h

Declaration: typedef struct {
int numCoeffs;
fractional* coeffsBase;
fractional* coeffsEnd;
int coeffsPage;
fractional* delayBase;
fractional* delayEnd;
fractional* delay;

} FIRStruct;

Parameters: numCoeffs number of coefficients in filter (also M)
coeffsBase base address for filter coefficients (also h)
coeffsEnd end address for filter coefficients
coeffsPage coefficients buffer page number
delayBase base address for delay buffer
delayEnd end address for delay buffer
delay current value of delay pointer (also d)

Remarks: Number of coefficients in filter is M.
Coefficients, h[m], defined in 0 < m < M, either within X-Data or program
memory.

Delay buffer d[m], defined in 0 < m < M, only in Y-Data.

If coefficients are stored in X-Data space, coeffsBase points to the
actual address where coefficients are allocated. If coefficients are
stored in program memory, coeffsBase is the offset from the program
page boundary containing the coefficients to the address in the page
where coefficients are allocated. This latter value can be calculated
using the inline assembly operator psvoffset ().

coeffsEnd is the address in X-Data space (or offset if in program
memory) of the last byte of the filter coefficients buffer.

If coefficients are stored in X-Data space, coeffsPage must be set to
OxFFOO (defined value COEFFS_IN_DATA). If coefficients are stored in
program memory, it is the program page number containing the coeffi-
cients. This latter value can be calculated using the inline assembly
operator psvpage ().

delayBase points to the actual address where the delay buffer is allo-
cated.

delayEnd is the address of the last byte of the filter delay buffer.

DS51456C-page 40 © 2005 Microchip Technology Inc.

DSP Library

FIRStruct (Continued)

When the coefficients and delay buffers are implemented as circular
increasing modulo buffers, both coeffsBase and

delayBase must be aligned to a ‘zero’ power of two address (coeff-
sEnd and delayEnd are odd addresses). Whether these buffers are
implemented as circular increasing modulo buffers or not is indicated in
the remarks section of each FIR filter function description.

When the coefficients and delay buffers are not implemented as circu-
lar (increasing) modulo buffers, coeffsBase and

delayBase do not need to be aligned to a ‘zero’ power of two address,
and the values of coeffsEnd and delayEnd are ignored within the
particular FIR Filter function implementation.

FIR

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:

FIR applies an FIR filter to the sequence of source samples, places the
results in the sequence of destination samples, and updates the delay
values.

dsp.h

extern fractional* FIR (

int numSamps,

fractional* dstSamps,

fractional* srcSamps,

FIRStruct* filter
)
numSamps number of input samples to filter (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure

Pointer to base address of destination samples.

Number of coefficients in filter is M.

Coefficients, h[m], defined in 0 < m < M, implemented as a circular
increasing modulo buffer.

Delay, d[m], defined in 0 < m < M, implemented as a circular increasing
modulo buffer.

Source samples, x[n], defined in 0 <n < N.

Destination samples, y[n], defined in 0 < n < N.

(See also FIRStruct, FIRStructInit and FIRDelayInit.)

fir.s

© 2005 Microchip Technology Inc.

DS51456C-page 41

16-Bit Language Tools Libraries

FIR (Continued)

Function Profile: System resources usage:

WO0..W6 used, not restored

W8, W10 saved, used, restored

ACCA used, not restored

CORCON saved, used, restored
MODCON saved, used, restored
XMODSTRT saved, used, restored
XMODEND saved, used, restored
YMODSTRT saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
1 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
55

Cycles (including C-function call and return overheads):
53 + N(4+M), or
56 + N(8+M) if coefficients in P memory.
Example Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

FIRDecimate

Description: FIRDecimate decimates the sequence of source samples at a rate of
R to 1; or equivalently, it downsamples the signal by a factor of R.
Effectively,
y[n] = x[Rn].
To diminish the effect of aliasing, the source samples are first filtered
and then downsampled. The decimated results are stored in the
sequence of destination samples, and the delay values updated.

Include: dsp.h

Prototype: extern fractional* FIRDecimate (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter,

int rate

)
Arguments: numSamps number of output samples (also N, N = Rp, p integer)

dstSamp pointer to destination samples (also y)

srcSamps pointer to source samples (also x)

filter pointer to FIRStruct filter structure

rate rate of decimation (downsampling factor, also R)
Return Value: Pointer to base address of destination samples.

DS51456C-page 42 © 2005 Microchip Technology Inc.

DSP Library

FIRDecimate (Continued)

Remarks:

Source File:
Function Profile:

Number of coefficients in filter is M, with M an integer multiple of R.
Coefficients, h[m], defined in 0 < m < M, not implemented as a circular
modulo bulffer.

Delay, d[m], defined in 0 < m < M, not implemented as a circular
modulo buffer.

Source samples, x[n], defined in 0 < n < NR.

Destination samples, y[n], defined in 0 < n < N.

(See also FIRStruct, FIRStructInit, and FIRDelayInit.)

firdecim.s

System resources usage:

WO0..W7 used, not restored

W8..W12 saved, used, restored

ACCA used, not restored

CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
1 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
48

Cycles (including C-function call and return overheads):
45 + N(10 + 2M), or
48 + N(13 + 2M) if coefficients in P memory.

FIRDelaylnit

Description:
Include:

Prototype:

Arguments:
Remarks:

Source File:
Function Profile:

FIRDelayInit initializes to zero the delay values in an FIRStruct
filter structure.
dsp.h
extern void FIRDelayInit (
FIRStruct* filter
) ;
filter pointer to FIRStruct filter structure.
See description of FIRStruct structure above.

Note: FIR interpolator's delay is initialized by function
FIRInterpDelayInit.

firdelay.s

System resources usage:
WO0..W2 used, not restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
7

Cycles (including C-function call and return overheads):
11+M

© 2005 Microchip Technology Inc.

DS51456C-page 43

16-Bit Language Tools Libraries

FIRInterpolate

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:
Function Profile:

FIRInterpolate interpolates the sequence of source samples at a
rate of 1 to R; or equivalently, it upsamples the signal by a factor of R.
Effectively,

y[n] = x[n/R].

To diminish the effect of aliasing, the source samples are first
upsampled and then filtered. The interpolated results are stored in the
sequence of destination samples, and the delay values updated.

dsp.h

extern fractional* FIRInterpolate (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter,
int rate
)
numSamps number of input samples (also N, N = Rp, p integer)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure
rate rate of interpolation (upsampling factor, also R)

Pointer to base address of destination samples.

Number of coefficients in filter is M, with M an integer multiple of R.
Coefficients, h[m], defined in 0 < m < M, not implemented as a circular
modulo buffer.

Delay, d[m], defined in 0 < m < M/R, not implemented as a circular
modulo buffer.

Source samples, x[n], defined in 0 < n < N.

Destination samples, y[n], defined in 0 < n < NR.

(See also FIRStruct, FIRStructInit, and
FIRInterpDelayInit.)

firinter.s

System resources usage:

WO..W7 used, not restored

W8..W13 saved, used, restored

ACCA used, not restored

CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
63

Cycles (including C-function call and return overheads):
45+ 6(M/R)+N(14+M/R + 3M + 5R), or
48 + 6(M/R) + N(14 + M/ R + 4M + 5R) if coefficients in P memory.

DS51456C-page 44

© 2005 Microchip Technology Inc.

DSP Library

FIRInterpDelaylInit

Description:

Include:
Prototype:

Arguments:

Remarks:

Source File:
Function Profile:

FIRInterpDelayInit initializes to zero the delay values in an
FIRStruct filter structure, optimized for use with an FIR interpolating
filter.
dsp.h
extern void FIRDelayInit (

FIRStruct* filter,

int rate
)i
filter pointer to FIRStruct filter structure
rate rate of interpolation (upsampling factor, also R)
Delay, d[m], defined in 0 < m < M/R, with M the number of filter
coefficients in the interpolator.
See description of FIRStruct structure above.
firintdl.s

System resources usage:
WO0..W4 used, not restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
10 + 7M/R

FIRLattice

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

FIRLattice uses a lattice structure implementation to apply an FIR
filter to the sequence of source samples. It then places the results in
the sequence of destination samples, and updates the delay values.

dsp.h

extern fractional* FIRLattice (

int numSamps,

fractional* dstSamps,

fractional* srcSamps,

FIRStruct* filter
)
numSamps number of input samples to filter (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure

Pointer to base address of destination samples.

Number of coefficients in filter is M.

Lattice coefficients, k[m], defined in 0 < m < M, not implemented as a
circular modulo buffer.

Delay, d[m], defined in 0 < m < M, not implemented as a circular
modulo buffer.

Source samples, x[n], defined in 0 <n < N.

Destination samples, y[n], defined in 0 < n < N.

(See also FIRStruct, FIRStructInit and FIRDelayInit.)

firlatt.s

© 2005 Microchip Technology Inc.

DS51456C-page 45

16-Bit Language Tools Libraries

FIRLattice (Continued)

Function Profile: System resources usage:
WO0..W7 used, not restored
W8..W12 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
50

Cycles (including C-function call and return overheads):
41 + N(4 + 7TM)
44 + N(4 + 8M) if coefficients in P memory

FIRLMS

Description: FIRLMS applies an adaptive FIR filter to the sequence of source
samples, stores the results in the sequence of destination samples,
and updates the delay values.

The filter coefficients are also updated, at a sample-per-sample basis,
using a Least Mean Square algorithm applied according to the values
of the reference samples.

Include: dsp.h

Prototype: extern fractional* FIRLMS (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter,
fractional* refSamps,
fractional muVal
)
Arguments: numSamps number of input samples (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure
refSamps pointer to reference samples (also r)
muVal adapting factor (also mu)

Return Value: Pointer to base address of destination samples.

DS51456C-page 46 © 2005 Microchip Technology Inc.

DSP Library

FIRLMS (Continued)

Remarks: Number of coefficients in filter is M.
Coefficients, h[m], defined in 0 < m < M, implemented as a circular
increasing modulo buffer.
delay, d[m], defined in 0 < m < M-1, implemented as a circular
increasing modulo buffer.
Source samples, x[n], defined in 0 < n < N.
Reference samples, r[n], defined in 0 < n < N.
Destination samples, y[n], defined in 0 < n < N.
Adaptation:
h_m[n] = h_m[n — 1] + mu * (r[n] — y[n]) * X[n — m],
forO<n<N,0<m<M.
The operation could result in saturation if the absolute value of
(r[n] - y[n]) is greater than or equal to one.
Filter coefficients must not be allocated in program memory, because in
that case their values could not be adapted. If filter coefficients are
detected as allocated in program memory the function returns NULL.
(See also FIRStruct, FIRStructInit and FIRDelayInit.)

Source File: firlms.s

Function Profile: System resources usage:
WO0..W7 used, not restored
W8..W12 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
MODCON saved, used, restored
XMODSTRT saved, used, restored
XMODEND saved, used, restored
YMODSTRT saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
76

Cycles (including C-function call and return overheads):
61 + N(13 + 5M)

FIRLMSNorm

Description: FIRLMSNorm applies an adaptive FIR filter to the sequence of source
samples, stores the results in the sequence of destination samples,
and updates the delay values.
The filter coefficients are also updated, at a sample-per-sample basis,
using a Normalized Least Mean Square algorithm applied according to
the values of the reference samples.

Include: dsp.h

© 2005 Microchip Technology Inc. DS51456C-page 47

16-Bit Language Tools Libraries

FIRLMSNorm (Continued)

Prototype:

Arguments:

Return Value:
Remarks:

Source File:

extern fractional* FIRLMSNorm (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter,
fractional* refSamps,
fractional muVal,
fractional* energyEstimate

)i

numSamps number of input samples (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure
refSamps pointer to reference samples (also r)
muVal adapting factor (also mu)

energyEstimate estimated energy value for the last M input
signal samples, with M the number of filter
coefficients

Pointer to base address of destination samples.

Number of coefficients in filter is M.
Coefficients, h[m], defined in 0 < m < M, implemented as a circular
increasing modulo buffer.
delay, d[m], defined in 0 < m < M, implemented as a circular increasing
modulo buffer.
Source samples, x[n], defined in 0 < n < N.
Reference samples, r[n], defined in 0 < n < N.
Destination samples, y[n], defined in 0 < n < N.
Adaptation:
h_m[n] = h_m[n — 1] + nu[n] * (r[n] - y[n]) * X[n — m],
for0<Sn<N,0<m<M,
where nu[n] = mu / (mu + E[n])
with E[n]=E[n — 1] + (x[n])? = (x[n — M + 1])? an estimate of input
signal energy.
On start up, energyEst imate should be initialized to the value of
E[-1] (zero the first time the filter is invoked). Upon return,
energyEstimate is updated to the value E[N — 1] (which may be
used as the start up value for a subsequent function call if filtering an
extension of the input signal).
The operation could result in saturation if the absolute value of (r[n] —
y[n]) is greater than or equal to one.
Note: Another expression for the energy estimate is:
E[n] = (X[])? + (X[n — 1)2 + ... + (X[n = M + 2])2.
Thus, to avoid saturation while computing the estimate, the input
sample values should be bound so that
-M+2

Z (x[n+m])2<l,forOSn<N.

m=0
Filter coefficients must not be allocated in program memory, because in
that case their values could not be adapted. If filter coefficients are
detected as allocated in program memory the function returns NULL.
(See also FIRStruct, FIRStructInit and FIRDelayInit.)

firlmsn.s

DS51456C-page 48

© 2005 Microchip Technology Inc.

DSP Library

FIRLMSNorm (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored
W8..W13 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
MODCON saved, used, restored
XMODSTRT saved, used, restored
XMODEND saved, used, restored
YMODSTRT saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
91

Cycles (including C-function call and return overheads):
66 + N(49 + 5M)

FIRStructlnit

Description:

Include:
Prototype:

Arguments:

Remarks:

Source File:
Function Profile:

FIRStructInit initializes the values of the parameters in an
FIRStruct FIR Filter structure.

dsp.h

extern void FIRStructInit (

FIRStruct* filter,

int numCoeffs,

fractional* coeffsBase,

int coeffsPage,

fractional* delayBase
)
filter pointer to FIRStruct filter structure
numCoeffs number of coefficients in filter (also M)
coeffsBase base address for filter coefficients (also h)
coeffsPage coefficient buffer page number
delayBase base address for delay buffer

See description of FIRStruct structure above.
Upon completion, FIRStructInit initializes the coeffsEnd and
delayEnd pointers accordingly. Also, delay is set equal to
delayBase.
firinit.s
System resources usage:

WO0..W5 used, not restored

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions

Program words (24-bit instructions):
10

Cycles (including C-function call and return overheads):
19

© 2005 Microchip Technology Inc.

DS51456C-page 49

16-Bit Language Tools Libraries

[IRCanonic

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

IIRCanonic applies an IIR filter, using a cascade of canonic (direct
form II) biquadratic sections, to the sequence of source samples. It
places the results in the sequence of destination samples, and updates
the delay values.

dsp.h

typedef struct {
int numSectionsLessl;
fractional* coeffsBase;
int coeffsPage;
fractional* delayBase;
int initialGain;
int finalShift;

} IIRCanonicStruct;

extern fractional* IIRCanonic (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
IIRCanonicStruct* filter
) ;
Filter structure:
numSectionsLessl 1 less than number of cascaded second
order (biguadratic) sections (also S-1)

coeffsBase pointer to filter coefficients (also {a, b}),
either within X-Data or program memory
coeffsPage coefficients buffer page number, or OxFF00

(defined value COEFFS IN DATA) if
coefficients in data space

delayBase pointer to filter delay (also d), only in Y-Data
initialGain initial gain value
finalShift output scaling (shift left)

Filter Description:

numSamps number of input samples to filter (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)

filter pointer to IIRCanonicStruct filter structure

Pointer to base address of destination samples.

There are 5 coefficients per second order (biquadratic) sections
arranged in the ordered set {a2[s], al[s], b2[s], b1[s], bO[s]}, 0 <s < S.
Coefficient values should be generated with dsPICFD filter design
package from Momentum Data Systems, Inc., or similar tool.

The delay is made up of two words of filter state per section {d1[s],
d2[s]},0<s<S.

Source samples, x[n], defined in 0 < n < N.

Destination samples, y[n], defined in 0 < n < N.

Initial gain value is applied to each input sample prior to entering the
filter structure.

The output scale is applied as a shift to the output of the filter structure
prior to storing the result in the output sequence. It is used to restore
the filter gain to 0 dB. Shift count may be zero; if not zero, it represents
the number of bits to shift: negative indicates shift left, positive is shift
right.

iircan.s

DS51456C-page 50

© 2005 Microchip Technology Inc.

DSP Library

[IRCanonic (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored
W8..W11 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored
PSVPAG saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
42

Cycles (including C-function call and return overheads):
36 + N(8 + 7S), or
39 + N(9 + 12S) if coefficients in program memory.

[IRCanoniclnit

Description:
Include:

Prototype:

Arguments:

Remarks:

Source File:
Function Profile:

IIRCanonicInit initializes to zero the delay values in an

IIRCanonicStruct filter structure.

dsp.h

extern void IIRCanonicInit (
IIRCanonicStruct* filter

)

Filter structure:

(See description of IIRCanonic function).

Initialization Description:
filter pointer to IIRCanonicStruct filter structure

Two words of filter state per second order section {d1[s], d2[s]},
0<s<S.

iircan.s

System resources usage:
W0, W1 used, not restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
7

Cycles (including C-function call and return overheads):
10 + S2.

© 2005 Microchip Technology Inc.

DS51456C-page 51

16-Bit Language Tools Libraries

[IRLattice

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

IIRLattice uses a lattice structure implementation to apply an IIR
filter to the sequence of source samples. It then places the results in
the sequence of destination samples, and updates the delay values.

dsp.h

typedef struct {
int order;
fractional* kappaVals;
fractional* gammaVals;
int coeffsPage;
fractional* delay;

} IIRLatticeStruct;

extern fractional* IIRLattice (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
IIRLatticeStruct* filter

)i

Filter structure:

order filter order (also M, M < N; see FIRLattice for N)

kappaVals base address for lattice coefficients (also k), either in
X-Data or program memory

gammaVals base address for ladder coefficients (also g), either in

X-Data or program memory. If NULL, the function will
implement an all-pole filter.

coeffsPage coefficients buffer page number, or OXFFOO
(defined value COEFFS IN DATA) if
coefficients in data space

delay base address for delay (also d), only in Y-Data

Filter Description:

numSamps number of input samples to filter (also N, N > M; see
IIRLatticeStruct for M)

dstSamps pointer to destination samples (also y)

srcSamps pointer to source samples (also x)

filter pointer to ITRLatticeStruct filter structure

Pointer to base address of destination samples.

Lattice coefficients, km], defined in 0 <m < M.

Ladder coefficients, g[m], defined in 0 < m < M (unless if implementing
an all-pole filter).

Delay, d[m], defined in0 <m <M.

Source samples, x[n], defined in 0 <n < N.

Destination samples, y[n], defined in 0 < n < N.

Note: The fractional implementation provided with this library is prone
to saturation. Design and test the filter “off-line” using a floating-point
implementation such as the OCTAVE model at the end of this section.
Then, the intermediate forward and backward values should be
monitored during the floating-point execution in search for levels
outside the [-1, 1) range. If any one of the intermediate values spans
outside of that range, the maximum absolute value should be used to
scale the input signal prior to applying the fractional filter in real-time;
i.e., multiply the signal by the inverse of that maximum. This scaling
should prevent the fractional implementation from saturating.

iirlatt.s

DS51456C-page 52

© 2005 Microchip Technology Inc.

DSP Library

lIRLattice (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored
W8..W13 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
76

Cycles (including C-function call and return overheads):
46 + N(16 + 7M), or
49 + N(20 + 8M) if coefficients in program memory.

If implementing an all-pole filter:
46 + N(16 + 6M), or
49 + N(16 + 7M) if coefficients in program memory

[IRLatticelnit

Description:

Include:
Prototype:

Arguments:

Source File:
Function Profile:

IIRLatticeInit initializes to zero the delay values in an

IIRLatticeStruct filter structure.

dsp.h

extern void IIRLatticeInit (
IIRLatticeStruct* filter

)i

Filter structure:

(See description of IIRLattice function).

Initialization Description:
filter pointer to ITRLatticeStruct filter structure.

iirlattd.s

System resources usage:
WO0..W2 used, not restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
6

Cycles (including C-function call and return overheads):
10+ M

© 2005 Microchip Technology Inc.

DS51456C-page 53

16-Bit Language Tools Libraries

IIRTransposed

Description: IIRTransposed applies an IR filter, using a cascade of transposed
(direct form 11) biquadratic sections, to the sequence of source
samples. It places the results in the sequence of destination samples,
and updates the delay values.

Include: dsp.h

Prototype: typedef struct {
int numSectionsLessl;
fractional* coeffsBase;
int coeffsPage;
fractional* delayBasel;
fractional* delayBaseZ2;
int finalShift;
} IIRTransposedStruct;

extern fractional* IIRTransposed (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
IIRTransposedStruct* filter
) ;
Arguments: Filter structure:
numSectionsLessl 1 less than number of cascaded second
order (biguadratic) sections (also S-1)
coeffsBase pointer to filter coefficients (also {a, b}),
either in X-Data or program memory
coeffsPage coefficient buffer page number, or OxFF0O0
(defined value COEFFS IN DATA) if
coefficients in data space
delayBasel pointer to filter state 1, with one word of
delay per second order section (also d1),
only in Y-Data
delayBase2 pointer to filter state 2, with one word of
delay per second order section (also d2),
only in Y-Data
finalShift output scaling (shift left)

Filter Description:

numSamps number of input samples to filter (also N)
dstSamps pointer to destination samples (also y)

srcSamps pointer to source samples (also x)

filter pointer to IIRTransposedStruct filter structure

Return Value: Pointer to base address of destination samples.

Remarks: There are 5 coefficients per second order (biquadratic) section
arranged in the ordered set {b0O[s], b1[s], al[s], b2[s],a2[s]}, 0 <s< S.
Coefficient values should be generated with dsPICFD filter design
package from Momentum Data Systems, Inc., or similar tool.

The delay is made up of two independent buffers, each buffer
containing one word of filter state per section {d2[s], d1[s]}, 0 <s< S.
Source samples, x[n], defined in 0 < n < N.

Destination samples, y[n], defined in 0 < n < N.

The output scale is applied as a shift to the output of the filter structure
prior to storing the result in the output sequence. It is used to restore
the filter gain to 0 dB. Shift count may be zero; if not zero, it represents
the number of bits to shift: negative indicates shift left, positive is shift
right.

Source File: iirtrans.s

DS51456C-page 54 © 2005 Microchip Technology Inc.

DSP Library

IIRTransposed (Continued)

Function Profile:

Example

System resources usage:

WO0..W7 used, not restored
W8..W11 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
PSVPAG saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
48

Cycles (including C-function call and return overheads):
35 + N(11 + 11S), or
38 + N(9 + 17S) if coefficients in P memory.
S is number of second order sections.

Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

lIRTransposedInit

Description:

Include:
Prototype:

Arguments:

Remarks:

Source File:

Function Profile:

Example

IIRTransposedInit initializes to zero the delay values in an

IIRTransposedStruct filter structure.

dsp.h

extern void IIRTransposedInit (
IIRTransposedStruct* filter

)

Filter structure:

(See description of IIRTransposed function).

Initialization Description:
filter pointer to IIRTransposedStruct filter structure.

The delay is made up of two independent buffers, each buffer
containing one word of filter state per section {d2[s], d1[s]}, 0 <s< S.
iirtrans.s

System resources usage:
WO0..W2 used, not restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
8

Cycles (including C-function call and return overheads):

11 +2S,

S is number of second order sections.
Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

© 2005 Microchip Technology Inc.

DS51456C-page 55

16-Bit Language Tools Libraries

2.6.6 OCTAVE model for analysis of IIRLattice filter

The following OCTAVE model may be used to examine the performance of an IIR
Lattice Filter prior to using the fractional implementation provided by the function
IIRLattice.

[IRLattice OCTAVE model

function [out, del, forward, backward] = iirlatt (in, kappas, gammas, delay)
FUNCTION. -
IIRLATT: IIR Fileter Lattice implementation.

#4#

[out, del, forward, backward] = iirlatt (in, kappas, gammas, delay)

#4#

HH# forward: records intermediate forward values.

HH# backward: records intermediate backward values.
2

Get implicit parameters.
numSamps = length(in); numKapps = length (kappas) ;

if (gammas != 0)

numGamms = length (gammas) ;
else

numGamms = 0;
endif

numDels = length(delay); filtOrder = numDels-1;

Error check.

if (numGamms != 0)
if (numGamms != numKapps)
fprintf ("ERROR! %d should be equal to %d.\n", numGamms, numKapps) ;
return;
endif
endif
if (numDels != numKapps)
fprintf ("ERROR! %d should equal to %d.\n", numDels, numKapps) ;
return;
endif

Initialize.
M = filtOrder; out = zeros(numSamps,1l); del = delay;
forward = zeros (numSamps*M, 1) ; backward = forward; i = 0;

Filter samples.

for n = 1:numSamps
Get new sample.
current = in(n) ;

DS51456C-page 56 © 2005 Microchip Technology Inc.

DSP Library

Lattice structure.

for m = 1:M

after = current - kappas(M+l-m) * del(m+1l);
del (m) = del(m+1l) + kappas(M+1l-m) * after;
1 = i+1;
forward (i) current;
backward (i) = after;
current = after;
end
del (M+1) = after;
Ladder structure (computes output) .
if (gammas == 0)
out (n) = del (M+1) ;
else
for m = 1:M+1
out (n) = out(n) + gammas (M+2-m)*del (m) ;
endfor
endif
endfor
Return.
return;
2
endfunction

© 2005 Microchip Technology Inc. DS51456C-page 57

16-Bit Language Tools Libraries

2.7 TRANSFORM FUNCTIONS

This section presents the concept of a fractional transform, as considered by the DSP
Library, and describes the individual functions which perform transform operations. The
user may refer to example projects that utilize the DSP library Transform functions, in
order to ascertain proper usage of functions. Example MPLAB IDE-based
projects/workspaces have been provided in the installation folder of the MPLAB C30
toolsuite.

2.7.1 Fractional Transform Operations

A fractional transform is a linear, time invariant, discrete operation that when applied to
a fractional time domain sample sequence, results in a fractional frequency in the fre-
quency domain. Conversely, inverse fractional transform operation, when applied to
frequency domain data, results in its time domain representation.

A set of transforms (and a subset of inverse transforms) are provided by the DSP
Library. The first set applies a Discrete Fourier transform (or its inverse) to a complex
data set (see below for a description of fractional complex values). The second set
applies a Type Il Discrete Cosine Transform (DCT) to a real valued sequence. These
transforms have been designed to either operate out-of-place, or in-place. The former
type populates an output sequence with the results of the transformation. In the latter,
the input sequence is (physically) replaced by the transformed sequence. For
out-of-place operations, enough memory to accept the results of the computation must
be provided.

The transforms make use of transform factors (or constants) which must be supplied to
the transforming function during its invocation. These factors, which are complex data
sets, are computed in floating-point arithmetic, and then transformed into fractionals for
use by the operations. To avoid excessive computational overhead when applying a
transformation, a particular set of transform factors could be generated once and used
many times during the execution of the program. Thus, it is advisable to store the
factors returned by any of the initialization operations in a permanent (static) complex
vector. It is also advantageous to generate the factors “off-line”, and place them in pro-
gram memory, and use them when the program is later executing. This way, not only
cycles, but also RAM memory is saved when designing an application which involves
transformations.

2.7.2 Fractional Complex Vectors

A complex data vector is represented by a data set in which every pair of values
represents an element of the vector. The first value in the pair is the real part of the
element, and the second its imaginary part. Both the real and imaginary parts are
stored in memory using one word (two bytes) for each, and must be interpreted as
1.15 fractionals. As with the fractional vector, the fractional complex vector stores its
elements consecutively in memory.

The organization of data in a fractional complex vector may be addressed by the
following data structure:

#ifdef fractional

#ifndef fractcomplex

typedef struct ({
fractional real;
fractional imag;

} fractcomplex;

#endif

#endif

DS51456C-page 58

© 2005 Microchip Technology Inc.

DSP Library

2.7.3 User Considerations

a)

b)

d)

e)

No boundary checking is performed by these functions. Out of range sizes
(including zero length vectors) as well as nonconforming use of source complex
vectors and factor sets may produce unexpected results.

It is recommended that the STATUS Register (SR) is examined after completion
of each function call. In particular, users can inspect the SA, SB and SAB flags
after the function returns to determine if saturation occurred.

The input and output complex vectors involved in the family of transformations
must be allocated in Y-Data memory. Transforms factors may be allocated either
in X-Data or program memory.

Because bit reverse addressing requires the vector set to be modulo aligned, the
input and output complex vectors in operations using either explicitly or implicitly
the BitReverseComplex function must be properly allocated.

Operations which return a destination complex vector can be nested, so that for
instance if:

a=0p1l (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a=0p1l (Op2 (d), Op3 (e, f)).

In what follows, the individual functions implementing transform and inverse transform
operations are described.

BitReverseComplex

Description: BitReverseComplex reorganizes the elements of a complex vector
in bit reverse order.
Include: dsp.h
Prototype: extern fractcomplex* BitReverseComplex (
int log2N,

fractcomplex* srcCV

)i

Arguments: log2N based 2 logarithm of N (number of complex elements in

source vector)
srcCV pointer to source complex vector

Return Value: Pointer to base address of source complex vector.

Remarks: N must be an integer power of 2.

The srcCV vector must be allocated at a modulo alignment of N.
This function operates in place.

Source File: bitrev.s

Function Profile: System resources usage:
WO..W7 used, not restored
MODCON saved, used, restored
XBREV saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
27

Cycles (including C-function call and return overheads):
See below:

Example Please refer to the MPLAB C30 installation folder for a sample project

demonstrating the use of this function.

© 2005 Microchip Technology Inc.

DS51456C-page 59

16-Bit Language Tools Libraries

Transform Size # Complex Elements # Cycles
32 point 32 245
64 point 64 485
128 point 128 945
256 point 256 1905

DS51456C-page 60 © 2005 Microchip Technology Inc.

DSP Library

CosFactorlnit

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

CosFactorInit generates the first half of the set of cosine factors
required by a Type Il Discrete Cosine Transform, and places the result
in the complex destination vector. Effectively, the set contains the
values:

nk

i
CN(k) = e, where 0 <k < N/2.
dsp.h
extern fractcomplex* CosFactorInit (
int log2N,

fractcomplex* cosFactors

)i

log2N based 2 logarithm of N (number of complex factors
needed by a DCT)
cosFactors pointer to complex cosine factors

Pointer to base address of cosine factors.

N must be an integer power of 2.

Only the first N/2 cosine factors are generated.

A complex vector of size N/2 must have already been allocated and
assigned to cosFactors prior to invoking the function. The complex
vector should reside in X-Data memory.

Factors are computed in floating-point arithmetic and converted to 1.15
complex fractionals.

initcosf.c

System resources usage:
WO0..W7 used, not restored
W8..W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

DCT
Description: DCT computes the Discrete Cosine Transform of a source vector, and
stores the results in the destination vector.
Include: dsp.h
Prototype: extern fractional* DCT (
int log2N,

fractional* dstV,
fractional* srcV,
fractcomplex* cosFactors,
fractcomplex* twidFactors,
int factPage

© 2005 Microchip Technology Inc.

DS51456C-page 61

16-Bit Language Tools Libraries

DCT (Continued)

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

log2N based 2 logarithm of N (number of complex
elements in source vector)

dstCcv pointer to destination vector

srcCv pointer to source vector

cosFactors pointer to cosine factors

twidFactors pointer to twiddle factors

factPage memory page for transform factors

Pointer to base address of destination vector.

N must be an integer power of 2.

This function operates out of place. A vector of size 2N elements, must
already have been allocated and assigned to dstV.

The dstV vector must be allocated at a modulo alignment of N.

The results of computation are stored in the first N elements of the
destination vector.

To avoid saturation (overflow) during computation, the values of the
source vector should be in the range [-0.5, 0.5].

Only the first N/2 cosine factors are needed.

Only the first N/2 twiddle factors are needed.

If the transform factors are stored in X-Data space, cosFactors and
twidFactors point to the actual address where the factors are
allocated. If the transform factors are stored in program memory,
cosFactors and twidFactors are the offset from the program page
boundary where the factors are allocated. This latter value can be
calculated using the inline assembly operator psvoffset ().

If the transform factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN_ DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline
assembly operator psvpage () .

The twiddle factors must be initialized with conjFlag set to a value
different than zero.

Only the first N/2 cosine factors are needed.

Output is scaled by the factor 1/(+/2N)

dctoop.s

System resources usage:
WO0..W5 used, not restored
plus system resources from VectorZeroPad, and DCTIP.

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions
plus DO/REPEAT instructions from VectorZeroPad, and DCTIP.

Program words (24-bit instructions):
16
plus program words from VectorZeroPad, and DCTIP.

Cycles (including C-function call and return overheads):
22
plus cycles from VectorZeroPad, and DCTIP.

Note: In the description of VectorZeroPad the number of cycles
reported includes 4 cycles of C-function call overhead. Thus, the
number of actual cycles from VectorZzeroPad to add to DCT is 4 less
than whatever number is reported for a stand-alone VectorZeroPad.
In the same way, the number of actual cycles from DCTIP to add to DCT
is 3 less than whatever number is reported for a stand-alone DCTIP.

DS51456C-page 62

© 2005 Microchip Technology Inc.

DSP Library

DCTIP

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:

DCTIP computes the Discrete Cosine Transform of a source vector in
place.

dsp.h

extern fractional* DCTIP (
int log2N,
fractional* srcV,
fractcomplex* cosFactors,
fractcomplex* twidFactors,
int factPage

)

log2N based 2 logarithm of N (number of complex elements
in source vector)
srcCv pointer to source vector

cosFactors pointer to cosine factors
twidFactors pointer to twiddle factors
factpPage memory page for transform factors

Pointer to base address of destination vector.

N must be an integer power of 2.

This function expects that the source vector has been zero padded to
length 2N.

The srcV vector must be allocated at a modulo alignment of N.

The results of computation are stored in the first N elements of source
vector.

To avoid saturation (overflow) during computation, the values of the
source vector should be in the range [-0.5, 0.5].

Only the first N / 2 cosine factors are needed.

Only the first N / 2 twiddle factors are needed.

If the transform factors are stored in X-Data space, cosFactors and
twidFactors point to the actual address where the factors are
allocated. If the transform factors are stored in program memory,
cosFactors and twidFactors are the offset from the program page
boundary where the factors are allocated. This latter value can be
calculated using the inline assembly operator psvoffset ().

If the transform factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline
assembly operator psvpage ().

The twiddle factors must be initialized with conjFlag set to a value
different than zero.

Output is scaled by the factor 1/(./2N).

dctoop.s

© 2005 Microchip Technology Inc.

DS51456C-page 63

16-Bit Language Tools Libraries

DCTIP (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored

W8..W13 saved, used, restored

ACCA used, not restored

CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
1 level DO instructions
1 level REPEAT instructions
plus DO/REPEAT instructions from
IFFTComplexIP.
Program words (24-bit instructions):
92
plus program words from IFFTComplexIP.
Cycles (including C-function call and return overheads):
71 + 10N, or
73 + 11N if factors in program memory,
plus cycles from IFFTComplexIP

Note: In the description of IFFTComplexIP the number of cycles
reported includes 4 cycles of C-function call overhead. Thus, the
number of actual cycles from IFFTComplexIP to add to DCTIP is 4
less than whatever number is reported for a stand-alone
IFFTComplexIP.

FFTComplex

Description:

Include:
Prototype:

Arguments:

Return Value:

FFTComplex computes the Discrete Fourier Transform of a source
complex vector, and stores the results in the destination complex
vector.

dsp.h

extern fractcomplex* FFTComplex (
int log2N,
fractcomplex* dstCV,
fractcomplex* srcCV,
fractcomplex* twidFactors,
int factPage

) ;

log2N based 2 logarithm of N (number of complex elements
in source vector)

dstCcv pointer to destination complex vector

srcCv pointer to source complex vector

twidFactors base address of twiddle factors

factbPage memory page for transform factors

Pointer to base address of destination complex vector.

DS51456C-page 64

© 2005 Microchip Technology Inc.

DSP Library

FFTComplex (Continued)

Remarks:

Source File:
Function Profile:

N must be an integer power of 2.

This function operates out of place. A complex vector, large enough to
receive the results of the operation, must already have been allocated
and assigned to dstCVv.

The dstCV vector must be allocated at a modulo alignment of N.

The elements in source complex vector are expected in natural order.
The elements in destination complex vector are generated in natural
order.

To avoid saturation (overflow) during computation, the magnitude of the
values of the source complex vector should be in the range [-0.5, 0.5].
Only the first N/2 twiddle factors are needed.

If the twiddle factors are stored in X-Data space, twidFactors points
to the actual address where the factors are allocated. If the twiddle
factors are stored in program memory, twidFactors is the offset from
the program page boundary where the factors are allocated. This latter
value can be calculated using the inline assembly operator
psvoffset ().

If the twiddle factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline
assembly operator psvpage ().

The twiddle factors must be initialized with conjFlag set to zero.
Output is scaled by the factor 1/N.

fftoop.s

System resources usage:
WO0..w4 used, not restored
plus system resources from VectorCopy, FFTComplexIP, and
BitReverseComplex.

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions
plus DO/REPEAT instructions from VectorCopy, FFTComplexIP,
and BitReverseComplex.

Program words (24-bit instructions):
17
plus program words from VectorCopy, FFTComplexIP, and
BitReverseComplex.

Cycles (including C-function call and return overheads):
23
plus cycles from VectorCopy, FFTComplexIP, and
BitReverseComplex.

Note: In the description of VectorCopy the number of cycles reported
includes 3 cycles of C-function call overhead. Thus, the number of
actual cycles from VectorCopy to add to FFTComplex is 3 less than
whatever number is reported for a stand-alone VectorCopy. In the
same way, the number of actual cycles from FFTComplexIP to add to
FFTComplex is 4 less than whatever number is reported for a
stand-alone FFTComplexIP. And those from BitReverseComplex
are 2 less than whatever number is reported for a stand-alone
FFTComplex.

© 2005 Microchip Technology Inc.

DS51456C-page 65

16-Bit Language Tools Libraries

FFTComplexIP

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

FFTComplexIP computes the Discrete Fourier Transform of a source
complex vector in place..
dsp.h
extern fractcomplex* FFTComplexIP (
int log2N,
fractcomplex* srcCV,
fractcomplex* twidFactors,
int factPage
)

log2N based 2 logarithm of N (number of complex
elements in source vector)

srcCv pointer to source complex vector

twidFactors base address of twiddle factors

factbPage memory page for transform factors

Pointer to base address of source complex vector.

N must be an integer power of 2.

The elements in source complex vector are expected in natural order.
The resulting transform is stored in bit reverse order.

To avoid saturation (overflow) during computation, the magnitude of the
values of the source complex vector should be in the range [-0.5, 0.5].
Only the first N/2 twiddle factors are needed.

If the twiddle factors are stored in X-Data space, twidFactors points
to the actual address where the factors are allocated. If the twiddle
factors are stored in program memory, twidFactors is the offset from
the program page boundary where the factors are allocated. This latter
value can be calculated using the inline assembly operator
psvoffset ().

If the twiddle factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN_ DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline
assembly operator psvpage ().

The twiddle factors must be initialized with conjFlag set to zero.
Output is scaled by the factor 1/N.

fft.s

DS51456C-page 66

© 2005 Microchip Technology Inc.

DSP Library

FFTComplexIP (Continued)

Function Profile:

Example:

System resources usage:

WO0..W7 used, not restored

W8..W13 saved, used, restored

ACCA used, not restored

ACCB used, not restored

CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
59

Cycles (including C-function call and return overheads):
See table below

Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

Transform Size # Cycles if Twiddle # Cycles if Twiddle

Factors in X-mem Factors in P-mem
32 point 1,633 1,795
64 point 3,739 4,125
128 point 8,485 9,383
256 point 19,055 21,105

IFFTComplex

Description:

Include:
Prototype:

Arguments:

Return Value:

IFFTComplex computes the Inverse Discrete Fourier Transform of a
source complex vector, and stores the results in the destination
complex vector.

dsp.h

extern fractcomplex* IFFTComplex (
int log2N,
fractcomplex* dstCV,
fractcomplex* srcCV,
fractcomplex* twidFactors,
int factPage

) ;

log2N based 2 logarithm of N (number of complex elements
in source vector)

dstCcv pointer to destination complex vector

srcCvV pointer to source complex vector

twidFactors base address of twiddle factors

factpPage memory page for transform factors

Pointer to base address of destination complex vector.

© 2005 Microchip Technology Inc.

DS51456C-page 67

16-Bit Language Tools Libraries

IFFTComplex (Continued)

Remarks: N must be an integer power of 2.
This function operates out of place. A complex vector, large enough to
receive the results of the operation, must already have been allocated
and assigned to dstCv.
The dstCV vector must be allocated at a modulo alignment of N.
The elements in source complex vector are expected in natural order.
The elements in destination complex vector are generated in natural
order.
To avoid saturation (overflow) during computation, the magnitude of the
values of the source complex vector should be in the range [-0.5, 0.5].
If the twiddle factors are stored in X-Data space, twidFactors points
to the actual address where the factors are allocated. If the twiddle
factors are stored in program memory, twidFactors is the offset from
the program page boundary where the factors are allocated. This latter
value can be calculated using the inline assembly operator
psvoffset ().
If the twiddle factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline
assembly operator psvpage ().
The twiddle factors must be initialized with conjFlag set to a value
other than zero.
Only the first N/2 twiddle factors are needed.

Source File: ifftoop.s
Function Profile: System resources usage:
WO0..w4 used, not restored

plus system resources from VectorCopy, and IFFTComplexIP.
DO and REPEAT instruction usage:

no DO instructions

no REPEAT instructions

plus DO/REPEAT instructions from VectorCopy, and

IFFTComplexIP.
Program words (24-bit instructions):

12

plus program words from VectorCopy, and IFFTComplexIP.
Cycles (including C-function call and return overheads):

15

plus cycles from VectorCopy, and IFFTComplexIP.

Note: In the description of VvectorCopy the number of cycles reported
includes 3 cycles of C-function call overhead. Thus, the number of
actual cycles from VectorCopy to add to IFFTComplex is 3 less than
whatever number is reported for a stand-alone VectorCopy. In the
same way, the number of actual cycles from IFFTComplexIP to add to
IFFTComplex is 4 less than whatever number is reported for a
stand-alone IFFTComplexIP.

DS51456C-page 68 © 2005 Microchip Technology Inc.

DSP Library

IFFTComplexIP

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:

IFFTComplexIP computes the Inverse Discrete Fourier Transform of
a source complex vector in place..
dsp.h
extern fractcomplex* IFFTComplexIP (
int log2N,
fractcomplex* srcCV,
fractcomplex* twidFactors,

int factPage
) ;

log2N based 2 logarithm of N (number of complex elements
in source vector)

srcCv pointer to source complex vector

twidFactors base address of twiddle factors

factbPage memory page for transform factors

Pointer to base address of source complex vector.

N must be an integer power of 2.

The elements in source complex vector are expected in bit reverse
order. The resulting transform is stored in natural order.

The srcCV vector must be allocated at a modulo alignment of N.

To avoid saturation (overflow) during computation, the magnitude of the
values of the source complex vector should be in the range [-0.5, 0.5].
If the twiddle factors are stored in X-Data space, twidFactors points
to the actual address where the factors are allocated. If the twiddle
factors are stored in program memory, twidFactors is the offset from
the program page boundary where the factors are allocated. This latter
value can be calculated using the inline assembly operator
psvoffset ().

If the twiddle factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN_ DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline
assembly operator psvpage () .

The twiddle factors must be initialized with conjFlag set to a value
other than zero.

Only the first N/2 twiddle factors are needed.

ifft.s

© 2005 Microchip Technology Inc.

DS51456C-page 69

16-Bit Language Tools Libraries

IFFTComplexIP (Continued)

Function Profile:

System resources usage:
WO0..W3 used, not restored
plus system resources from FFTComplexIP, and
BitReverseComplex.

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions
plus DO/REPEAT instructions from FFTComplexIP, and
BitReverseComplex.

Program words (24-bit instructions):
11
plus program words from FFTComplexIP, and
BitReverseComplex.

Cycles (including C-function call and return overheads):
15
plus cycles from FFTComplexIP, and BitReverseComplex.

Note: In the description of FFTComplexIP the number of cycles
reported includes 3 cycles of C-function call overhead. Thus, the
number of actual cycles from FFTComplexIP to add to
IFFTComplexIP is 3 less than whatever number is reported for a
stand-alone

FFTComplexIP. In the same way, the number of actual cycles from
BitReverseComplex to add to IFFTComplexIP is 2 less than
whatever number is reported for a stand-alone BitReverseComplex.

SquareMagnitudeCplx

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

SquareMagnitudeCplx computes the squared magnitude of each
element in a complex source vector.

dsp.h

extern fractional* SquareMagnitudeCplx (
int numelems,
fractcomplex* srcV,
fractional* dstV
)
numklems number of elements in the complex source vector
srcVv pointer to complex source vector
dstV pointer to real destination vector

Pointer to base address of destination vector.

If the sum of squares of the real and imaginary parts of a complex
element in the source vector is larger than 1-271°, this operation results
in saturation.

This function can be used to operate in-place on a source data set.

cplxsgrmag.s

DS51456C-page 70

© 2005 Microchip Technology Inc.

DSP Library

SquareMagnitudeCplx (Continued)

Function Profile:

Example:

System resources usage:

WO0..W2 used, not restored
W4, W5, W10 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
19

Cycles (including C-function call and return overheads):
20 + 3 (numElems)

Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

TwidFactorlnit

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

TwidFactorInit generates the first half of the set of twiddle factors
required by a Discrete Fourier Transform or Discrete Cosine Transform,
and places the result in the complex destination vector. Effectively, the
set contains the values:

.2mk
WN(K) = e N Where 0 <k <N/2, for conjFlag =0
WN(k) = e ,where 0 <k <N/2, for conjFlag!=0
dsp.h
extern fractcomplex* TwidFactorInit (
int log2N,

fractcomplex* twidFactors,
int conjFlag
)
log2N based 2 logarithm of N (number of complex factors
needed by a DFT)
twidFactors pointer to complex twiddle factors
conjFlag flag to indicate whether or not conjugate values are
to be generated

Pointer to base address of twiddle factors.

N must be an integer power of 2.

Only the first N/2 twiddle factors are generated.

The value of conjFlag determines the sign in the argument of the
exponential function. For forward Fourier Transforms, conjFlag
should be set to ‘0’. For inverse Fourier Transforms and Discrete
Cosine Transforms, conjFlag should be setto ‘1'.

A complex vector of size N/2 must have already been allocated and
assigned to twidFactors prior to invoking the function. The complex
vector should be allocated in X-Data memory.

Factors computed in floating-point arithmetic and converted to 1.15
complex fractionals.

inittwid.c

© 2005 Microchip Technology Inc.

DS51456C-page 71

16-Bit Language Tools Libraries

TwidFactorinit (Continued)

Function Profile: System resources usage:
WO0..W7 used, not restored
ws8..W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Example: Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

DS51456C-page 72 © 2005 Microchip Technology Inc.

DSP Library

2.8 CONTROL FUNCTIONS

This section describes functions provided in the DSP library that aid the implementation
of closed-loop control systems.

2.8.1 Proportional Integral Derivative (PID) Control

A complete discussion of Proportional Integral Derivative (PID) controllers is beyond
the scope of this discussion, but this section will try to provide you with some guidelines
for tuning PID controllers.

2.8.1.1 PID CONTROLLER BACKGROUND

A PID controller responds to an error signal in a closed control loop and attempts to
adjust the controlled quantity in order to achieve the desired system response. The
controlled parameter can be any measurable system quantity, such as speed, voltage
or current. The output of the PID controller can control one or more system parameters
that will affect the controlled system quantity. For example, a speed control loop in a
Sensorless Brushless DC motor application can control the PWM duty cycle directly or
it can set the current demand for an inner control loop that regulates the motor currents.
The benefit of the PID controller is that it can be adjusted empirically by adjusting one
or more gain values and observing the change in system response.

A digital PID controller is executed at a periodic sampling interval and it is assumed that
the controller is executed frequently enough so that the system can be properly con-
trolled. For example, the current controller in the Sensorless Brushless DC motor appli-
cation is executed every PWM cycle, since the motor can change very rapidly. The
speed controller in such an application is executed at the medium event rate (100 Hz),
because motor speed changes will occur relatively slowly due to mechanical time
constants.

The error signal is formed by subtracting the desired setting of the parameter to be con-
trolled from the actual measured value of that parameter. This sign of the error indicates
the direction of change required by the control input.

The Proportional (P) term of the controller is formed by multiplying the error signal by
a P gain. This will cause the PID controller to produce a control response that is a func-
tion of the error magnitude. As the error signal becomes larger, the P term of the
controller becomes larger to provide more correction.

The effect of the P term will tend to reduce the overall error as time elapses. However,
the effect of the P term will reduce as the error approaches zero. In most systems, the
error of the controlled parameter will get very close to zero, but will not converge. The
result is a small remaining steady state error. The Integral (1) term of the controller is
used to fix small steady state errors. The | term takes a continuous running total of the
error signal. Therefore, a small steady state error will accumulate into a large error
value over time. This accumulated error signal is multiplied by an | gain factor and
becomes the | output term of the PID controller.

The Differential (D) term of the PID controller is used to enhance the speed of the con-
troller and responds to the rate of change of the error signal. The D term input is calcu-
lated by subtracting the present error value from a prior value. This delta error value is
multiplied by a D gain factor that becomes the D output term of the PID controller. The
D term of the controller produces more control output the faster the system error is
changing.

It should be noted that not all PID controllers will implement the D or, less commonly,
the | terms. For example, the speed controller in a Brushless DC motor application
described by Microchip Application Note AN901 does not have a D term due to the rel-

© 2005 Microchip Technology Inc. DS51456C-page 73

16-Bit Language Tools Libraries

atively slow response time of motor speed changes. In this case, the D term could
cause excessive changes in PWM duty cycle that could affect the operation of the
sensorless algorithm and produce over current trips.

2.8.1.2 ADJUSTING PID GAINS

The P gain of a PID controller will set the overall system response. When first tuning a
controller, the 1 and D gains should be set to zero. The P gain can then be increased
until the system responds well to set-point changes without excessive overshoot or
oscillations. Using lower values of P gain will ‘loosely’ control the system, while higher
values will give ‘tighter’ control. At this point, the system will probably not converge to
the set-point.

After a reasonable P gain is selected, the | gain can be slowly increased to force the

system error to zero. Only a small amount of | gain is required in most systems. Note
that the effect of the | gain, if large enough, can overcome the action of the P term, slow
the overall control response, and cause the system to oscillate around the set-point. If
this occurs, reducing the | gain and increasing the P gain will usually solve the problem.

After the P and | gains are set, the D gain can be set. The D term will speed up the
response of control changes, but it should be used sparingly because it can cause very
rapid changes in the controller output. This behavior is called ‘set-point kick’. The
set-point kick occurs because the difference in system error becomes instantaneously
very large when the control set-point is changed. In some cases, damage to system
hardware can occur. If the system response is acceptable with the D gain set to zero,
you can probably omit the D term.

FIGURE 2-1: PID CONTROL SYSTEM

Reference
Input Control
Output
—| + K| +
HINS a _1) — - + —p| Plant |—r
-z
— — +
Control History
or Error
) KD(l -z }
Measured
Output
-

DS51456C-page 74

© 2005 Microchip Technology Inc.

DSP Library

2.8.1.3 PID LIBRARY FUNCTIONS AND DATA STRUCTURES

The DSP library provides a PID Controller function, PID (tPID*), to performaPID
operation. The function uses a data structure defined in the header file dsp.h, which has
the following form:

typedef struct ({

fractional* abcCoefficients;
fractional* controlHistory;
fractional controlOutput;
fractional measuredOutput;
fractional controlReference;
} tPID;

Prior to invoking the PID () function, the application should initialize the data structure
of type tPID. This is done in the following steps:

1. Calculate Coefficients from PID Gain values

The element abcCoefficients in the data structure of type tPID is a pointer
to A, B & C coefficients located in X-data space. These coefficients are derived
from the PID gain values, Kp, Ki and Kd, shown in Figure 2-1, as follows:

A Kp + Ki + Kd

B = -(Kp + 2*Kd)

C = Kd

To derive the A, B and C coefficients, the DSP library provides a function,
PIDCoeffCalc.

2. Clear the PID State Variables

The structural element controlHistory is a pointer to a history of 3 samples
located in Y-space, with the first sample being the most recent (current). These
samples constitute a history of current and past differences between the Refer-
ence Input and the Measured Output of the plant function. The PIDInit function
clears the elements pointed to by controlHistory. It also clears the
controlOutput element in the t PID data structure.

2.8.2 Individual Functions
PIDInit
Description: This routine clears the delay line elements in the 3-element array

located in Y-space and pointed to by controlHistory. It also clears
the current PID output element, controlOutput.

Include: dsp.h

Prototype: void PIDInit (tPID *fooPIDStruct) ;

Arguments: fooPIDStruct is a pointer to a PID data structure of type tPID
Return Value: void.

Remarks:

Source File: pid.s

© 2005 Microchip Technology Inc. DS51456C-page 75

16-Bit Language Tools Libraries

PIDInit (Continued)

Function Profile: System resources usage:
WO0..W4 used, not restored
ACCA, ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
0 level DO instructions
0 REPEAT instructions

Program words (24-bit instructions):
11

Cycles (including C-function call and return overheads):
13

PIDCoeffCalc

Description: PIDInit computes the PID coefficients based on values of Kp, Ki and
Kd provided by the user.
abcCoefficients[0] = Kp + Ki + Kd
abcCoefficients([1] = -(Kp + 2*Kd)
abcCoefficients[2] = Kd
This routine also clears the delay line elements in the array
ControlDifference, as well as clears the current PID output
element, ControlOutput.

Include: dsp.h

Prototype: void PIDCoeffCalc (fractional *fooPIDGainCoeff,
tPID *fooPIDStruct)

Arguments: fooPIDGainCoeff is a pointer to input array containing Kp, Ki, Kd
coefficients in order [Kp, Ki, Kd]
fooPIDStruct is a pointer to a PID data structure of type tPID

Return Value: Void.
Remarks: PIDCoefficient array elements may be subject to saturation depending
on values of Kp, Ki and Kd.
Source File: pid.s
Function Profile: System resources usage:
WO0..W2 used, not restored
ACCA, ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
0 level DO instructions
0 REPEAT instructions

Program words (24-bit instructions):
18

Cycles (including C-function call and return overheads):
20

DS51456C-page 76 © 2005 Microchip Technology Inc.

DSP Library

PID

Description:

Include:
Prototype:
Arguments:
Return Value:
Remarks:

Source File:

Function Profile:

PID computes the controloutput element of the data structure
tPID:
controlOutput [n] = controlOutput [n-1]
+ controlHistory[n] * abcCoefficient[0]
+ controlHistory[n-1] * abcCoefficient [1]
+ controlHistory[n-2] * abcCoefficient [2]
where,
abcCoefficient [0] = Kp + Ki + Kd
abcCoefficient [1] = - (Kp + 2*Kd)
abcCoefficient [2] = Kd
ControlHistory[n] =
MeasuredOutput [n] - ReferenceInput [n]

dsp.h

extern void PID (tPID* ooPIDStruct) ;
fooPIDStruct is a pointer to a PID data structure of type tPID
Pointer to fooPIDStruct

controlOutput element is updated by the PID() routine. The
controlOutput will be subject to saturation.

pid.s

System resources usage:
WO0..W5 used, not restored
W8,W10 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
0 level DO instructions
0 REPEAT instructions

Program words (24-bit instructions):
28

Cycles (including C-function call and return overheads):
30

© 2005 Microchip Technology Inc.

DS51456C-page 77

16-Bit Language Tools Libraries

2.9 MISCELLANEOUS FUNCTIONS

This section describes other helpful functions provided in the DSP library.

2.9.1 Individual Functions

Fract2Float

Description: Fract2Float converts a 1.15 fractional value to an IEEE
floating-point value.

Include: dsp.h

Prototype: extern float Fract2Float (
fractional aval

)i

Arguments: aval 1.15 fractional number in the implicit range
[1,(+1-2"9)]
Return Value: IEEE floating-point value in the range [-1, (+ 1 — 2719)]
Remarks: None
Source File: flt2frct.c
Function Profile: System resources usage:
WO0..W7 used, not restored
Ww8..w14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Float2Fract

Description: Float2Fract converts an IEEE floating-point value to a 1.15
fractional number.

Include: dsp.h
Prototype: extern fractional Float2Fract (
float aval
)
Arguments: aval Floating-point number in the range [-1,(+ 1 — 2719)]
Return Value: 1.15 Fractional value in the range [-1, (+ 1 — 2°19)]
Remarks: The conversion is performed using convergent rounding and saturation
mechanisms.
Source File: flt2frct.c

DS51456C-page 78 © 2005 Microchip Technology Inc.

DSP Library

Float2Fract (Continued)

Function Profile: System resources usage:
WO0..W7 used, not restored
ws8..W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

© 2005 Microchip Technology Inc. DS51456C-page 79

16-Bit Language Tools Libraries

NOTES:

DS51456C-page 80 © 2005 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS

MICROCHIP LIBRARIES

Chapter 3. 16-Bit Peripheral Libraries

INTRODUCTION

This chapter documents the functions and macros contained in the 16-bit
peripheral libraries. Examples of use are also provided.

Code size for each library function or macro may be found in the file readme. txt in
Program Files\Microchip\MPLAB C30\src\peripheral.

3.1.1 .Assembly Code Applications

Free versions of these libraries and associated header files are available from the
Microchip web site. Source code is included.

3.1.2 C Code Applications

The MPLAB C30 C compiler install directory (c: \Program Files\Micro-

chip\MPLAB C30) contains the following subdirectories with library-related files:

e 1lib — 16-bit peripheral library files

* src\peripheral — source code for library functions and a batch file to rebuild
the library

» support\h — header files for libraries

3.1.3 Chapter Organization

This chapter is organized as follows:
« Using the 16-Bit Peripheral Libraries
Software Functions

e External LCD Functions
Hardware Functions

e CAN Functions

« ADCI12 Functions

« ADCI10 Functions

e Timer Functions

« Reset/Control Functions

 |/O Port Functions

« Input Capture Functions

* Output Compare Functions

« UART Functions

« DCI Functions

¢ SPI Functions

¢ QEI Functions

 PWM Functions

¢ |12C™ Functions

© 2005 Microchip Technology Inc.

DS51456C-page 81

16-Bit Language Tools Libraries

3.2 USING THE 16-BIT PERIPHERAL LIBRARIES

Building an application which utilizes the 16-bit Peripheral Libraries requires a
processor-specific library file and a header file for each peripheral module.

For each peripheral, the corresponding header file provides all the function prototypes,
#defines and typedefs used by the library. The archived library file contains all the
individual object files for each library function.

The header files are of the form peripheral.h, where peripheral = name of the
particular peripheral being used (e.g., can.h for CAN).

The library files are of the form 1ibpDevice-omf.a, where Device = 16-bit device
number (e.g., 1ibp30F6014-coff.a for the dsPIC30F6014 device). See

Section 1.2 “OMF-Specific Libraries/Start-up Modules” for more on OMF-specific
libraries.

When compiling an application, header file must be referenced (using #include) by
all source files which call a function in the library or use its symbols or typedefs.
When linking an application, the library file must be provided as an input to the linker
(using the --1ibrary or -1 linker switch) such that the functions used by the
application may be linked into the application.

The batch file makeplib.bat may be used to remake the libraries. The default behav-
ior is to build peripheral libraries for all supported target processors; however, you may
select a particular processor to build by naming it on the command line. For example:
makeplib.bat 30£6014

or

makeplib.bat 30F6014

will rebuild the library for the dsPIC30F6014 device.

3.3 EXTERNAL LCD FUNCTIONS

This section contains a list of individual functions for interfacing with P-tec PCOG1602B
LCD controller and an example of use of the functions in this section. Functions may
be implemented as macros.

The external LCD functions are only supported for the following devices:

» dsPIC30F5011
» dsPIC30F5013
* dsPIC30F6010
» dsPIC30F6011
» dsPIC30F6012
* dsPIC30F6013
» dsPIC30F6014

DS51456C-page 82

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.3.1 Individual Functions

BusyXLCD

Description: This function checks for the busy flag of the P-tec PCOG1602B LCD
controller.

Include: xlcd.h

Prototype: char BusyXLCD (void) ;

Arguments: None

Return Value:

Remarks:

Source File:

Code Example:

If ‘1" is returned, it indicates that the LCD controller is busy and can not
take any command.
If ‘0’ is returned, it indicates that the LCD is ready for next command.

This function returns the status of the busy flag of the P-tec
PCOG1602B LCD controller.

BusyXLCD.c
while (BusyXLCD()) ;

OpenXLCD

Description:

Include:
Prototype:
Arguments:

Return Value:
Remarks:

This function configures the 1/O pins and initializes the P-tec
PCOG1602B LCD controller.

xlcd.h
void OpenXLCD (unsigned char lcdtype) ;

This contains the LCD controller parameters to be
configured as defined below:

Type of interface
FOUR BIT

EIGHT_ BIT

Number of lines
SINGLE LINE
TWO_LINE

Segment data transfer direction
SEG1_50_ SEG51_100

SEG1_50 SEG100 51
SEG100_51_SEG50_1
SEG100_51_SEG1_50

COM data transfer direction
COM1_COM16
COM16_ COM1

Icdtype

None

This function configures the 1/0 pins used to control the P-tec
PCOG1602B LCD controller. It also initializes the LCD controller.The
1/0 pin definitions that must be made to ensure that the external LCD
operates correctly are:

© 2005 Microchip Technology Inc.

DS51456C-page 83

16-Bit Language Tools Libraries

OpenXLCD (Continued)

Source File:

Code Example:

Control I/O pin definitions

RW_PIN PORTxbits.Rx?
TRIS_RW TRISxbits.Rx?
RS _PIN PORTXxbits.Rx?
TRIS RS TRISxbits.Rx?

E PIN PORTXxbits.Rx?

TRIS_E TRISxbits.Rx?

where x is the PORT, ? is the pin number

Data pin definitions

DATA PIN ? PORTxbits.RD?

TRIS DATA PIN ? TRISxbits.TRISD?

where x is the PORT, ? is the pin number

The Data pins can be from either one port or from multiple ports.
The control pins can be on any port and are not required to be on the
same port. The data interface must be defined as either 4-bit or 8-bit.
The 8-bit interface is defined when a

#define EIGHT_BIT_INTERFACE is included in the header file
x1lcd.h. If no define is included, then the 4-bit interface is included.

After these definitions have been made, the user must compile the
application code into an object to be linked.

This function also requires three external routines for specific delays:

DelayForl8TCY () 18 Tcy delay
DelayPORXLCD () 15ms delay
DelayXLCD () 5ms delay
Delayl00XLCD () 100Tcy delay

openXLCD.c

OpenXLCD (EIGHT_BIT & TWO_L|NE
& SEG1_50_SEG51_100 &COM1_COM16) ;

putsXLCD

putrsXLCD

Description: This function writes a string of characters to the P-tec PCOG1602B
LCD controller.

Include: xlcd.h

Prototype: void putsXLCD (char *buffer) ;
void putrsXLCD (const rom char *buffer);

Arguments: buffer Pointer to the characters to be written to the LCD controller.

Return Value: None

Remarks: These functions write a string of characters located in buf fer to the
P-tec PCOG1602B LCD controller until a NULL character is
encountered in the string.
For continuous display of data written to the P-tec PCOG1602B LCD
controller, you could set up the display in a Shift mode.

Source File: PutsXLCD.c

Code Example:

PutrsXLCD.c

char display char[13];
putsXLCD (display char) ;

DS51456C-page 84

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ReadAddrXLCD

Description:

Include:
Prototype:
Arguments:
Return Value:

Remarks:

Source File:
Code Example:

This function reads the address byte from the P-tec PCOG1602B LCD
controller.

xlcd.h
unsigned char ReadAddrXLCD (void) ;
None

This function returns an 8-bit which is the 7-bit address in the lower
7 bits of the byte and the BUSY status flag in the 8th bit.

This function reads the address byte from the P-tec PCOG1602B LCD
controller. The user must first check to see if the LCD controller is busy
by calling the BusyXLCD () function.

The address read from the controller is for the character generator
RAM or the display data RAM depending on the previous
Set??RamAddr () function that was called where ?? can be CG or
DD.

ReadAddrXLCD.c

char address;
while (BusyXLCD()) ;
address = ReadAddrXLCD() ;

ReadDataXLCD

Description: This function reads a data byte from the P-tec PCOG1602B LCD
controller.

Include: xlcd.h

Prototype: char ReadDataXLCD (void) ;

Arguments: None

Remarks: This function reads a data byte from the P-tec PCOG1602B LCD

Return Value:
Source File:
Code Example:

controller. The user must first check to see if the LCD controller is busy
by calling the BusyXLCD () function.

The data read from the controller is for the character generator RAM or
the display data RAM depending on the previous Set ? ?RamAddr ()
function that was called where ?? is either CG or DD.

This function returns the 8-bit data value pointed by the address.
ReadDataXLCD.c

char data;
while (BusyXLCD()) ;
data = ReadDataXLCD() ;

© 2005 Microchip Technology Inc.

DS51456C-page 85

16-Bit Language Tools Libraries

SetCGRamAddr

Description: This function sets the character generator address.

Include: xlcd.h

Prototype: void SetCGRamAddr (unsigned char CGaddr) ;

Arguments: CGaddr Character generator address.

Return Value: None

Remarks: This function sets the character generator address of the P-tec
PCOG1602B LCD controller. The user must first check to see if the
controller is busy by calling the BusyXLcD () function.

Source File: SetCGRamAddr.c

Code Example:

char cgaddr = 0x1F;
while (BusyXLCD()) ;
SetCGRamAddr (cgaddr) ;

SetDDRamAddr

Description: This function sets the display data address.

Include: xlcd.h

Prototype: void SetDDRamAddr (unsigned char DDaddr) ;

Arguments: Dpaddr Display data address.

Return Value: None

Remarks: This function sets the display data address of the P-tec PCOG1602B
LCD controller. The user must first check to see if the controller is busy
by calling the BusyXLCD () function.

Source File: SetDDRamAddr.c

Code Example:

char ddaddr = 0x10;
while (BusyXLCD()) ;
SetDDRamAddr (ddaddr) ;

WriteDataXLCD

Description:

Include:
Prototype:
Arguments:

Return Value:
Remarks:

Source File:
Code Example:

This function writes a data byte (one character) from the P-tec
PCOG1602B LCD controller.

xlcd.h
void WriteDataXLCD (char data) ;

data The value of data can be any 8-bit value, but should
correspond to the character RAM table of the P-tec
PCOG1602B LCD controller.

None

This function writes a data byte to the P-tec PCOG1602B LCD

controller. The user must first check to see if the LCD controller is busy

by calling the BusyXLCD () function.

The data read from the controller is for the character generator RAM or

the display data RAM depending on the previous Set? ?RamAddr ()

function that was called where ?? refers to either CG or DD.

WriteDataXLCD.c

WriteDataXLCD (0x30) ;

DS51456C-page 86

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

WriteCmdXLCD

Description: This function writes a command to the P-tec PCOG1602B LCD
controller.

Include: xlcd.h

Prototype: void WriteCmdXLCD (unsigned char cmd) ;

Arguments: cmd This contains the LCD controller parameters to be configured as

defined below:

Type of interface
FOUR_BIT

EIGHT_ BIT

Number of lines
SINLE LINE
TWO_LINE

Segment data transfer direction
SEG1_50_SEG51_100

SEG1_50 SEG100 51
SEG100_51_SEG50_1
SEG100_51_SEG1_50

COM data transfer direction
COM1_COM16
COM16_ COM1

Display On/Off control
DON

DOFF
CURSOR_ON
CURSOR_OFF
BLINK ON
BLINK OFF

Cursor or Display Shift defines
SHIFT CUR_LEFT

SHIFT CUR_RIGHT

SHIFT DISP_ LEFT

SHIFT DISP RIGHT

Return Value: None

Remarks: This function writes the command byte to the P-tec PCOG1602B LCD
controller. The user must first check to see if the LCD controller is busy
by calling the BusyXLCD () function.

Source File: WriteCmdXLCD.c
Code Example: while (BusyXLCD()) ;
WriteCmdXLCD (EIGHT BIT & TWO LINE) ;

WriteCmdXLCD (DON) ;
WriteCmdXLCD (SHIFT DISP LEFT) ;

© 2005 Microchip Technology Inc. DS51456C-page 87

16-Bit Language Tools Libraries

3.3.2 Example of Use

#define __dsPIC30F6014__

#include <p30fxxxx.h>
#include<xlcd.h>

/* holds the address of message */
char * buffer;

char data ;

char mesgl[] = {'H',6'A','R','D','W',

IAIIIRIIIEIII\OI};

char mesg2[] = {IPIIlEl’lRl’lIl’IPI’IHIIIEIIIRIIIAIIILI

\ \’ \LI’III’IBI’I
int main(void)

{

\’l\ol};

/* Set 8bit interface and two line display */
OpenXLCD (EIGHT BIT & TWO LINE & SEG1 50 SEG51 100

& COM1_COM1e6) ;

/* Wait till LCD controller is busy */

while (BusyXLCD()) ;
/* Turn on the display */

WriteCmdXLCD (DON & CURSOR ON & BLINK OFF) ;

buffer = mesgl;
PutsXLCD (buffer) ;
while (BusyXLCD()) ;

/* Set DDRam address to 0x40 to dispaly data in the second line */

SetDDRamAddr (0x40) ;
while (BusyXLCD()) ;
buffer = mesg2;
PutsXLCD (buffer) ;
while (BusyXLCD()) ;
return 0;

DS51456C-page 88

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.4 CAN FUNCTIONS

This section contains a list of individual functions for CAN and an example of use of the
functions. Functions may be implemented as macros.

341 Individual Functions

CAN21AbortAll

CAN2ADbortAll

Description: This function initiates abort of all the pending transmissions.

Include: can.h

Prototype: void CAN1AbortAll (void) ;
void CAN2AbortAll (void) ;

Arguments: None

Return Value: None

Remarks: This function sets the ABAT bit in CiCTRL register thus initiating the
abort of all pending transmission. However, the transmission which is
already in progress will not be aborted. This bit gets cleared by
hardware when the message transmission has been successfully
aborted.

Source File: CAN1AbortAll.c
CAN2AbortAll.c

Code Example: CAN1AbortAll () ;

CAN1GetRXErrorCount

CAN2GetRXErrorCount

Description: This function returns the receive error count value.

Include: can.h

Prototype: unsigned char CAN1GetRXErrorCount (void) ;
unsigned char CAN2GetRXErrorCount (void) ;

Arguments: None

Return Value: contents of CIRERRCNT, which is 8 bits.

Remarks: This function returns the contents of CIRERRCNT (lower byte of CIEC
register) which indicates the receive error count.

Source File: CAN1GetRXErrorCount.c

Code Example:

CAN2GetRXErrorCount.c

unsigned char rx error count;
rx_error count = CAN1GetRXErrorCount () ;

© 2005 Microchip Technology Inc.

DS51456C-page 89

16-Bit Language Tools Libraries

CAN1GetTXErrorCount

CAN2GetTXErrorCount

Description: This function returns the transmit error count value.

Include: can.h

Prototype: unsigned char CAN1GetTXErrorCount (void) ;
unsigned char CAN2GetTXErrorCount (void) ;

Arguments: None

Return Value: Contents of CITERRCNT, which is 8 bits.

Remarks: This function returns the contents of CITERRCNT (upper byte of CIEC
register) which indicates the transmit error count.

Source File: CAN1GetTXErrorCount.c

Code Example:

CAN2GetTXErrorCount.c

unsigned char tx_error count;
tx error count = CAN1GetTXErrorCount () ;

CAN1IsBusOff
CAN2IsBusOff

Description:
Include:
Prototype:

Arguments:
Return Value:

Remarks:
Source File:

Code Example:

This function determines whether the CAN node is in BusOff mode.
can.h

char CAN1IsBusOff (void) ;
char CAN2IsBusOff (void) ;

None

If the value of TXBO is ‘1, then ‘1’ is returned, indicating that the bus
has been turned off due to error in transmission.

If the value of TXBO is ‘0’, then ‘0’ is returned, indicating that the bus
not been turned off.

This function returns the status of the TXBO bit of CiINTF register.

CAN1IsBusOff.c
CAN2IsBusOff.c

while (CAN1IsBusOf£());

CAN1lIsRXReady
CAN2IsRXReady

Description:
Include:
Prototype:

Arguments:

Return Value:

Remarks:
Source File:

Code Example:

This function returns the receive buffer full status.

can.h

char CAN1IsRXReady (char) ;

char CAN2IsRXReady (char) ;

buffno The value of buffno indicates the receive buffer whose status
is required.

If RXFUL is 1, it indicates that the receive buffer contains a received

message.

If RXFUL is 0, it indicates that the receive buffer is open to receive a

new message.

This function returns the status of the RXFUL bit of Receive Control

register.

CAN1IsRXReady.c
CAN2IsRXReady.c

char rx 1 status;
rx 1 status = CAN1IsRXReady (1) ;

DS51456C-page 90

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

CAN1lIsRXPassive
CAN2IsRXPassive

Description:
Include:
Prototype:

Arguments:
Return Value:

Remarks:
Source File:

Code Example:

This function determines if the receiver is in Error Passive state.
can.h

char CANlIsRXPassive (void) ;
char CAN2IsRXPassive (void) ;

None

If the value of RXEP is ‘1, then ‘1’ is returned, indicating the node
going passive due to error in reception.

If the value of RXEP is ‘0’, then ‘0’ is returned, indicating no error on
bus.

This function returns the status of the RXEP bit of CiINTF register.

CAN1IsRXPassive.c
CAN2IsRXPassive.c

char rx bus_status;
rx_bus status = CANlIsRXPassive() ;

CAN1IsTXPassive
CAN2IsTXPassive

Description:
Include:
Prototype:

Arguments:
Return Value:

Remarks:
Source File:

Code Example:

This function determines if the transmitter is in Error Passive state.
can.h

char CAN1IsTXPassive (void) ;
char CAN2IsTXPassive (void) ;

None

If the value of TXEP is ‘1’, then ‘1’ is returned, indicating error on
transmit bus and the bus going passive.

If the value of TXEP is ‘0’, then ‘0’ is returned, indicating no error on
transmit bus.

This function returns the status of the TXEP bit of CiINTF register.

CAN1IsTXPassive.c
CAN2IsTXPassive.c

char tx bus_ status;
tx bus status = CAN1IsTXPassive() ;

© 2005 Microchip Technology Inc.

DS51456C-page 91

16-Bit Language Tools Libraries

CAN1lIsTXReady
CAN2IsTXReady

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:

Code Example:

This function returns the transmitter status indicating if the CAN node is
ready for next transmission.

can.h

char CAN1IsTXReady (char) ;

char CAN2IsTXReady (char) ;

buffno The value of buffno indicates the transmit buffer whose
status is required.

If TXREQ is ‘1’, it returns ‘0’ indicating that the transmit buffer is not

empty.
If TXREQ is ‘0’, it returns ‘1’ indicating that the transmit buffer is empty
and the transmitter is ready for next transmission.

This function returns the compliment of the TXREQ Status bit in the
Transmit Control register.

CAN1IsTXReady.cC
CAN2IsTXReady.c

char tx 2 status;
tx 2 status = CAN1IsTXReady(2) ;

CAN1ReceiveMessage
CANZ2ReceiveMessage

Description:
Include:
Prototype:

Arguments:

Remarks:

Return Value:
Source File:

Code Example:

This function read the data from the receive buffer.
can.h

void CANlReceiveMessage (unsigned char *
data, unsigned char datalen, char MsgFlag) ;

void CAN2ReceiveMessage (unsigned char *
data, unsigned char datalen,char MsgFlag) ;

data The pointer to the location where received data is to be
stored from.

datalen The number of bytes of data expected.

MsgFlag The buffer number where data is received.
If ‘17, the data from CiRX1B1 to CiRX1B4 is read.
If ‘0’ or otherwise, the data from CiRX0B1 to CiRX0B4 is
read.

This function reads the received data into the locations pointed by input
parameter data.

None.

CAN1ReceiveMessage.c
CAN2ReceiveMessage.c

unsigned char*rx data;
CAN1lReceiveMessage (rx data, 5, 0);

DS51456C-page 92

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

CAN1SendMessage

CAN2SendMessage

Description: This function writes data to be transmitted to TX registers, sets the data
length and initiates the transmission.

Include: can.h

Prototype: void CANlSendMessage (unsigned int sid,

unsigned long eid, unsigned char *data,
unsigned char datalen, char MsgFlag) ;
void CAN2SendMessage (unsigned int sid,
unsigned long eid, unsigned char *data,
unsigned char datalen, char MsgFlag) ;

Arguments: sid The 16-bit value to be written into CiTXnSID registers.

CAN_TX_ SID(x) x is the required SID value.
Substitute Remote Request
CAN_SUB_REM TX_ REQ
CAN_SUB_NOR_TX_REQ
Message ID Type
CAN TX EID EN
CAN TX EID DIS

eid The 32-bit value to be written into CiTXnEID and
CiTXnDLC registers.
CAN_TX EID(x) x is the required EID value.
Substitute Remote Request
CAN_REM TX_ REQ
CAN_NOR_TX_REQ

data The pointer to the location where data to be transmitted is
stored.

datalen The number of bytes of data to be transmitted.

MsgFlag The buffer number (‘0’, ‘1’ or ‘2) from where data is
transmitted.
If ‘1’, the data is written into CiTX1B1 to CiTX1B4.
If ‘2’, the data is written into CiTX2B1 to CiTX2B4.
If ‘0’ or otherwise, the data is written into CiTX0B1 to
CiTX0B4.

Return Value: None

Remarks: This function writes the identifier values into SID and EID registers,
data to be transmitted into TX reg, sets the data length and initiates
transmission by setting TXREQ bit.

Source File: CAN1SendMessage.cC
CAN2SendMessage.c
Code Example: CAN1SendMessage ((CAN_TX SID(1920)) &

(CAN TX EID EN) & (CAN SUB NOR TX REQ),
(CAN TX EID(12344)) & (CAN NOR TX REQ),
Txdata, datalen, tx rx no);

© 2005 Microchip Technology Inc. DS51456C-page 93

16-Bit Language Tools Libraries

CAN1SetFilter
CANZ2SetFilter

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function sets the acceptance filter values (SID and EID) for the
specified filter.

can.h

void CANlSetFilter (char filter no, unsigned int sid,
unsigned long eid) ;

void CAN2SetFilter (char filter no, unsigned int sid,
unsigned long eid) ;

The filter (0, 1, 2, 3, 4 or 5) for which new filter values
have to be configured.

filter no

sid The 16-bit value to be written into CIRXFnSID registers.
CAN_FILTER_SID(x) xis the required SID value.
Type of message to be received
CAN RX EID EN
CAN RX EID DIS
eid The 32-bit value to be written into CIRXFnEIDH and
CiRXFnEIDL registers.
CAN FILTER EID(x) xisthe required EID value.
None

This function writes the 16-bit value of sid into the CIRXFnSID register
and or the 32-bit value of eid into the CIRXFnEIDH and CiRXFnEIDL
registers corresponding to the filter specified by filter no.

Filter O is taken as default.

CANlSetFilter.c
CAN2SetFilter.c

CAN1SetFilter (1, CAN FILTER SID(7) &
CAN RX_EID EN, CAN FILTER EID(3));

CAN1SetMask
CAN2SetMask
Description: This function sets the acceptance mask values (SID and EID) for the
specified mask.
Include: can.h
Prototype: void CAN1SetMask (char mask no, unsigned int sid,
unsigned long eid) ;
void CAN2SetMask (char mask no, unsigned int sid,
unsigned long eid) ;
Arguments: mask no The mask (‘0’ or ‘1") for which mask values have to be
configured.
sid The 16-bit value to be written into CIRXMnSID registers.
CAN_ MASK_SID (x) x is the required SID value.
Match/ignore message type specified in filter
CAN MATCH FILTER TYPE
CAN IGNORE_FILTER TYPE
eid The 32-bit value to be written into CIRXMnEIDH and
CiRXMnEIDL registers.
CAN MASK_EID (x) x is the required EID value.
Return Value: None

DS51456C-page 94

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

CAN1SetMask (Continued)

CAN2SetMask

Remarks:

Source File:

Code Example:

This function writes the 16-bit value of sid into the CiIRXFnSID register
and or the 32-bit value of eid into the CIRXFnEIDH and CiRXFnEIDL
registers corresponding to the mask specified by mask_no.

Filter 0 is taken as default.

CANlSetMask.c

CAN2SetMask.c

CANl1SetMask (1, CAN MASK SID(7) &

CAN MATCH FILTER TYPE, CAN MASK EID(3));

CAN1SetOperationMode
CAN2SetOperationMode

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function configures the CAN module
can.h

void CANlSetOperationMode (unsigned int config) ;
void CAN2SetOperationMode (unsigned int config) ;

config The 16-bit value to be loaded into CiCTRL register, the
combination of the following defines.

CAN IDLE CON CAN Onin Idle mode
CAN IDLE STOP CAN Stop in Idle mode

CAN MASTERCLOCK 1 FCANis Fcy
CAN MASTERCLOCK 0 FCANis 4 Fcy

CAN modes of operation

CAN REQ OPERMODE NOR

CAN REQ OPERMODE DIS

CAN REQ OPERMODE LOOPBK

CAN REQ OPERMODE_LISTENONLY
CAN_REQ OPERMODE_CONFIG

CAN REQ OPERMODE_LISTENALL

CAN Capture Enable/Disable
CAN CAPTURE_EN

CAN_CAPTURE_DIS

None

This function configures the following bits of CICTRL:-CSIDL,
REQOP<2:0> and CANCKS

CAN1SetOperationMode.c
CAN2SetOperationMode.c

CANlSetOperationMode (CAN_IDLE_STOP &
CAN MASTERCLOCK 0 & CAN REQ OPERMODE DIS &
CAN CAPTURE DIS) ;

© 2005 Microchip Technology Inc.

DS51456C-page 95

16-Bit Language Tools Libraries

CAN1SetOperationModeNoWait
CAN2SetOperationModeNoWait

Description: This function aborts the pending transmissions and configures the CAN
module

Include: can.h

Prototype: void CANlSetOperationModeNoWait (

unsigned int config) ;
void CAN2SetOperationModeNoWait (
unsigned int config) ;

Arguments: config The 16-bit value to be loaded into CiCTRL register, the
combination of the following defines.

CAN IDLE _CON NO WAIT CAN Onin Ildle mode
CAN IDLE_STOP _NO WAIT CAN Stop in Idle mode

CAN MASTERCLOCK 1 NO WAIT FCAN is FcY
CAN MASTERCLOCK 0 NO WAIT FCAN is 4 Fcy

CAN modes of operation

CAN REQ OPERMODE_NOR NO WAIT

CAN REQ OPERMODE DIS NO WAIT

CAN REQ OPERMODE_LOOPBK NO WAIT

CAN REQ OPERMODE LISTENONLY NO WAIT
CAN REQ OPERMODE CONFIG NO WAIT

CAN REQ OPERMODE LISTENALL NO WAIT

CAN Capture Enable/Disable
CAN CAPTURE_EN NO WAIT
CAN CAPTURE DIS NO WAIT

Return Value: None

Remarks: This function sets the Abort bit thus initiating abort of all pending
transmissions and configures the following bits of CICTRL:-CSIDL,
REQOP<2:0> and CANCKS

Source File: CAN1SetOperationModeNoWait.c
CAN2SetOperationModeNoWait.c
Code Example: CAN1SetOperationModeNoWait (CAN_IDLE_CON &

CAN MASTERCLOCK 1 & CAN REQ OPERMODE LISTEN &
CAN CAPTURE DIS NO WAIT) ;

CAN1SetRXMode

CAN2SetRXMode

Description: This function configures the CAN receiver.

Include: can.h

Prototype: void CAN1SetRXMode (char buffno, unsigned int
config) ;

void CAN2SetRXMode (char buffno, unsigned int

config) ;

Arguments: buffno buffno indicates the control reg to be configured.

config The value to be written into CIRXnCON reg, the combination
of the following defines.
Clear RXFUL bit
CAN RXFUL_CLEAR
Double buffer enable/disable

CAN BUF0_ DBLBUFFER EN
CAN BUFO_DBLBUFFER DIS

DS51456C-page 96 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

CAN1SetRXMode (Continued)

CAN2SetRXMode

Return Value: None

Remarks: This function configures the following bits of CIRXnCON register:
RXRTR, RXFUL (only 0), RXM<1:0> and DBEN

Source File: CAN1SetRXMode.c
CAN2SetRXMode.c

Code Example: CAN1SetRXMode (0, CAN RXFUL_CLEAR &

CAN BUFO_DBLBUFFER_EN) ;

CAN1SetTXMode (function)

CAN2SetTXMode
Description: This function configures the CAN transmitter module
Include: can.h
Prototype: void CAN1SetTXMode (char buffno, unsigned int
config) ;
void CAN2SetTXMode (char buffno, unsigned int
config) ;
Arguments: buffno buffno indicates the control reg to be configured.

config The value to be written into CiTXnCON reg, the combination
of the following defines.

Message send request
CAN TX REQ
CAN_TX STOP_REQ

Message transmission priority
CAN TX PRIORITY HIGH

CAN TX_ PRIORITY HIGH INTER
CAN_TX_PRIORITY LOW_INTER
CAN_TX_PRIORITY LOW

Return Value: None

Remarks: This function configures the following bits of CiITXnCON register:
TXRTR, TXREQ, DLC, TXPRI<1:0>

Source File: CAN1SetTXMode.c
CAN2SetTXMode.c

Code Example: CAN1SetTXMode (1, CAN TX STOP_REQ &

CAN_TX_PRTIORITY_ HIGH) ;

© 2005 Microchip Technology Inc. DS51456C-page 97

16-Bit Language Tools Libraries

CANl1Initialize
CANZInitialize

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function configures the CAN module
can.h

void CANlInitialize (unsigned int configl,
unsigned int config2);
void CAN2Initialize (unsigned int configil,
unsigned int config2);

configl The value to be written into CiCFG1 register, the
combination of the following defines.

Sync jump width
CAN_SYNC JUMP_WIDTH1

CAN SYNC JUMP_WIDTH2
CAN SYNC_JUMP_WIDTH3
CAN SYNC JUMP_WIDTH4

Baud Rate prescaler

CAN BAUD PRE SCALE (x) (((x—1) & 0x3f) | 0xCO0)
config2 The value to be written into CiCFG2 register, the

combination of the following defines.

CAN bus line filter selection for wake-up
CAN WAKEUP_BY FILTER EN
CAN WAKEUP BY FILTER DIS

CAN propagation segment length
CAN PROPAGATIONTIME SEG TQ (x)

(((x=1) & 0x7) | OXC7F8)

CAN phase segment 1 length
CAN PHASE SEGl_TQ(x)
((((x = 1) & Ox7) * 0x8) | OXC7C7)

CAN phase segment 2 length
CAN PHASE SEG2_TQ(x)
((((x-1) & 0x7) * 0x100) | OXCOFF)

CAN phase segment 2 mode
CAN SEG2_ FREE PROG

CAN SEG2 TIME LIMIT SET

Sample of the CAN bus line
CAN_ SAMPLE3TIMES
CAN SAMPLE1TIME

None

This function configures the following bits of CICFG1 and CiCFG2
registers:

SJW<1:0>, BRP<5:0>, CANCAP, WAKEFIL, SEG2PH<2:0>,
SEGPHTS, SAM, SEG1PH<2:0>, PRSEG<2:0>

CANlInitialize.c
CAN2Initialize.c

CAN1Tnitialize (CAN_SYNC_JUMP WIDTH2 &
CAN_BAUD_PRE_SCALE (2),

CAN WAKEUP BY FILTER DIS &

CAN PHASE SEG2 _TQ(5) &

CAN PHASE SEG1 TQ(4) &
CAN_PROPAGATIONTIME_SEG TQ(4) &
CAN_SEG2_FREE_PROG &
CAN_SAMPLE1TIME) ;

DS51456C-page 98

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ConfigintCAN1
ConfigIntCAN2

Description: This function configures the CAN Interrupts
Include: can.h
Prototype: void ConfigIntCAN1 (unsigned int configl,

unsigned int config2);
void ConfigIntCAN2 (unsigned int configl,
unsigned int config2) ;

Arguments: configl individual interrupt enable/disable information as defined
below:
User must enter either enable or disable option for all the
individual interrupts.

Interrupt enable
CAN INDI INVMESS EN

CAN TNDI_WAK EN
CAN TNDT_ERR_EN
CAN INDI_TXB2 EN
CAN INDI_TXB1l EN
CAN INDI_TXBO EN
CAN TNDT_RXB1_EN
CAN_TNDT_RXBO_EN

Interrupt disable
CAN INDI INVMESS DIS

CAN TNDT_WAK_ DTS
CAN TNDT_ERR DTS
CAN INDI_TXB2 DIS
CAN INDI_TXB1l DIS
CAN INDI_TXBO DIS
CAN_ TNDT_RXB1_DIS
CAN TNDT_RXBO_DIS

config2 CAN interrupt priority and enable/disable information as
defined below:

CAN Interrupt enable/disable
CAN INT ENABLE
CAN INT DISABLE

CAN Interrupt priority
CAN INT PRI 0
CAN INT PRI 1
CAN INT PRI 2
CAN INT PRI 3
CAN INT PRI 4
CAN INT PRI 5
CAN INT PRI 6
CAN INT PRI 7

Return Value: None

Remarks: This function configures the CAN interrupts. It enables/disables the
individual CAN interrupts. It also enables/disables the CAN interrupt
and sets priority.

Source File: ConfigIntCANl.c
ConfigIntCAN2.c

© 2005 Microchip Technology Inc. DS51456C-page 99

16-Bit Language Tools Libraries

ConfigIntCAN1 (Continued)

ConfigIntCAN2

Code Example:

ConfigIntCAN1 (CAN INDI_INVMESS EN &
CAN INDI_WAK DIS &
CAN INDI ERR DIS &
CAN INDI TXB2 DIS &
CAN INDI_TXB1 DIS &
CAN INDT_TXBO DIS &
CAN TNDT_RXB1 DIS &
CAN TNDT_RXBO DIS ,
CAN INT PRI 3 &
CAN INT ENABLE) ;

3.4.2 Individual Macros

EnableIntCAN1
EnableIntCAN2

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the CAN interrupt.
can.h
None

This macro sets CAN Interrupt Enable bit of Interrupt Enable Control
register.

EnableIntCAN1;

DisableIntCAN1
DisableIntCAN2

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the CAN interrupt.
can.h
None

This macro clears CAN Interrupt Enable bit of Interrupt Enable Control
register.

DisableIntCAN2;

SetPriorityInt CAN1
SetPriorityIntCAN2

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for CAN interrupt.

can.h

priority

This macro sets CAN Interrupt Priority bits of Interrupt Priority Control
register.

SetPriorityIntCAN1 (2) ;

DS51456C-page 100

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.4.3 Example of Use

#define __dsPIC30F6014__
#include<p30fxxxx.h>
#include<can.h>
#define dataarray 0x1820
int main(void)
{
/* Length of data to be transmitted/read */
unsigned char datalen;
unsigned char Txdatal] =
{IMIIIIIIlclllRlllolllclllHlllIlllPllI\Ol};
unsigned int TXConfig, RXConfig;
unsigned long MaskID,MessagelD;
char FilterNo, tx rx no;
unsigned char * datareceived = (unsigned char *)
dataarray; /* Holds the data received */
/* Set request for configuration mode */
CANlSetOperationMode (CAN_IDLE CON &
CAN MASTERCLOCK 1 &
CAN_REQ OPERMODE_CONFIG &
CAN CAPTURE_DIS) ;
while (C1CTRLbits.OPMODE <=3) ;
/* Load configuration register */
CAN1lInitialize (CAN SYNC JUMP WIDTH2 &
CAN_BAUD PRE_SCALE(2),
CAN WAKEUP BY FILTER DIS &
CAN PHASE SEG2 TQ(5) &
CAN PHASE SEG1 TQ(4) &
CAN PROPAGATIONTIME SEG TQ(4) &
CAN_SEG2 FREE_PROG &
CAN SAMPLEITIME) ;
/* Load Acceptance filter register */
FilterNo = 0;
CANlSetFilter (FilterNo, CAN FILTER SID(1920) &
CAN RX_EID EN, CAN FILTER_EID(12345));
/* Load mask filter register */
CANlSetMask (FilterNo, CAN MASK SID(1920) &
CAN MATCH FILTER TYPE, CAN MASK EID(12344));
/* Set transmitter and receiver mode */
tx rx no = 0;
CAN1SetTXMode (tx_rx no,
CAN TX STOP REQ &
CAN TX PRIORITY HIGH) ;
CAN1SetRXMode (tx_rx no,
CAN RXFUL_CLEAR &
CAN BUF0 DBLBUFFER EN) ;
/* Load message ID , Data into transmit buffer and set
transmit request bit */
datalen = 8;
CAN1SendMessage ((CAN TX SID(1920)) & CAN TX EID EN &
CAN SUB NOR_TX REQ,
(CAN_TX_EID(12344)) & CAN NOR_TX_REQ,
Txdata,datalen, tx rx no);

© 2005 Microchip Technology Inc. DS51456C-page 101

16-Bit Language Tools Libraries

/* Set request for Loopback mode */
CANlSetOperationMode(CAN_IDLE_CON & CAN_CAPTURE DIS &
CAN MASTERCLOCK 1 &
CAN REQ OPERMODE LOOPBK) ;
while (C1CTRLbits.OPMODE !=2) ;
/* Wait till message is transmitted completely */
while (!CAN1IsTXReady (0))
/* Wait till receive buffer contain valid message */
while (!CAN1IsRXReady (0)) ;
/* Read received data from receive buffer and store it into
user defined dataarray */
CAN1lReceiveMessage (datareceived, datalen, tx rx no);
while (1) ;
return O0;

DS51456C-page 102 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ADC12 FUNCTIONS

This section contains a list of individual functions for the 12-bit ADC and an example of
use of the functions. Functions may be implemented as macros.

3.5.1 Individual Functions

BusyADC12

Description: This function returns the ADC conversion status.
Include: adcl2.h

Prototype: char BusyADC12 (void) ;

Arguments: None

Return Value:

Remarks:

Source File:
Code Example:

If the value of DONE is ‘0’, then ‘1’ is returned, indicating that the ADC
is busy in conversion.

If the value of DONE is ‘1’, then ‘0’ is returned, indicating that the ADC
has completed conversion.

This function returns the complement of the ADCON1 <DONE> hit
status which indicates whether the ADC is busy in conversion.

BusyADC1l2.c
while (BusyADC12 ()) ;

CloseADC12

Description: This function turns off the ADC module and disables the ADC
interrupts.

Include: adcl2.h

Prototype: void CloseADC12 (void) ;

Arguments: None

Return Value: None

Remarks: This function first disables the ADC interrupt and then turns off the ADC
module.The Interrupt Flag bit (ADIF) is also cleared.

Source File: CloseADCl2.c

Code Example:

CloseADC12 () ;

ConfigIntADC12

Description:
Include:
Prototype:
Arguments:

This function configures the ADC interrupt.
adcl2.h
void ConfigIntADC12 (unsigned int config) ;

config ADC interrupt priority and enable/disable information as
defined below:

ADC Interrupt enable/disable
ADC_INT ENABLE
ADC_INT DISABLE

© 2005 Microchip Technology Inc.

DS51456C-page 103

16-Bit Language Tools Libraries

ConfigIntADC12 (Continued)

ADC Interrupt priority
ADC_INT PRI 0
ADC_INT PRI 1
ADC_INT PRI 2
ADC_INT PRI 3
ADC INT PRI 4
ADC_INT PRI 5
ADC_INT PRI 6
ADC_INT PRI 7

Return Value: None
Remarks: This function clears the Interrupt Flag (ADIF) bit and then sets the
interrupt priority and enables/disables the interrupt.
Source File: ConfigIntADCl2.c
Code Example: ConfigIntADC12 (ADC_INT PRI_6 &
ADC_INT ENABLE) ;
ConvertADC12
Description: This function starts A/D conversion.
Include: adcl2.h
Prototype: void ConvertADC12 (void) ;
Arguments: None
Return Value: None
Remarks: This function clears the ADCON1<SAMP> bit and thus stops sampling

and starts conversion.
This happens only when trigger source for the A/D conversion is
selected as Manual, by clearing the ADCON1 <SSRC> bits.

Source File: ConvertADCl2.c

Code Example: ConvertADC12 () ;

OpenADC12

Description: This function configures the ADC.

Include: adcl2.h

Prototype: void OpenADC12 (unsigned int configl,

unsigned int config2,
unsigned int config3,
unsigned int configport,
unsigned int configscan)

Arguments: configl This contains the parameters to be configured in the
ADCONL1 register as defined below:

Module On/Off

ADC_MODULE_ON
ADC_MODULE_OFF

Idle mode operation
ADC_IDLE_ CONTINUE

ADC_IDLE_STOP

DS51456C-page 104 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenADC12 (Continued)

Result output format
ADC_FORMAT SIGN FRACT

ADC_FORMAT_FRACT
ADC_FORMAT_STGN INT
ADC_FORMAT_INTG

Conversion trigger source
ADC_CLK_AUTO
ADC_CLK_TMR
ADC_CLK_INTO
ADC_CLK_MANUAL

Auto sampling select
ADC_AUTO_SAMPLING ON
ADC_AUTO_SAMPLING OFF

Sample enable
ADC_SAMP ON

ADC_SAMP OFF

config2 This contains the parameters to be configured in the
ADCONB2 register as defined below:

Voltage Reference
ADC_VREF_AVDD AVSS
ADC _VREF_EXT AVSS
ADC_VREF_AVDD_ EXT
ADC_VREF_EXT EXT

Scan selection
ADC_SCAN ON
ADC_SCAN OFF

Number of samples between interrupts
ADC_SAMPLES PER_INT 1
ADC_SAMPLES PER_INT 2

ADC_SAMPLES_PER_TINT 15
ADC_SAMPLES_PER_INT 16

Buffer mode select
ADC_ALT BUF_ON
ADC_ALT BUF OFF

Alternate Input Sample mode select
ADC_ALT INPUT ON
ADC_ALT INPUT OFF

config3 This contains the parameters to be configured in the
ADCONS3 register as defined below:

Auto Sample Time bits
ADC_SAMPLE TIME 0
ADC_SAMPLE TIME 1

ADC_SAMPLE_TIME_30
ADC_SAMPLE TIME 31

Conversion Clock Source select

ADC_CONV_CLK_TINTERNAIL_RC
ADC_CONV_CLK_SYSTEM

© 2005 Microchip Technology Inc. DS51456C-page 105

16-Bit Language Tools Libraries

OpenADC12 (Continued)

Return Value:
Remarks:

Source File:
Code Example:

configport

configscan

None

Conversion clock select
ADC_CONV_CLK_ Tcy2
ADC_CONV_CLK_ Tcy
ADC_CONV_CLK 3Tcy?2

ADC_CONV_CLK_32Tcy

This contains the pin select to be configured into the
ADPCEFG register as defined below:

ENABLE_ALL_ANA
ENABLE_ALL_DIG
ENABLE_ANO_ ANA
ENABLE_AN1_ ANA
ENABLE_AN2 ANA

ENABLE AN15 ANA

This contains the scan select parameter to be
configured into the ADCSSL register as defined
below:

SCAN_NONE
SCAN ALL

SKIP_SCAN ANO
SKIP_SCAN AN1

SKIP_SCAN AN15

This function configures the ADC for the following parameters:
Operating mode, Sleep mode behavior, Data o/p format, Sample Clk
Source, VREF source, No of samples/int, Buffer Fill mode, Alternate i/p
sample mod, Auto sample time, Conv clock source, Conv Clock Select
bits, Port Config Control bits.

OpenADCl2.c

OpenADC12 (ADC_MODULE_OFF &
ADC_IDLE_CONTINUE &
ADC_FORMAT_ INTG &
ADC_AUTO_SAMPLING_ ON,
ADC_VREF_AVDD_AVSS &
ADC_SCAN OFF &
ADC_BUF_MODE_OFF &
ADC_ALT INPUT ON &
ADC_SAMPLES_PER_INT 15,
ADC_SAMPLE_TIME 4 &
ADC_CONV_CLK_SYSTEM &
ADC_CONV_CLK_Tcy,
ENABLE_ANO_ ANA,

SKIP SCAN AN1 &
SKIP_SCAN AN2 &
SKIP_SCAN AN5 &
SKIP_SCAN_AN7) ;

DS51456C-page 106

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ReadADC12
Description: This function reads the ADC Buffer register which contains the
conversion value.
Include: adcl2.h
Prototype: unsigned int ReadADC12 (unsigned char bufIndex) ;
Arguments: bufIndex Thisis the ADC buffer number which is to be read.
Return Value: None
Remarks: This function returns the contents of the ADC Bulffer register. User
should provide bufIndex value between 0 to 15 to ensure correct
read of the ADCBUFO to ADCBUFF register.
Source File: ReadADCl12.c
Code Example: unsigned int result;
result = ReadADC12(5) ;
StopSampADC12
Description: This function is identical to ConvertADC12.
Source File: #define to ConvertADC12 in adcl2.h
SetChanADC12
Description: This function sets the positive and negative inputs for sample
multiplexers A and B.
Include: adcl2.h
Prototype: void SetChanADC12 (unsigned int channel) ;
Arguments: channel This contains the input select parameter to be configured
into ADCHS register as defined below:
A/D Channel 0 positive i/p select for SAMPLE A
ADC_CHO_POS_SAMPLEA ANO
ADC_CHO_ POS_SAMPLEA AN1
ADC _CHO_POS_ SAMPLEA AN15
A/D Channel 0 negative i/p select for SAMPLE A
ADC CHO NEG SAMPLEA AN1
ADC _CHO NEG SAMPLEA NVREF
A/D Channel 0 positive i/p select for SAMPLE B
ADC _CHO POS_SAMPLEB ANO
ADC _CHO POS_SAMPLEB AN1
ADC_CHO_POS_SAMPLEB AN15
A/D Channel 0 negative i/p select for SAMPLE B
ADC CHO NEG SAMPLEB AN1
ADC_CHO_NEG_SAMPLEB_ NVREF
Return Value: None
Remarks: This function configures the inputs for the sample multiplexers A and B
by writing to the ADCHS register.
Source File: SetChanADC12.c
Code Example: SetChanADC12 (ADC_CHO POS_ SAMPLEA AN4 &

ADC_CHO_NEG_SAMPLEA NVREF) ;

© 2005 Microchip Technology Inc. DS51456C-page 107

16-Bit Language Tools Libraries

3.5.2 Individual Macros

EnableIntADC

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the ADC interrupt.
adcl2.h
None

This macro sets ADC Interrupt Enable bit of Interrupt Enable Control
register.

EnableIntADC;

DisablelntADC

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the ADC interrupt.
adcl2.h
None

This macro clears ADC Interrupt Enable bit of Interrupt Enable Control
register.

DisableIntADC;

SetPriorityIntADC

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for ADC interrupt.

adcl2.h

priority

This macro sets ADC Interrupt Priority bits of Interrupt Priority Control
register.

SetPriorityIntADC(6) ;

DS51456C-page 108

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.5.3 Example of Use

#define __dsPIC30F6014__
#include <p30fxxxx.h>
#include<adcl2.h>
unsigned int Channel, PinConfig, Scanselect, Adcon3 reg, Adcon2 reg,
Adconl_ reg;
int main(void)
{
unsigned int result[20], 1i;
ADCONlbits.ADON = 0; /* turn off ADC */
Channel = ADC CHO POS SAMPLEA AN4 &
ADC_CHO_NEG_SAMPLEA NVREF &
ADC_CHO_POS_SAMPLEB AN2&
ADC CHO_NEG_SAMPLEB AN1;
SetChanADC12 (Channel) ;
ConfigIntADCl2(ADC_INT_DISABLE);
PinConfig = ENABLE AN4 ANA;
Scanselect = SKIP_SCAN AN2 & SKIP SCAN AN5 &
SKIP_SCAN AN9 & SKIP SCAN AN10 &
SKIP SCAN AN14 & SKIP_SCAN AN15 ;

Adcon3_reg = ADC SAMPLE TIME 10 &
ADC_CONV_CLK_SYSTEM &
ADC_CONV_CLK_13Tcy;

Adcon2_reg = ADC_VREF AVDD AVSS &
ADC_SCAN OFF &
ADC_ALT BUF OFF &
ADC_ALT INPUT OFF &
ADC_SAMPLES_PER_INT 16;

Adconl_reg = ADC_MODULE ON &
ADC_IDLE CONTINUE &
ADC_FORMAT INTG &
ADC_CLK_MANUAL &
ADC_AUTO SAMPLING OFF;

OpenADC12 (Adconl reg, Adcon2 reg,

Adcon3_reg,PinConfig, Scanselect) ;

i = 0;

while(1 <16)

{

ADCONlbits.SAMP = 1;
while (!ADCON1lbits.SAMP) ;
ConvertADC12 () ;

while (ADCONlbits.SAMP) ;
while (!BusyADC12()) ;
while (BusyADC12()) ;
result[i] = ReadADC12 (i) ;
14+;

© 2005 Microchip Technology Inc. DS51456C-page 109

16-Bit Language Tools Libraries

3.6 ADC10 FUNCTIONS

This section contains a list of individual functions for the 10-bit ADC and an example of
use of the functions. Functions may be implemented as macros.

3.6.1 Individual Functions

BusyADC10

Description: This function returns the ADC conversion status.
Include: adcl0.h

Prototype: char BusyADC10 (void) ;

Arguments: None

Return Value:

Remarks:

Source File:
Code Example:

If the value of DONE is ‘0’, then ‘1’ is returned, indicating that the ADC
is busy in conversion.

If the value of DONE is ‘1’, then ‘0’ is returned, indicating that the ADC
has completed conversion.

This function returns the complement of the ADCON1 <DONE> hit
status which indicates whether the ADC is busy in conversion.

BusyADC10.c
while (BusyADC10 ()) ;

CloseADC10

Description: This function turns off the ADC module and disables the ADC interrupts.

Include: adcl0.h

Prototype: void CloseADC10 (void) ;

Arguments: None

Return Value: None

Remarks: This function first disables the ADC interrupt and then turns off the ADC
module.The Interrupt Flag bit (ADIF) is also cleared.

Source File: CloseADC10.c

Code Example:

CloseADC10 () ;

ConfigIntADC10

Description:
Include:
Prototype:
Arguments:

This function configures the ADC interrupt.
adcl0O0.h
void ConfigIntADC10 (unsigned int config) ;

config ADC interrupt priority and enable/disable information as
defined below:

ADC Interrupt enable/disable
ADC_INT ENABLE
ADC_INT DISABLE

ADC Interrupt priority
ADC INT PRI 0
ADC INT PRI 1
ADC_INT PRI 2
ADC_INT PRI 3
ADC INT PRI 4
ADC INT PRI 5
ADC INT PRI 6
ADC_INT PRI 7

DS51456C-page 110

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ConfigIintADC10 (Continued)

Return Value: None
Remarks: This function clears the Interrupt Flag (ADIF) bit and then sets the
interrupt priority and enables/disables the interrupt.
Source File: ConfigIntADC10.c
Code Example: ConfigIntADC10 (ADC_INT PRI_3 &
ADC_INT DISABLE) ;
ConvertADC10
Description: This function starts the A/D conversion.
Include: adcl0.h
Prototype: void ConvertADC10 (void) ;
Arguments: None
Return Value: None
Remarks: This function clears the ADCON1<SAMP> bit and thus stops sampling

and starts conversion.
This happens only when trigger source for the A/D conversion is
selected as Manual, by clearing the ADCON1 <SSRC> bits.

Source File: ConvertADC10.c

Code Example: ConvertADC10 () ;

OpenADC10

Description: This function configures the ADC.

Include: adcl0.h

Prototype: void OpenADC10 (unsigned int configl,

unsigned int config2,
unsigned int config3,
unsigned int configport,
unsigned int configscan)

Arguments: configl This contains the parameters to be configured in the
ADCONL1 register as defined below:

Module On/Off
ADC_MODULE_ON
ADC_MODULE_OFF

Idle mode operation
ADC_IDLE_CONTINUE

ADC_IDLE_STOP

Result output format
ADC_FORMAT SIGN FRACT

ADC_FORMAT_FRACT
ADC_FORMAT_STGN INT
ADC_FORMAT_INTG

Conversion trigger source
ADC_CLK_AUTO
ADC_CLK_MPWM
ADC_CLK_TMR
ADC_CLK_INTO
ADC_CLK_MANUAL

© 2005 Microchip Technology Inc. DS51456C-page 111

16-Bit Language Tools Libraries

OpenADC10 (Continued)

config2

config3

Auto sampling select
ADC_AUTO_SAMPLING ON

ADC_AUTO SAMPLING OFF

Simultaneous Sampling
ADC_SAMPLE SIMULTANEOUS

ADC_SAMPLE INDIVIDUAL

Sample enable
ADC_SAMP ON

ADC_SAMP_OFF

This contains the parameters to be configured in the
ADCONB2 register as defined below:

Voltage Reference
ADC_VREF_AVDD_AVSS
ADC_VREF_EXT AVSS
ADC_VREF_AVDD_ EXT
ADC VREF_EXT EXT

Scan selection
ADC_SCAN ON
ADC_SCAN OFF

A/D channels utilized
ADC_CONVERT CH0123
ADC_CONVERT CHO1
ADC_CONVERT CHO

Number of samples between interrupts
ADC_SAMPLES PER INT 1
ADC_SAMPLES PER INT 2

ADC_SAMPLES_PER INT 15
ADC_SAMPLES_PER INT 16

Buffer mode select
ADC_ALT BUF_ON
ADC_ALT BUF_OFF

Alternate Input Sample mode select
ADC_ALT INPUT_ ON
ADC_ALT_ INPUT OFF

This contains the parameters to be configured in the
ADCONS3 register as defined below:

Auto Sample Time bits
ADC_SAMPLE TIME 0
ADC_SAMPLE TIME 1

ADC_SAMPLE_TIME 30
ADC_SAMPLE_TIME_31

Conversion Clock Source select
ADC_CONV_CLK_ INTERNAL RC
ADC_CONV_CLK_SYSTEM

Conversion clock select
ADC_CONV_CLK_ Tcy2
ADC_CONV_CLK Tcy
ADC_CONV_CLK 3Tcy?2

ADC_CONV_CLK_ 32Tcy

DS51456C-page 112

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenADC10 (Continued)

configport

configscan

Return Value: None

This contains the pin select to be configured into the
ADPCFG register as defined below:

ENABLE_ALI,_ANA
ENABLE_ALL DIG
ENABLE_ANO ANA
ENABLE_AN1 ANA
ENABLE_AN2 ANA

ENABLE AN15 ANA

This contains the scan select parameter to be
configured into the ADCSSL register as defined
below:

SCAN_NONE
SCAN_ALL
SKIP_SCAN_ANO
SKIP_ SCAN AN1

SKIP SCAN AN15

configures the ADC for the following parameters:

Operating mode, Sleep mode behavior, Data o/p format, Sample Clk
Source, VREF source, No of samples/int, Buffer Fill mode, Alternate i/p

Auto sample time, Conv clock source, Conv Clock Select

bits, Port Config Control bits.

Remarks: This function
sample mod,
Source File: OpenADC10.

Code Example:

(¢]

OpenADC10 (ADC_MODULE OFF &

ADC_TIDLE_STOP &
ADC_FORMAT SIGN FRACT &
ADC_CLK_INTO &
ADC_SAMPLE_INDIVIDUAL &
ADC_AUTO_SAMPLING_ ON,
ADC_VREF_AVDD_AVSS &
ADC_SCAN OFF &
ADC_BUF_MODE_OFF &
ADC_ALT INPUT ON &
ADC_CONVERT CHO &
ADC_SAMPLES_PER_TINT 10,
ADC_SAMPLE_TIME 4 &
ADC_CONV_CLK_SYSTEM &
ADC_CONV_CLK_Tcy,
ENABLE_AN1 ANA,
SKIP_SCAN ANO &
SKIP_SCAN AN3 &
SKIP_SCAN AN4 &
SKIP_SCAN_ANS) ;

© 2005 Microchip Technology Inc.

DS51456C-page 113

16-Bit Language Tools Libraries

ReadADC10

Description: This function reads the ADC Buffer register which contains the
conversion value.

Include: adcl0.h

Prototype: unsigned int ReadADC10 (unsigned char bufIndex) ;

Arguments: bufIndex Thisis the ADC buffer number which is to be read.

Return Value: None

Remarks: This function returns the contents of the ADC Bulffer register. User
should provide bufIndex value between ‘0’ to ‘15’ to ensure correct
read of the ADCBUFO to ADCBUFF.

Source File: ReadADC10.c

Code Example:

unsigned int result;
result = ReadADC10(3);

StopSampADC10

Description: This function is identical to ConvertADC10.

Source File: #define to ConvertADC10 in adcl0.h

SetChanADC10

Description: This function sets the positive and negative inputs for the sample
multiplexers A and B.

Include: adcl0.h

Prototype: void SetChanADC10 (unsigned int channel) ;

Arguments: channel This contains the input select parameter to be configured

into the ADCHS register as defined below:

A/D Channel 1, 2, 3 Negative input for Sample A
ADC_CHX_ NEG SAMPLEA AN9ANI1O0AN11l
ADC_CHX_ NEG SAMPLEA AN6AN7ANS
ADC_CHX NEG SAMPLEA NVREF

A/D Channel 1, 2, 3 Negative input for Sample B
ADC_CHX_ NEG SAMPLEB AN9ANI10AN11l
ADC_CHX NEG SAMPLEB ANG6AN7ANS
ADC_CHX NEG SAMPLEB NVREF

A/D Channel 1, 2, 3 Positive input for Sample A
ADC_CHX_ POS_SAMPLEA AN3AN4AN5
ADC_CHX_ POS SAMPLEA ANOAN1AN2

A/D Channel 1, 2, 3 Positive input for Sample B
ADC_CHX_ POS_SAMPLEA AN3AN4AN5
ADC_CHX_ POS_ SAMPLEB ANOAN1AN2

A/D Channel 0 positive i/p select for Sample A
ADC _CHO POS_SAMPLEA ANO
ADC _CHO POS_ SAMPLEA AN1

ADC_CHO_POS_SAMPLEA AN15

A/D Channel 0 negative i/p select for Sample A
ADC CHO NEG SAMPLEA AN1
ADC_CHO NEG SAMPLEA NVREF

DS51456C-page 114

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

SetChanADC10 (Continued)

A/D Channel 0 positive i/p select for Sample B
ADC_CHO_POS_SAMPLEB ANO
ADC_CHO_ POS_SAMPLEB AN1

ADC_CHO_POS_SAMPLEB_AN15

A/D Channel 0 negative i/p select for Sample B
ADC CHO NEG SAMPLEB AN1
ADC_CHO NEG SAMPLEB NVREF

Return Value: None
Remarks: This function configures the inputs for sample multiplexers A and B by
writing to ADCHS register.
Source File: SetChanADC10.c
Code Example: SetChanADC10 (ADC_CHO POS_ SAMPLEA ANO &
ADC CHO NEG SAMPLEA NVREF) ;
3.6.2 Individual Macros

EnableIntADC

Description: This macro enables the ADC interrupt.

Include: adcl0.h

Arguments: None

Remarks: This macro sets ADC Interrupt Enable bit of Interrupt Enable Control
register.

Code Example: EnableIntADC;

DisableIntADC

Description: This macro disables the ADC interrupt.

Include: adcl0.h

Arguments: None

Remarks: This macro clears ADC Interrupt Enable bit of Interrupt Enable Control
register.

Code Example: DisableIntADC;

SetPriorityIntADC

Description: This macro sets priority for ADC interrupt.

Include: adcl0.h

Arguments: priority

Remarks: This macro sets ADC Interrupt Priority bits of Interrupt Priority Control
register.

Code Example: SetPriorityIntADC(2) ;

© 2005 Microchip Technology Inc. DS51456C-page 115

16-Bit Language Tools Libraries

3.6.3 Example of Use

#define __dsPIC30F6010__
#include <p30fxxxx.h>
#include<adcl0.h>
unsigned int Channel, PinConfig, Scanselect, Adcon3 reg, Adcon2 reg,
Adconl_ reg;
int main(void)
{
unsigned int result[20], 1i;
ADCON1lbits.ADON = 0; /* turn off ADC */
Channel = ADC CHO POS SAMPLEA AN4 &
ADC_CHO_NEG_SAMPLEA NVREF &
ADC_CHO_POS_SAMPLEB AN2 &
ADC CHO_NEG_SAMPLEB AN1;
SetChanADC1 (Channel) ;

ConfigIntADC10 (ADC_TNT DISABLE) ;

PinConfig = ENABLE_AN4 ANA;

Scanselect = SKIP_SCAN_AN2 & SKIP_SCAN AN5 &
SKIP SCAN AN9 & SKIP_SCAN AN10 &
SKIP SCAN AN14 & SKIP SCAN AN15;

Adcon3_reg = ADC_SAMPLE TIME_10 &
ADC_CONV_CLK_SYSTEM &
ADC_CONV_CLK_13Tcy;

Adcon2_reg = ADC_VREF AVDD AVSS &
ADC_SCAN OFF &
ADC_ALT BUF OFF &
ADC_ALT INPUT OFF &
ADC_CONVERT CHO0123 &
ADC_SAMPLES PER_INT 16;

Adconl reg = ADC MODULE ON &
ADC_IDLE CONTINUE &
ADC_FORMAT INTG &
ADC_CLK MANUAL &
ADC_SAMPLE SIMULTANEOQOUS &
ADC_AUTO SAMPLING OFF;

OpenADC10 (Adconl reg, Adcon2 reg,

Adcon3_reg,PinConfig, Scanselect) ;
i=0;

while (i <16)

{

ADCONlbits.SAMP = 1;
while (!ADCON1lbits.SAMP) ;
ConvertADC10 () ;

while (ADCONlbits.SAMP) ;
while (!BusyADC10()) ;
while (BusyADC10()) ;
result [i] = ReadADC10 (1) ;
1++;

DS51456C-page 116 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.7 TIMER FUNCTIONS

This section contains a list of individual functions for Timer and an example of use of
the functions. Functions may be implemented as macros.

3.7.1

Individual Functions

CloseTimerl
CloseTimer2
CloseTimer3
CloseTimer4
CloseTimer5

Description:
Include:
Prototype:

Arguments:
Return Value:
Remarks:

Source File:

Code Example:

This function turns off the 16-bit timer module.

timer.h

void CloseTimerl (void) ;

CloseTimer2 ;

()
(void)
void CloseTimer3 (void) ;
()
()

void

CloseTimer4 (void) ;

CloseTimer5

void

void void) ;

None
None

This function first disables the 16-bit timer interrupt and then turns off
the timer module. The Interrupt Flag bit (TxIF) is also cleared.

CloseTimerl.
CloseTimer2.
CloseTimer3.
CloseTimer4.
CloseTimer5.

Q0 Qaan

CloseTimerl () ;

CloseTimer23
CloseTimer45

Description:
Include:
Prototype:

Arguments:
Return Value:
Remarks:

Source File:

Code Example:

This function turns off the 32-bit timer module.

timer.h

void CloseTimer23 (void)
void CloseTimer45 (void)
None

None

This function disables the 32-bit timer interrupt and then turns off the
timer module.The Interrupt Flag bit (TxIF) is also cleared.
CloseTimer23 turns off Timer2 and disables Timer3 Interrupt.
CloseTimer45 turns off Timer4 and disables Timer5 Interrupt.

CloseTimer23.c
CloseTimer45.c

CloseTimer23 () ;

© 2005 Microchip Technology Inc.

DS51456C-page 117

16-Bit Language Tools Libraries

ConfigIntTimerl
ConfigIntTimer2
ConfigIntTimer3
ConfigIntTimer4
ConfigIntTimer5

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function configures the 16-bit timer interrupt.

timer.h

void ConfigIntTimerl (unsigned
void ConfigIntTimer2 (unsigned

void ConfigIntTimer3

unsigned

void ConfigIntTimer4 (unsigned
void ConfigIntTimer5 (unsigned

(
(
(
(
(

int config) ;
int config) ;
)
)

7

int config
int config) ;
int config) ;

config Timer interrupt priority and enable/disable information as

None

defined below:

Tx_INT PRIOR_7
Tx_INT PRIOR 6
Tx_TINT PRIOR_5
Tx_TINT PRIOR 4
Tx_TINT PRIOR_3
Tx_INT PRIOR 2
Tx_INT PRIOR_1
Tx_INT PRIOR_ O

Tx_TNT ON
Tx_TINT OFF

This function clears the 16-bit Interrupt Flag (TxIF) bit and then sets the
interrupt priority and enables/disables the interrupt.

ConfigIntTimerl.
ConfigIntTimer2.
ConfigIntTimer3.
ConfigIntTimer4.
ConfigIntTimer5.

ConfigIntTimerl (

(¢]

H Q QaQQQ

1_INT PRIOR 3 & T1_ INT ON);

DS51456C-page 118

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ConfigIntTimer23
ConfigIntTimer45

Description: This function configures the 32-bit timer interrupt.
Include: timer.h
Prototype: void ConfigIntTimer23 (unsigned int config) ;

void ConfigIntTimer45 (unsigned int config) ;

Arguments: config Timer interrupt priority and enable/disable information as
defined below:

Tx_INT PRIOR_7
Tx_INT _PRIOR_6
Tx_INT PRIOR 5
Tx_INT PRIOR 4
Tx_INT PRIOR 3
Tx_INT PRIOR_2
Tx_INT PRIOR_1
Tx_INT PRIOR_0

Tx_INT ON
Tx_INT OFF
Return Value: None
Remarks: This function clears the 32-bit Interrupt Flag (TxIF) bit and then sets the
interrupt priority and enables/disables the interrupt.
Source File: ConfigIntTimer23.c
ConfigIntTimer45.c
Code Example: ConfigIntTimer23 (T3_INT PRIOR_5 & T3_INT_ON) ;
OpenTimerl
OpenTimer2
OpenTimer3
OpenTimer4
OpenTimer5
Description: This function configures the 16-bit timer module.
Include: timer.h
Prototype: void OpenTimerl (unsigned int config,

unsigned int period)
void OpenTimer2 (unsigned int config,
unsigned int period)
void OpenTimer3 (unsigned int config,
unsigned int period)
void OpenTimer4 (unsigned int config,
unsigned int period)
void OpenTimer5 (unsigned int config,
unsigned int period)
Arguments: config This contains the parameters to be configured in the TXCON
register as defined below:
Timer Module On/Off
Tx ON
Tx_OFF
Timer Module Idle mode On/Off
Tx_IDLE_CON
Tx_ IDLE_STOP

© 2005 Microchip Technology Inc. DS51456C-page 119

16-Bit Language Tools Libraries

OpenTimerl (Continued)

OpenTimer2
OpenTimer3
OpenTimer4
OpenTimer5

Return Value:
Remarks:

Source File:

Code Example:

Timer Gate time accumulation enable
Tx_GATE_ON
Tx_GATE_OFF

Timer prescaler
Tx PS 1 1

Tx PS 1 8

Tx PS 1 64
Tx PS 1 128

Timer Synchronous clock enable
Tx_SYNC_EXT ON
Tx_SYNC_EXT_ OFF

Timer clock source
Tx_SOURCE_EXT
Tx_SOURCE_INT

This contains the period match value to be stored into the
PR register

period

None

This function configures the 16-bit Timer Control register and sets the
period match value into the PR register

OpenTimerl.c
OpenTimer2.c
OpenTimer3.c
OpenTimer4d.c
OpenTimer5.c

OpenTimerl (T1_ON & T1_GATE_OFF &

T1 PS 1 8 & T1_SYNC_EXT OFF &
T1 SOURCE_INT, OxFF);

OpenTimer23
OpenTimer45

Description:
Include:
Prototype:

Arguments:

This function configures the 32-bit timer module.
timer.h

void OpenTimer23 (unsigned int config,
unsigned long period) ;

void OpenTimer45 (unsigned int config,
unsigned long period) ;

config This contains the parameters to be configured in the TXCON
register as defined below:

Timer module On/Off

Tx_ON

Tx_OFF

Timer Module Idle mode On/Off

Tx_IDLE_CON
Tx_IDLE_STOP

Timer Gate time accumulation enable
Tx_GATE_ON
Tx_GATE_OFF

DS51456C-page 120

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenTimer23 (Continued)

OpenTimer45

Return Value:
Remarks:

Source File:

Code Example:

Timer prescaler

Tx PS 1 1

Tx PS 1 8

Tx PS 1 64

Tx PS 1 128
Timer Synchronous clock enable
Tx_SYNC_EXT ON
Tx_SYNC_EXT OFF
Timer clock source
Tx_SOURCE_EXT
Tx_SOURCE_INT

This contains the period match value to be stored into the
32-bit PR register.

period

None

This function configures the 32-bit Timer Control register and sets the
period match value into the PR register

OpenTimer23.c
OpenTimer45.c

OpenTimer23 (T2 _ON & T2 GATE OFF &
T2 PS 1 8 & T2 32BIT MODE ON &
T2 _SYNC_EXT OFF &
T2 _SOURCE_INT, OxFFFF);

ReadTimerl
ReadTimer2
ReadTimer3
ReadTimer4
ReadTimer5

Description:
Include:
Prototype:

Arguments:
Return Value:
Remarks:
Source File:

Code Example:

This function reads the contents of the 16-bit Timer register.

timer.h

7

unsigned int ReadTimerl (void)
unsigned int ReadTimer2 (void) ;
unsigned int ReadTimer3 (void) ;
()
()

7

unsigned int ReadTimer4 (void
unsigned int ReadTimer5 (void

7

None
None
This function returns the contents of the 16-bit TMR register.

ReadTimerl.c
ReadTimer2.c
ReadTimer3.c
ReadTimer4.c
ReadTimer5.c

unsigned int timerl_value;
timerl value = ReadTimerl() ;

© 2005 Microchip Technology Inc.

DS51456C-page 121

16-Bit Language Tools Libraries

ReadTimer23
ReadTimer45

Description:
Include:
Prototype:

Arguments:
Return Value:
Remarks:
Source File:

Code Example:

This function reads the contents of the 32-bit Timer register.
timer.h

unsigned long ReadTimer23 (void) ;
unsigned long ReadTimer45 (void) ;

None
None
This function returns the contents of the 32-bit TMR register.

ReadTimer23.c
ReadTimer45.c

unsigned long timer23 value;
timer23 value = ReadTimer23() ;

WriteTimerl
WriteTimer2
WriteTimer3
WriteTimer4
WriteTimer5
Description: This function writes the 16-bit value into the Timer register.
Include: timer.h
Prototype: void WriteTimerl (unsigned int timer) ;
void WriteTimer2 (unsigned int timer) ;
void WriteTimer3 (unsigned int timer) ;
void WriteTimer4 (unsigned int timer) ;
void WriteTimer5 (unsigned int timer) ;
Arguments: timer This is the 16-bit value to be stored into TMR register.
Return Value: None
Remarks: None
Source File: WriteTimerl.c
WriteTimer2.c
WriteTimer3.c
WriteTimer4.c
WriteTimer5.c
Code Example: unsigned int timer_ init = OxAB;

WriteTimerl (timer init);

DS51456C-page 122

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

WriteTimer23
WriteTimer45

Description:
Include:
Prototype:

Arguments:
Return Value:
Remarks:
Source File:

Code Example:

This function writes the 32-bit value into the Timer register.
timer.h

void WriteTimer23 (unsigned long timer) ;
void WriteTimer45 (unsigned long timer) ;
timer This is the 32-bit value to be stored into TMR register.
None
None

WriteTimer23.c

WriteTimer45.c

unsigned long timer23 init = O0xABCD;
WriteTimer23 (timer23 init);

Code Example:

3.7.2 Individual Macros

EnableIntT1

EnablelntT2

EnableIntT3

EnablelntT4

EnableIntT5

Description: This macro enables the timer interrupt.

Include: timer.h

Arguments: None

Remarks: This macro sets Timer Interrupt Enable bit of Interrupt Enable Control

register.
EnableIntTl;

DisableIntT1
DisableIntT2
DisableIntT3
DisableIntT4
DisableIntT5

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the timer interrupt.
timer.h
None

This macro clears Timer Interrupt Enable bit of Interrupt Enable Control
register.

DisableIntT2;

© 2005 Microchip Technology Inc.

DS51456C-page 123

16-Bit Language Tools Libraries

SetPriorityIntT1
SetPriorityIntT2
SetPriorityIntT3
SetPriorityIntT4
SetPriorityIntT5

Description: This macro sets priority for timer interrupt.

Include: timer.h

Arguments: priority

Remarks: This macro sets Timer Interrupt Priority bits of Interrupt Priority Control
register.

Code Example: SetPriorityIntT4 (7) ;

3.7.3 Example of Use

#define _ dsPIC30F6014
#include <p30fxxxx.h>
#include<timer.h>
unsigned int timer value;

void _ attribute ((_ _interrupt)) TlInterrupt (void)
PORTDbits.RD1 = 1; /* turn off LED on RD1 */
WriteTimerl (0) ;
IFSObits.T1IF = 0; /* Clear Timer interrupt flag */

int main(void)

unsigned int match value;
TRISDbits.TRISD1 = 0;
PORTDbits.RD1 = 1; /* turn off LED on RD1 */
/* Enable Timerl Interrupt and Priority to "1" */
ConfigIntTimerl(T1 INT PRIOR 1 & T1 INT ON);
WriteTimerl (0) ;
match value = O0xFFF;
OpenTimerl (T1 ON & T1 GATE OFF & T1 IDLE STOP &
T1 PS 1 1 & Tl _SYNC EXT OFF &
Tl SOURCE_INT, match value) ;
/* Wait till the timer matches with the period value */
while (1)
{
timer value = ReadTimerl () ;
if (timer value >= OxX7FF)

{

}
}

CloseTimerl () ;

PORTDbits.RD1 = 0; /* turn on LED on RD1 */

DS51456C-page 124 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

RESET/CONTROL FUNCTIONS

This section contains a list of individual functions for Reset/Control. Functions may be
implemented as macros.

3.8.1 Individual Functions

iSBOR

Description: This function checks if Reset is due to Brown-out Reset.
Include: reset.h

Prototype: char isBOR(void) ;

Arguments: None

Return Value:

Remarks:
Source File:

Code Example:

This function returns the RCON<BOR> bit status.
If return value is ‘1’, then reset is due to brown-out.
If return value is ‘0’, then no brown-out occurred.

None
isBOR.cC

char reset state;
reset_state = isBOR();

iIsPOR

Description: This function checks if Reset is due to Power-on Reset.
Include: reset.h

Prototype: char 1sPOR (void) ;

Arguments: None

Return Value:

Remarks:
Source File:

Code Example:

This function returns the RCON<POR> bit status.
If return value is ‘1’, then reset is due to Power-on.
If return value is ‘0’, then no Power-on Reset occurred.

None
isPOR.cC

char reset state;
reset state = isPOR() ;

isLVD

Description: This function checks if low-voltage detect interrupt flag is set.
Include: reset.h

Prototype: char 1sLVD (void) ;

Arguments: None

Return Value:

Remarks:
Source File:

Code Example:

This function returns the IFS2<LVDIF> bit status.
If return value is ‘1’, then low-voltage detect interrupt occurred.
If return value is ‘0’, then low-voltage detect interrupt did not occur.

None
isLVD.c

char 1vd;
lvd = isLVD() ;

© 2005 Microchip Technology Inc.

DS51456C-page 125

16-Bit Language Tools Libraries

iISMCLR

Description: This function checks if Reset condition is due to MCLR pin going low.
Include: reset.h

Prototype: char 1sMCLR(void) ;

Arguments: None

Return Value:

Remarks:
Source File:

Code Example:

This function returns the RCON<EXTR> bit status.
If return value is ‘1", then Reset occurred due to MCLR pin going low.
If return value is ‘0, then Reset is not due to MCLR going low.

None
isMCLR.cC

char reset_state;
reset state = isMCLR();

iISWDTTO

Description: This function checks if Reset condition is due to WDT time-out.
Include: reset.h

Prototype: char isWDTTO (void) ;

Arguments: None

Return Value:

Remarks:
Source File:

Code Example:

This function returns the RCON<WDTO> bit status.
If return value is ‘1’, then reset occurred due to WDT time-out.
If return value is ‘0’, then reset is not due to WDT time-out.

None
1sSWDTTO.c

char reset state;
reset state = isWDTTO() ;

isWDTWU

Description: This function checks if Wake-up from Sleep is due to WDT time-out.
Include: reset.h

Prototype: char isWDTWU (void) ;

Arguments: None

Return Value:

Remarks:
Source File:

Code Example:

This function returns the status of RCON<WDTO> and
RCON<SLEEP>bits

If return value is ‘1, then Wake-up from Sleep occurred due to WDT
time-out.

If return value is ‘0, then Wake-up from Sleep is not due to WDT
time-out.

None
1sWDTWU.c

char reset_state;
reset state = isWDTWU() ;

DS51456C-page 126

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

iIsSWU

Description: This function checks if Wake-up from Sleep is due to MCLR, POR,
BOR or any interrupt.

Include: reset.h

Prototype: char 1sWU(void) ;

Arguments: None

Return Value:

Remarks:
Source File:
Code Example:

3.8.2

This function checks if Wake-up from Sleep has occurred.

If yes, it checks for the cause for wake-up.

if ‘1’, wake-up is due to the occurrence of interrupt.

if ‘2’, wake-up is due to MCLR.

if ‘3', wake-up is due to POR.

if ‘4’, wake-up is due to BOR.

If Wake-up from Sleep has not occurred, then a value of ‘0’ is returned.

None
isWU.c

char reset_state;
reset state = 1isWU();

Individual Macros

Disablelnterrupts

Description:

Include:
Arguments:
Remarks:

Code Example:

This macro disables all the peripheral interrupts for specified number of
instruction cycles.

reset.h
cycles

This macro executes DISI instruction to disable all the peripheral
interrupts for specified number of instruction cycles.

DisableInterrupts(15) ;

PORStatReset

Description: This macro sets POR bit of RCON register to Reset state.
Include: reset.h

Arguments: None

Remarks: None

Code Example: PORStatReset;

BORStatReset

Description: This macro sets BOR bit of RCON register to Reset state.
Include: reset.h

Arguments: None

Remarks: None

Code Example: BORStatReset;

© 2005 Microchip Technology Inc.

DS51456C-page 127

16-Bit Language Tools Libraries

WDTSWEnable

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro turns on the Watchdog Timer
reset.h
None

This macro sets Software WDT Enable (SWDTEN) bit of RCON
register

WDTSWEnable;

WDTSWDisable

Description:

Include:
Arguments:
Remarks:
Code Example:

3.9 I/O PORT FUNCTIONS

This macro clears Software WDT Enable (SWDTEN) bit of RCON
register

reset.h

None

This macro disables WDT if FWDTEN Fuse bit is ‘0.
WDTSWDisable;

This section contains a list of individual functions for I/O ports. Functions may be
implemented as macros.

3.9.1

Individual Functions

CloseINTO
CloseINT1
CloselNT2
CloseINT3
CloselNT4

Description:
Include:
Prototype:

Arguments:
Return Value:
Remarks:

Source File:

Code Example:

This function disables the external interrupt on INT pin.
ports.h

void CloseINTO ()
void CloseINT1 ()
void CloseINT2 (void) ;
void CloseINT3 ()
void CloseINT4 ()

None

7

None

This function disables the interrupt on INT pin and clears the
corresponding Interrupt flag.

CloseIntO.
CloselIntl.
CloselInt2.
CloselInt3.
CloselInt4.

CloseINTO () ;

Q0 00aan

DS51456C-page 128

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ConfigINTO
ConfigINT1
ConfigINT2
ConfigINT3
ConfigINT4

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function configures the interrupt on INT pin.

ports.h

void
void
void
void
void

config

None

ConfigINTO (unsigned
ConfigINT1 (unsigned
ConfigINT2 (unsigned
ConfigINT3 (unsigned
ConfigINT4 (unsigned

defined below:

int
int
int
int
int

Interrupt edge selection

RISING_EDGE_ INT
FALLING EDGE_INT

Interrupt enable
INT ENABLE
INT DISABLE

Interrupt priority
INT PRI 0
INT PRI 1
INT PRI 2
INT PRI 3
INT PRI 4
INT PRI 5
INT PRI 6
INT PRI 7

config) ;
config) ;
config) ;
config) ;
config) ;

Interrupt edge, priority and enable/disable information as

This function clears the interrupt flag corresponding to the INTx pin and
then selects the edge detect polarity.
It then sets the interrupt priority and enables/disables the interrupt.

ConfigInt0.c
ConfigIntl.c
ConfigInt2.c
ConfigInt3.c
ConfigInt4.c

ConfigINTO (RISING EDGE INT & EXT INT PRI 5 &
EXT_ INT ENABLE) ;

© 2005 Microchip Technology Inc.

DS51456C-page 129

16-Bit Language Tools Libraries

ConfigCNPullups

Description:
Include:
Prototype:
Arguments:

Return Value:
Remarks:
Source File:
Code Example:

This function configures the pull-up resistors for CN pins.
ports.h
void ConfigCNPullups (long int config) ;

config Thisis the 32-bit value for configuring pull-ups. The lower
word is stored into CNPU1 register and next upper word is
stored into CNPU2 register. The upper 8 bits of CNPU2
register are unimplemented.

None

None

ConfigCNPullups.c
ConfigCNPullups (OXFFF) ;

ConfigIntCN

Description: This function configures the CN interrupts.

Include: ports.h

Prototype: void ConfigIntCN(long int config) ;

Arguments: config This is the 32-hit value for configuring the CN interrupts.

Return Value:
Remarks:

Source File:
Code Example:

The lower 24 bits contain the individual enable/disable
information for the CN interrupts. Setting bitx (x=0, 1, ...,
23) would enable the CNx interrupt.

The upper most byte of config contains the Interrupt Priority
and Enable/Disable bits.

The lower word is stored into the CNEN1register and next
upper byte is stored into the CNENZ2 register and the upper
most byte is used for setting priority and enable/disable the
CN interrupts.

None
This function clears the CN interrupt flag and enables/disables the
individual interrupts on CN pins.

This also configures the interrupt priority and enables/disables the CN
Interrupt Enable bit.

ConfigIntCN.c

// This would enable CNO, CN1, CN2 and CN7 only.
ConfigIntCN (CHANGE INT OFF & CHANGE_ INT PRI 4 &
0xXFF000087) ;

DS51456C-page 130

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.9.2 Individual Macros

EnableCNO

EnableCN1

EnableCN2

EnableCN23

Description: This macro enables the individual change notification interrupt.
Include: ports.h

Arguments: None

Remarks: None

Code Example: EnableCNé6;

DisableCNO

DisableCN1

DisableCN2

DisableCN23

Description: This macro disables individual change notification interrupt.
Include: ports.h

Arguments: None

Remarks: None

Code Example: DisableCN14;

EnableINTO

EnableIlNT1

EnableINT2

EnableINT3

EnableINT4

Description: This macro enables the individual external interrupt.
Include: ports.h

Arguments: None

Remarks: None

Code Example: EnableINT2;

© 2005 Microchip Technology Inc. DS51456C-page 131

16-Bit Language Tools Libraries

DisableINTO

DisableIlNT1

DisableINT2

DisableINT3

DisableINT4

Description: This macro disables the individual external interrupt.
Include: ports.h

Arguments: None

Remarks: None

Code Example: DisableINT2;

SetPriorityInt0
SetPriorityIntl
SetPriorityInt2
SetPriorityInt3
SetPriorityInt4

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for external interrupts.

ports.h

priority

This macro sets External Interrupt Priority bits of Interrupt Priority
Control register.

SetPriorityInt4 (6) ;

DS51456C-page 132

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.10 INPUT CAPTURE FUNCTIONS

This section contains a list of individual functions for Input Capture module and an
example of use of the functions. Functions may be implemented as macros.

3.10.1 Individual Functions

CloseCapturel
CloseCapture2
CloseCapture3
CloseCapture4
CloseCaptureb
CloseCapture6
CloseCapture7
CloseCapture8

Description:
Include:
Prototype:

Arguments:
Return Value:
Remarks:

Source File:

Code Example:

This function turns off the Input Capture module.

InCap.h

void CloseCapturel
void CloseCapture2 v01d ;
void CloseCapture3
void CloseCapture4
void CloseCapture5
void CloseCapture6
void CloseCapture?7 v01d ;
void CloseCaptures8

None
None

This function disables the Input Capture interrupt and then turns off the

module.The Interrupt Flag bit is also cleared.

CloseCapturel.
CloseCapture2.
CloseCapture3.
CloseCapture4.
CloseCapturebs.
CloseCaptureé6.
CloseCapture?7.
CloseCapture8.

CloseCapturel (

(¢]

c
c
c
c
c
c
c
)

© 2005 Microchip Technology Inc.

DS51456C-page 133

16-Bit Language Tools Libraries

ConfigIntCapturel
ConfigIntCapture2
ConfigIntCapture3
ConfigIntCapture4
ConfigIntCapture5
ConfigIntCapture6
ConfigIntCapture?
ConfigIntCapture8

Description: This function configures the Input Capture interrupt.
Include: InCap.h
Prototype: void ConfigIntCapturel (unsigned int config) ;

()i
void ConfigIntCapture2 (unsigned int config);
void ConfigIntCapture3 (unsigned int config);
void ConfigIntCapture4 (unsigned int config);
void ConfigIntCapture5 (unsigned int config) ;
void ConfigIntCaptureé6 (unsigned int config);
void ConfigIntCapture7 (unsigned int config)
(

void ConfigIntCapture8 (unsigned int config);

1

Arguments: config Input Capture interrupt priority and enable/disable
information as defined below:

Interrupt enable/disable
IC INT ON
IC_INT OFF

Interrupt Priority
IC INT PRIOR 0

IC _INT PRIOR 1
IC_INT PRIOR 2
IC_INT PRIOR 3
IC_INT PRIOR 4
IC_INT PRIOR 5
IC_INT_PRIOR 6
IC_INT PRIOR 7

Return Value: None

Remarks: This function clears the Interrupt Flag bit and then sets the interrupt
priority and enables/disables the interrupt.

Source File: ConfigIntCapturel.
ConfigIntCapture2.
ConfigIntCapture3.
ConfigIntCapture4.
ConfigIntCapture5.
ConfigIntCapture6.
ConfigIntCapture?.
ConfigIntCaptures8.

Code Example: ConfigIntCapturel (

Q

H Q0 QaQQ0Qaa

C_INT ON & IC_INT PRIOR_ 1);

DS51456C-page 134 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenCapturel
OpenCapture2
OpenCapture3
OpenCaptured
OpenCaptureb
OpenCapture6
OpenCapture?7
OpenCapture8

Description: This function configures the Input Capture module.
Include: InCap.h
Prototype: void OpenCapturel (unsigned int config);

()i
void OpenCapture2 (unsigned int config) ;
void OpenCapture3 (unsigned int config) ;
void OpenCapture4 (unsigned int config) ;

()

()

()

()

7

void OpenCaptures5 (unsigned int config
void OpenCaptureé6 (unsigned int config) ;
void OpenCapture7 (unsigned int config) ;
void OpenCapture8 (unsigned int config) ;

Arguments: config This contains the parameters to be configured in the
ICXCON register as defined below:

Idle mode operation
IC_IDLE CON

IC_IDLE_STOP

Clock select
IC_TIMER2 SRC
IC_TIMER3 SRC

Captures per interrupt
IC_INT 4CAPTURE

IC_INT 3CAPTURE
IC_INT 2CAPTURE
IC_INT 1CAPTURE
IC_INTERRUPT

IC mode select

IC_EVERY EDGE
IC_EVERY 16 RISE EDGE
IC_EVERY 4 RISE EDGE
IC EVERY RISE EDGE

IC EVERY FALL EDGE

IC INPUTCAP OFF

Return Value: None

Remarks: This function configures the Input Capture Module Control register
(ICXCON) with the following parameters: Clock select, Captures per
interrupt, Capture mode of operation.

Source File: OpenCapturel.
OpenCapture?2.
OpenCapture3.
OpenCapture4.
OpenCapture5.
OpenCapture6.
OpenCapture7.
OpenCapture8.c

Code Example: OpenCapturel (IC_IDLE CON & IC TIMER2_SRC &
IC INT 1CAPTURE & IC _EVERY RISE EDGE) ;

Q0 Q0aQaaaan

© 2005 Microchip Technology Inc. DS51456C-page 135

16-Bit Language Tools Libraries

ReadCapturel
ReadCapture2
ReadCapture3
ReadCapture4
ReadCaptureb
ReadCapture6
ReadCapture?
ReadCapture8

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function reads all the pending Input Capture buffers.
InCap.h

*buffer
*buffer
*buffer) ;

void ReadCapturel (unsigned int)
)
)
*pbuffer) ;
)
)
)

(
void ReadCapture2 (unsigned int
void ReadCapture3 (unsigned int
void ReadCapture4 (unsigned int

(

(

(

(

I

1

7

*buffer
*buffer
*buffer
*buffer) ;

buffer Thisis the pointer to the locations where the data read from
the Input Capture buffers have to be stored.

void ReadCapture5 (unsigned int
void ReadCaptureé6 (unsigned int
void ReadCapture7 (unsigned int
void ReadCapture8 (unsigned int

’

7

None

This function reads all the pending Input Capture buffers until the
buffers are empty indicated by the ICXCON<ICBNE> bit getting
cleared.

ReadCapturel.
ReadCapture2.
ReadCapture3.
ReadCapture4.
ReadCapture5.
ReadCaptureé6.
ReadCapture?7.
ReadCapture8.

Q0 Qa0 0aan

unsigned int *buffer =
ReadCapturel (buffer) ;

0x1900;

DS51456C-page 136

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.10.2

Individual Macros

EnableintIC1
EnablelntIC2
EnablelntIC3
EnablelntIC4
EnablelntIC5
EnablelntIC6
EnableIntIC7
EnablelntIC8

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the interrupt on capture event.
InCap.h
None

This macro sets Input Capture Interrupt Enable bit of Interrupt Enable
Control register.

EnableIntIC7;

DisablelntiC1
DisablelntIC2
DisablelntIC3
DisablelntiC4
DisablelntIC5
DisablelntIC6
DisablelntIC7
DisableIntIC8

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the interrupt on capture event.
InCap.h
None

This macro clears Input Capture Interrupt Enable bit of Interrupt Enable
Control register.

DisableIntIC7;

SetPriorityIntiC1
SetPriorityIntIC2
SetPriorityIntIC3
SetPriorityIntiC4
SetPriorityIntIC5
SetPriorityIntIC6
SetPriorityIntIC7
SetPriorityIntIC8

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for input capture interrupt.

InCap.h

priority

This macro sets Input Capture Interrupt Priority bits of Interrupt Priority
Control register.

SetPriorityIntIC4 (1) ;

© 2005 Microchip Technology Inc.

DS51456C-page 137

16-Bit Language Tools Libraries

3.10.3 Example of Use

#define __dsPIC30F6014__

#include <p30fxxxx.h>

#include<InCap.h>

int Interrupt Count = 0 , Int flag, count;

unsigned int timer first edge, timer second edge;

void __attribute__ ((__interrupt__)) _IClInterrupt (void)

{

Interrupt Count++;

if (Interrupt Count == 1)
ReadCapturel (&timer first edge) ;
else if (Interrupt Count == 2)

ReadCapturel (&timer second edge) ;
Int flag = 1;
IFSObits.IC1IF = 0;

int main(void)

unsigned int period;
Int flag = 0;
TRISDbits.TRISDO = 0; /* Alarm output on RDO */
PORTDbits.RDO = 1;
/* Enable Timerl Interrupt and Priority to '1' */
ConfigIntCapturel (IC_INT PRIOR 1 & IC_INT ON);
T3CON = 0x8000; /* Timer 3 On */
/* Configure the InputCapture in stop in idle mode , Timer
3 as source , interrupt on capture 1, I/C on every fall
edge */

OpenCapturel (IC_IDLE_STOP & IC_TIMER3 SRC &
IC_INT 1CAPTURE & IC_EVERY FALL EDGE) ;
while (1)
{
while (!Int_flag); /* wait here till first capture event */
Int_flag = 0;
while (!Int flag); /* wait here till next capture event */
/* calculate time count between two capture events */
period = timer second edge - timer first edge;
/* if the time count between two capture events is more than
0x200 counts, set alarm on RDO */
if (period >= 0x200)
{
/* set alarm and wait for sometime and clear alarm */
PORTDbits.RDO = 0;
while (count <= 0x10)

{
}

PORTDbits.RDO = 1;

count++;

}

Interrupt Count = 0;
count = 0;

}

CloseCapturel () ;

DS51456C-page 138 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.11 OUTPUT COMPARE FUNCTIONS

This section contains a list of individual functions for Output Compare module and an
example of use of the functions. Functions may be implemented as macros.

3.11.1 Individual Functions

CloseOC1

CloseOC2

CloseOC3

CloseOC4

CloseOC5

CloseOC6

CloseOC7

CloseOCS8

Description: This function turns off the Output Compare module.

Include: outcompare.h

Prototype: void CloseOCl (void) ;
void CloseOC2 (void) ;
void CloseOC3 (void) ;
void CloseOC4 (void) ;
void CloseOC5 (void) ;
void CloseOC6 (void) ;
void CloseOC7 (void) ;
void CloseOCS8 (void) ;

Arguments: None

Return Value: None

Remarks: This function disables the Output Compare interrupt and then turns off
the module. The Interrupt Flag bit is also cleared.

Source File: CloseOCl.c
CloseOC2.c
CloseOC3.c
CloseOC4.c
CloseOC5.c
CloseOC6.c
CloseOC7.c
CloseOC8.c

Code Example: CloseOC1 () ;

© 2005 Microchip Technology Inc. DS51456C-page 139

16-Bit Language Tools Libraries

ConfigIintOC1
ConfigIntOC2
ConfigIntOC3
ConfigIntOC4
ConfigIntOC5
ConfigIntOC6
ConfigIntOC7
ConfigIntOC8

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function configures the Output Compare interrupt.

outcompare.h

void
void
void
void
void
void
void
void

ConfigIntOC1l (unsigned
ConfigIntOC2 (unsigned
ConfigIntOC3 (unsigned
ConfigIntOC4 (unsigned
ConfigIntOCs5 (unsigned
ConfigIntOCé (unsigned
ConfigIntOC7 (unsigned
ConfigIntOC8 (unsigned

int
int
int
int
int
int
int
int

config Output Compare interrupt priority and enable/disable
information as defined below:

None

Interrupt enable/disable
OC_INT ON
OC_INT OFF

Interrupt Priority
OC_INT PRIOR 0

OC_INT PRIOR 1
OC_INT PRIOR 2
OC_INT PRIOR_3
OC_TINT PRIOR_4
OC_TINT PRIOR_5
OC_TINT PRTIOR_6
OC_INT PRIOR_7

This function clears the Interrupt Flag bit and then sets the interrupt
priority and enables/disables the interrupt.

ConfigIntOC1.
ConfigIntOC2.
ConfigIntOC3.
ConfigIntOC4.
ConfigIntOC5.
ConfigIntOC6.
ConfigIntOC7.
ConfigIntOC8.

ConfigIntOCL (

Q

O oo aanan

C_INT ON & OC_INT PRIOR 2);

DS51456C-page 140

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenOC1
OpenOC2
OpenOC3
OpenOC4
OpenOC5
OpenOC6
OpenOC7
OpenOC8

Description:
Include:
Prototype:

Arguments:

Return Value:

This function configures the Output Compare module.

outcompare.h

void OpenOCl (unsigned int config,
unsigned int valuel, unsigned int
void OpenOC2 (unsigned int config,
unsigned int valuel, unsigned int
void OpenOC3 (unsigned int config,
unsigned int valuel, unsigned int
void OpenOC4 (unsigned int config,
unsigned int valuel, unsigned int
void OpenOCS5 (unsigned int config,
unsigned int valuel, unsigned int
void OpenOCé6 (unsigned int config,
unsigned int valuel, unsigned int
void OpenOC7 (unsigned int config,
unsigned int valuel, unsigned int
void OpenOC8 (unsigned int config,
unsigned int valuel, unsigned int

value2) ;

value2) ;

value2) ;

value2) ;

value2) ;

value2) ;

value2) ;

value2) ;

config This contains the parameters to be configured in the

OCXxCON register as defined below:

Idle mode operation
OC_IDLE STOP

OC_IDLE_ CON

Clock select
OC_TIMER2_ SRC
OC_TIMER3_ SRC

Output Compare modes of operation
OC_PWM_FAULT PIN ENABLE

OC_PWM_FAULT PIN DISABLE
OC_CONTINUE_PULSE
OC_SINGLE_PULSE
OC_TOGGLE_PULSE

OC_HIGH LOW

OC_LOW HIGH

OC_OFF

valuel This contains the value to be stored into OCxRS Secondary

Register.

value2 This contains the value to be stored into OCxR Main

Register.
None

© 2005 Microchip Technology Inc.

DS51456C-page 141

16-Bit Language Tools Libraries

OpenOC1 (Continued)

Open0OC2
OpenOC3
OpenOC4
OpenOC5
OpenOC6
OpenOC7
OpenOC8
Remarks: This function configures the Output Compare Module Control register
(OCxCON)with the following parameters:
Clock select, mode of operation, operation in Idle mode.
It also configures the OCXRS and OCxR registers.
Source File: OpenOCl.c
OpenOC2.c
OpenOC3.c
OpenOC4.c
OpenOC5.c
OpenOCé6.c
OpenOC7.c
OpenOC8.c

Code Example:

OpenOC1 (OC_IDLE_CON & OC_TIMER2_SRC &

OC_PWM_FAULT PIN_ ENABLE,

0x60) ;

DS51456C-page 142

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ReadDCOC1PWM

ReadDCOC2PWM

ReadDCOC3PWM

ReadDCOC4PWM

ReadDCOC5PWM

ReadDCOC6PWM

ReadDCOC7PWM

ReadDCOC8PWM

Description: This function reads the duty cycle from the Output Compare Secondary
register.

Include: outcompare.h

Prototype: unsigned int ReadDCOC1PWM (void) ;
unsigned int ReadDCOC2PWM (void) ;
unsigned int ReadDCOC3PWM (void) ;
unsigned int ReadDCOC4PWM (void) ;
unsigned int ReadDCOCS5PWM (void) ;
unsigned int ReadDCOC6PWM (void) ;
unsigned int ReadDCOC7PWM (void) ;
unsigned int ReadDCOC8PWM (void) ;

Arguments: None

Return Value: This function returns the content of OCXRS register when Output

Compare module is in PWM mode. Else ‘-1’is returned

Remarks: This function reads the duty cycle from the Output Compare Secondary
register (OCxRS) when Output Compare module is in PWM mode.
If not in PWM mode, the functions returns a value of ‘-1'.

Source File: ReadDCOC1PWM.c
ReadDCOC2PWM.
ReadDCOC3PWM.
ReadDCOC4PWM.
ReadDCOC5PWM.
ReadDCOC6PWM.
ReadDCOC7PWM.
ReadDCOC8PWM.

Q0 aQ0aQaaan

Code Example: unsigned int compare reg;
compare reg = ReadDCOCL1PWM() ;

© 2005 Microchip Technology Inc. DS51456C-page 143

16-Bit Language Tools Libraries

ReadRegOC1
ReadRegOC2
ReadRegOC3
ReadRegOC4
ReadRegOC5
ReadRegOC6
ReadRegOC7
ReadRegOC8
Description: This function reads the duty cycle registers when Output Compare
module is not in PWM mode.
Include: outcompare.h
Prototype: unsigned int ReadRegOCl (char reg) ;
unsigned int ReadRegOC2 (char reg) ;
unsigned int ReadRegOC3 (char reg) ;
unsigned int ReadRegOC4 (char reg) ;
unsigned int ReadRegOC5 (char reg) ;
unsigned int ReadRegOCé6 (char reg) ;
unsigned int ReadRegOC7 (char reg) ;
unsigned int ReadRegOC8 (char reg) ;
Arguments: reg This indicates if the read should happen from the main or

Return Value:

Remarks:

Source File:

Code Example:

secondary duty cycle registers of Output Compare module.

If regis ‘1’, then the contents of Main Duty Cycle register
(OCxR) is read.

If regis ‘0’, then the contents of Secondary Duty Cycle register
(OCxRS) is read.

If regis ‘1’, then the contents of Main Duty Cycle register (OCxR) is
read.

If regis ‘0’, then the contents of Secondary Duty Cycle register
(OCxRS) is read.

If Output Compare module is in PWM mode, ‘-1’ is returned.

The read of Duty Cycle register happens only when Output Compare
module is not in PWM mode. Else, a value of -1’ is returned.

ReadRegOCl.c
ReadRegOC2.
ReadRegOC3.
ReadRegOC4.
ReadRegOC5.
ReadRegOC6 .
ReadRegOC7.
ReadRegOC8.c

Q0 QoA

unsigned int dutycycle reg;
dutycycle reg = ReadRegOCl (1) ;

DS51456C-page 144

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

SetDCOC1PWM
SetDCOC2PWM
SetDCOC3PWM
SetDCOC4PWM
SetDCOC5PWM
SetDCOC6PWM
SetDCOC7PWM
SetDCOC8PWM

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

This function configures the Output Compare Secondary Duty Cycle
register (OCxRS) when the module is in PWM mode.

outcompare.h

void
void
void
void
void
void
void
void

dutycycle

None

SetDCOC1PWM (unsigned
SetDCOC2PWM (unsigned
SetDCOC3PWM (unsigned
SetDCOC4PWM (unsigned
SetDCOC5PWM (unsigned
SetDCOC6PWM (unsigned
SetDCOC7PWM (unsigned
SetDCOC8PWM (unsigned

int
int
int
int
int
int
int
int

dutycycle
dutycycle
dutycycle
dutycycle
dutycycle
dutycycle
dutycycle
dutycycle

1
7
’
’
7
7

1

1

This is the duty cycle value to be stored into Output

Compare Secondary Duty Cycle register (OCxRS).

The Output Compare Secondary Duty Cycle register (OCxRS) will be
configured with new value only if the module is in PWM mode.

Source File:

Code Example:

SetDCOC1PWM.
SetDCOC2PWM.
SetDCOC3PWM.
SetDCOC4PWM.
SetDCOC5PWM.
SetDCOC6PWM.
SetDCOC7PWM.
SetDCOC8PWM.

SetDCOC1PWM (dutycycle) ;

C

Q0 Q0a0anaan

© 2005 Microchip Technology Inc.

DS51456C-page 145

16-Bit Language Tools Libraries

SetPulseOC1
SetPulseOC2
SetPulseOC3
SetPulseOC4
SetPulseOC5
SetPulseOC6
SetPulseOC7
SetPulseOC8

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function configures the Output Compare main and secondary
registers (OCxR and OCxRS) when the module is not in PWM mode.

outcompare.h

void SetPulseOCl (unsigned int
unsigned int pulse stop) ;
void SetPulseOC2 (unsigned int
unsigned int pulse stop) ;
void SetPulseOC3 (unsigned int
u nsigned int pulse stop) ;
void SetPulseOC4 (unsigned int
unsigned int pulse stop) ;
void SetPulseOC5 (unsigned int
unsigned int pulse stop) ;
void SetPulseOC6 (unsigned int
unsigned int pulse stop) ;
void SetPulseOC7 (unsigned int
unsigned int pulse stop) ;
void SetPulseOC8 (unsigned int
unsigned int pulse stop) ;

pulse start,
pulse start,
pulse start,
pulse start,
pulse start,
pulse start,
pulse start,

pulse start,

pulse start Thisis the value to be stored into Output Compare

Main register (OCxR).

pulse stop Thisis the value to be stored into Output Compare
Secondary register (OCxRS).

None

The Output Compare duty cycle registers (OCxR and OCxRS) will be
configured with new values only if the module is not in PWM mode.

SetPulgeOCl.c
SetPulseOC2.
SetPulseOC3.
SetPulseOC4.
SetPulseOC5.
SetPulseOC6.
SetPulsgseOC7.
SetPulseOC8.

QN0 Q0aoaan

pulse start 0x40;
pulse stop = 0x60;

SetPulseOCl (pulse start, pulse stop);

DS51456C-page 146

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.11.2

Individual Macros

EnablelntOC1
EnablelntOC2
EnablelntOC3
EnablelntOC4
EnablelntOC5
EnablelntOC6
EnableIntOC7
EnablelntOC8

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the interrupt on output compare match.
outcompare.h
None

This macro sets Output Compare (OC) Interrupt Enable bit of Interrupt
Enable Control register.

EnableIntOCS8;

DisableIntOC1
DisableIntOC2
DisableIntOC3
DisableIntOC4
DisableIntOC5
DisablelntOC6
DisableIntOC7
DisableIntOCS8

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the interrupt on compare match.
outcompare.h
None

This macro clears OC Interrupt Enable bit of Interrupt Enable Control
register.

DisableIntOC7;

SetPriorityIntiC1
SetPriorityIntIC2
SetPriorityIntIC3
SetPriorityIntiC4
SetPriorityIntIC5
SetPriorityIntIC6
SetPriorityIntIC7
SetPriorityIntIC8

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for output compare interrupt.
outcompare.h

priority

This macro sets OC Interrupt Priority bits of Interrupt Priority Control
register.

SetPriorityInt0OC4 (0) ;

© 2005 Microchip Technology Inc.

DS51456C-page 147

16-Bit Language Tools Libraries

3.11.3 Example of Use

#define __dsPIC30F6014__

#include<p30fxxxx.h>

#include<outcompare.h>

/* This is ISR corresponding to OCl interrupt */

void __attribute__ ((__interrupt__)) _OClInterrupt (void)

{

IFSObits.OClIF = 0;
}
int main(void)
{
/* Holds the value at which OCx Pin to be driven high */
unsigned int pulse start ;
/* Holds the value at which OCx Pin to be driven low */
unsigned int pulse stop;
/* Turn off OCl module */
CloseOC1 () ;
/* Configure output comparel interrupt */
ConfigIntOC1 (OC_INT OFF & OC_INT PRIOR 5);
/* Configure OCl module for required pulse width */
pulse start = 0x40;
pulse stop = 0x60;
PR3 = 0x80 ;
PR1 = Oxffff;
TMR1 0x0000;
T3CON 0x8000;
T1CON 0X8000;
/* Configure Output Compare module to 'initialise OCx pin
low and generate continuous pulse'mode */
OpenOC1 (OC_IDLE_CON & OC_TIMER3_SRC &
OC_CONTINUE_ PULSE,
pulse stop, pulse start);
/* Generate continuous pulse till TMR1 reaches 0xff00 */
while (TMR1l<= O0xff00) ;
asm("nop") ;
CloseOC1 () ;
return 0;

DS51456C-page 148 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.12 UART FUNCTIONS

This section contains a list of individual functions for UART module and an example of
use of the functions. Functions may be implemented as macros.

3.12.1 Individual Functions
BusyUART1
BusyUART?2
Description: This function returns the UART transmission status.
Include: uart.h
Prototype: char BusyUART1 (void) ;
char BusyUART2 (void) ;
Arguments: None

Return Value:

Remarks:
Source File:

Code Example:

If ‘1" is returned, it indicates that UART is busy in transmission and
UXSTA<TRMT> bhitis ‘0.

If ‘0" is returned, it indicates that UART is not busy and UXSTA<TRMT>
bitis ‘1.

This function returns the status of the UART. This indicates if the UART
is busy in transmission as indicated by the UXSTA<TRMT> bit.
BusyUART1.c

BusyUART2.c

while (BusyUART1 ()) ;

CloseUART1

CloseUART2

Description: This function turns off the UART module

Include: uart.h

Prototype: void CloseUARTI1 (void) ;
void CloseUART2 (void) ;

Arguments: None

Return Value: None

Remarks: This function first turns off the UART module and then disables the
UART transmit and receive interrupts. The Interrupt Flag bits are also
cleared.

Source File: CloseUART1.c

Code Example:

CloseUART2.c
CloseUART1 () ;

© 2005 Microchip Technology Inc.

DS51456C-page 149

16-Bit Language Tools Libraries

ConfigIntUART1
ConfigIntUART2

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Code Example:

This function configures the UART Interrupts.

uart.h

void ConfigIntUARTI1 (unsigned int config) ;
void ConfigIntUART2 (unsigned int config) ;

config

None

Individual interrupt enable/disable information as defined

below:

Receive Interrupt enable

UART_RX_INT_EN
UART RX_INT DIS

Receive Interrupt Priority

UART_RX_INT_PRO
UART RX_INT PR1
UART RX_INT_ PR2
UART RX_INT PR3
UART_RX_INT_PR4
UART_RX_INT_PR5
UART_RX_INT_PR6
UART RX_INT PR7

Transmit Interrupt enable

UART_TX_INT_EN
UART_TX_ INT DIS

Transmit Interrupt Priority

UART_TX_INT_PRO
UART TX_ INT PR1
UART_TX_INT_ PR2
UART_TX_INT PR3
UART_TX_INT_PR4
UART_TX_INT_PR5
UART_TX_INT_PR6
UART_TX_INT PR7

This function enables/disables the UART transmit and receive

interrupts and sets the interrupt priorities.

ConfigIntUART1.c
ConfigIntUART2.c

ConfigIntUART1 (UART RX INT EN & UART RX INT PR5 &
UART TX_ INT EN & UART TX INT PR3);

DS51456C-page 150

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

DataRdyUART1
DataRdyUART2
Description: This function returns the UART receive buffer status.
Include: uart.h
Prototype: char DataRdyUART1 (void) ;
char DataRdyUART2 (void) ;
Arguments: None

Return Value:

Remarks:

Source File:

Code Example:

If ‘1" is returned, it indicates that the receive buffer has a data to be
read.

If ‘0’ is returned, it indicates that receive buffer does not have any new
data to be read.

This function returns the status of the UART receive bulffer.
This indicates if the UART receive buffer contains any new data that is
yet to be read as indicated by the UXSTA<URXDA> bit.

DataRdyUART1.c
DataRdyUART2.c

while (DataRdyUART1 ()) ;

OpenUART1
OpenUART?2
Description: This function configures the UART module
Include: uart.h
Prototype: void OpenUARTI1 (unsigned int configl,
unsigned int config2, unsigned int ubrg) ;
void OpenUART2 (unsigned int configl,
unsigned int config2, unsigned int ubrg) ;
Arguments: configl This contains the parameters to be configured in the

UXMODE register as defined below:

UART enable/disable
UART_EN
UART_DIS

UART Idle mode operation
UART IDLE_ CON
UART_IDLE_ STOP

UART communication with ALT pins

UART ALTRX ALTTX

UART_RX TX

UART communication with ALT pins is available only for
certain devices and the suitable data sheet should be
referred to.

UART Wake-up on Start
UART EN_WAKE
UART DIS WAKE

UART Loopback mode enable/disable
UART EN_LOOPBACK
UART DIS LOOPBACK

Input to Capture module
UART EN_ABAUD
UART DIS ABAUD

© 2005 Microchip Technology Inc.

DS51456C-page 151

16-Bit Language Tools Libraries

OpenUART1 (Continued)

OpenUART?2

Return Value:
Remarks:

Source File:

Code Example:

config2

Parity and data bits select
UART NO_ PAR 9BIT
UART_ODD_PAR 8BIT
UART_EVEN_ PAR 8BIT
UART _NO_PAR_ 8BIT

Number of Stop bits
UART 2STOPBITS

UART_1STOPBIT

This contains the parameters to be configured in the
UXSTA register as defined below:

UART Transmission mode interrupt select
UART_INT TX BUF EMPTY
UART_ INT TX

UART Transmit Break bit
UART_TX PIN NORMAL
UART TX PIN_ LOW

UART transmit enable/disable
UART_TX ENABLE
UART_TX DISABLE

UART Receive Interrupt mode select
UART_INT RX BUF FUL
UART_INT RX 3 4 FUL
UART_INT RX CHAR

UART address detect enable/disable
UART_ADR DETECT EN

UART_ADR DETECT DIS

UART OVERRUN bit clear
UART RX OVERRUN_CLEAR

ubrg This is the value to be written into UXBRG register to set the
baud rate.

None

This functions configures the UART transmit and receive sections and
sets the communication baud rate.

OpenUART1.c
OpenUART2.c

baud = 5;

UMODEvalue

UART EN & UART IDLE_CON &
UART DIS WAKE & UART EN LOOPBACK &
UART_EN_ABAUD & UART NO PAR 8BIT &
UART_1STOPBIT;

U1STAvalue = UART INT TX BUF_EMPTY &

UART_TX_PIN NORMAL &
UART_TX_ENABLE &

UART_INT RX 3 4 FUL &
UART_ADR_DETECT DIS &
UART_RX_OVERRUN CLEAR;

OpenUART1 (ULMODEvalue, UlSTAvalue, baud);

DS51456C-page 152

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ReadUART1

ReadUART2

Description: This function returns the content of UART receive buffer (UXRXREG)
register.

Include: uart.h

Prototype: unsigned int ReadUART1 (void) ;
unsigned int ReadUART2 (void) ;

Arguments: None

Return Value:

Remarks:

Source File:

Code Example:

This function returns the contents of Receive buffer (UXRXREG)
register.

This function returns the contents of the Receive Buffer register.

If 9 bit reception is enabled, the entire register content is returned.
If 8 bit reception is enabled, then register is read and the 9th bit is
masked.

ReadUART1.c
ReadUART2.c

unsigned int RX data;
RX data = ReadUART1() ;

WriteUART1

WriteUART2

Description: This function writes data to be transmitted into the transmit buffer
(UXTXREG) register.

Include: uart.h

Prototype: void WriteUARTI1 (unsigned int data) ;
void WriteUART2 (unsigned int data) ;

Arguments: data This is the data to be transmitted.

Return Value: None

Remarks: This function writes the data to be transmitted into the transmit buffer.
If 9-bit transmission is enabled, the 9-bit value is written into the
transmit buffer.
If 8-bit transmission is enabled, then upper byte is masked and then
written into the transmit buffer.

Source File: WriteUART1.c

Code Example:

WriteUART2.c
WriteUART1 (0XFF) ;

© 2005 Microchip Technology Inc.

DS51456C-page 153

16-Bit Language Tools Libraries

getsUART1
getsUART2
Description: This function reads a string of data of specified length and stores it into
the buffer location specified.
Include: uart.h
Prototype: unsigned int getsUARTI1 (unsigned int length,
unsigned int *buffer, unsigned int
uart data wait) ;
unsigned int getsUART2 (unsigned int length,
unsigned int *buffer, unsigned int
uart data wait) ;
Arguments: length This is the length of the string to be received.
buffer This is the pointer to the location where the data received

Return Value:

Remarks:
Source File:

Code Example:

have to be stored.

This is the time-out count for which the module
has to wait before return.

If the time-out count is ‘N’, the actual time out

would be about (19 * N — 1) instruction cycles.

This function returns the number of bytes yet to be received.

If the return value is ‘0’, it indicates that the complete string has been
received.

If the return value is non-zero, it indicates that the complete string has
not been received.

uart data wait

None

getsUART1.c
getsUART2.c

Datarem = getsUART1 (6, Rxdata loc, 40);

putsUART1

putsUART?2

Description: This function writes a string of data to be transmitted into the UART
transmit buffer.

Include: uart.h

Prototype: void putsUARTI1 (unsigned int *buffer) ;
void putsUART2 (unsigned int *buffer) ;

Arguments: buffer Thisis the pointer to the string of data to be transmitted.

Return Value: None

Remarks: This function writes the data to be transmitted into the transmit buffer
until NULL character is encountered.
Once the transmit buffer is full, it waits until data gets transmitted and
then writes the next data into the Transmit register.

Source File: PUtsUART1.c

Code Example:

PutsUART2.c
putsUART1 (Txdata_ loc) ;

DS51456C-page 154

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

getcUART1
getcUART?2

Description:
Source File:

This function is identical to ReadUART1 and ReadUART?2.
#define to ReadUART1 and ReadUART2 in uart.h

putcUART1
putcUART2

Description:
Source File:

This function is identical to WriteUART1 and WriteUART2.
#define to WriteUART1 and WriteUART2 in uart.h

3.12.2 Individual Macros

EnablelntU1RX
EnableIntU2RX

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the UART receive interrupt.
uart.h
None

This macro sets UART Receive Interrupt Enable bit of Interrupt Enable
Control register.

EnableIntU2RX;

EnablelntU1TX
EnablelntU2TX

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the UART transmit interrupt.
uart.h
None

This macro sets UART Transmit Interrupt Enable bit of Interrupt Enable
Control register.

EnableIntU2TX;

DisablelntU1RX
DisablelntU2RX

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the UART receive interrupt.
uart.h
None

This macro clears UART Receive Interrupt Enable bit of Interrupt
Enable Control register.

DisableIntUlRX;

© 2005 Microchip Technology Inc.

DS51456C-page 155

16-Bit Language Tools Libraries

DisablelntU1TX
DisablelntU2TX

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the UART transmit interrupt.
uart.h
None

This macro clears UART Transmit Interrupt Enable bit of Interrupt
Enable Control register.

DisableIntUlTX;

SetPriorityIntU1RX
SetPriorityIntU2RX

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for UART receive interrupt.
uart.h
priority

This macro sets UART Receive Interrupt Priority bits of Interrupt Priority
Control register.

SetPriorityIntUlRX (6) ;

SetPriorityIntU1TX
SetPriorityIntU2TX

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for UART transmit interrupt.

uart.h

priority

This macro sets UART Transmit Interrupt Priority bits of Interrupt
Priority Control register.

SetPriorityIntUlTX(5) ;

DS51456C-page 156

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.12.3 Example of Use

#define __dsPIC30F6014__

#include<p30fxxxx.h>

#include<uart.h>

/* Received data is stored in array Buf */

char Buf [80];

char * Receivedddata = Buf;

/* This is UART1 transmit ISR */

void _ attribute ((__interrupt)) UlTXInterrupt (void)

{
}

/* This is UART1 receive ISR */
void __ attribute ((_ _interrupt)) _UlRXInterrupt (void)

{

IFSObits.U1TXIF = O;

IFSObits.UlRXIF = 0;
/* Read the receive buffer till atleast one or more character can be
read */

while (DataRdyUART1 ())

{
}

(*(Receiveddata)++) = ReadUART1 () ;

}
int main(void)
{
/* Data to be transmitted using UART communication module */
char Txdatal[]l = {'M','i','c','zr','0','c','h','i",'p',"
v,rIv,c, D, 20, N0
/* Holds the value of baud register */
unsigned int baudvalue;
/* Holds the value of uart config reg */
unsigned int UlMODEvalue;
/* Holds the information regarding uart
TX & RX interrupt modes */
unsigned int UlSTAvalue;
/* Turn off UARTI1module */
CloseUART1 () ;
/* Configure uartl receive and transmit interrupt */
ConfigIntUART1 (UART RX_ INT EN & UART RX INT PR6 &
UART TX INT DIS & UART TX INT PR2);
/* Configure UART1 module to transmit 8 bit data with one stopbit.
Also Enable loopback mode */
baudvalue = 5;
UlMODEvalue = UART EN & UART IDLE CON &
UART DIS WAKE & UART EN LOOPBACK &
UART EN ABAUD & UART NO PAR 8BIT &
UART 1STOPBIT;
UlSTAvalue = UART INT TX BUF EMPTY &
UART TX_PIN NORMAL &
UART TX_ ENABLE & UART INT RX 3 4 FUL &
UART ADR DETECT DIS &
UART RX_OVERRUN CLEAR;
OpenUART1 (ULMODEvalue, UlSTAvalue, baudvalue) ;

© 2005 Microchip Technology Inc. DS51456C-page 157

16-Bit Language Tools Libraries

/* Load transmit buffer and transmit the same till null character is
encountered */
PutsUART1 ((unsigned int *)Txdata) ;
/* Wait for transmission to complete */
while (BusyUART1 ()) ;
/* Read all the data remaining in receive buffer which are unread */
while (DataRdyUART1 ())

{
}

/* Turn off UART1 module */
CloseUART1 () ;
return O0;

(* (Receiveddata)++) = ReadUART1 () ;

3.13 DCI FUNCTIONS

This section contains a list of individual functions for DCI module and an example of
use of the functions. Functions may be implemented as macros.

3.13.1 Individual Functions

CloseDCI

Description: This function turns off the DCI module

Include: dci.h

Prototype: void CloseDCI (void) ;

Arguments: None

Return Value: None

Remarks: This function first turns off the DCI module and then disables the DCI
interrupt. The Interrupt Flag bit is also cleared.

Source File: CloseDCI.c

Code Example: CloseDCI();

BufferEmptyDCI

Description: This function returns the DCI Transmit Buffer Full status.

Include: dci.h

Prototype: char BufferEmptyDCI (void) ;

Arguments: None

Return Value: If the value of TMPTY is ‘1’, then ‘1’ is returned, indicating that the
transmit buffer is empty.
If the value of TMPTY is ‘0’, then ‘0’ is returned, indicating that the
transmit buffer is not empty.

Remarks: This function returns the status of the DCISTAT<TMPTY> bit. This bit
indicates whether the transmit buffer is empty.

Source File: BufferEmptyDCI.c

Code Example: while (!BufferEmptyDCI()) ;

DS51456C-page 158 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

ConfigIntDCI

Description: This function configures the DCI interrupt.

Include: deci.h

Prototype: void ConfigIntDCI (unsigned int config) ;
Arguments: config DCI interrupt priority and enable/disable information as

Return Value:
Remarks:

Source File:
Code Example:

defined below:

DCI Interrupt enable/disable
DCI_INT ON
DCI_INT OFF

DCI Interrupt priority
DCI_INT PRI 0
DCI_INT PRI 1
DCI_INT PRI 2
DCI_INT PRI 3
DCI_INT PRI 4
DCI_INT PRI 5
DCI_INT PRI 6
DCI_INT PRI 7

None

This function clears the Interrupt Flag (DCIIF) bit and then sets the
interrupt priority and enables/disables the interrupt.

ConfigIntDCI.c
ConfigIntDCI (DCI_INT PRI 6 & DCI_INT ENABLE) ;

DataRdyDCI

Description: This function returns the status of DCI receive buffers.
Include: dci.h

Prototype: char DataRdyDCI (void) ;

Arguments: None

Return Value:

Remarks:

Source File:
Code Example:

If the value of RFUL is ‘1’, then ‘1’ is returned, indicating that the data is
ready to be read from the receive buffers.

If the value of RFUL is ‘07, then ‘0’ is returned, indicating that the
receive buffers are empty.

This function returns the status of the DCISTAT<RFUL> bit. This bit
indicates whether the data is available in the receive buffers.
DataRdyDCI.c

while (!DataRdyDCI()) ;

OpenDCI
Description: This function configures the DCI.
Include: dci.h
Prototype: void OpenDCI (unsigned int configl,
unsigned int config2,
unsigned int config3,
unsigned int trans mask,
unsigned int recv mask)
Arguments: configl This contains the parameters to be configured in

the DCIONL1 register as defined below:

© 2005 Microchip Technology Inc.

DS51456C-page 159

16-Bit Language Tools Libraries

OpenDCI (Continued)

Module On/Off
DCI_EN
DCI_DIS

Idle mode operation
DCI_IDLE CON

DCI_IDLE_STOP

DCI Loopback mode enable
DCI_DIGI_LPBACK EN

DCI_DIGI_LPBACK DIS

CSCK pin direction select
DCI_SCKD_ INP
DCI_SCKD_ OUP

DCI sampling edge selection
DCI_SAMP CLK RIS

DCI_SAMP_ CLK_ FAL

ES pin direction select
DCI_FSD INP
DCI_FSD OUP

data to be transmitted during underflow
DCI_TX_ LASTVAL UNF

DCI_TX_ZERO_UNF

SDO pin status during transmit disable
DCI_SDO_TRISTAT

DCI_SDO_ZERO

Data justification control
DCI_DJST ON

DCI_DJST_OFF

Frame Sync mode select
DCI_FSM_ACLINK 20BIT
DCI_FSM_ACLINK 16BIT
DCI_FSM I2S

DCI_FSM MULTI

config2 This contains the parameters to be configured in
the DCICONZ2 register as defined below:

Buffer length

DCI_BUFF LEN 4
DCI_BUFF LEN 3
DCI_BUFF LEN 2
DCI_BUFF LEN 1

DCI Frame sync generator control
DCI_FRAME LEN 16
DCI_FRAME LEN 15
DCI_FRAME LEN 14

DCI_FRAME LEN 1

DCI data word size
DCI_DATA WORD 16
DCI_DATA WORD 15
DCI_DATA WORD 14
DCI_DATA WORD 5
DCI_DATA WORD_ 4

DS51456C-page 160 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenDCI (Continued)

Return Value:
Remarks:

Source File:
Code Example:

This contains the bit clock generator value to be
configured in the DCICONS register.

This contains the transmit/receive slot

Enable bits to be configured into the TSCON/
RSCON register as defined below:

DCI_DIS SLOT 15

DCI_DIS SLOT 14

config3

trans mask/
recv_mask

DCI_DIS SLOT 1
DCI_DIS SLOT_0
DCT_EN_SLOT_ALL
DCT_DIS_SLOT ALL

None

This routine configures the following parameters:
1. DCICONL register:
Enable bit,
Frame Sync mode,
Data Justification,
Sample Clock Direction,
Sample Clock,
Edge Control,
Output Frame Synchronization Directions Control,
Continuous Transmit/Receive mode,
Underflow mode.
2. DCICONZ2 register:
Frame Sync Generator Control,
Data Word Size bits,
Buffer Length Control bits.
3. DCICONS register: Clock Generator Control bits
4. TSCON register: Transmit Time Slot Enable Control bits.
5. RSCON register: Receive Time Slot Enable Control bits.

OpenDCI.c

DCICON1lvalue = DCI_EN &
DCT_IDLE_CON &
DCT_DIGT_LPBACK EN &
DCT_SCKD_OUP &
DCI_SAMP CLK FAL &
DCI_FSD OUP &
DCI_TX LASTVAL UNF &
DCT_SDO_TRISTAT &
DCT_DJST_OFF &
DCT_FSM_ACLINK_16BIT ;

DCICON2value = DCI_BUFF LEN 4 &
DCI_FRAME LEN 2&
DCI_DATA WORD 16 ;

DCICON3value = 0x02 ;

RSCONvalue = DCI_EN SLOT ALL &

DCI_DIS SLOT 15 &
DCI_DIS_SLOT 9 &
DCI_DIS_SLOT 2;
TSCONvalue = DCI_EN SLOT ALL &
DCI_DIS SLOT 14 &
DCI_DIS SLOT 8 &
DCI_DIS SLOT 1;
OpenDCI (DCICONlvalue, DCICON2value,
TSCONvalue, RSCONvalue) ;

DCICON3value,

© 2005 Microchip Technology Inc.

DS51456C-page 161

16-Bit Language Tools Libraries

ReadDCI

Description: This function reads the contents of DCI receive buffer.

Include: dci.h

Prototype: unsigned int ReadDCI (unsigned char buffer) ;

Arguments: buffer Thisis the DCI buffer number to be read.

Return Value: None

Remarks: This function returns the contents of DCI receive buffer pointed by the
buffer.

Source File: ReadDCI.c

Code Example:

unsigned int DCI_bufo0;
DCI _buf0 = ReadDCI(0) ;

WriteDCI
Description: This function writes the data to be transmitted to the DCI transmit
buffer.
Include: dci.h
Prototype: void WriteDCI (unsigned int data out,
unsigned char buffer) ;
Arguments: data_out This is the data to be transmitted.

Return Value:
Remarks:

Source File:

Code Example:

buffer This is the DCI buffer number to be written.
None

This function loads the transmit buffer specified by the buf fer with
data_ out.

WriteDCI.c

unsigned int DCI_tx0 = 0x60;
WriteDCI(DCI_tXO, 0);

DS51456C-page 162

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.13.2 Individual Macros

EnablelntDCI

Description: This macro enables the DCI interrupt.

Include: deci.h

Arguments: None

Remarks: This macro sets DCI Interrupt Enable bit of Interrupt Enable Control

Code Example:

register.
EnableIntDCI;

DisableIntDCI

Description: This macro disables the DCI interrupt.

Include: dci.h

Arguments: None

Remarks: This macro clears DCI Interrupt Enable bit of Interrupt Enable Control

Code Example:

register.
DisableIntDCI;

SetPriorityIntDCI

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for DCI interrupt.

dci.h

priority

This macro sets DCI Interrupt Priority bits of Interrupt Priority Control
register.

SetPriorityIntDCI (4) ;

© 2005 Microchip Technology Inc.

DS51456C-page 163

16-Bit Language Tools Libraries

3.13.3

#define

#include<dci.h>
/* Received data is stored from 0x1820 onwards. */

unsigned int *
void _ attribute

{
}

IFS2bits.DCIIF =

int main(void)

{
/*

/*
/*
/*

/*

/*

/*

/*
*/

Example of Use

_ dsPIC30F6014
#include<p30fxxxx.h>

0;

Receiveddata = (unsigned int *)0x1820;
((__interrupt)) _DCIInterrupt (void)

Data to be transmitted using DCI module */
unsigned int datalé6[] = {Oxabcd, 0x1234, 0x1578,
0xfff0, 0x£679};

Holds configuration information */
unsigned int DCICONlvalue;

Holds the value of framelength, wordsize and buffer length */
unsigned int DCICON2value;
Holds the information reagarding bit clock

generator */

unsigned int DCICON3value ;
Holds the information reagarding data to be received
or ignored during this time slot */
unsigned int RSCONvalue ;

Holds the information reagarding transmit buffer
contents are sent during the timeslot */
unsigned int TSCONvalue ;

int i ;
CloseDCI() ;

Configure DCI receive / transmit interrupt */
ConfigIntDCI(DCI_INT ON & DCI_INT PRI 6);
Configure DCI module to transmit 16 bit data with multichannel mode

DCICONl1value = DCT_EN & DCT_IDLE_CON &
DCI_DIGI_LPBACK EN &
DCI_SCKD OUP &
DCI_SAMP CLK FAL &
DCI_FSD OUP &
DCI_TX_ZERO UNF &
DCI_SDO_TRISTAT &
DCI_DJST_OFF &
DCI_FSM_MULTT;

DCICON2value = DCI_BUFF _LEN 4 & DCI_FRAME LEN 4 &

DCI_DATA WORD 16 ;

DCICON3value = 0x00;

RSCONvalue = DCI_EN SLOT ALL & DCI_DIS SLOT 11 &
DCI_DIS SLOT 4 & DCI_DIS SLOT 5;
TSCONvalue = DCI_EN SLOT ALL & DCI_DIS SLOT 11 &

DCI_DIS SLOT 4 &DCI_DIS SLOT 5;
OpenDCI (DCICONlvalue, DCICON2value,

TSCONvalue,

RSCONvalue) ;

DCICON3value,

DS51456C-page 164

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

/* Load transmit buffer and transmit the same */
i = 0;
while(i<= 3)
{
WriteDCI (datalé6 [i], 1) ;
1++;
}
/* Start generating serial clock by DCI module */
DCICON3 = 0X02;
/* Wait for transmit buffer to get empty */
while (!BufferEmptyDCI()) ;
/* Wait till new data is available in RX buffer */
while (!DataRdyDCI ()) ;
/* Read all the data remaining in receive buffer which
are unread into user defined data buffer*/
i =0;
while(i<=3)
{
(* (Receiveddata)++) = ReadDCI (1) ;
1++;
}
/* Turn off DCI module and clear IF bit */
CloseDCI() ;
return O0;

© 2005 Microchip Technology Inc. DS51456C-page 165

16-Bit Language Tools Libraries

3.14 SPI FUNCTIONS

This section contains a list of individual functions for SPI module and an example of
use of the functions. Functions may be implemented as macros.

3.14.1 Individual Functions

ConfigIntSPI1
ConfigIntSPI2

Description: This function configures the SPI Interrupt.
Include: spi.h
Prototype: void ConfigIntSPI1 (unsigned int config);
void ConfigIntSPI2 (unsigned int config) ;
Arguments: config SPlinterrupt priority and enable/disable information as

defined below:

Interrupt enable/disable
SPI_INT EN

SPI_INT DIS

Interrupt Priority
SPI_INT PRI 0
SPI_INT PRI 1
SPI_INT PRI 2
SPI_INT PRI 3
SPI_INT PRI 4
SPI_INT PRI 5
SPI_INT PRI 6
SPI_INT PRI 7

Return Value: None

Remarks: This function clears the Interrupt Flag bit, sets the interrupt priority and
enables/disables the interrupt.

Source File: ConfigIntSPIl.c
ConfigIntSPI2.c

Code Example: ConfigIntSPI1(SPI_INT PRI _3 & SPI_INT EN);

CloseSPI1

CloseSPI2

Description: This function turns off the SPI module

Include: spi.h

Prototype: void CloseSPI1 (void) ;
void CloseSPI2 (void) ;

Arguments: None

Return Value: None

Remarks: This function disables the SPI interrupt and then turns off the module.
The Interrupt Flag bit is also cleared.

Source File: CloseSPIl.c
CloseSPI2.c

Code Example: CloseSPI1() ;

DS51456C-page 166 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

DataRdySPI1
DataRdySPI2

Description:
Include:
Prototype:

Arguments:
Return Value:

Remarks:

Source File:

Code Example:

This function determines if the SPI buffer contains any data to be read.
spi.h

char DataRdySPI1 (void) ;

char DataRdySPI2 (void) ;

None

If ‘1" is returned, it indicates that the data has been received in the
receive buffer and is to be read.

If ‘0’ is returned, it indicates that the receive is not complete and the
receive buffer is empty.

This function returns the status of SPI receive buffer. This indicates if
the SPI receive buffer contains any new data that is yet to be read as
indicated by the SPIXSTAT<SPIRBF> bit. This bit is cleared by
hardware when the data is read from the buffer.

DataRdySPIl.c
DataRdySPI2.c

while (DataRdySPI1()) ;

ReadSPI1

ReadSPI2

Description: This function reads the content of the SPI Receive Buffer (SPIXBUF)
register.

Include: spi.h

Prototype: unsigned int ReadSPI1 (void) ;
unsigned int ReadSPI2 (void) ;

Arguments: None

Return Value:

Remarks:

Source File:

Code Example:

This function returns the content of Receive Buffer (SPIXBUF) register.
If a value of ‘-1’ is returned, it indicates that there is no data to be read
from the SPI buffer.

This function returns the content of the Receive Buffer register.

If 16-bit communication is enabled, the data in the SPIXRBF register is
returned.

If 8-bit communication is enabled, then the lower byte of SPIXBUF is
returned.

The SPIXBUF is read only if it contains any data as indicated by the
SPISTAT<RBF>bit. Otherwise, a value of ‘-1’ is returned.

ReadSPIl.c
ReadSPI2.c

unsigned int RX data;
RX data = ReadSPI1();

© 2005 Microchip Technology Inc.

DS51456C-page 167

16-Bit Language Tools Libraries

WriteSPI1

WriteSPI12

Description: This function writes the data to be transmitted into the Transmit Buffer
(SPIXBUF) register.

Include: spi.h

Prototype: void WriteSPI1 (unsigned int data) ;
void WriteSPI2 (unsigned int data) ;

Arguments: data This is the data to be transmitted which will be stored in SPI

buffer.
Remarks: This function writes the data (byte/word) to be transmitted into the

Return Value:
Source File:

Code Example:

transmit buffer.

If 16-bit communication is enabled, the 16-bit value is written to the
transmit buffer.

If 8-bit communication is enabled, then upper byte is masked and then
written to the transmit buffer.

None

WriteSPIl.c
WriteSPI2.c

WriteSPI1 (0x3FFF) ;

OpenSPI1
OpenSPI2
Description: This function configures the SPI module
Include: spi.h
Prototype: void OpenSPI1 (unsigned int configl,

unsigned int config2) ;

void OpenSPI2 (unsigned int configl,

unsigned int config2) ;

Arguments: configl This contains the parameters to be configured in the

SPIXCON register as defined below:

Framed SPI support Enable/Disable
FRAME ENABLE ON

FRAME ENABLE OFF

Frame Sync Pulse direction control
FRAME SYNC_ INPUT
FRAME_SYNC_OUTPUT

SDO Pin Control bit
DISABLE SDO_PIN
ENABLE SDO_PIN

Word/Byte Communication mode
SPI_MODE16_ON
SPI_MODEl6_ OFF

SPI Data Input Sample phase
SPI_SMP_ON

SPI_SMP_OFF

SPI Clock Edge Select
SPI_CKE_ON

SPI_CKE_OFF
SPI slave select enable

SLAVE SELECT_ ENABLE ON
SLAVE SELECT_ENABLE OFF

DS51456C-page 168

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenSPI1 (Continued)
OpenSPI2

config2

Return Value: None

SPI Clock polarity select
CLK_POL_ACTIVE LOW
CLK_POL_ACTIVE HIGH

SPI Mode Select bit
MASTER ENABLE ON
MASTER_ENABLE OFF

Secondary Prescale select
SEC_PRESCAL 1 1
SEC_PRESCAL 2 1
SEC_PRESCAL 3 1
SEC_PRESCAL 4 1
SEC_PRESCAL 5 1
SEC_PRESCAL 6 1
SEC_PRESCAL 7 1
SEC_PRESCAL 8 1

Primary Prescale select
PRI _PRESCAL 1 1
PRI PRESCAL 4 1
PRI_PRESCAL 16 1
PRI_PRESCAL 64 1

This contains the parameters to be configured in the
SPIXSTAT register as defined below:

SPI Enable/Disable

SPI_ENABLE
SPI_DISABLE

SP1 Idle mode operation
SPI_IDLE_CON
SPI_IDLE_STOP

Clear Receive Overflow Flag bit
SPI_RX OVFLOW_CLR

This functions initializes the SPI module and sets the Idle mode

= FRAME_ENABLE_OFF &
FRAME_SYNC_OUTPUT &
ENABLE_SDO PIN &
SPI_MODE16 ON &
SPI_SMP ON &
SPI_CKE_OFF &
SLAVE_SELECT ENABLE OFF &
CLK_POL_ACTIVE HIGH &
MASTER ENABLE ON &
SEC_PRESCAL_7 1 &
PRT_PRESCAL_64 1;

Remarks:
operation.
Source File: OpenSPIl.c
OpenSPI2.c
Code Example: configl
config2

= SPI_ENABLE &
SPI_IDLE CON &
SPI_RX_OVFLOW_CLR OpenSPI1 (configl,
config2) ;

© 2005 Microchip Technology Inc.

DS51456C-page 169

16-Bit Language Tools Libraries

putsSPI1
putsSPI2
Description: This function writes a string of data to be transmitted into the SPI
transmit buffer.
Include: spi.h
Prototype: void putsSPI1 (unsigned int Iength,
' unsigned int *wrptr) ;
void putsSPI2 (unsigned int Iength,
unsigned int *wrptr) ;
Arguments: length This is the number of data words/bytes to be transmitted.

Return Value:

Remarks:

Source File:

Code Example:

wrptr This is the pointer to the string of data to be transmitted.
None

This function writes the specified length of data words/bytes to be
transmitted into the transmit buffer.

Once the transmit buffer is full, it waits until the data gets transmitted
and then writes the next data into the Transmit register.

The control remains in this function if SPI module is disabled while
SPITBF bit is set.

putsSPIl.c
putsSPI2.c

putsSPI1(10,Txdata loc) ;

getsSPI1
getsSPI2
Description: This function reads a string of data of specified length and stores it into
the location specified.
Include: spi.h
Prototype: unsigned int getsSPI1(
unsigned int length,
unsigned int *rdptr,
unsigned int spi_data wait) ;
unsigned int getsSPI2(
unsigned int Ilength,
unsigned int *rdptr,
unsigned int spi data wait);
Arguments: length This is the length of the string to be received.
rdptr This is the pointer to the location where the data

Return Value:

Remarks:
Source File:

Code Example:

received have to be stored.

This is the time-out count for which the module
has to wait before return.

If the time-out count is ‘N’, the actual time out
would be about (19 * N — 1) instruction cycles.

spl _data wait

This function returns the number of bytes yet to be received.

If the return value is a ‘0’, it indicates that the complete string has been
received.

If the return value is a non-zero, it indicates that the complete string has
not been received.

None

getsSPIl.c
getsSPI2.c

Datarem = getsSPI1(6, Rxdata loc, 40);

DS51456C-page 170

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

getcSPI1
getcSPI2

Description:
Source File:

This function is identical to ReadSPI1 and ReadSPI2.
#define to ReadSPI1 and ReadSPI2 in spi.h

putcSPI1
putcSPI2

Description:
Source File:

This function is identical to WriteSPI1 and WriteSPI2.
#define to WriteSPI1 and WriteSPI2 in spi.h

3.14.2 Individual Macros

EnablelntSPI1
EnableIntSPI2

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the SPI interrupt.
spi.h
None

This macro sets SPI Interrupt Enable bit of Interrupt Enable Control
register.

EnableIntSPI1;

DisablelntSPI1
DisablelntSPI2

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the SPI interrupt.
spi.h
None

This macro clears SPI Interrupt Enable bit of Interrupt Enable Control
register.

DisableIntSPI2;

SetPriorityIntSPI1
SetPriorityIntSPI2

Description:
Include:

Arguments:

Remarks:

Code Example:

This macro sets priority for SPI interrupt.
spi.h
priority

This macro sets SPI Interrupt Priority bits of Interrupt Priority Control
register.

SetPriorityIntSPI2(2);

© 2005 Microchip Technology Inc.

DS51456C-page 171

16-Bit Language Tools Libraries

3.14.3 Example of Use

#define __dsPIC30F6014__

#include<p30fxxxx.h>

#include<spi.h>

/* Data received at SPI2 */
unsigned int datard ;

void _ attribute

{
}

IFSObits.SPI1IF

void _ attribute

{

IFS1bits.SPI2IF = 0;
SPI1STATbits.SPIROV = 0; /* Clear SPI1 receive overflow

}

int main(void)

{

flag if set */

((__interrupt)) _SPIlInterrupt (void)
= 0;
((__interrupt)) _SPI2Interrupt (void)

/* Holds the information about SPI configuartion */
unsigned int SPICONValue;

/* Holds the information about SPI Enable/Disable */
unsigned int SPISTATValue;

/*Timeout value during which timerl is ON */

int timeout;

/* Turn off SPI modules */

CloseSPI1() ;
CloseSPI2 () ;
TMR1 = 0 ;

timeout = 0;

TRISDbits.TRISDO

= 0;

/* Configure SPI2 interrupt */
ConfigIntSPI2 (SPI_INT EN & SPI_INT PRI 6);
/* Configure SPI1 module to transmit 16 bit timerl value

in master mode
SPICONValue =

SPISTATValue

*/

FRAME_ENABLE OFF & FRAME SYNC OUTPUT &
ENABLE SDO PIN & SPI_MODE16 ON &

SPI_SMP_ON & SPI_CKE OFF &
SLAVE_SELECT ENABLE OFF &
CLK_POL_ACTIVE HIGH &
MASTER_ENABLE ON &
SEC_PRESCAL 7 1 &
PRI_PRESCAL 64 1;
SPI_ENABLE & SPI_IDLE CON &
SPI_RX OVFLOW CLR;

OpenSPI1 (SPICONValue, SPISTATValue) ;

DS51456C-page 172

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

/* Configure SPI2 module to receive 16 bit timer value in

slave mode */

SPICONValue = FRAME ENABLE OFF & FRAME SYNC OUTPUT &
ENABLE SDO PIN & SPI_MODEL6 ON &
SPI_SMP_OFF & SPI_CKE OFF &
SLAVE SELECT_ENABLE OFF &
CLK_POL_ACTIVE HIGH &
MASTER ENABLE OFF &
SEC_PRESCAL 7 1 &
PRI_PRESCAL 64 1;

SPISTATValue = SPI ENABLE & SPI IDLE CON &
PI_RX OVFLOW CLR;

OpenSPI2 (SPICONValue, SPISTATValue) ;

T1CON = 0X8000;

while (timeout< 100)

{
}

T1CON = 0;

WriteSPI1 (TMR1) ;

while (SPI1STATbits.SPITRBF) ;
while (!DataRdySPI2()) ;
datard = ReadSPI2();

if (datard <= 600)

{
}

timeout = timeout+2 ;

PORTDbits.RDO = 1;

/* Turn off SPI module and clear IF bit */

CloseSPI1() ;
CloseSPI2 () ;
return O0;

© 2005 Microchip Technology Inc. DS51456C-page 173

16-Bit Language Tools Libraries

3.15 QEI FUNCTIONS

This section contains a list of individual functions for QEI module and an example of
use of the functions. Functions may be implemented as macros.

3.15.1 Individual Functions

CloseQEl

Description: This function turns off the QEI module

Include: gei.h

Prototype: void closeQEI (void) ;

Arguments: None

Return Value None

Remarks: This function disables the QEI module and clears the QEI Interrupt
Enable and Flag bits.

Source File: CloseQEI.c

Code Example: CloseQEI () ;

ConfigIntQEl

Description: This function Configure the QEI Interrupt.

Include: gei.h

Prototype: void ConfigIntQET (unsigned int config) ;
Arguments: config QEl interrupt priority and enable/disable information as

Return Value
Remarks:

Source File:
Code Example:

defined below:

QEI Interrupt enable/disable
QEI_INT ENABLE
QEI_INT DISABLE

QEl Interrupt priority
QEI_INT PRI 0
QEI_INT PRI 1
QEI_INT PRI 2
QEI_INT PRI 3
QEI_INT PRI 4
QEI_INT PRI 5
QEI INT PRI 6
QEI_INT PRI 7

None

This function clears the Interrupt Flag bit, sets the interrupt priority and
enables/disables the interrupt.

ConfigIntQEI.c
ConfigIntQETI (QEI_INT ENABLE & QEI_INT PRI 1);

DS51456C-page 174

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenQEl

Description:

Include:
Prototype:

Arguments:

This function configure the QEI.

gei.h

void OpenQEI (unsigned int configl, unsigned int

config2) ;
configl

config2

This contains the parameters to be configured in the
QEIXCON register as defined below:

Position Counter Direction Selection Control
QEI DIR SEL QEB

QEI DIR SEL CNTRL

Timer Clock Source Select bit

QEI EXT CLK

QEI INT CLK

Position Counter Reset Enable
QEI INDEX RESET ENABLE
QEI INDEX RESET DISABLE

Timer Input Clock Prescale Select bits
QEI CLK PRESCALE 1

QEI CLK PRESCALE 8

QEI CLK PRESCALE 64

QEI CLK PRESCALE 256

Timer Gated Time Accumulation Enable
QEI GATED ACC ENABLE
QEI GATED ACC DISABLE

Position Counter Direction State Output Enable
QEI LOGIC CONTROL IO
QEI NORMAL IO

Phase A and Phase B Input Swap Select bit
QEI INPUTS_ SWAP
QEI INPUTS NOSWAP

QEI Mode of operation select
QEI MODE x4 MATCH

QETI_MODE_x4 PULSE
QET_MODE_x2_ MATCH
QEI_MODE_x2 PULSE
QEI_MODE_ TIMER
QEI_MODE_OFF

Position Counter Direction Status
QEI UP_COUNT
QEI_ DOWN_ COUNT

Idle Mode Operation
QEI IDLE_ STOP
QEI IDLE_CON

This contains the parameters to be configured in the
DFLTXCON register.

In 4x Quadrature Count Mode:
Required State of Phase A input signal
for match on index pulse

MATCH INDEX PHASEA HIGH
MATCH INDEX PHASEA LOW

Required State of Phase B input signal
for match on index pulse

MATCH INDEX PHASEB HIGH
MATCH INDEX PHASEB LOW

© 2005 Microchip Technology Inc.

DS51456C-page 175

16-Bit Language Tools Libraries

OpenQEI (Continued)

In 2x Quadrature Count Mode:

Phase input signal for index state match
MATCH_ INDEX_ INPUT PHASEA
MATCH INDEX INPUT PHASEB

Phase input signal state for match on index pulse
MATCH_ INDEX_ INPUT HIGH
MATCH INDEX INPUT LOW

Enable/Disable interrupt due to position count event
POS_CNT ERR INT ENABLE
POS_CNT ERR INT DISABLE

QEA/QEB Digital Filter Clock Divide Select bits
QEI QE CLK DIVIDE 1 1

QEI QE CLK DIVIDE 1 2

QEI QE CLK DIVIDE 1 4

QEI QE CLK DIVIDE 1 16

QEI QE CLK DIVIDE 1 32

QEI QE CLK DIVIDE 1 64

QEI QE CLK DIVIDE 1 128

QEI QE CLK DIVIDE 1 256

QEA/QEB Digital Filter Output Enable

QEI_QE_OUT ENABLE
QET_QE_OUT DISABLE

Return Value None
Remarks: This function configures the QEICON and DFLTCON registers of QEI
module.
This function also clears the QEICON<CNTERR> bhit.
Source File: OpenQEI.c
Code Example: OpenQEI (QEI_DIR SEL QEB & QEI INT CLK &
QEI INDEX RESET ENABLE &
QEI CLK PRESCALE 1 & QEI NORMAL IO &
QEI _MODE TIMER & QEI_UP_COUNT,0) ;
ReadQEI
Description: This function read the position count value from the POSCNT register.
Include: gei.h
Prototype: unsigned int ReadQEI (void) ;
Arguments: None
Remarks: None
Return Value This functions returns the contents of the POSCNT register.
Source File: ReadQEI.c
Code Example: unsigned int pos_ count;

pos_count = ReadQEI();

DS51456C-page 176 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

WriteQEI

Description: This function sets the maximum count value for QEI.
Include: gei.h

Prototype: void WriteQEI (unsigned int position) ;
Arguments:

Return Value
Remarks:
Source File:
Code Example:

position Thisis the value to be stored into the MAXCNT register.

None
None
WriteQEI.c

unsigned int position =
WriteQEI (position) ;

OxX3FFF;

3.15.2 Individual Macros

EnableIntQEI

Description: This macro enables the QEI interrupt.

Include: gei.h

Arguments: None

Remarks: This macro sets QEI Interrupt Enable bit of Interrupt Enable Control

Code Example:

register.
EnableIntQEI;

DisablelntQEI

Description: This macro disables the QEI interrupt.

Include: gei.h

Arguments: None

Remarks: This macro clears QEI Interrupt Enable bit of Interrupt Enable Control

Code Example:

register.
DisableIntQEI;

SetPriorityIntQEI

Description:
Include:

Arguments:

Remarks:

Code Example:

This macro sets priority for QEI interrupt.
gei.h
priority

This macro sets QEI Interrupt Priority bits of Interrupt Priority Control
register.

SetPriorityIntQEI (7) ;

© 2005 Microchip Technology Inc.

DS51456C-page 177

16-Bit Language Tools Libraries

3.15.3 Example of Use

#define __dsPIC30F6010__
#include <p30fxxxx.h>
#include<gei.h>

unsigned int pos_value;

void __ attribute ((__interrupt)) _QEIInterrupt (void)

{
PORTDbits.RD1 = 1; /* turn off LED on RD1 */
POSCNT = O0;
IFS2bits.QEIIF = 0; /* Clear QEI interrupt flag */

int main(void)

unsigned int max value;
TRISDbits.TRISD1 = O;
PORTDbits.RD1 = 1; /* turn off LED on RD1 */

/* Enable QEI Interrupt and Priority to "1" */
ConfigIntQEI (QEI INT PRI 1 & QEI INT ENABLE) ;

POSCNT = O;
MAXCNT = OxFFFF;
OpenQEI (QEI INT CLK & QEI INDEX RESET ENABLE &
QEI_CLK PRESCALE 256 &
QEI _GATED_ACC _DISABLE & QEI_ INPUTS NOSWAP &
QEI_MODE TIMER & QEI DIR SEL CNTRL &
QEI_ IDLE_CON, 0);
QEICONbits.UPDN = 1;
while (1)
{
pos_value = ReadQEI();
if (pos_value >= Ox7FFF)

{

}
}

CloseQEI () ;

PORTDbits.RD1 = 0; /* turn on LED on RD1 */

DS51456C-page 178

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

3.16 PWM FUNCTIONS

This section contains a list of individual functions for PWM module and an example of
use of the functions. Functions may be implemented as macros.

3.16.1

Individual Functions

CloseMCPWM

Description:
Include:
Prototype:
Arguments:
Return Value
Remarks:

Source File:
Code Example:

This function turns off the Motor Control PWM module.
pwm.h

void closeMCPWM (void) ;

None

None

This function disables the Motor control PWM module and clears the
PWM, Fault A and Fault B Interrupt Enable and Flag bits.

This function also clears the PTCON, PWMCON1 and PWMCON2
registers.

CloseMCPWM. ¢

CloseMCPWM () ;

ConfigiIntMCPWM

Description:
Include:
Prototype:
Arguments:

This function configures the PWM Interrupts.
pwm.h
void ConfigIntMCPWM (unsigned int config) ;

config PWM interrupt priority and enable/disable information as
defined below:

PWM Interrupt enable/disable
PWM_INT EN
PWM_INT DIS

PWM Interrupt priority
PWM_INT PRO
PWM_INT PR1
PWM_INT PR2
PWM_INT PR3
PWM_INT PR4
PWM_INT PR5
PWM_INT PR6
PWM_INT PR7

Fault A Interrupt enable/disable
PWM_FLTA EN_ INT
PWM_FLTA DIS INT

Fault A Interrupt priority
PWM_FLTA INT PRO
PWM_FLTA INT PR1
PWM_FLTA INT PR2
PWM_FLTA INT PR3
PWM_FLTA INT PR4
PWM_FLTA INT PRS
PWM_FLTA INT PR6
PWM_FLTA INT PR7

Fault B Interrupt enable/disable
PWM_FLTB_EN INT
PWM_FLTB_DIS INT

© 2005 Microchip Technology Inc.

DS51456C-page 179

16-Bit Language Tools Libraries

ConfigIntMCPWM (Continued)

Return Value
Remarks:

Source File:
Code Example:

None

Fault B Interrupt priority
PWM_FLTB_INT PRO

PWM_FLTB INT PR1
PWM_FLTB_INT PR2
PWM_FLTB_INT PR3
PWM_FLTB_TNT PR4
PWM_FLTB INT PR5
PWM_FLTB_INT PR6
PWM_FLTB_INT PR7

This function clears the Interrupt Flag bit, sets the interrupt priority and
enables/disables the interrupt.

ConfigIntMCPWM.c

ConfigIntMCPWM (PWM_INT EN & PWM_INT PR5 &
PWM_FLTA EN INT &
PWM_FLTA INT PR6 &
PWM_FLTB_EN INT &
PWM_FLTB_INT_ PR7) ;

OpenMCPWM
Description: This function configure the motor control PWM module.
Include: pwm.h
Prototype: void OpenMCPWM (unsigned int period,
unsigned int sptime,
unsigned int configl,
unsigned int config2,
unsigned int config3);
Arguments: period This contains the PWM timebase period value to be stored
in PTPER register.
sptime This contains the special event compare value to be
stored in SEVTCMP register.
configl This contains the parameters to be configured in the

PTCON register as defined below:
PWM module enable/disable

PWM_EN
PWM DTS

Idle mode enable/disable

PWM_IDLE_ STOP
PWM_TDLE_CON

Output post scaler select

PWM_OP_SCALE1
PWM_OP_SCALE2

PWM_OP_SCALE15
PWM_OP_SCALE16

Input prescaler select
PWM_IPCLK SCALEl
PWM_ IPCLK SCALE4
PWM_IPCLK SCALE16
PWM_IPCLK SCALE64

DS51456C-page 180

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OpenMCPWM (Continued)

PWM mode of operation
PWM_MOD_ FREE
PWM_MOD_SING
PWM_MOD_UPDN
PWM_MOD DBL

config2 This contains the parameters to be configured in the
PWMCONL1 register as defined below:

PWM 1/O pin pair
PWM_MOD4 _COMP
PWM MOD3_ COMP
PWM MOD2_ COMP
PWM MOD1 COMP
PWM_MOD4 IND
PWM_MOD3_IND
PWM_MOD2_IND
PWM_MOD1_ IND

PWM H/L /O enable/disable select

PWM_PEN4H

PWM_PDIS4H

PWM_PEN3H

PWM_PDIS3H

PWM_PEN2H

PWM_PDIS2H

PWM_PEN1H

PWM_PDIS1H

PWM_PEN4L

PWM_PDIS4L

PWM_PEN3L

PWM_PDIS3L

PWM_PEN2L

PWM_PDIS2L

PWM_PEN1L

PWM_PDISI1L

Bit defines related to PWM4 is available only for certain
devices and the suitable data sheet should be referred to.

config3 This contains the parameters to be configured in the
PWMCONZ2 register as defined below:

Special event post scaler
PWM SEVOPS1
PWM_SEVOPS2

PWM_SEVOPS15
PWM_SEVOPS16

Output Override synchronization select
PWM_OSYNC_PWM
PWM OSYNC Tcy

PWM update enable/disable

PWM_UDIS
PWM_ UEN
Return Value None
Remarks: This function configures the PTPER, SEVTCMP, PTCON, PWMCON1

and PWMCON?2 registers.

© 2005 Microchip Technology Inc. DS51456C-page 181

16-Bit Language Tools Libraries

OpenMCPWM (Continued)

Source File: OpenMCPWM. ¢

Code Example: period = Ox7fff;
sptime = 0x0;
configl = PWM_EN & PWM PTSIDL DIS &
PWM_OP_SCALEl6 &
PWM_IPCLK SCALEl6 &
PWM MOD_ UPDN;

config2 = PWM_MOD1_COMP & PWM_PDTS4H &
PWM_PDIS3H & PWM_PDIS2H &
PWM_PEN1H & PWM PDIS4L &
PWM_PDIS3L & PWM_PDIS2L &
PWM_PEN1L;

config3 = PWM_SEVOPS1 & PWM_OSYNC_PWM &
PWM_UEN;

OpenMCPWM (period, sptime, configl,
config2, config3);

OverrideMCPWM

Description: This function configures the OVDCON register.

Include: pwm.h

Prototype: void OverrideMCPWM (unsigned int config);
Arguments: config This contains the parameters to be configured in the

OVDCON register as defined below:

Output controlled by PWM generator

PWM_GEN_4H

PWM_GEN_3H

PWM GEN 2H

PWM GEN 1H

PWM GEN 4L

PWM_GEN 3L

PWM_GEN 2L

PWM GEN 1L

Bit defines related to PWM4 is available only for certain
devices and the suitable data sheet should be referred to.

Output controlled by POUT bits

PWM POUT 4H

PWM POUT 4L

PWM POUT 3H

PWM_POUT 3L

PWM_POUT_ 2H

PWM_POUT 2L

PWM POUT 1H

PWM POUT 1L

Bit defines related to PWM4 is available only for certain
devices and the suitable data sheet should be referred to.

DS51456C-page 182 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

OverrideMCPWM (Continued)

Return Value
Remarks:

Source File:
Code Example:

PWM Manual Output bits

PWM_POUT4H_ACT

PWM_POUT4H_ INACT

PWM POUT4L_ACT

PWM POUT4L_INACT

PWM POUT3H ACT

PWM_POUT3H_ INACT

PWM_POUT3L_ACT

PWM_POUT3L_INACT

PWM POUT2H ACT

PWM POUT2H INACT

PWM POUT2L_ACT

PWM_POUT2L_INACT

PWM_POUT1H_ ACT

PWM_POUT1H_ INACT

PWM POUT1L ACT

PWM POUT1L_ INACT

Bit defines related to PWM4 is available only for certain
devices and the suitable data sheet should be referred to.

None

This functions configures the PWM Output Override and Manual
Control bits of the OVDCON register.

OverrideMCPWM. c

PWM GEN 1L &
PWM_GEN_1H &
PWM_POUT1L INACT &
PWM_POUT3L_ INACT;
OverrideMCPWM (config) ;

config =

SetDCMCPWM

Description:

Include:
Prototype:

Arguments:

Return Value
Remarks:
Source File:
Code Example:

This function configures the Duty Cycle register and updates the ‘PWM

Update Disable’ bit in the PWMCONZ2 register.
pwm.h

void SetDCMCPWM (
unsigned int dutycyclereg,
unsigned int dutycycle,
char updatedisable) ;

dutycyclereg This is the pointer to the Duty Cycle register.

dutycycle Thisis the value to be stored in the Duty Cycle register.

updatedisable This is the value to be loaded into the ‘Update
Disable’ bit of the PWMCONZ2 register.

None

None

SetDCMCPWM. c

dutycyclereg = 1;
dutycycle = OxFFF;
updatedisable = 0;

SetDCMCPWM (dutycyclereg, dutycycle,updatedisable) ;

© 2005 Microchip Technology Inc.

DS51456C-page 183

16-Bit Language Tools Libraries

SetMCPWMDeadTimeAssignment

Description: This function configures the assignment of dead-time units to PWM
output pairs.

Include: pwm.h

Prototype: void SetMCPWMDeadTimeAssignment (unsigned int
confiqg) ;

Arguments: config This contains the parameters to be configured in the

DTCONZ2 register as defined below:

Dead-Time Select bits for PWM4 signal

PWM_DTS4A UA

PWM_DTS4A UB

PWM DTS4I UA

PWM DTS4I UB

Bit defines related to PWM4 is available only for certain
devices and the suitable data sheet should be referred to.

Dead-Time Select bits for PWM3 signal
PWM_DTS3A_UA
PWM_DTS3A_UB
PWM_DTS3I UA
PWM DTS3I UB

Dead-Time Select bits for PWM2 signal
PWM_DTS2A UA
PWM_DTS2A_UB
PWM_DTS2I UA
PWM_DTS2I UB

Dead-Time Select bits for PWM1 signal
PWM_DTS1A UA
PWM_DTS1A UB
PWM_DTS1I_UA
PWM_DTS1I_UB

Return Value None

Remarks: None

Source File: SetMCPWMDeadTimeAssignment.c

Code Example: SetMCPWMDeadTimeAssignment (PWM_DTS3A _UA &

PWM _DTS2I UA & PWM DTS1I URA);

DS51456C-page 184 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

SetMCPWMDeadTimeGeneration

Description:
Include:
Prototype:

Arguments:

Return Value
Remarks:
Source File:
Code Example:

pwm.h
void SetMCPWMDeadTimeGeneration (

unsigned int config) ;

register as defined below:
Dead-Time Unit B Prescale Select bits

PWM_DTBPS8
PWM_DTBPS4
PWM_DTBPS2
PWM_DTBPS1

Dead-Time Unit A Prescale Select constants

PWM_DTAOQ
PWM_DTAl
PWM_DTA2
PWM_DTA62
PWM_DTA63

Dead-Time Unit B Prescale Select constants
PWM_DTBO
PWM_DTB1
PWM_DTB2

PWM_DTB62
PWM_DTB63

Dead-Time Unit A Prescale Select bits

PWM_DTAPSS8
PWM_DTAPS4
PWM_DTAPS2
PWM_DTAPS1

SetMCPWMDeadTimeGeneration.c

SetMCPWMDeadTimeGeneration (PWM_DTBPS16 &
PWM DT54 & PWM DTAPSS8) ;

This function configures dead-time values and clock prescalers.

config This contains the parameters to be configured in the DTCON1

© 2005 Microchip Technology Inc.

DS51456C-page 185

16-Bit Language Tools Libraries

SetMCPWMFaultA

Description: This function configures Fault A Override bits, Fault A Mode bit and
Fault Input A Enable bits of PWM.

Include: pwm.h

Prototype: void SetMCPWMFaultA (unsigned int config);

Arguments: config This contains the parameters to be configured in the

FLTACON register as defined below:

Fault Input A PWM Override Value bits

PWM_OVA4H ACTIVE

PWM_OVA3H_ ACTIVE

PWM OVA2H ACTIVE

PWM OVA1H ACTIVE

PWM OVA4L ACTIVE

PWM_OVA3L_ACTIVE

PWM_OVA2L _ACTIVE

PWM_OVALL ACTIVE

PWM OVA4H INACTIVE

PWM OVA3H INACTIVE

PWM OVA2H INACTIVE

PWM_OVAlH INACTIVE

PWM_OVA4L_INACTIVE

PWM_OVA3L_INACTIVE

PWM OVA2L INACTIVE

PWM OVALL INACTIVE

Bit defines related to PWM4 is available only for certain
devices and the suitable data sheet should be referred to.

Fault A Mode bit
PWM_FLTA MODE CYCLE
PWM_FLTA MODE_LATCH

Fault Input A Enable bits.

PWM FLTA4 EN

PWM_FLTA4 DIS

PWM_FLTA3 EN

PWM_FLTA3 DIS

PWM FLTA2 EN

PWM FLTA2 DIS

PWM FLTAl EN

PWM_FLTAl DIS

Bit defines related to PWM4 is available only for certain
devices and the suitable data sheet should be referred to.

Return Value None

Remarks: None

Source File: SetMCPWMFaultA.c

Code Example: SetMCPWMFaultA (PWM_OVA3L_INACTIVE &

PWM_FLTA MODE_LATCH &
PWM_FLTA1l DIS);

DS51456C-page 186 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

SetMCPWMFaultB

Description: This function configures Fault B Override bits, Fault B Mode bit and
Fault Input B Enable bits of PWM.

Include: pwm.h

Prototype: void SetMCPWMFaultB (unsigned int config) ;

Arguments: config This contains the parameters to be configured in the

FLTBCON register as defined below:
FLTBCON register is available only for certain devices and
the suitable data sheet should be referred to.

Fault Input B PWM Override Value bits
PWM OVB4H ACTIVE
PWM OVB3H ACTIVE
PWM OVB2H ACTIVE
PWM_OVB1H ACTIVE
PWM_OVB4L_ACTIVE
PWM_OVB3L_ACTIVE
PWM OVB2L ACTIVE
PWM OVBL1L ACTIVE
PWM OVB4H INACTIVE
PWM_OVB3H_ INACTIVE
PWM_OVB2H INACTIVE
PWM_OVB1H INACTIVE
PWM OVB4L INACTIVE
PWM OVB3L INACTIVE
PWM OVB2L INACTIVE
PWM_OVBL1L INACTIVE

Fault B Mode bit
PWM_FLTB_MODE CYCLE
PWM_FLTB_MODE_LATCH

Fault Input B Enable bits.
PWM FLTB4 EN
PWM_FLTB4 DIS
PWM_FLTB3_ EN
PWM_FLTB3 DIS

PWM FLTB2 EN

PWM FLTB2 DIS

PWM FLTB1 EN
PWM_FLTB1 DIS

Return Value None

Remarks: None

Source File: SetMCPWMFaultB.c

Code Example: SetMCPWMFaultB (PWM OVB3L_ INACTIVE &

PWM_FLTB_MODE_LATCH &
PWM_FLTB2_ DIS) ;

© 2005 Microchip Technology Inc. DS51456C-page 187

16-Bit Language Tools Libraries

3.16.2 Individual Macros

EnableIntMCPWM

Description: This macro enables the PWM interrupt.

Include: pwm.h

Arguments: None

Remarks: This macro sets PWM Interrupt Enable bit of Interrupt Enable Control
register.

Code Example: EnableIntMCPWM;

DisableIntMCPWM

Description: This macro disables the PWM interrupt.

Include: pwm.h

Arguments: None

Remarks: This macro clears PWM Interrupt Enable bit of Interrupt Enable Control
register.

Code Example: DisableIntMCPWM;

SetPriorityIntMCPWM

Description: This macro sets priority for PWM interrupt.

Include: pwm.h

Arguments: priority

Remarks: This macro sets PWM Interrupt Priority bits of Interrupt Priority Control
register.

Code Example: SetPriorityIntMCPWM (7) ;

EnableIlntFLTA

Description: This macro enables the FLTA interrupt.

Include: pwm.h

Arguments: None

Remarks: This macro sets FLTA Interrupt Enable bit of Interrupt Enable Control
register.

Code Example: EnableIntFLTA;

DisablelntFLTA

Description: This macro disables the FLTA interrupt.

Include: pwm.h

Arguments: None

Remarks: This macro clears FLTA Interrupt Enable bit of Interrupt Enable Control
register.

Code Example: DisableIntFLTA;

DS51456C-page 188

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

SetPriorityIntFLTA

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for FLTA interrupt.

pwm.h

priority

This macro sets FLTA Interrupt Priority bits of Interrupt Priority Control
register.

SetPriorityIntFLTA(7) ;

EnableIntFLTB

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the FLTB interrupt.
pwm.h
None

This macro sets FLTB Interrupt Enable bit of Interrupt Enable Control
register.

EnableIntFLTB;

DisableIlntFLTB

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the FLTB interrupt.
pwm.h
None

This macro clears FLTB Interrupt Enable bit of Interrupt Enable Control
register.

DisableIntFLTB;

SetPriorityIntFLTB

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro sets priority for FLTB interrupt.
pwm.h
priority

This macro sets FLTB Interrupt Priority bits of Interrupt Priority Control
register.

SetPriorityIntFLTB (1) ;

© 2005 Microchip Technology Inc.

DS51456C-page 189

16-Bit Language Tools Libraries

3.16.3 Example of Use

#define __dsPIC30F6010__

#include <p30fxxxx.h>

#include<pwm.h>

void __ attribute ((__interrupt)) _PWMInterrupt (void)

{
}

int main()
{
/* Holds the PWM interrupt configuration valuex/
unsigned int config;
/* Holds the value to be loaded into dutycycle register */
unsigned int period;
/* Holds the value to be loaded into special event compare register */
unsigned int sptime;
/* Holds PWM configuration value */
unsigned int configl;
/* Holds the value be loaded into PWMCON1l register */
unsigned int config2;
/* Holds the value to configure the special event trigger
postscale and dutycycle */
unsigned int config3;
/* The value of ‘dutycyclereg’ determines the duty cycle
register (PDCx) to be written */
unsigned int dutycyclereg;
unsigned int dutycycle;
unsigned char updatedisable;

IFS2bits.PWMIF = 0;

/* Configure pwm interrupt enable/disable and set interrupt
priorties */
config = (PWM_INT EN & PWM FLTA DIS INT & PWM INT PR1
& PWM_FLTA INT PRO
& PWM_FLTB_DIS INT & PWM_FLTB INT PRO);
ConfigIntMCPWM(config) ;
/* Configure PWM to generate square wave of 50% duty cycle */
dutycyclereg = 1;
dutycycle = Ox3FFF;
updatedisable = 0;

SetDCMCPWM (dutycyclereg, dutycycle,updatedisable) ;

period = Ox7fff;

sptime = 0x0;

configl (PWM_EN & PWM_PTSIDL DIS & PWM OP SCALE16
& PWM_IPCLK SCALEl6 &

PWM_MOD UPDN) ;

config2 = (PWM _MOD1 COMP & PWM PDIS4H & PWM PDIS3H &
PWM_PDIS2H & PWM_PEN1H & PWM PDIS4L &
PWM_ PDIS3L & PWM PDIS2L & PWM PENI1L) ;

config3 = (PWM_SEVOPS1 & PWM OSYNC PWM & PWM UEN) ;
OpenMCPWM (period, sptime, configl, config2, config3) ;
while (1) ;

DS51456C-page 190 © 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

I2C™ FUNCTIONS

This section contains a list of individual functions for 12C module and an example of use
of the functions. Functions may be implemented as macros.

3.17.1 Individual Functions

Closel2C

Description: This function turns off the 12C module

Include: i2c.h

Prototype: void CloseI2C(void) ;

Arguments: None

Return Value None

Remarks: This function disables the 12C module and clears the Master and Slave
Interrupt Enable and Flag bits.

Source File: CloselI2C.c

Code Example:

CloseI2C() ;

Configinti2C

Description: This function configures the 12C Interrupt.

Include: i2c.h

Prototype: void ConfigIntI2C(unsigned int config);
Arguments: config 12C interrupt priority and enable/disable information as

Return Value

defined below:

12C master Interrupt enable/disable
MI2C_ INT ON

MI2C INT OFF
I2C slave Interrupt enable/disable
SI2C_INT ON
SI2C_INT OFF

12(: master Interrupt priority
MI2C_INT PRI 7
MI2C_INT PRI 6
MI2C_INT PRI 5
MI2C_INT PRI 4
MI2C_INT PRI 3
MI2C_INT PRI 2
MI2C INT PRI 1
MI2C INT PRI 0

12(: slave Interrupt priority
SI2C_INT PRI 7
SI2C_INT PRI 6
SI2C_ INT PRI 5
SI2C_ INT PRI 4
SI2C_INT PRI 3
SI2C_INT PRI 2
SI2C_INT PRI 1
SI2C_INT PRI 0

None

© 2005 Microchip Technology Inc.

DS51456C-page 191

16-Bit Language Tools Libraries

ConfigIntl2C (Continued)

Remarks:

Source File:
Code Example:

This function clears the Interrupt Flag bits, sets the interrupt priorities of
master and slave and enables/disables the interrupt.

ConfigIntI2C.c

ConfigIntI2C(MI2C_INT ON & MI2C_INT_ PRI 3
& SI2C_INT ON & SI2C_INT_PRI_5);

Ackl2C

Description: Generates |12C bus Acknowledge condition.

Include: i2c.h

Prototype: void AckI2C(void) ;

Arguments: None

Return Value None

Remarks: This function generates an 1°C bus Acknowledge condition.
Source File: AckI2C.c

Code Example:

AckI2C() ;

DataRdyl2C

Description: This function provides status back to user if 2CRCV register contain
data.

Include: i2c.h

Prototype: unsigned char DataRdyI2C (void) ;

Arguments: None

Return Value
Remarks:

Source File:
Code Example:

This function returns ‘1’ if there is data in I2CRCV register; else return
‘0’ which indicates no data in I2CRCV register.

This function determines if there is any byte to read from I2CRCV
register.

DataRdyI2C.c
if (DataRdyI2C()) ;

Idlel2C

Description: This function generates Wait condition until 12C bus is Idle.

Include: i2c.h

Prototype: void IdleI2C(void) ;

Arguments: None

Return Value None

Remarks: This function will be in a wait state until Start Condition Enable bit, Stop
Condition Enable bit, Receive Enable bit, Acknowledge Sequence
Enable bit of I2C Control register and Transmit Status bit 12C Status
register are clear. The Idlel2C function is required since the hardware
12C peripheral does not allow for spooling of bus sequence. The 12C
peripheral must be in Idle state before an 1°c operation can be initiated
or write collision will be generated.

Source File: IdleI2C.c

Code Example: IdleI2C() ;

DS51456C-page 192

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

Mastergetsi2C

Description:
Include:
Prototype:

Arguments:

Return Value

Remarks:
Source File:
Code Example:

This function reads predetermined data string length from the 12C bus.
i2c.h

unsigned int MastergetsI2C(unsigned int length,
unsigned char *rdptr, unsigned int i2c data wait) ;

length Number of bytes to read from 12C device.

rdptr Character type pointer to RAM for storage of data read
from 12C device

i2c_data wait This is the time-out count for which the module has
to wait before return.
If the time-out count is ‘N’, the actual time out would
be about (20 * N — 1) instruction cycles.

This function returns ‘0’ if all bytes have been sent or number of bytes
read from 12C bus if its not able to read the data with in the specified
i2c _data_ wait time out value

This routine reads a predefined data string from the 12C bus.
MastergetsI2C.c

unsigned char string[10];

unsigned char *rdptr;

unsigned int length, i2c_data wait;

length = 9;

rdptr = string;

i2c_data wait = 152;

MastergetsI2C(length, rdptr, i2c_data wait);

Masterputs|2C

Description:
Include:
Prototype:
Arguments:

Return Value

Remarks:

Source File:
Code Example:

This function is used to write out a data string to the 12C bus.
i2c.h
unsigned int MasterputsI2C(unsigned char *wrptr) ;

wrptr Character type pointer to data objects in RAM. The data
objects are written to the 12C device.

This function returns -3 if a write collision occurred.This function returns
‘0’ if the null character was reached in data string.

This function writes a string to the 12C bus until a null character is
reached. Each byte is written via a call to the MasterputcI2C
function. The actual called function body is termed MasterWriteI2C.
MasterWriteI2C and MasterputcI2C refertothe same function via
a #define statementin the i2c.h

MasterputsI2C.c

unsigned char string[] = “ MICROCHIP ”;
unsigned char *wrptr;

wrptr = string;

MasterputsI2C(wrptr) ;

© 2005 Microchip Technology Inc.

DS51456C-page 193

16-Bit Language Tools Libraries

MasterReadl2C

Description:
Include:
Prototype:
Arguments:
Return Value
Remarks:

Source File:
Code Example:

This function is used to read a single byte from 12C bus
i2c.h

unsigned char MasterReadI2C(void) ;

None

The return value is the data byte read from the 12C bus.

This function reads in a single byte from the 12C bus.
This function performs the same function as MastergetcI2C.

MasterReadI2C.c

unsigned char wvalue;
value = MasterReadI2C() ;

MasterWritel2C

Description:
Include:
Prototype:

Arguments:
Return Value
Remarks:

Source File:
Code Example:

This function is used to write out a single data byte to the 12C device.
i2c.h

unsigned char MasterWriteI2C(unsigned char

data out) ;
data out A single data byte to be written to the 12C bus device.
This function returns -1 if there was a write collision else it returns a 0.

This function writes out a single data byte to the 12C bus device. This
function performs the same function as MasterputcI2C.

MasterWriteI2C.c
MasterWriteI2C(‘a’) ;

NotAckl2C

Description: Generates 12C bus Not Acknowledge condition.

Include: i2c.h

Prototype: void NotAckI2C(void) ;

Arguments: None

Return Value None

Remarks: This function generates an 12C bus Not Acknowledge condition.
Source File: NotAckI2C.c

Code Example:

NotAckI2C() ;

DS51456C-page 194

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

Openl2C

Description:

Include:
Prototype:

Arguments:

Configures the 12C module.

i2c.h

void OpenI2C(unsigned int configl, unsigned int

config2) ;
configl

config2

This contains the parameter to configure the I2CCON
register

12C Enable bit

I2C_ON

I2C_OFF

12C Stop in Idle Mode bit
I2C_IDLE_STOP
I2C_IDLE_CON

SCL Release Control bit
I2C CLK REL
I2C_CLK_HLD

Intelligent Peripheral Management Interface Enable bit
I2C_IPMI_EN
I2C_IPMI_DIS

10-bit Slave Address bit
I2C 10BIT ADD
I2C_7BIT_ADD

Disable Slew Rate Control bit
I2C _SLW DIS
I2C_SLW_EN

SMBus Input Level bits
I2C SM_EN
I2C_SM DIS

General Call Enable bit
I2C GCALL_EN
I2C_GCALL DIS

SCL Clock Stretch Enable bit
I2C _STR_EN
I2C_STR DIS

Acknowledge Data bit
I2C_ACK
I2C_NACK

Acknowledge Sequence Enable bit
I2C_ACK_EN

I2C_ACK DIS

Receive Enable bit

I2C RCV_EN

I2C_RCV_DIS

Stop Condition Enable bit

I2C STOP_EN

I2C_STOP_DIS

Repeated Start Condition Enable bit

I2C RESTART EN
I2C_RESTART DIS

Start Condition Enable bit
I2C_ START EN
I2C_START DIS

computed value for the baud rate generator

© 2005 Microchip Technology Inc.

DS51456C-page 195

16-Bit Language Tools Libraries

Openl2C (Continued)

Return Value
Remarks:

Source File:
Code Example:

None

This function configures the 12C Control register and 12C Baud Rate
Generator register.

OpenI2C.c
OpenI2C() ;

Restartl2C

Description: Generates 12C Bus Restart condition.

Include: i2c.h

Prototype: void RestartI2C(void) ;

Arguments: None

Return Value None

Remarks: This function generates an I2C Bus Restart condition.
Source File: RestartI2C.c

Code Example:

RestartI2C() ;

Slavegets|2C

Description:
Include:
Prototype:

Arguments:

Return Value
Remarks:
Source File:
Code Example:

This function reads pre-determined data string length from the 12C bus.
i2c.h

unsigned int SlavegetsI2C(unsigned char *rdptr,
unsigned int i2c _data wait) ;

rdptr
12C device.

i2c_data wait This is the time-out count for which the module has

to wait before return.

If the time-out count is ‘N’, the actual time out would

be about (20*N - 1) instruction cycles.
Returns the number of bytes received from the 12C bus.
This routine reads a predefined data string from the 12C bus.
SlavegetsI2C.c
unsigned char stringl[12];
unsigned char *rdptr;
rdptr = string;
i2c_data out = 0x11;

SlavegetsI2C(rdptr, i2c _data wait);

DS51456C-page 196

© 2005 Microchip Technology Inc.

Character type pointer to RAM for storage of data read from

16-Bit Peripheral Libraries

Slaveputsl2C

Description: This function is used to write out a data string to the 12C bus.

Include: i2c.h

Prototype: unsigned int SlaveputsI2C(unsigned char *wrptr) ;

Arguments: wrptr Character type pointer to data objects in RAM. The data

objects are written to the 12C device.

Return Value This function returns ‘0’ if the null character was reached in the data
string.

Remarks: This routine writes a data string out to the 12C bus until a null character
is reached.

Source File: SlaveputsI2C.c

Code Example: unsigned char string[] =”"MICROCHIP”;

unsigned char *rdptr;
rdptr = string;
SlaveputsI2C (rdptr) ;

SlaveReadl|2C

Description: This function is used to read a single byte from the 12C bus.

Include: i2c.h

Prototype: unsigned char SlaveReadI2C(void) ;

Arguments: None

Return Value The return value is the data byte read from the 12C bus.

Remarks: This function reads in a single byte from the 12C bus. This function
performs the same function as SlavegetcI2C.

Source File: SlaveReadI2C.c

Code Example: unsigned char value;

value = SlaveReadI2C();

SlaveWritel2C

Description: This function is used to write out a single byte to the 12C bus.

Include: i2c.h

Prototype: void SlaveWriteI2C(unsigned char data out) ;

Arguments: data_out A single data byte to be written to the 12C bus device.

Return Value None

Remarks: This function writes out a single data byte to the 12C bus device. This
function performs the same function as SlaveputcI2cC.

Source File: SlaveWriteI2C.c

Code Example: SlaveWriteI2C(‘a’) ;

© 2005 Microchip Technology Inc. DS51456C-page 197

16-Bit Language Tools Libraries

Startl2C

Description: Generates I2C Bus Start condition.

Include: i2c.h

Prototype: void StartI2C(void) ;

Arguments: None

Return Value None

Remarks: This function generates a I2C Bus Start condition.
Source File: StartI2C.c

Code Example: StartI2C() ;

Stopl2C

Description: Generates 12C Bus Stop condition.

Include: i2c.h

Prototype: void StopI2C(void) ;

Arguments: None

Return Value None

Remarks: This function generates a 12C Bus Stop condition.
Source File: StopI2C.c

Code Example: StopI2C();

3.17.2

Individual Macros

EnablelntMI2C

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro enables the master 12C interrupt.
i2c.h
None

This macro sets Master 12C Enable bit of Interrupt Enable Control
register.

EnableIntMI2C;

DisablelntMI2C

Description:
Include:
Arguments:
Remarks:

Code Example:

This macro disables the master 12C interrupt.
i2c.h
None

This macro clears Master 12C Interrupt Enable bit of Interrupt Enable
Control register.

DisableIntMI2C;

DS51456C-page 198

© 2005 Microchip Technology Inc.

16-Bit Peripheral Libraries

SetPriorityIntMI2C

Description: This macro sets priority for master 12C interrupt.

Include: i2c.h

Arguments: priority

Remarks: This macro sets Master 12C Interrupt Priority bits of Interrupt Priority

Control register.
Code Example: SetPriorityIntMI2C (1) ;

EnablelntSI2C

Description: This macro enables the slave 12C interrupt.

Include: i2c.h

Arguments: None

Remarks: This macro sets Slave 12C Enable bit of Interrupt Enable Control
register.

Code Example: EnableIntSI2C;

DisablelntSI2C

Description: This macro disables the slave 12C interrupt.

Include: i2c.h

Arguments: None

Remarks: This macro clears Slave 12C Interrupt Enable bit of Interrupt Enable
Control register.

Code Example: DisableIntSI2C;

SetPriorityIntSI2C

Description: This macro sets priority for master 12C interrupt.

Include: i2c.h

Arguments: priority

Remarks: This macro sets Master 12C Interrupt Priority bits of Interrupt Priority
Control register.

Code Example: SetPriorityIntSI2C(4) ;

© 2005 Microchip Technology Inc. DS51456C-page 199

16-Bit Language Tools Libraries

3.17.3 Example of Use

#define __dsPIC30F6014__
#include <p30fxxxx.h>
#include<i2c.h>

void main (void)

{

/*
/*

/*
/*
/*

/*

unsigned int config2, configl;
unsigned char *wrptr;
unsigned char tx datal] =

{'M','I','C','R','O',’C’,'H','I','P','\O'};

wrptr = tx data;
Baud rate is set for 100 Khz */

config2 = 0x11;
Configure I2C for 7 bit address mode */

configl = (I2C_ON & I2C_IDLE CON & I2C_CLK HLD

& T2C_IPMI_DIS & I2C_7BIT_ ADD
& T2C_SLW _DIS & I2C_SM DIS &
I2C_GCALL_DIS & I2C_STR DIS &

I2C_NACK & I2C_ACK DIS & I2C_RCV DIS &

I2C_STOP_DIS & I2C_RESTART DIS

& I2C_START DIS);
OpenI2C(configl, config2) ;
IdleI2C();
StartI2C() ;
Wait till Start sequence is completed */
while (I2CCONbits.SEN) ;

Write Slave address and set master for transmission */

MasterWriteI2C (0XE) ;
Wait till address is transmitted */
while (I2CSTATbits.TBF) ;
while (I2CSTATbits.ACKSTAT) ;
Transmit string of data */
MasterputsI2C (wrptr) ;
StopI2C() ;
Wait till stop sequence is completed */
while (I2CCONbits.PEN) ;
CloseI2C() ;

DS51456C-page 200

© 2005 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 4. Standard C Librarieswith Math Functions

4.1 INTRODUCTION

Standard ANSI C library functions are contained in the libraries 1ibc-omf.a and
libm-omf.a (math functions), where omf will be cof £ or el £ depending upon the
selected object module format.

Additionally, some 16-bit standard C library helper functions, and standard functions
that must be modified for use with 16-bit devices, are in the library 1ibpic30-omf. a.

41.1 Assembly Code Applications

A free version of the math functions library and header file is available from the
Microchip web site. No source code is available with this free version.

4.1.2 C Code Applications

The MPLAB C30 C compiler install directory (c: \Program Files\Micro-
chip\MPLAB C30) contains the following subdirectories with library-related files:

e 1lib — standard C library files

* src\libm — source code for math library functions, batch file to rebuild the library
» support\h — header files for libraries

In addition, there is a file, ResourceGraphs . pdf, which contains diagrams of
resources used by each function, located in 1ib.

4.1.3 Chapter Organization

This chapter is organized as follows:
« Using the Standard C Libraries
libc-omf.a

» <assert.h> diagnostics

» <ctype.h> character handling

» <errno.h> errors

 <float.h> floating-point characteristics
« <limits.h> implementation-defined limits
+ <locale.h> localization

» <setjmp.h> non-local jumps
 <signal.h> signal handling
 <stdarg.h> variable argument lists

» <stddef.h> common definitions
 <stdio.h> input and output

« <stdlib.h> utility functions
 <string.h> string functions

» <time.h> date and time functions
libm-omf.a

« <math.h> mathematical functions

© 2005 Microchip Technology Inc. DS51456B4-page 201

16-Bit Language Tools Libraries

libpic30-omf.a
* pic30-libs

4.2 USING THE STANDARD C LIBRARIES

Building an application which utilizes the standard C libraries requires two types of files:
header files and library files.

4.2.1 Header Files

All standard C library entities are declared or defined in one or more standard headers
(See listin Section 4.1.3 “Chapter Organization”.) To make use of a library entity in
a program, write an include directive that names the relevant standard header.

The contents of a standard header is included by naming it in an include directive, as in:
#include <stdio.h> /* include I/0 facilities */

The standard headers can be included in any order. Do not include a standard header
within a declaration. Do not define macros that have the same names as keywords
before including a standard header.

A standard header never includes another standard header.

4.2.2 Library Files

The archived library files contain all the individual object files for each library function.

When linking an application, the library file must be provided as an input to the linker
(using the --1ibrary or -1 linker option) such that the functions used by the
application may be linked into the application.

A typical C application will require three library files: 1ibc-omf.a, 1ibm-omf.a, and
libpic30-omf.a. (See Section 1.2 “OMF-Specific Libraries/Start-up Modules”
for more on OMF-specific libraries.) These libraries will be included automatically if
linking is performed using the MPLAB C30 compiler.

Note: Some standard library functions require a heap. These include the standard
I/O functions that open files and the memory allocation functions. See the
“MPLAB ASM30, MPLAB LINK30 and Utilities User’s Guide” (DS51317)
and “MPLAB C30 C Compiler User’s Guide” (DS51284) for more
information on the heap.

DS51456B4-page 202

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

4.3 <ASSERT.H> DIAGNOSTICS

The header file assert . h consists of a single macro that is useful for debugging logic
errors in programs. By using the assert statement in critical locations where certain
conditions should be true, the logic of the program may be tested.

Assertion testing may be turned off without removing the code by defining NDEBUG
before including <assert . h>. If the macro NDEBUG is defined, assert () is ignored
and no code is generated.

assert

Description:

Include:
Prototype:
Argument:
Remarks:

Example:

If the expression is false, an assertion message is printed to stderr and
the program is aborted.

<assert.h>

void assert (int expression) ;

expression The expression to test.

The expression evaluates to zero or non-zero. If zero, the assertion
fails, and a message is printed to stderr. The message includes the
source file name (__FILE), the source line number (__LINE),
the expression being evaluated and the message. The macro then calls
the function abort () . If the macro _VERBOSE_DEBUGGING is defined,
a message will be printed to stderr each time assert () is called.

#include <assert.h> /* for assert */

int main(void)

{

int a;
a =2 * 2;
assert(a == 4); /* if true-nothing prints */
assert(a == 6); /* if false-print message */
/* and abort */
Output:
sampassert.c:9 a == 6 -- assertion failed
ABRT

with VERBOSE_DEBUGGING defined:

sampassert.c:8
sampassert.c:9
ABRT

a
a

© 2005 Microchip Technology Inc.

DS51456B4-page 203

16-Bit Language Tools Libraries

<CTYPE.H> CHARACTER HANDLING

The header file ctype . h consists of functions that are useful for classifying and
mapping characters. Characters are interpreted according to the Standard C locale.

isalnum

Description: Test for an alphanumeric character.
Include: <ctype.h>

Prototype: int isalnum(int c¢);
Argument: c The character to test.

Return Value:

Returns a non-zero integer value if the character is alphanumeric;
otherwise, returns a zero.

Remarks: Alphanumeric characters are included within the ranges A-Z, a-z or 0-9.
Example: #include <ctype.h> /* for isalnum */
#include <stdio.h> /* for printf */
int main(void)
{
int ch;
ch = '3';
if (isalnum(ch))
printf ("3 is an alphanumeric\n") ;
else
printf ("3 is NOT an alphanumeric\n") ;
ch = "#';
if (isalnum(ch))
printf ("# is an alphanumeric\n") ;
else
printf ("# is NOT an alphanumeric\n") ;
}
Output:
3 is an alphanumeric
is NOT an alphanumeric
isalpha
Description: Test for an alphabetic character.
Include: <ctype.h>
Prototype: int isalpha (int c¢);
Argument: c The character to test.

Return Value:

Remarks:

Returns a non-zero integer value if the character is alphabetic;
otherwise, returns zero.

Alphabetic characters are included within the ranges A-Z or a-z.

DS51456B4-page 204

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

isalpha (Continued)

Example:

#include <ctype.h> /* for isalpha */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
if (isalpha(ch))

printf ("B is alphabetic\n") ;
else

printf ("B is NOT alphabetic\n") ;

ch = "#';
if (isalpha(ch))

printf ("# is alphabetic\n") ;
else

printf ("# is NOT alphabetic\n") ;

}

Output:
B is alphabetic
1s NOT alphabetic

iscntrl

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a control character.
<ctype.h>
int iscntrl (int c¢);

c character to test.

Returns a non-zero integer value if the character is a control character;

otherwise, returns zero.

A character is considered to be a control character if its ASCII value is

in the range 0x00 to Ox1F inclusive, or Ox7F.

#include <ctype.h> /* for iscntrl */
#include <stdio.h> /* for printf */

int main(void)

{

char ch;

}

ch = 'B';
if (iscntrl (ch))

printf ("B is a control character\n") ;
else

printf ("B is NOT a control character\n") ;

ch = "\t';
if (iscntrl (ch))

printf ("A tab is a control character\n");
else

printf ("A tab is NOT a control character\n");

Output:
B is NOT a control character
A tab is a control character

© 2005 Microchip Technology Inc.

DS51456B4-page 205

16-Bit Language Tools Libraries

isdigit

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a decimal digit.

<ctype.h>

int isdigit (int c);

c character to test.

Returns a non-zero integer value if the character is a digit; otherwise,
returns zero.

A character is considered to be a digit character if it is in the range of
0-9.

#include <ctype.h> /* for isdigit */

#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = '31;
if (isdigit(ch))

printf ("3 is a digit\n");
else

printf ("3 is NOT a digit\n");

ch = "#';
if (isdigit(ch))
printf ("# is a digit\n");
else
printf ("# is NOT a digit\n");
!

Output:
3 is a digit
is NOT a digit

isgraph

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a graphical character.
<ctype.h>

int isgraph (int c);

c character to test

Returns a non-zero integer value if the character is a graphical
character; otherwise, returns zero.

A character is considered to be a graphical character if it is any
printable character except a space.

#include <ctype.h> /* for isgraph */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

DS51456B4-page 206

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

isgraph (Continued)

ch = '3';
if (isgraph(ch))

printf ("3 is a graphical character\n") ;
else

printf ("3 is NOT a graphical character\n");

ch = "#';
if (isgraph(ch))

printf ("# is a graphical character\n");
else

printf ("# is NOT a graphical character\n") ;

ch =" "1;
if (isgraph(ch))

printf ("a space is a graphical character\n") ;
else

printf ("a space is NOT a graphical character\n") ;

}

Output:

3 is a graphical character

is a graphical character

a space is NOT a graphical character

islower

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a lower case alphabetic character.

<ctype.h>

int islower (int c¢);

¢ character to test

Returns a non-zero integer value if the character is a lower case
alphabetic character; otherwise, returns zero.

A character is considered to be a lower case alphabetic character if it is
in the range of ‘a’-‘z".

#include <ctype.h> /* for islower */

#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
if (islower (ch))

printf ("B is lower case\n");
else

printf ("B is NOT lower case\n");

ch = 'b';
if (islower (ch))
printf ("b is lower case\n");
else
printf ("b is NOT lower case\n");
}

Output:
B is NOT lower case
b is lower case

© 2005 Microchip Technology Inc.

DS51456B4-page 207

16-Bit Language Tools Libraries

isprint

Description: Test for a printable character (includes a space).
Include: <ctype.h>

Prototype: int isprint (int c);

Argument: c character to test

Return Value:

Returns a non-zero integer value if the character is printable;
otherwise, returns zero.

Remarks: A character is considered to be a printable character if it is in the range
0x20 to Ox7e inclusive.
Example: #include <ctype.h> /* for isprint */
#include <stdio.h> /* for printf */
int main(void)
{
int ch;
ch = '&';
if (isprint(ch))
printf ("& is a printable character\n");
else
printf ("& is NOT a printable character\n") ;
ch = '"\t';
if (isprint (ch))
printf ("a tab is a printable character\n");
else
printf ("a tab is NOT a printable character\n") ;
}
Output:
& is a printable character
a tab is NOT a printable character
ispunct
Description: Test for a punctuation character.
Include: <ctype.h>
Prototype: int ispunct (int c);
Argument: c character to test

Return Value:

Remarks:

Returns a non-zero integer value if the character is a punctuation
character; otherwise, returns zero.

A character is considered to be a punctuation character if it is a

printable character which is neither a space nor an alphanumeric

character. Punctuation characters consist of the following:
"#$3% &' ();<=>?2@[\]1*+,-./[:"_{]|}~

DS51456B4-page 208

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

ispunct (Continued)

Example: #include <ctype.h> /* for ispunct */
#include <stdio.h> /* for printf */
int main(void)
{
int ch;
ch = '&';
if (ispunct (ch))
printf ("& is a punctuation character\n") ;
else
printf ("& is NOT a punctuation character\n") ;
ch = "\t';
if (ispunct (ch))
printf ("a tab is a punctuation character\n") ;
else
printf ("a tab is NOT a punctuation character\n") ;
}
Output:
& is a punctuation character
a tab is NOT a punctuation character
isspace
Description: Test for a white-space character.
Include: <ctype.h>
Prototype: int isspace (int c¢);
Argument: c character to test

Return Value:

Remarks:

Example:

Returns a non-zero integer value if the character is a white-space
character; otherwise, returns zero.

A character is considered to be a white-space character if it is one of
the following: space (' "), form feed (\f'), newline (\n"), carriage return
('\r"), horizontal tab ('\t), or vertical tab ('\v').

#include <ctype.h> /* for isspace */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = '&';
if (isspace(ch))

printf ("& is a white-space character\n") ;
else

printf ("& is NOT a white-space character\n") ;

ch = "\t';
if (isspace(ch))
printf ("a tab is a white-space character\n") ;
else
printf ("a tab is NOT a white-space character\n") ;
}
Output:
& is NOT a white-space character
a tab is a white-space character

© 2005 Microchip Technology Inc.

DS51456B4-page 209

16-Bit Language Tools Libraries

isupper

Description: Test for an upper case letter.
Include: <ctype.h>

Prototype: int isupper (int c¢);
Argument: c character to test

Return Value:

Remarks:

Example:

Returns a non-zero integer value if the character is an upper case
alphabetic character; otherwise, returns zero.

A character is considered to be an upper case alphabetic character if it
is in the range of ‘A-‘Z'.

#include <ctype.h> /* for isupper */

#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
if (isupper (ch))

printf ("B is upper case\n");
else

printf ("B is NOT upper case\n");

ch = 'b';
if (isupper (ch))
printf ("b is upper case\n");
else
printf ("b is NOT upper case\n") ;
}

Output:
B is upper case
b is NOT upper case

isxdigit

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Test for a hexadecimal digit.
<ctype.h>

int isxdigit (int c);
c character to test

Returns a non-zero integer value if the character is a hexadecimal digit;
otherwise, returns zero.

A character is considered to be a hexadecimal digit character if it is in
the range of ‘0’-'9’, ‘A-‘F’, or ‘a’-‘f". Note: The list does not include the
leading Ox because 0x is the prefix for a hexadecimal number but is not
an actual hexadecimal digit.

DS51456B4-page 210

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

isxdigit (Continued)

Example:

#include <ctype.h> /* for isxdigit */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
if (isxdigit(ch))

printf ("B is a hexadecimal digit\n");
else

printf ("B is NOT a hexadecimal digit\n");

ch = 't';
if (isxdigit(ch))

printf ("t is a hexadecimal digit\n");
else

printf ("t is NOT a hexadecimal digit\n");

}

Output:
B is a hexadecimal digit
t is NOT a hexadecimal digit

tolower

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Convert a character to a lower case alphabetical character.
<ctype.h>

int tolower (int c¢);

¢ The character to convert to lower case.

Returns the corresponding lower case alphabetical character if the
argument was originally upper case; otherwise, returns the original
character.

Only upper case alphabetical characters may be converted to lower
case.

#include <ctype.h> /* for tolower */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
printf ("B changes to lower case %c\n",
tolower (ch)) ;

ch = 'b';
printf ("b remains lower case %c\n",
tolower (ch)) ;

ch = 'e';
printf ("@ has no lower case, ");
printf ("so %c is returned\n", tolower (ch)) ;

}

Output:

B changes to lower case b

b remains lower case b

@ has no lower case, so @ is returned

© 2005 Microchip Technology Inc.

DS51456B4-page 211

16-Bit Language Tools Libraries

toupper

Description: Convert a character to an upper case alphabetical character.
Include: <ctype.h>

Prototype: int toupper (int c¢);

Argument: ¢ The character to convert to upper case.

Return Value:

Remarks:

Example:

Returns the corresponding upper case alphabetical character if the
argument was originally lower case; otherwise, returns the original
character.

Only lower case alphabetical characters may be converted to upper
case.

#include <ctype.h> /* for toupper */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'b';
printf ("b changes to upper case %c\n",
toupper (ch)) ;

ch = 'B';
printf ("B remains upper case %c\n",
toupper (ch)) ;

ch = 'e';
printf ("@ has no upper case, ");
printf ("so %c is returned\n", toupper (ch)) ;

}

Output:

b changes to upper case B

B remains upper case B

@ has no upper case, so @ is returned

DS51456B4-page 212

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

<ERRNO.H> ERRORS

The header file errno . h consists of macros that provide error codes that are reported
by certain library functions (see individual functions). The variable errno may return
any value greater than zero. To test if a library function encounters an error, the pro-
gram should store the value zero in errno immediately before calling the library func-
tion. The value should be checked before another function call could change the value.
At program start-up, errno is zero. Library functions will never set errno to zero.

EDOM

Description: Represents a domain error.

Include: <errno.h>

Remarks: EDOM represents a domain error, which occurs when an input argument
is outside the domain in which the function is defined.

ERANGE

Description: Represents an overflow or underflow error.

Include: <errno.h>

Remarks: ERANGE represents an overflow or underflow error, which occurs when
aresult is too large or too small to be stored.

errno

Description: Contains the value of an error when an error occurs in a function.

Include: <errno.h>

Remarks: The variable errno is set to a non-zero integer value by a library

function when an error occurs. At program start-up, errno is set to
zero. Errno should be reset to zero prior to calling a function that sets
it.

© 2005 Microchip Technology Inc.

DS51456B4-page 213

16-Bit Language Tools Libraries

46 <FLOAT.H> FLOATING-POINT CHARACTERISTICS

The header file £1oat . h consists of macros that specify various properties of float-
ing-point types. These properties include number of significant figures, size limits, and
what rounding mode is used.

DBL_DIG

Description: Number of decimal digits of precision in a double precision
floating-point value

Include: <float.h>

Value: 6 by default, 15 if the switch -fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-bit
representation). The - fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point
value.

DBL_EPSILON

Description: The difference between 1.0 and the next larger representable double
precision floating-point value

Include: <float.h>

Value: 1.192093e-07 by default, 2.220446e-16 if the switch
-fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-hit

representation). The -fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point
value.

DBL_MANT DIG

Description: Number of base-FLT RADIX digits in a double precision floating-point
significand

Include: <float.h>

Value: 24 by default, 53 if the switch -fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-bit

representation). The -fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point

value.

DBL_MAX

Description: Maximum finite double precision floating-point value

Include: <float.h>

Value: 3.402823e+38 by default, 1.797693e+308 if the switch
-fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-hit

representation). The -fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point
value.

DS51456B4-page 214 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

DBL_MAX_10_EXP

Description: Maximum integer value for a double precision floating-point exponent in
base 10

Include: <float.h>

Value: 38 by default, 308 if the switch - fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-hit

representation). The -fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point
value.

DBL_MAX_EXP

Description: Maximum integer value for a double precision floating-point exponent in
base FLT RADIX

Include: <float.h>

Value: 128 by default, 1024 if the switch -fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-hit

representation). The -fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point

value.

DBL_MIN

Description: Minimum double precision floating-point value

Include: <float.h>

Value: 1.175494e-38 by default, 2.225074e-308 if the switch
-fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-bit

representation). The - fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point
value.

DBL_MIN_10_EXP

Description: Minimum negative integer value for a double precision floating-point
exponent in base 10

Include: <float.h>
Value: -37 by default, -307 if the switch - fno-short-double is used
Remarks: By default, a double type is the same size as a float type (32-hit

representation). The -fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point
value.

© 2005 Microchip Technology Inc. DS51456B4-page 215

16-Bit Language Tools Libraries

DBL_MIN_EXP

Description: Minimum negative integer value for a double precision floating-point
exponent in base FLT RADIX

Include: <float.h>

Value: -125 by default, -1021 if the switch - fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-hit
representation). The -fno-short-double switch allows the IEEE
64-bit representation to be used for a double precision floating-point
value.

FLT DIG

Description: Number of decimal digits of precision in a single precision floating-point
value

Include: <float.h>

Value: 6

FLT_EPSILON

Description: The difference between 1.0 and the next larger representable single
precision floating-point value

Include: <float.h>

Value: 1.192093e-07

FLT MANT DIG

Description: Number of base-FLT RADIX digits in a single precision floating-point
significand

Include: <float.h>

Value: 24

FLT _MAX

Description: Maximum finite single precision floating-point value

Include: <float.h>

Value: 3.402823e+38

FLT_MAX_10 EXP

Description:

Include:
Value:

Maximum integer value for a single precision floating-point exponent in
base 10

<float.h>
38

DS51456B4-page 216

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

FLT MAX_EXP

Description: Maximum integer value for a single precision floating-point exponent in
base FLT RADIX

Include: <float.h>

Value: 128

FLT MIN

Description: Minimum single precision floating-point value

Include: <float.h>

Value: 1.175494e-38

FLT_MIN_10_EXP

Description: Minimum negative integer value for a single precision floating-point
exponent in base 10

Include: <float.h>

Value: -37

FLT _MIN_EXP

Description: Minimum negative integer value for a single precision floating-point
exponent in base FLT RADIX

Include: <float.h>

Value: -125

FLT_RADIX

Description: Radix of exponent representation

Include: <float.h>

Value: 2

Remarks: The base representation of the exponent is base-2 or binary.

FLT_ROUNDS

Description: Represents the rounding mode for floating-point operations

Include: <float.h>

Value: 1

Remarks: Rounds to the nearest representable value

LDBL_DIG

Description: Number of decimal digits of precision in a long double precision
floating-point value

Include: <float.h>

Value: 15

© 2005 Microchip Technology Inc.

DS51456B4-page 217

16-Bit Language Tools Libraries

LDBL_EPSILON

Description: The difference between 1.0 and the next larger representable long
double precision floating-point value

Include: <float.h>

Value: 2.220446e-16

LDBL_MANT_DIG

Description: Number of base-FLT_RADIX digits in a long double precision
floating-point significand

Include: <float.h>

Value: 53

LDBL_MAX

Description: Maximum finite long double precision floating-point value
Include: <float.h>

Value: 1.797693e+308

LDBL_MAX_10_EXP

Description: Maximum integer value for a long double precision floating-point
exponent in base 10

Include: <float.h>

Value: 308

LDBL_MAX_EXP

Description: Maximum integer value for a long double precision floating-point
exponent in base FLT RADIX

Include: <float.h>

Value: 1024

LDBL_MIN

Description: Minimum long double precision floating-point value

Include: <float.h>

Value: 2.225074e-308

LDBL_MIN_10_EXP

Description: Minimum negative integer value for a long double precision
floating-point exponent in base 10

Include: <float.h>

Value: -307

DS51456B4-page 218

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

LDBL_MIN_EXP

Description:

Include:
Value:

Minimum negative integer value for a long double precision
floating-point exponent in base FLT RADIX

<float.h>
-1021

4.7 <LIMITS.H> IMPLEMENTATION-DEFINED LIMITS

The header file 1imits.h consists of macros that define the minimum and maximum
values of integer types. Each of these macros can be used in #if preprocessing

directives.

CHAR_BIT

Description:
Include:
Value:

Number of bits to represent type char
<limits.h>
8

CHAR_MAX

Description:
Include:
Value:

Maximum value of a char

<limits.h>
127

CHAR_MIN

Description:
Include:
Value:

Minimum value of a char

<limits.h>
-128

INT_MAX

Description:
Include:
Value:

Maximum value of an int

<limits.h>
32767

INT_MIN

Description:
Include:
Value:

Minimum value of an int

<limits.h>
-32768

LLONG_MAX

Description:
Include:
Value:

Maximum value of a long long int

<limits.h>
9223372036854775807

© 2005 Microchip Technology Inc.

DS51456B4-page 219

16-Bit Language Tools Libraries

LLONG_MIN

Description: Minimum value of a long long int
Include: <limits.h>

Value: -9223372036854775808
LONG_MAX

Description: Maximum value of a long int
Include: <limits.h>

Value: 2147483647

LONG_MIN

Description: Minimum value of a long int
Include: <limits.h>

Value: -2147483648

MB_LEN_MAX

Description: Maximum number of bytes in a multibyte character
Include: <limits.h>

Value: 1

SCHAR_MAX

Description: Maximum value of a signed char
Include: <limits.h>

Value: 127

SCHAR_MIN

Description: Minimum value of a signed char
Include: <limits.h>

Value: -128

SHRT_MAX

Description: Maximum value of a short int
Include: <limits.h>

Value: 32767

SHRT_MIN

Description: Minimum value of a short int
Include: <limits.h>

Value: -32768

DS51456B4-page 220 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

UCHAR_MAX

Description:
Include:
Value:

Maximum value of an unsigned char
<limits.h>
255

UINT_MAX

Description:
Include:
Value:

Maximum value of an unsigned int

<limits.h>
65535

ULLONG_MAX

Description:
Include:
Value:

Maximum value of a long long unsigned int

<limits.h>
18446744073709551615

ULONG_MAX

Description:
Include:
Value:

Maximum value of a long unsigned int
<limits.h>
4294967295

USHRT_MAX

Description:
Include:
Value:

Maximum value of an unsigned short int
<limits.h>
65535

4.8 <LOCALE.H>LOCALIZATION

This compiler defaults to the C locale and does not support any other locales; therefore
it does not support the header file 1ocale . h. The following would normally be found

in this file:

« struct Iconv

* NULL

* LC ALL

« LC_COLLATE
 LC _CTYPE

* LC_MONETARY
« LC_NUMERIC
* LC TIME

« localeconv

« setlocale

© 2005 Microchip Technology Inc.

DS51456B4-page 221

16-Bit Language Tools Libraries

49 <SETJMP.H> NON-LOCAL JUMPS

The header file setjmp . h consists of a type, a macro and a function that allow control
transfers to occur that bypass the normal function call and return process.

jmp_buf

Description: A type that is an array used by setjmp and 1longjmp to save and
restore the program environment.

Include: <setjmp.h>

Prototype: typedef int jmp buf [NSETJMP] ;

Remarks: _NSETJMP is defined as 16 + 2 that represents 16 registers and a
32-bit return address.

setimp

Description: A macro that saves the current state of the program for later use by
longjmp.

Include: <setjmp.h>

Prototype: #define setjmp (jmp_buf env)

Argument: env Vvariable where environment is stored

Return Value:

If the return is from a direct call, setjmp returns zero. If the return is
from a call to longjmp, setjmp returns a non-zero value.
Note: If the argument val from longjmp is O, setjmp returns 1.

Example: See longjmp.
longjmp
Description: A function that restores the environment saved by setjmp.
Include: <setjmp.h>
Prototype: void longjmp (jmp buf env, int val);
Arguments: env variable where environment is stored
val value to be returned to setjmp call.
Remarks: The value parameter val should be non-zero. If longjmp is invoked

from a nested signal handler (that is, invoked as a result of a signal
raised during the handling of another signal), the behavior is undefined.

DS51456B4-page 222

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

4.10 <SIGNAL.H> SIGNAL HANDLING

The header file signal.h consists of a type, several macros and two functions that
specify how the program handles signals while it is executing. A signal is a condition
that may be reported during the program execution. Signals are synchronous, occur-
ring under software control via the raise function.

A signal may be handled by:
» Default handling (SIG_DFL); the signal is treated as a fatal error and execution
stops

» Ignoring the signal (SIG_ IGN); the signal is ignored and control is returned to
the user application

< Handling the signal with a function designated via signal.

By default all signals are handled by the default handler, which is identified by
SIG DFL.

Thetype sig atomic_t is an integer type that the program access atomically. When
this type is used with the keyword volatile, the signal handler can share the data
objects with the rest of the program.

sig_atomic_t

Description: A type used by a signal handler

Include: <signal.h>

Prototype: typedef int sig atomic_t;

SIG_DFL

Description: Used as the second argument and/or the return value for signal to
specify that the default handler should be used for a specific signal.

Include: <signal.h>

SIG_ERR

Description: Used as the return value for signal when it cannot complete a
request due to an error.

Include: <signal.h>

SIG_IGN

Description: Used as the second argument and/or the return value for signal to
specify that the signal should be ignored.

Include: <signal.h>

© 2005 Microchip Technology Inc.

DS51456B4-page 223

16-Bit Language Tools Libraries

SIGABRT

Description:
Include:
Prototype:
Remarks:

Example:

Name for the abnormal termination signal.

<signal.h>

#define SIGABRT

SIGABRT represents an abnormal termination signal and is used in

conjunction with raise or signal. The default raise behavior
(action identified by SIG_DFL) is to output to the standard error stream:

abort - terminating
See the example accompanying signal to see general usage of
signal names and signal handling.

#include <signal.h> /* for raise, SIGABRT */
#include <stdio.h> /* for printf */

int main(void)

{

raise (SIGABRT) ;
printf ("Program never reaches here.");

}

Output:
ABRT

Explanation:
ABRT stands for “abort”.

SIGFPE

Description:

Include:
Prototype:
Remarks:

Example:

Signals floating-point error such as for division by zero or result out of
range.

<signal.h>

#define SIGFPE

SIGFPE is used as an argument for raise and/or signal. When
used, the default behavior is to print an arithmetic error message and
terminate the calling program. This may be overridden by a user
function that defines the signal handler actions. See signal for an
example of a user defined function.

#include <signal.h> /* for raise, SIGFPE */
#include <stdio.h> /* for printf */

int main(void)
raise (SIGFPE) ;
printf ("Program never reaches here") ;

}

Output:
FPE

Explanation:
FPE stands for “floating-point error”.

DS51456B4-page 224

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

SIGILL
Description: Signals illegal instruction.
Include: <signal.h>
Prototype: #define SIGILL
Remarks: SIGILL is used as an argument for raise and/or signal. When
used, the default behavior is to print an invalid executable code
message and terminate the calling program. This may be overridden by
a user function that defines the signal handler actions. See signal for
an example of a user defined function.
Example: #include <signal.h> /* for raise, SIGILL */
#include <stdio.h> /* for printf */
int main(void)
{
raise (SIGILL) ;
printf ("Program never reaches here");
}
Output:
ILL
Explanation:
ILL stands for “illegal instruction”.
SIGINT
Description: Interrupt signal.
Include: <signal.h>
Prototype: #define SIGINT
Remarks: SIGINT is used as an argument for raise and/or signal. When

used, the default behavior is to print an interruption message and
terminate the calling program. This may be overridden by a user
function that defines the signal handler actions. See signal for an
example of a user defined function.

Example: #include <signal.h> /* for raise, SIGINT */
#include <stdio.h> /* for printf */

int main(void)

{

raise (SIGINT) ;
printf ("Program never reaches here.");

}

Output:
INT

Explanation:
INT stands for “interruption”.

© 2005 Microchip Technology Inc. DS51456B4-page 225

16-Bit Language Tools Libraries

SIGSEGV

Description: Signals invalid access to storage.

Include: <signal.h>

Prototype: #define SIGSEGV

Remarks: SIGSEGYV is used as an argument for raise and/or signal. When
used, the default behavior is to print an invalid storage request
message and terminate the calling program. This may be overridden by
a user function that defines the signal handler actions. See signal for
an example of a user defined function.

Example: #include <signal.h> /* for raise, SIGSEGV */
#include <stdio.h> /* for printf */
int main(void)
{

raise (SIGSEGV) ;
printf ("Program never reaches here.");

}
Output:
SEGV
Explanation:
SEGYV stands for “invalid storage access”.

SIGTERM

Description: Signals a termination request

Include: <signal.h>

Prototype: #define SIGTERM

Remarks: SIGTERM is used as an argument for raise and/or signal. When
used, the default behavior is to print a termination request message
and terminate the calling program. This may be overridden by a user
function that defines the signal handler actions. See signal for an
example of a user defined function.

Example: #include <signal.h> /* for raise, SIGTERM */

#include <stdio.h> /* for printf */

int main(void)

{

raise (SIGTERM) ;
printf ("Program never reaches here.");

}

Output:
TERM

Explanation:
TERM stands for “termination request”.

DS51456B4-page 226

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

raise

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Reports a synchronous signal.

<signal.h>

int raise(int sig);

sig signal name

Returns a 0 if successful; otherwise, returns a non-zero value.
raise sends the signal identified by sig to the executing program.

#include <signal.h> /* for raise, signal, */

/* SIGILL, SIG_DFL */
#include <stdlib.hs> /* for div, div_t */
#include <stdio.h> /* for printf */

#include <p30£f6014.h> /* for INTCONlbits */

void _ attribute ((__interrupt))
_MathError (void)
raise (SIGILL) ;
INTCONlbits.MATHERR = 0;

}
void illegalinsn(int idsig)
{
printf ("Illegal instruction executed\n") ;
exit (1) ;
}
int main(void)
{
int x, y;
div_t z;
signal (SIGILL, illegalinsn) ;
X = 7;
y = 0;
z = div(x, y);
printf ("Program never reaches here");
}
Output:

Illegal instruction executed

Explanation:

This example requires the linker script p30f6014.gld. There are three
parts to this example.

First, an interrupt handler is written for the interrupt vector
_MathError to handle a math error by sending an illegal instruction
signal (SIGILL) to the executing program. The last statement in
the interrupt handler clears the exception flag.

Second, the function 111legalinsn will print an error message and
call exit.

Third, in main, signal (SIGILL, illegalinsn) sets the handler
for SIGILL to the function i1llegalinsn.

When a math error occurs, due to a divide by zero, the MathError
interrupt vector is called, which in turn will raise a signal that will call the
handler function for SIGILL, which is the function illegalinsn.
Thus error messages are printed and the program is terminated.

© 2005 Microchip Technology Inc.

DS51456B4-page 227

16-Bit Language Tools Libraries

signal

Description: Controls interrupt signal handling.

Include: <signal.h>

Prototype: void (*signal (int sig, void(*func) (int))) (int) ;
Arguments: sig signal name

Return Value:

Example:

func function to be executed
Returns the previous value of func.

#include <signal.h> /* for signal, raise, */
/* SIGINT, SIGILL, */
/* SIG_IGN, and SIGFPE */
#include <stdio.h> /* for printf */

/* Signal handler function */
void mysigint (int id)
{

printf ("SIGINT received\n") ;

}

int main(void)
/* Override default with user defined function */
signal (SIGINT, mysigint) ;
raise (SIGINT) ;

/* Ignore signal handler */
signal (SIGILL, SIG_IGN) ;

raise (SIGILL) ;

printf ("SIGILL was ignored\n") ;

/* Use default signal handler */
raise (SIGFPE) ;
printf ("Program never reaches here.");

}

Output:

SIGINT received
SIGILL was ignored
FPE

Explanation:

The function mysigint is the user-defined signal handler for SIGINT.
Inside the main program, the function signal is called to set up the
signal handler (mysigint) for the signal SIGINT that will override the
default actions. The function raise is called to report the signal
SIGINT. This causes the signal handler for SIGINT to use the
user-defined function (mysigint) as the signal handler so it prints the
"SIGINT received" message.

Next, the function signal is called to set up the signal handler
SIG_IGN for the signal SIGILL. The constant SIG_IGN is used to
indicate the signal should be ignored. The function raise is called to
report the signal SIGILL that is ignored.

The function raise is called again to report the signal SIGFPE. Since
there is no user defined function for SIGFPE, the default signal handler
is used so the message "FPE" is printed (which stands for
"arithmetic error - terminating”). Then the calling program is
terminated. The print £ statement is never reached.

DS51456B4-page 228

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

4.11 <STDARG.H>VARIABLE ARGUMENT LISTS

The header file stdarg.h supports functions with variable argument lists. This allows
functions to have arguments without corresponding parameter declarations. There
must be at least one named argument. The variable arguments are represented by
ellipses (...). An object of type va_1ist must be declared inside the function to hold
the arguments. va_start will initialize the variable to an argument list, va_arg will
access the argument list, and va_end will end the use of the argument.

va_list

Description: The type va_1list declares a variable that will refer to each argument
in a variable-length argument list.

Include: <stdarg.h>

Example: See va_arg.

va_arg

Description: Gets the current argument

Include: <stdarg.h>

Prototype: #define va arg(va list ap, Ty)

Argument: ap pointer to list of arguments

Return Value:

Remarks:
Example:

Ty type of argument to be retrieved

Returns the current argument

va_start must be called before va_arg.
#include <stdio.h> /* for printf */

#include <stdarg.h> /* for va_arg, va_start,
va_list, va_end */

void tprint (const char *fmt, ...)

{

va_list ap;

va_start (ap, fmt);
while (*fmt)
{

switch (*fmt)

{

© 2005 Microchip Technology Inc.

DS51456B4-page 229

16-Bit Language Tools Libraries

va_arg (Continued)

case '%':
fmt++;
if (*fmt == 'd'")

{
int d = va_arg(ap, int);
printf ("<%d> is an integer\n",d);
1
else if (*fmt == 'g"'")
{
char *s = va_arg(ap, char¥*);
printf ("<%s> is a string\n", s);
}

else

{

printf ("$%%c is an unknown format\n",
)

*fmt) ;
}
fmt++;
break;
default:
printf ("$c is unknown\n", *fmt);
fmt++;
break;
}
!
va_end(ap) ;
!
int main(void)
{
tprint ("$d%s.%c", 83, "This is text.", 'a');
}
Output:

<83> 1s an integer

<This is text.> is a string
is unknown

$c is an unknown format

DS51456B4-page 230 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

va_end

Description: Ends the use of ap.

Include: <stdarg.h>

Prototype: #define va end(va_list ap)

Argument: ap pointer to list of arguments

Remarks: After a call to va_end, the argument list pointer ap is considered to be
invalid. Further calls to va_arg should not be made until the next
va_start. In MPLAB C30, va_end does nothing, so this call is not
necessary but should be used for readability and portability.

Example: See va_arg.

va_start

Description: Sets the argument pointer ap to first optional argument in the
variable-length argument list

Include: <stdarg.h>

Prototype: #define va_start(va_list ap, last_arg)

Argument: ap pointer to list of arguments
last_arg last named argument before the optional arguments

Example: See va_arg.

4.12 <STDDEF.H> COMMON DEFINITIONS

The header file stddef . h consists of several types and macros that are of general use

in programs.

ptrdiff_t

Description: The type of the result of subtracting two pointers.
Include: <stddef .h>

size_t

Description: The type of the result of the sizeof operator.
Include: <stddef.h>

wchar _t

Description: A type that holds a wide character value.
Include: <stddef .h>

NULL

Description: The value of a null pointer constant.

Include: <stddef.h>

© 2005 Microchip Technology Inc.

DS51456B4-page 231

16-Bit Language Tools Libraries

offsetof

Description: Gives the offset of a structure member from the beginning of the
structure.

Include: <stddef.h>

Prototype: #define offsetof (T, mbr)

Arguments: T name of structure

Return Value:

Remarks:

Example:

mbr name of member in structure T

Returns the offset in bytes of the specified member (mbzr) from the
beginning of the structure.

The macro of fsetof is undefined for bitfields. An error message will
occur if bitfields are used.

#include <stddef.h> /* for offsetof */
#include <stdio.h> /* for printf */

struct info {
char iteml[5];
int item2;
char item3;
float item4;

Vi

int main(void)
{
printf ("Offset of iteml = %d\n",
offsetof (struct info,iteml)) ;
printf ("Offset of item2 = %d\n",
offsetof (struct info,item2)) ;
printf ("Offset of item3 = %d\n",
offsetof (struct info,item3)) ;
printf ("Offset of item4 = %d\n",
offsetof (struct info,item4)) ;

Output:

Offset of iteml = 0
Offset of item2 = 6
Offset of item3 = 8
Offset of item4 = 10

Explanation:

This program shows the offset in bytes of each structure member from
the start of the structure. Although iteml is only 5 bytes (char
iteml [5]), padding is added so the address of item2 falls on an
even boundary. The same occurs with item3; itis 1 byte (char
item3) with 1 byte of padding.

DS51456B4-page 232

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

4.13 <STDIO.H> INPUT AND OUTPUT

The header file stdio.h consists of types, macros and functions that provide support
to perform input and output operations on files and streams. When a file is opened it is
associated with a stream. A stream is a pipeline for the flow of data into and out of files.
Because different systems use different properties, the stream provides more uniform
properties to allow reading and writing of the files.

Streams can be text streams or binary streams. Text streams consist of a sequence of
characters divided into lines. Each line is terminated with a newline (‘\n’) character.
The characters may be altered in their internal representation, particularly in regards to
line endings. Binary streams consist of sequences of bytes of information. The bytes
transmitted to the binary stream are not altered. There is no concept of lines, the file is
just a series of bytes.

At start-up three streams are automatically opened: stdin, stdout, and stderr.
stdin provides a stream for standard input, stdout is standard output and stderr
is the standard error. Additional streams may be created with the £open function. See
fopen for the different types of file access that are permitted. These access types are
used by fopen and freopen.

The type FILE is used to store information about each opened file stream. It includes
such things as error indicators, end-of-file indicators, file position indicators, and other
internal status information needed to control a stream. Many functions in the stdio
use FILE as an argument.

There are three types of buffering: unbuffered, line buffered and fully buffered. Unbuf-
fered means a character or byte is transferred one at a time. Line buffered collects and
transfers an entire line at a time (i.e., the newline character indicates the end of a line).
Fully buffered allows blocks of an arbitrary size to be transmitted. The functions
setbuf and setvbuf control file buffering.

The stdio.hfile also contains functions that use input and output formats. The input
formats, or scan formats, are used for reading data. Their descriptions can be found
under scanf, but they are also used by fscanf and sscanf. The output formats, or
print formats, are used for writing data. Their descriptions can be found under printf.
These print formats are also used by fprintf, sprintf, vfprintf, vprintf and
vsprintf.

Certain compiler options may affect how standard 1/0O performs. In an effort to provide
a more tailored version of the formatted /O routines, the tool chain may convert a call
to a printf or scanf style function to a different call. The options are summarized
below:

e The -msmart-1io option, when enabled, will attempt to convert printf,
scanf and other functions that use the input output formats to an integer only
variant. The functionality is the same as that of the C standard forms, minus the
support for floating-point output. -msmart-io=0 disables this feature and no
conversion will take place. -msmart-io=1 or -msmart-io (the default) will
convert a function call if it can be proven that an I/O function will never be pre-
sented with a floating-point conversion. -msmart -1io=2 is more optimistic than
the default and will assume that non-constant format strings or otherwise
unknown format strings will not contain a floating-point format. In the event that
-msmart-io=2 is used with a floating-point format, the format letter will appear
as literal text and its corresponding argument will not be consumed.

e -fno-short-double will cause the compiler to generate calls to formatted I/O
routines that support double as if it were a long double type.

Mixing modules compiled with these options may result in a larger executable size, or
incorrect execution if large and small double-sized data is shared across modules.

© 2005 Microchip Technology Inc. DS51456B4-page 233

16-Bit Language Tools Libraries

FILE

Description: Stores information for a file stream.
Include: <stdio.h>

fpos_t

Description: Type of a variable used to store a file position.
Include: <stdio.h>

size t

Description: The result type of the sizeof operator.
Include: <stdio.h>

_|IOFBF

Description: Indicates full buffering.

Include: <stdio.h>

Remarks: Used by the function setvbuf.
_IOLBF

Description: Indicates line buffering.

Include: <stdio.h>

Remarks: Used by the function setvbuf.
_IONBF

Description: Indicates no buffering.

Include: <stdio.h>

Remarks: Used by the function setvbuf.
BUFSIZ

Description: Defines the size of the buffer used by the function setbuf.
Include: <stdio.h>

Value: 512

DS51456B4-page 234

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

EOF

Description: A negative number indicating the end-of-file has been reached or to
report an error condition.

Include: <stdio.h>

Remarks: If an end-of-file is encountered, the end-of-file indicator is set. If an

error condition is encountered, the error indicator is set. Error
conditions include write errors and input or read errors.

FILENAME_MAX

Description: Maximum number of characters in a filename including the null
terminator.

Include: <stdio.h>

Value: 260

FOPEN_MAX

Description: Defines the maximum number of files that can be simultaneously open

Include: <stdio.h>

Value: 8

Remarks: stderr, stdin and stdout are included in the FOPEN_ MAX count.

L_tmpnam

Description: Defines the number of characters for the longest temporary filename
created by the function tmpnam.

Include: <stdio.h>

Value: 16

Remarks: L_tmpnam is used to define the size of the array used by tmpnam.

NULL

Description: The value of a null pointer constant

Include: <stdio.h>

SEEK_CUR

Description: Indicates that £seek should seek from the current position of the file
pointer

Include: <stdio.h>

Example: See example for £seek.

© 2005 Microchip Technology Inc.

DS51456B4-page 235

16-Bit Language Tools Libraries

SEEK_END

Description: Indicates that £seek should seek from the end of the file.

Include: <stdio.h>

Example: See example for £seek.

SEEK_SET

Description: Indicates that £seek should seek from the beginning of the file.

Include: <stdio.h>

Example: See example for £seek.

stderr

Description: File pointer to the standard error stream.

Include: <stdio.h>

stdin

Description: File pointer to the standard input stream.

Include: <stdio.h>

stdout

Description: File pointer to the standard output stream.

Include: <stdio.h>

TMP_MAX

Description: The maximum number of unique filenames the function tmpnam can
generate.

Include: <stdio.h>

Value: 32

DS51456B4-page 236

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

clearerr

Description: Resets the error indictor for the stream

Include: <stdio.h>

Prototype: void clearerr (FILE *stream) ;

Argument: stream stream to reset error indicators

Remarks: The function clears the end-of-file and error indicators for the given
stream (i.e., feof and ferror will return false after the function
clearerr is called).

Example: /* This program tries to write to a file that is */

/* readonly. This causes the error indicator to */
/* be set. The function ferror is used to check */
/* the error indicator. The function clearerr is */
/* used to reset the error indicator so the next */
/* time ferror is called it will not report an */

/* error. */
#include <stdio.h> /* for ferror, clearerr, */

/* printf, fprintf, fopen,*/

/* fclose, FILE, NULL */

int main(void)

{

FILE *myfile;

if ((myfile = fopen("sampclearerr.c", "r")) ==
NULL)
printf ("Cannot open file\n");
else

{

fprintf (myfile, "Write this line to the "
"file.\n");
if (ferror (myfile))
printf ("Error\n") ;
else
printf ("No error\n") ;
clearerr (myfile) ;
if (ferror (myfile))
printf ("Still has Error\n");
else
printf ("Error indicator reset\n");

fclose (myfile) ;

Output:
Error
Error indicator reset

© 2005 Microchip Technology Inc. DS51456B4-page 237

16-Bit Language Tools Libraries

fclose

Description: Close a stream.

Include: <stdio.h>

Prototype: int fclose(FILE *stream) ;
Argument: stream pointer to the stream to close

Return Value:

Remarks:
Example:

Returns 0 if successful; otherwise, returns EOF if any errors were
detected.

fclose writes any buffered output to the file.

#include <stdio.h> /* for fopen, fclose, */
/* printf,FILE, NULL, EOF */

int main(void)

{

FILE *myfilel, *myfile2;

int y;

if ((myfilel = fopen("afilel", "w+")) == NULL)
printf ("Cannot open afilel\n");

else

{

printf ("afilel was opened\n") ;

y = fclose(myfilel);
if (y == EOF)
printf ("afilel was not closed\n");
else
printf ("afilel was closed\n") ;
!

}

Output:
afilel was opened
afilel was closed

DS51456B4-page 238

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

feof
Description: Tests for end-of-file
Include: <stdio.h>
Prototype: int feof (FILE *stream) ;
Argument: stream stream to check for end-of-file
Return Value: Returns non-zero if stream is at the end-of-file; otherwise, returns zero.
Example: #include <stdio.h> /* for feof, fgetc, fputc, */
/* fopen, fclose, FILE, */
/* NULL */
int main(void)
{
FILE *myfile;
int y = 0;
if((myfile = fopen("afile.txt", "rb")) == NULL)
printf ("Cannot open file\n");
else
{
for (;;)
{
y = fgetc(myfile);
if (feof (myfile))
break;
fputc(y, stdout);
}
fclose(myfile);
}
!
Input:

Contents of afile. txt (used as input):
This is a sentence.

Output:

This is a sentence.

© 2005 Microchip Technology Inc. DS51456B4-page 239

16-Bit Language Tools Libraries

ferror

Description: Tests if error indicator is set.
Include: <stdio.h>

Prototype: int ferror (FILE *stream) ;
Argument: stream pointer to FILE structure

Return Value:

Example:

Returns a non-zero value if error indicator is set; otherwise, returns a
Zero.

/* This program tries to write to a file that is */
/* readonly. This causes the error indicator to */
/* be set. The function ferror is used to check */
/* the error indicator and find the error. The */
/* function clearerr is used to reset the error */
/* indicator so the next time ferror is called */
/* it will not report an error. */

#include <stdio.h> /* for ferror, clearerr, */

/* printf, fprintf, */
/* fopen, fclose, */
/* FILE, NULL */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("sampclearerr.c", "r")) ==
NULL)
printf ("Cannot open file\n");

else
{
fprintf (myfile, "Write this line to the "
"file.\n");
if (ferror (myfile))
printf ("Error\n") ;
else
printf ("No error\n") ;
clearerr (myfile) ;
if (ferror (myfile))
printf ("Still has Error\n") ;
else
printf ("Error indicator reset\n");

fclose (myfile) ;

Output:
Error
Error indicator reset

DS51456B4-page 240

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fflush

Description:
Include:
Prototype:

Argument:

Return Value:

Remarks:

Flushes the buffer in the specified stream.
<stdio.h>

int f£flush (FILE *stream) ;
stream pointer to the stream to flush.

Returns EOF if a write error occurs; otherwise, returns zero for
success.

If stream is a null pointer, all output buffers are written to files. ££1ush
has no effect on an unbuffered stream.

fgetc

Description:
Include:
Prototype:

Argument:

Return Value:

Remarks:

Example:

Get a character from a stream
<stdio.h>

int fgetc(FILE *stream) ;
stream pointer to the open stream

Returns the character read or EOF if a read error occurs or end-of-file
is reached.

The function reads the next character from the input stream, advances
the file-position indicator and returns the character as an unsigned
char converted to an int.

#include <stdio.h> /* for fgetc, printf, */
/* fclose, FILE, */
/* NULL, EOF */

int main(void)
{
FILE *buf;
char y;

if ((buf = fopen("afile.txt", "r")) == NULL)
printf ("Cannot open afile.txt\n");
else
{
y = fgetc(buf) ;
while (y != EOF)
{
printf ("%c|", y);
y = fgetc(buf) ;
!
fclose (buf) ;
!
}

Input:

Contents of afile. txt (used as input):
Short

Longer string

Output:

S|hlo|r|t]

|Llo[nlglelr| [s[t]r|i|n]g]

© 2005 Microchip Technology Inc.

DS51456B4-page 241

16-Bit Language Tools Libraries

fgetpos

Description: Gets the stream'’s file position.

Include: <stdio.h>

Prototype: int fgetpos (FILE *stream, fpos_t *pos);
Arguments: stream target stream

Return Value:

Remarks:

Example:

pos position-indicator storage

Returns 0 if successful; otherwise, returns a non-zero value.

The function stores the file-position indicator for the given stream in
*pos if successful, otherwise, fgetpos sets errno.

/* This program opens a file and reads bytes at */
/* several different locations. The fgetpos */
/* function notes the 8th byte. 21 bytes are */

/* read then 18 bytes are read. Next the */
/* fsetpos function is set based on the */
/* fgetpos position and the previous 21 bytes */

/* are reread.

*/

#include <stdio.h> /* for fgetpos, fread, */

/* printf,

fopen, fclose, */

/* FILE, NULL, perror, */

/* fpos t,

int main(void)

{
FILE *myfile;
fpos t pos;
char buf [25] ;

if ((myfile = fopen("sampfgetpos.c", "rb"))

NULL)

sizeof */

printf ("Cannot open file\n");

else

{

fread (buf, sizeof (char), 8,

if (fgetpos (myfile, &pos)

perror ("fgetpos error") ;

else

{

fread (buf, sizeof (char),

myfile) ;
1= 0)

21, myfile);

printf ("Bytes read: %.21s\n", buf);

fread (buf, sizeof (char),

18, myfile);

printf ("Bytes read: %.18s\n", buf);

if (fsetpos(myfile, &pos)
perror ("fsetpos error") ;

fread (buf, sizeof (char), 21,

1= 0)

myfile) ;

printf ("Bytes read: %.21s\n", buf);

fclose (myfile) ;

}
}

Output:

Bytes read: program opens a file

Bytes read: and reads bytes at

Bytes read: program opens a file

DS51456B4-page 242

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fgets

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Get a string from a stream

<stdio.h>

char *fgets(char *s, int n, FILE *stream);
s pointer to the storage string

n maximum number of characters to read
stream pointer to the open stream.

Returns a pointer to the string s if successful; otherwise, returns a null
pointer

The function reads characters from the input stream and stores them
into the string pointed to by s until it has read n-1 characters, stores a
newline character or sets the end-of-file or error indicators. If any
characters were stored, a null character is stored immediately after the
last read character in the next element of the array. If fgets sets the
error indicator, the array contents are indeterminate.

#include <stdio.h> /* for fgets, printf, */

/* fopen, fclose, */
/* FILE, NULL */
#define MAX 50
int main(void)
{
FILE *buf;
char s[MAX];
if ((buf = fopen("afile.txt", "r")) == NULL)
printf ("Cannot open afile.txt\n");
else
{
while (fgets(s, MAX, buf) != NULL)
{
printf ("%s|", s);
}
fclose (buf) ;
}
}
Input:
Contents of afile. txt (used as input):
Short
Longer string
Output:
Short

| Longer string

© 2005 Microchip Technology Inc.

DS51456B4-page 243

16-Bit Language Tools Libraries

fopen

Description: Opens a file.

Include: <stdio.h>

Prototype: FILE *fopen(const char *filename, const char *mode) ;
Arguments: filename name of the file

Return Value:

Remarks:

Example:

mode type of access permitted

Returns a pointer to the open stream. If the function fails a null pointer
is returned.

Following are the types of file access:

r- opens an existing text file for reading

w - opens an empty text file for writing. (An existing file will
be overwritten.)

a- opens a text file for appending. (A file is created if it
doesn't exist.)

rb - opens an existing binary file for reading.

wb - opens an empty binary file for writing. (An existing file
will be overwritten.)

ab - opens a binary file for appending. (A file is created if it
doesn't exist.)

r+ - opens an existing text file for reading and writing.

W+ - opens an empty text file for reading and writing. (An
existing file will be overwritten.)

a+ - opens a text file for reading and appending. (A file is

created if it doesn't exist.)
r+b or rb+ - opens an existing binary file for reading and writing.

w+b or wb+ - opens an empty binary file for reading and writing. (An
existing file will be overwritten.)

a+b or ab+ - opens a binary file for reading and appending. (A file is
created if it doesn't exist.)

#include <stdio.h> /* for fopen, fclose, */

/* printf, FILE, */
/* NULL, EOF */
int main(void)
{
FILE *myfilel, *myfile2;
int y;

DS51456B4-page 244

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fopen (Continued)

if ((myfilel = fopen("afilel", "xr")) == NULL)
printf ("Cannot open afilel\n");

else

{

printf ("afilel was opened\n") ;
y = fclose(myfilel);
if (y == EOF)
printf ("afilel was not closed\n");
else
printf ("afilel was closed\n") ;

if ((myfilel = fopen("afilel", "w+")) == NULL)
printf ("Second try, cannot open afilel\n");
else
{
printf ("Second try, afilel was opened\n") ;
y = fclose(myfilel);
if (y == EOF)
printf ("afilel was not closed\n");
else
printf ("afilel was closed\n") ;

}
if ((myfile2 = fopen("afile2", "w+")) == NULL)
printf ("Cannot open afile2\n");
else
{
printf ("afile2 was opened\n") ;
y = fclose(myfile2);
if (y == EOF)
printf ("afile2 was not closed\n");
else
printf ("afile2 was closed\n") ;

}
}
Output:
Cannot open afilel
Second try, afilel was opened
afilel was closed
afile2 was opened
afile2 was closed
Explanation:
afilel must exist before it can be opened for reading (r) or the
fopen function will fail. If the fopen function opens a file for writing

(w+) it does not have to already exist. If it doesn't exist, it will be created
and then opened.

© 2005 Microchip Technology Inc.

DS51456B4-page 245

16-Bit Language Tools Libraries

fprintf

Description: Prints formatted data to a stream.

Include: <stdio.h>

Prototype: int fprintf (FILE *stream, const char *format, ...);
Arguments: stream pointer to the stream in which to output data

format format control string
optional arguments

Return Value: Returns number of characters generated or a negative number if an
error occurs.

Remarks: The format argument has the same syntax and use that it has in
print.
Example: #include <stdio.h> /* for fopen, fclose, */
/* fprintf, printf, * /
/* FILE, NULL */

int main(void)
FILE *myfile;
int y;
char s[]="Print this string";
int x = 1;

char a = '\n';

if ((myfile = fopen("afile", "w")) == NULL)
printf ("Cannot open afile\n") ;

else

{
y = fprintf (myfile, "%s %d time%c", s, x, a);

printf ("Number of characters printed "
"to file = %4",y);

fclose (myfile) ;

}
}
Output:
Number of characters printed to file = 25
Contents of afile:
Print this string 1 time

DS51456B4-page 246 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fputc

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Puts a character to the stream.

<stdio.h>

int fputc(int ¢, FILE *stream) ;

c character to be written

stream pointer to the open stream

Returns the character written or EOF if a write error occurs.

The function writes the character to the output stream, advances the
file-position indicator and returns the character as an unsigned char
converted to an int.

#include <stdio.h> /* for fputc, EOF, stdout */

int main(void)

{

char *y;
char buf[] = "This is text\n";
int x;
X = 0;
for (y = buf; (x != EOF) && (*y != '\0'); y++)
{
x = fputc(*y, stdout);
fputc('|', stdout);
}
}
Output:
TIhli|s| [i]s]| |tfe|x|t]

fputs

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Puts a string to the stream.

<stdio.h>

int fputs(const char *s, FILE *stream) ;

s string to be written

stream pointer to the open stream

Returns a non-negative value if successful; otherwise, returns EOF.

The function writes characters to the output stream up to but not
including the null character.

#include <stdio.h> /* for fputs, stdout */

int main(void)

{

char buf[] = "This is text\n";

fputs (buf, stdout) ;
fputs ("|", stdout) ;

Output:
This is text

© 2005 Microchip Technology Inc.

DS51456B4-page 247

16-Bit Language Tools Libraries

fread

Description: Reads data from the stream.

Include: <stdio.h>

Prototype: size t fread(void *ptr, size t size, size t nelem,
FILE *stream) ;

Arguments: ptr pointer to the storage buffer
size size of item

Return Value:

Remarks:

Example:

nelem maximum number of items to be read

stream pointer to the stream

Returns the number of complete elements read up to nelem whose

size is specified by size.

The function reads characters from a given stream into the buffer
pointed to by ptz until the function stores size * nelem characters
or sets the end-of-file or error indicator. fread returns n/size where n is
the number of characters it read. If n is not a multiple of size, the value
of the last element is indeterminate. If the function sets the error
indicator, the file-position indicator is indeterminate.

#include <stdio.h>

int main(void)
FILE *buf;
int x, numwrote,
double nums[10],

/* for fread, fwrite, */
/* printf, fopen, fclose, */
/* sizeof, FILE, NULL */

numread;
readnums [10] ;

if ((buf = fopen("afile.out", "w+")) != NULL)
{
for (x = 0; X < 10; X++)
{
nums [x] = 10.0/(x + 1);

printf ("10.0/%d

}

$f\n", x+1, nums[x]);

numwrote = fwrite (nums, sizeof (double),

10, buf);

printf ("Wrote %d numbers\n\n", numwrote) ;

fclose (buf) ;

}

else

printf ("Cannot open afile.out\n");

DS51456B4-page 248

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fread (Continued)

if ((buf = fopen("afile.out", "r+")) != NULL)
{
numread = fread(readnums, sizeof (double),
10, buf);
printf ("Read %d numbers\n", numread) ;
for (x = 0; X < 10; X++)
{
printf("sd * %f = %f\n", x+1, readnums[x],
(x + 1) * readnums[x]);
}
fclose (buf) ;
}
else
printf ("Cannot open afile.out\n") ;
!
Output:
10.0/1 = 10.000000
10.0/2 = 5.000000
10.0/3 = 3.333333
10.0/4 = 2.500000
10.0/5 = 2.000000
10.0/6 = 1.666667
10.0/7 = 1.428571
10.0/8 = 1.250000
10.0/9 = 1.111111

10.0/10 = 1.000000
Wrote 10 numbers

Read 10 numbers

1 * 10.000000 = 10.000000
2 * 5.000000 = 10.000000
3 * 3.333333 = 10.000000
4 * 2.500000 = 10.000000
5 * 2.000000 = 10.000000
6 * 1.666667 = 10.000000
7 * 1.428571 = 10.000000
8 * 1.250000 = 10.000000
9 * 1.111111 = 10.000000

10 * 1.000000 = 10.000000

Explanation:

This program uses fwrite to save 10 numbers to a file in binary form.
This allows the numbers to be saved in the same pattern of bits as the
program is using which provides more accuracy and consistency. Using
fprintf would save the numbers as text strings which could cause
the numbers to be truncated. Each number is divided into 10 to
produce a variety of numbers. Retrieving the numbers with fread to a
new array and multiplying them by the original number shows the
numbers were not truncated in the save process.

© 2005 Microchip Technology Inc. DS51456B4-page 249

16-Bit Language Tools Libraries

freopen

Description: Reassigns an existing stream to a new file.

Include: <stdio.h>

Prototype: FILE *freopen(const char *filename, const char
*mode, FILE *stream) ;

Arguments: filename name of the new file

Return Value:

Remarks:

Example:

mode type of access permitted
stream pointer to the currently open stream

Returns a pointer to the new open file. If the function fails a null pointer
is returned.

The function closes the file associated with the stream as though
fclose was called. Then it opens the new file as though fopen was
called. freopen will fail if the specified stream is not open. See fopen
for the possible types of file access.

#include <stdio.h> /* for fopen, freopen, */
/* printf, fclose, */
/* FILE, NULL */

int main(void)

{
FILE *myfilel, *myfile2;
int y;

if ((myfilel = fopen("afilel", "w+")) == NULL)
printf ("Cannot open afilel\n");
else

{

printf ("afilel was opened\n") ;

if ((myfile2 = freopen("afile2", "w+",
myfilel)) == NULL)
{

printf ("Cannot open afile2\n");
fclose (myfilel) ;

}

else

{
printf ("afile2 was opened\n") ;
fclose (myfile2) ;

}
}
}

Output:
afilel was opened
afile2 was opened

Explanation:

This program uses myfile2 to point to the stream when freopen is
called so if an error occurs, myfilel will still point to the stream and
can be closed properly. If the freopen call is successful, myfile2 can
be used to close the stream properly.

fscanf

Description:
Include:

Scans formatted text from a stream.

<stdio.h>

DS51456B4-page 250

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fscanf (Continued)

Prototype: int fscanf (FILE *stream, const char *format, ...);
Arguments: stream pointer to the open stream from which to read data
format format control string
optional arguments

Return Value: Returns the number of items successfully converted and assigned. If
no items are assigned, a O is returned. EOF is returned if end-of-file is
encountered before the first conversion or if an error occurs.

Remarks: The format argument has the same syntax and use that it has in
scanf.
Example: #include <stdio.h> /* for fopen, fscanf, */
/* fclose, fprintf, */
/* fseek, printf, FILE, */
/* NULL, SEEK_SET */
int main(void)
{
FILE *myfile;
char s[30];
int x;
char a;
if ((myfile = fopen("afile", "w+")) == NULL)
printf ("Cannot open afile\n") ;
else
{
fprintf (myfile, "%s %d times%c",
"Print this string", 100, '\n');
fseek (myfile, OL, SEEK SET) ;
fscanf (myfile, "%s", s);
printf ("$s\n", s);
fscanf (myfile, "%s", s);
printf ("$s\n", s);
fscanf (myfile, "%s", s);
printf ("$s\n", s);
fscanf (myfile, "%d", &x);
printf ("$d\n", x);
fscanf (myfile, "%s", s);
printf ("$s\n", s);
fscanf (myfile, "%c", a);
printf ("%c\n", a);
fclose (myfile) ;
}
}
Input:

Contents of afile:
Print this string 100 times

Output:
Print
this
string
100
times

© 2005 Microchip Technology Inc. DS51456B4-page 251

16-Bit Language Tools Libraries

fseek

Description: Moves file pointer to a specific location.

Include: <stdio.h>

Prototype: int fseek (FILE *stream, long offset, int mode) ;
Arguments: stream stream in which to move the file pointer.

Return Value:

Remarks:

Example:

offset value to add to the current position

mode type of seek to perform

Returns 0 if successful; otherwise, returns a non-zero value and set

errno.
mode can be one of the following:

SEEK_SET — seeks from the beginning of the file

SEEK_CUR — seeks from the current position of the file pointer
SEEK_END — seeks from the end of the file

#include <stdio.h> /* for fseek, fgets, */
/* printf, fopen, fclose, */
/* FILE, NULL, perror, */
/* SEEK_SET, SEEK CUR, */

/* SEEK_END

int main(void)

{

FILE *myfile;

char s[70];

int vy;

myfile = fopen("afile.out",
if (myfile == NULL)

*/

"W+");

printf ("Cannot open afile.out\n") ;

else

{

fprintf (myfile, "This is the beginning, "
"this is the middle and "
"this is the end.");

y = fseek(myfile, 0L, SEEK SET);

if (y)

perror ("Fseek failed") ;

else

{

fgets (s, 22, myfile);
printf ("\"%s\"\n\n",

}

s);

y = fseek(myfile, 2L, SEEK CUR);

if (y)

perror ("Fseek failed");

else

{
fgets (s, 70, myfile);
printf("\"%s\"\n\n",

}

s);

DS51456B4-page 252

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fseek (Continued)

y = fseek(myfile, -16L, SEEK END) ;
if (y)

perror ("Fseek failed") ;
else

{
fgets (s, 70, myfile);
printf ("\"%s\"\n", s);
!
fclose (myfile) ;
}
}

Output:
"This is the beginning"

"this is the middle and this is the end."

"this is the end."

Explanation:

The file afile. out is created with the text, “This is the beginning, this
is the middle and this is the end”.

The function £seek uses an offset of zero and SEEK_SET to set the file
pointer to the beginning of the file. fgets then reads 22 characters
which are “This is the beginning”, and adds a null character to the
string.

Next, £seek uses an offset of two and SEEK_CURRENT to set the file
pointer to the current position plus two (skipping the comma and
space). £gets then reads up to the next 70 characters. The first 39
characters are “this is the middle and this is the end”. It stops when it
reads EOF and adds a null character to the string.

Flnally, £seek uses an offset of negative 16 characters and SEEK_END
to set the file pointer to 16 characters from the end of the file. fgets
then reads up to 70 characters. It stops at the EOF after reading 16
characters “this is the end”. and adds a null character to the string.

fsetpos

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Sets the stream'’s file position.

<stdio.h>

int fsetpos(FILE *stream, const fpos t *pos) ;
stream target stream

pos position-indicator storage as returned by an earlier call to
fgetpos
Returns 0 if successful; otherwise, returns a non-zero value.

The function sets the file-position indicator for the given stream in *pos
if successful; otherwise, fsetpos sets errno.

© 2005 Microchip Technology Inc.

DS51456B4-page 253

16-Bit Language Tools Libraries

fsetpos (Continued)

Example: /*
/*
/*
/*
/*
/*
/*

#include <stdio.h> /*

This program opens a file and reads bytes at */

several different locations. The fgetpos
function notes the 8th byte. 21 bytes are
read then 18 bytes are read. Next the
fsetpos function is set based on the
fgetpos position and the previous 21 bytes
are reread.

for fgetpos, fread,
printf, fopen, fclose,
FILE, NULL, perror,
fpos_t, sizeof

/*
/*
/*

int main(void)

{

}

FILE *myfile;
fpos t pos;
char buf [25] ;
if ((myfile = fopen ("sampfgetpos.c", "rb"))
NULL)
printf ("Cannot open file\n");
else
{
fread (buf, sizeof (char), 8, myfile);
if (fgetpos(myfile, &pos) != 0)
perror ("fgetpos error") ;
else
{
fread (buf, sizeof (char), 21, myfile);
printf ("Bytes read: %.21s\n", buf);
fread (buf, sizeof (char), 18, myfile);
printf ("Bytes read: %.18s\n", buf);
}
if (fsetpos(myfile, &pos) != 0)
perror ("fsetpos error") ;
fread (buf, sizeof (char), 21, myfile);
printf ("Bytes read: %.21s\n", buf);

fclose (myfile) ;

}

Output:
Bytes read: program opens a file

Bytes read:

and reads bytes at

Bytes read: program opens a file

*/
*/
*/
*/

*/

*/

*/
*/
*/
*/

DS51456B4-page 254

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

ftell

Description:
Include:
Prototype:
Argument:

Return Value:

Example:

Gets the current position of a file pointer.

<stdio.h>

long ftell (FILE *stream) ;

stream stream in which to get the current file position

Returns the position of the file pointer if successful; otherwise, returns

-1.

#include <stdio.h> /* for ftell, fread, */

/* fprintf, printf, * /
/* fopen, fclose, sizeof, */
/* FILE, NULL */

int main(void)

{
FILE *myfile;
char s[75];
long vy;
myfile = fopen("afile.out", "w+");
if (myfile == NULL)
printf ("Cannot open afile.out\n") ;
else
{
fprintf (myfile, "This is a very long sentence "
"for input into the file named "
"afile.out for testing.");
fclose (myfile) ;
if ((myfile = fopen("afile.out", "rb")) != NULL)
{
printf ("Read some characters:\n");
fread (s, sizeof (char), 29, myfile);
printf ("\t\"%s\"\n", s);
y = ftell (myfile);
printf ("The current position of the "
"file pointer is %1d\n", vy);
fclose (myfile) ;
}
}
}
Output:

Read some characters:

"This is a very long sentence "

The current position of the file pointer is 29

© 2005 Microchip Technology Inc.

DS51456B4-page 255

16-Bit Language Tools Libraries

fwrite

Description:
Include:
Prototype:

Arguments:

Return Value:

Remarks:

Example:

Writes data to the stream.
<stdio.h>

size t fwrite(const void *ptr, size t size,
size t nelem, FILE *stream);

ptr pointer to the storage buffer

size size of item

nelem maximum number of items to be read
stream pointer to the open stream

Returns the number of complete elements successfully written, which
will be less than nelem only if a write error is encountered.

The function writes characters to a given stream from a buffer pointed
to by ptr up to nelem elements whose size is specified by size. The
file position indicator is advanced by the number of characters
successfully written. If the function sets the error indicator, the
file-position indicator is indeterminate.

#include <stdio.h> /* for fread, fwrite, */
/* printf, fopen, fclose, */
/* sizeof, FILE, NULL */

int main(void)
FILE *buf;
int x, numwrote, numread;
double nums[10], readnums[10];

if ((buf = fopen("afile.out", "w+")) != NULL)
{
for (x = 0; X < 10; X++)
{
nums [x] = 10.0/(x + 1);

printf ("10.0/%d = %f\n", x+1, nums[x]);

}

numwrote = fwrite (nums, sizeof (double),
10, buf);
printf ("Wrote %d numbers\n\n", numwrote) ;
fclose (buf) ;
!
else

printf ("Cannot open afile.out\n") ;

DS51456B4-page 256

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fwrite (Continued)

if ((buf = fopen("afile.out", "r+")) != NULL)
{
numread = fread(readnums, sizeof (double),
10, buf);
printf ("Read %d numbers\n", numread) ;
for (x = 0; X < 10; X++)
{
printf("sd * %f = %f\n", x+1, readnums[x],
(x + 1) * readnums[x]);
}
fclose (buf) ;
}
else
printf ("Cannot open afile.out\n") ;
!
Output:
10.0/1 = 10.000000
10.0/2 = 5.000000
10.0/3 = 3.333333
10.0/4 = 2.500000
10.0/5 = 2.000000
10.0/6 = 1.666667
10.0/7 = 1.428571
10.0/8 = 1.250000
10.0/9 = 1.111111

10.0/10 = 1.000000
Wrote 10 numbers

Read 10 numbers

1 * 10.000000 = 10.000000
2 * 5.000000 = 10.000000
3 * 3.333333 = 10.000000
4 * 2.500000 = 10.000000
5 * 2.000000 = 10.000000
6 * 1.666667 = 10.000000
7 * 1.428571 = 10.000000
8 * 1.250000 = 10.000000
9 * 1.111111 = 10.000000

10 * 1.000000 = 10.000000

Explanation:

This program uses fwrite to save 10 numbers to a file in binary form.
This allows the numbers to be saved in the same pattern of bits as the
program is using which provides more accuracy and consistency. Using
fprintf would save the numbers as text strings, which could cause
the numbers to be truncated. Each number is divided into 10 to
produce a variety of numbers. Retrieving the numbers with fread to a
new array and multiplying them by the original number shows the
numbers were not truncated in the save process.

© 2005 Microchip Technology Inc. DS51456B4-page 257

16-Bit Language Tools Libraries

getc

Description: Get a character from the stream.
Include: <stdio.h>

Prototype: int getc(FILE *stream) ;
Argument: stream pointer to the open stream

Return Value:

Remarks:
Example:

Returns the character read or EOF if a read error occurs or end-of-file

is reached.

getc is the same as the function fgetc.

#include <stdio.h> /* for getc, printf, */

/* fopen,

fclose, */

/* FILE, NULL, EOF */

int main(void)

{

FILE *buf;
char y;

if ((buf =

else

{

fopen("afile.txt", "r")) == NULL)
printf ("Cannot open afile.txt\n");

y = getc (buf) ;

while (y

{

printf (

!= EOF)

ll%c|ll, Y);

y = getc(buf) ;

}

fclose (buf) ;

}
}

Input:

Contents of afile. txt (used as input):

Short

Longer string
Output:
S|hlo|r|t]
|Llo|n|gle]|r]

|slelr|iln|g]

DS51456B4-page 258

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

getchar

Description:
Include:
Prototype:

Return Value:

Remarks:
Example:

Get a character from stdin.
<stdio.h>
int getchar (void) ;

Returns the character read or EOF if a read error occurs or end-of-file
is reached.

Same effect as £getc with the argument stdin.
#include <stdio.h> /* for getchar, printf */

int main(void)

{
char y;

y = getchar () ;
printf ("%c|", vy);
y = getchar () ;
printf ("sc|", y);
y = getchar () ;
printf ("sc|", y);
y = getchar () ;
printf ("%c|", vy);
y = getchar() ;
printf ("sc|", y);

}

Input:

Contents of UartIn.txt (used as stdin input for simulator):
Short
Longer string

Output:
s|hlo|r|t]

gets

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Get a string from stdin.
<stdio.h>

char *gets(char *s);

s pointer to the storage string

Returns a pointer to the string s if successful; otherwise, returns a null
pointer

The function reads characters from the stream stdin and stores them
into the string pointed to by s until it reads a newline character (which is
not stored) or sets the end-of-file or error indicators. If any characters
were read, a null character is stored immediately after the last read
character in the next element of the array. If gets sets the error
indicator, the array contents are indeterminate.

© 2005 Microchip Technology Inc.

DS51456B4-page 259

16-Bit Language Tools Libraries

gets (Continued)

Example: #include <stdio.h> /* for gets, printf */
int main(void)
{
char y[50];
gets(y) ;
printf ("Text: %s\n", y);
}
Input:
Contents of UartIn.txt (used as stdin input for simulator):
Short
Longer string
Output:
Text: Short
perror
Description: Prints an error message to stderr.
Include: <stdio.h>
Prototype: void perror (const char *s);
Argument: s string to print
Return Value: None.
Remarks: The string s is printed followed by a colon and a space. Then an error
message based on errno is printed followed by an newline
Example: #include <stdio.h> /* for perror, fopen, */

/* fclose, printf, */
/* FILE, NULL */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("samp.fil", "r+")) == NULL)
perror ("Cannot open samp.fil");

else
printf ("Success opening samp.fil\n") ;

fclose (myfile) ;
!

Output:
Cannot open samp.fil: file open error

DS51456B4-page 260

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

printf

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Prints formatted text to stdout.
<stdio.h>
int printf (const char *format, ...);
format format control string
optional arguments

Returns number of characters generated or a negative number if an
error occurs.

There must be exactly the same number of arguments as there are
format specifiers. If the are less arguments than match the format
specifiers, the output is undefined. If there are more arguments than
match the format specifiers, the remaining arguments are discarded.
Each format specifier begins with a percent sign followed by optional
fields and a required type as shown here:

% [flags] [width] [.precision] [size] type

flags
- left justify the value within a given field width
0 Use 0 for the pad character instead of space (which is the
default)
+ generate a plus sign for positive signed values

space generate a space or signed values that have neither a plus
nor a minus sign

to prefix O on an octal conversion, to prefix Ox or 0X on a
hexadecimal conversion, or to generate a decimal point
and fraction digits that are otherwise suppressed on a
floating-point conversion

width
specify the number of characters to generate for the conversion. If
the asterisk (*) is used instead of a decimal number, the next
argument (which must be of type int) will be used for the field
width. If the result is less than the field width, pad characters will be
used on the left to fill the field. If the result is greater than the field
width, the field is expanded to accommodate the value without
padding.
precision
The field width can be followed with dot (.) and a decimal integer
representing the precision that specifies one of the following:
- minimum number of digits to generate on an integer conversion
- number of fraction digits to generate on an e, E, or f conversion
- maximum number of significant digits to generate ona g or G
conversion
- maximum number of characters to generate from a C string on an
S conversion

If the period appears without the integer the integer is assumed to
be zero. If the asterisk (*) is used instead of a decimal number, the
next argument (which must be of type int) will be used for the
precision.

© 2005 Microchip Technology Inc.

DS51456B4-page 261

16-Bit Language Tools Libraries

printf (Continued)

size
h modifier —

h modifier —
| modifier —
| modifier —

| modifier —
| modifier —

Il modifier —
Il modifier —

L modifier —

type
d,i

D XX c o
[Tl

ST VWwoQ@ o
®

used with type d, i, 0, u, X, X; converts the value to a
short int or unsigned short int

used with n; specifies that the pointer points to a
short int

used with type d, i, 0, u, X, X; converts the value to a
long int orunsigned long int

used with n; specifies that the pointer points to a
long int

used with c; specifies a wide character

used with type e, E, f, F, g, G; converts the value to a
double

used with type d, i, 0, u, X, X; converts the value to a
long long int orunsigned long long int
used with n; specifies that the pointer points to a
long long int

used with e, E, f, g, G; converts the value to a 1long
double

signed int

unsigned int in octal

unsigned int in decimal

unsigned int inlowercase hexadecimal
unsigned int in uppercase hexadecimal
double in scientific notation

double decimal notation

double (takes the form of e, E or f as appropriate)
char - a single character

string

value of a pointer

the associated argument shall be an integer pointer into

which is placed the number of characters written so far. No
characters are printed.

%
Example:

A % character is printed
#include <stdio.h> /* for printf */

int main(void)

{

/* print a character right justified in a 3 */
/* character space. */
printf ("$3c\n", 'a');

/* print an integer, left justified (as */
/* specified by the minus sign in the format */
/* string) in a 4 character space. Print a */
/* second integer that is right justified in */
/* a 4 character space using the pipe (|) as */
/* a separator between the integers. */
printf ("$-44|%4d\n", -4, 4);

/* print a number converted to octal in 4 * /
/* digits. */

printf ("$.40\n",

10);

DS51456B4-page 262

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

printf (Continued)

/* print a number converted to hexadecimal */
/* format with a 0x prefix. */
printf ("$#x\n", 28);

/* print a float in scientific notation */
p
printf ("$E\n", 1.1e20);

/* print a float with 2 fraction digits */
printf ("$.2f\n", -3.346);
/* print a long float with %E, %e, or %f */
/* whichever is the shortest version */
printf ("$Lg\n", .02L);
}
Output:
a
-4 4
0012
0x1lc
1.100000E+20
-3.35
0.02
putc
Description: Puts a character to the stream.
Include: <stdio.h>
Prototype: int putc(int ¢, FILE *stream) ;
Arguments: c character to be written
stream pointer to FILE structure
Return Value: Returns the character or EOF if an error occurs or end-of-file is
reached.
Remarks: putc is the same as the function fputc.
Example: #include <stdio.h> /* for putc, EOF, stdout */

int main(void)

{

char *y;
char buf[] = "This is text\n";
int x;

for (y = buf; (x != EOF) && (*y != '\0'); y++)

x = putc(*y, stdout);
putc('|', stdout);
!
!

Output:
TIhli|s| [i]s]| |tle|x|t]

© 2005 Microchip Technology Inc. DS51456B4-page 263

16-Bit Language Tools Libraries

putchar

Description: Put a character to stdout.
Include: <stdio.h>

Prototype: int putchar (int c¢);
Argument: c character to be written

Return Value:

Returns the character or EOF if an error occurs or end-of-file is

reached.
Remarks: Same effect as fputc with stdout as an argument.
Example: #include <stdio.h> /* for putchar, printf, */
/* EOF, stdout */
int main(void)
{
char *y;
char buf[] = "This is text\n";
int x;
X = 0;
for (y = buf; (x != EOF) && (*y != '\0'); y++)
x = putchar (*y) ;
}
Output:
This is text
puts
Description: Put a string to stdout.
Include: <stdio.h>
Prototype: int puts(const char *s);
Argument: s string to be written

Return Value:

Remarks:

Example:

Returns a non-negative value if successful; otherwise, returns EOF.

The function writes characters to the stream stdout. A newline

character is appended. The terminating null character is not written to

the stream.
#include <stdio.h> /* for puts */

int main(void)

{

char buf[] = "This is text\n";

puts (buf) ;
puts("|");
}
Output:
This is text

DS51456B4-page 264

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

remove

Description: Deletes the specified file.

Include: <stdio.h>

Prototype: int remove (const char *filename) ;
Argument: filename name of file to be deleted.

Return Value:

Returns 0 if successful, -1 if not.

Remarks: If filename does not exist or is open, remove will fail.
Example: #include <stdio.h> /* for remove, printf */
int main(void)
{
if (remove ("myfile.txt") != 0)
printf ("Cannot remove file");
else
printf ("File removed") ;
}
Output:
File removed
rename
Description: Renames the specified file.
Include: <stdio.h>
Prototype: int rename (const char *old, const char *new);
Arguments: old pointer to the old name

Return Value:

Remarks:

Example:

new pointer to the new name.

Return 0 if successful, non-zero if not.

The new name must not already exist in the current working directory,
the old name must exist in the current working directory.

#include <stdio.h> /* for rename, printf */

int main(void)
{
if (rename ("myfile.txt","newfile.txt") != 0)
printf ("Cannot rename file");
else
printf ("File renamed") ;

}

Output:
File renamed

© 2005 Microchip Technology Inc.

DS51456B4-page 265

16-Bit Language Tools Libraries

rewind
Description: Resets the file pointer to the beginning of the file.
Include: <stdio.h>
Prototype: void rewind (FILE *stream) ;
Argument: stream Sstream to reset the file pointer
Remarks: The function calls £seek (stream, 0L, SEEK SET) and then clears
the error indicator for the given stream.
Example: #include <stdio.h> /* for rewind, fopen, */
/* fscanf, fclose, */
/* fprintf, printf, * /
/* FILE, NULL */
int main(void)
{
FILE *myfile;
char s[] = "cookies";
int x = 10;
if ((myfile = fopen("afile", "w+")) == NULL)
printf ("Cannot open afile\n");
else
{
fprintf (myfile, "%d %s", x, s);
printf ("I have %4 %s.\n", x, s);
/* set pointer to beginning of file */
rewind (myfile) ;
fscanf (myfile, "%d %$s", &x, &s);
printf ("I ate %4 %s.\n", x, s);
fclose (myfile) ;
}
}
Output:

I have 10 cookies.
I ate 10 cookies.

DS51456B4-page 266 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

scanf

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Scans formatted text from stdin.
<stdio.h>
int scanf (const char *format, ...);
format format control string
optional arguments

Returns the number of items successfully converted and assigned. If
no items are assigned, a O is returned. EOF is returned if an input
failure is encountered before the first.

Each format specifier begins with a percent sign followed by optional
fields and a required type as shown here:

% [*] [width] [modifier]type

indicates assignment suppression. This will cause the input field to
be skipped and no assignment made.

width
specify the maximum number of input characters to match for the
conversion not including white space that can be skipped.

modifier

h modifier — used with type d, i, 0, u, X, X; converts the value to a
short int or unsigned short int.

h modifier — used with n; specifies that the pointer points to a
short int

I modifier — used with type d, i, 0, u, X, X; converts the value to a
long int orunsigned long int

I modifier — used with n; specifies that the pointer points to a
long int

I modifier — used with c; specifies a wide character

I modifier — used with type e, E, f, F, g, G; converts the value to a
double

Il modifier — used with type d, i, 0, u, X, X; converts the value to a
long long int orunsigned long long int

Il modifier — used with n; specifies that the pointer points to a
long long int

L modifier — used with e, E, f, g, G; converts the value to a 1ong
double

© 2005 Microchip Technology Inc.

DS51456B4-page 267

16-Bit Language Tools Libraries

scanf (Continued)

type
d,i signed int
o] unsigned int in octal
u unsigned int in decima
X unsigned int inlowercase hexadecimal
X unsigned int in uppercase hexadecimal
e,E double in scientific notation
f double decimal notation
0,G double (takes the form of e, E or f as appropriate)
c char - a single character
s string
p value of a pointer
n the associated argument shall be an integer pointer into,

which is placed the number of characters read so far. No
characters are scanned.

[...] character array. Allows a search of a set of characters. A
caret (") immediately after the left bracket ([) inverts the
scanset and allows any ASCII character except those
specified between the brackets. A dash character (-) may be
used to specify a range beginning with the character before
the dash and ending the character after the dash. A null
character can not be part of the scanset.

% A % character is scanned

Example: #include <stdio.h> /* for scanf, printf */

int main(void)

{

int number, items;

char letter;

char color([30], string[30];
float salary;

printf ("Enter your favorite number, "
"favorite letter, ");
printf ("favorite color desired salary "
"and SSN:\n") ;
items = scanf ("%d %c $[A-Za-z] %f %s", &number,
&letter, &color, &salary, &string);

printf ("Number of items scanned = %d\n", items);
printf ("Favorite number = %d, ", number);
printf ("Favorite letter = %c\n", letter);
printf ("Favorite color = %s, ", color);
printf ("Desired salary = $%.2f\n", salary);
printf ("Social Security Number = %s, ", string);
!
Input:

Contents of UartIn.txt (used as stdin input for simulator):
5 T Green 300000 123-45-6789

Output:

Enter your favorite number, favorite letter,
favorite color, desired salary and SSN:

Number of items scanned = 5

Favorite number = 5, Favorite letter = T

Favorite color = Green, Desired salary = $300000.00
Social Security Number = 123-45-6789

DS51456B4-page 268

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

setbuf

Description:

Include:
Prototype:

Arguments:

Remarks:

Example:

Defines how a stream is buffered.
<stdio.h>
void setbuf (FILE *stream, char *buf) ;
stream pointer to the open stream
buf user allocated buffer
setbuf must be called after fopen but before any other function calls
that operate on the stream. If buf is a null pointer, setbuf calls the
function setvbuf (stream, 0, IONBF, BUFSIZ) for no buffering;
otherwise setbuf calls setvbuf (stream, buf, IOFBF,
BUFS1Z) for full buffering with a buffer of size BUFSIZ. See setvbuf.
#include <stdio.h> /* for setbuf, printf, */

/* fopen, fclose, */

/* FILE, NULL, BUFSIZ */

int main(void)

{
FILE *myfilel, *myfile2;
char buf [BUFSIZ];

if ((myfilel = fopen("afilel", "w+")) != NULL)

{

setbuf (myfilel, NULL) ;
printf ("myfilel has no buffering\n") ;
fclose (myfilel) ;

}

if ((myfile2 = fopen("afile2", "w+")) != NULL)

{

setbuf (myfile2, buf);
printf ("myfile2 has full buffering");
fclose (myfile2) ;

}

}

Output:
myfilel has no buffering
myfile2 has full buffering

© 2005 Microchip Technology Inc.

DS51456B4-page 269

16-Bit Language Tools Libraries

setvbuf

Description:
Include:
Prototype:

Arguments:

Return Value:

Remarks:

Example:

Defines the stream to be buffered and the buffer size.
<stdio.h>

int setvbuf (FILE *stream, char *buf, int mode,
size t size);

stream pointer to the open stream

buf user allocated buffer

mode type of buffering

size size of buffer

Returns 0 if successful

setvbuf must be called after fopen but before any other function
calls that operate on the stream. For mode use one of the following:
__IOFBF - for full buffering

_IOLBF - for line buffering

__IONBF - for no buffering

#include <stdio.h> /* for setvbuf, fopen, */
/* printf, FILE, NULL, */
/* IONBF, IOFBF */

int main(void)

{
FILE *myfilel, *myfile2;
char buf [256] ;

if ((myfilel = fopen("afilel", "w+")) != NULL)
{
if (setvbuf (myfilel, NULL, IONBF, 0) == 0)
printf ("myfilel has no buffering\n") ;
else

printf ("Unable to define buffer stream "
"and/or size\n") ;

}

fclose (myfilel) ;

if ((myfile2 = fopen("afile2", "w+")) != NULL)
{
if (setvbuf (myfile2, buf, IOFBF, sizeof (buf)) ==
0)
printf ("myfile2 has a buffer of %d "
"characters\n", sizeof (buf));
else
printf ("Unable to define buffer stream "
"and/or size\n") ;

}

fclose (myfile2) ;
}
Output:
myfilel has no buffering
myfile2 has a buffer of 256 characters

DS51456B4-page 270

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

sprintf

Description: Prints formatted text to a string

Include: <stdio.h>

Prototype: int sprintf (char *s, const char *format, ...);
Arguments: s storage string for output

Return Value:

format format control string
optional arguments

Returns the number of characters stored in s excluding the terminating
null character.

Remarks: The format argument has the same syntax and use that it has in
printf.
Example: #include <stdio.h> /* for sprintf, printf */
int main(void)
{
char sbuf[100], s[]="Print this string";
int x = 1, y;
char a = '\n';
y = sprintf (sbuf, "%s %d time%c", s, x, a);
printf ("Number of characters printed to "
"string buffer = %d\n", vy);
printf ("String = %s\n", sbuf);
}
Output:
Number of characters printed to string buffer = 25
String = Print this string 1 time
sscanf
Description: Scans formatted text from a string
Include: <stdio.h>
Prototype: int sscanf (const char *s, const char *format, ...);
Arguments: s storage string for input

Return Value:

Remarks:

format format control string
optional arguments

Returns the number of items successfully converted and assigned. If
no items are assigned, a 0 is returned. EOF is returned if an input error
is encountered before the first conversion.

The format argument has the same syntax and use that it has in
scanf.

© 2005 Microchip Technology Inc.

DS51456B4-page 271

16-Bit Language Tools Libraries

sscanf (Continued)

Example:

#include <stdio.h> /* for sscanf, printf */

int main(void)
{
char s[] = "5 T green 3000000.00";
int number, items;
char letter;
char color[10];
float salary;

items = sscanf(s, "%d %c %s %f", &number, &letter,
&color, &salary) ;

printf ("Number of items scanned = %d\n", items);
printf ("Favorite number = %d\n", number) ;

printf ("Favorite letter = %c\n", letter);

printf ("Favorite color = %$s\n", color);

printf ("Desired salary = $%.2f\n", salary);

}

Output:

Number of items scanned = 4
Favorite number = 5

Favorite letter = T

Favorite color = green
Desired salary = $3000000.00

tmpfile

Description:
Include:
Prototype:

Return Value:

Remarks:

Example:

Creates a temporary file
<stdio.h>
FILE *tmpfile(void)

Returns a stream pointer if successful; otherwise, returns a NULL
pointer.

tmpfile creates a file with a unique filename. The temporary file is
opened in w+b (binary read/write) mode. It will automatically be
removed when exit is called; otherwise the file will remain in the
directory.

#include <stdio.h> /* for tmpfile, printf, */

/* FILE, NULL */
int main(void)
{
FILE *mytempfile;
if ((mytempfile = tmpfile()) == NULL)

printf ("Cannot create temporary file");
else
printf ("Temporary file was created");
}

Output:
Temporary file was created

DS51456B4-page 272

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

tmpnam

Description: Creates a unique temporary filename
Include: <stdio.h>

Prototype: char *tmpnam(char *s);
Argument: s pointer to the temporary name

Return Value:

Returns a pointer to the filename generated and stores the filename in
s. If it can not generate a filename, the NULL pointer is returned.

Remarks: The created filename will not conflict with an existing file name. Use
L_tmpnam to define the size of array the argument of tmpnam points
to.

Example: #include <stdio.h> /* for tmpnam, L _ tmpnam, */

/* printf, NULL */
int main(void)
{
char *myfilename;
char mybuf [L_tmpnam] ;
char *myptr = (char *) &mybuf;
if ((myfilename = tmpnam(myptr)) == NULL)
printf ("Cannot create temporary file name");
else
printf ("Temporary file %s was created",
myfilename) ;
}
Output:
Temporary file ctm0000l.tmp was created

ungem

Description: Pushes character back onto stream.

Include: <stdio.h>

Prototype: int ungetc(int ¢, FILE *gstream) ;

Argument: c character to be pushed back

Return Value:

Remarks:

stream pointer to the open stream
Returns the pushed character if successful; otherwise, returns EOF

The pushed back character will be returned by a subsequent read on
the stream. If more than one character is pushed back, they will be
returned in the reverse order of their pushing. A successful call to a file
positioning function (£seek, £setpos or rewind) cancels any pushed
back characters. Only one character of pushback is guaranteed.
Multiple calls to ungetc without an intervening read or file positioning
operation may cause a failure.

© 2005 Microchip Technology Inc.

DS51456B4-page 273

16-Bit Language Tools Libraries

ungetc (Continued)

Example: #include <stdio.h> /* for ungetc, fgetc, */
/* printf, fopen, fclose, */
/* FILE, NULL, EOF */

int main(void)
{
FILE *buf;
char y, c;

if ((buf = fopen("afile.txt", "r")) == NULL)
printf ("Cannot open afile.txt\n");

else

{

y = fgetc(buf) ;

while (y != EOF)
{
if (y == 'r')
{
¢ = ungetc(y, buf);
if (¢ != EOF)

printf("2");
y = fgetc(buf) ;
}
}
printf ("%c", vy);
y = fgetc(buf) ;
}
fclose (buf) ;
}
}
Input:
Contents of afile. txt (used as input):
Short
Longer string
Output:
Sho2rt
Longe2r st2ring

DS51456B4-page 274

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

viprintf
Description: Prints formatted data to a stream using a variable length argument list.
Include: <stdio.h>
<stdarg.h>
Prototype: int vfprintf (FILE *stream, const char *format,
va_list ap);
Arguments: stream pointer to the open stream
format format control string
ap pointer to a list of arguments
Return Value: Returns number of characters generated or a negative number if an
error occurs.
Remarks: The format argument has the same syntax and use that it has in
printf.
To access the variable length argument list, the ap variable must be
initialized by the macro va_start and may be reinitialized by
additional calls to va_arg. This must be done before the viprintf
function is called. Invoke va_end after the function returns. For more
details see stdarg.h.
Example: #include <stdio.h> /* for vfprintf, fopen, */
/* fclose, printf, */
/* FILE, NULL */
#include <stdarg.h> /* for va_start, */
/* va_list, va_end */

FILE *myfile;

void errmsg(const char *fmt, ...)

{

va_list ap;

va_start (ap, fmt);
viprintf (myfile, fmt, ap);
va_end(ap) ;

int main(void)

{

int num = 3;

if ((myfile = fopen("afile.txt", "w")) == NULL)
printf ("Cannot open afile.txt\n");

else

{
errmsg ("Error: The letter '%c' is not %s\n", 'a',

"an integer value.");
errmsg ("Error: Requires %d%s%c", num,
" or more characters.", '\n');

fclose (myfile) ;

}

Output:

Contents of afile. txt

Error: The letter 'a' is not an integer value.
Error: Requires 3 or more characters.

© 2005 Microchip Technology Inc. DS51456B4-page 275

16-Bit Language Tools Libraries

vprintf

Description:
Include:

Prototype:
Arguments:

Return Value:

Remarks:

Example:

Prints formatted text to stdout using a variable length argument list
<stdio.h>

<stdarg.h>

int vprintf (const char *format, va_list ap);
format format control string

ap pointer to a list of arguments

Returns number of characters generated or a negative number if an
error occurs.

The format argument has the same syntax and use that it has in
printf.

To access the variable length argument list, the ap variable must be
initialized by the macro va_start and may be reinitialized by
additional calls to va_arg. This must be done before the vprintf
function is called. Invoke va_end after the function returns. For more
details see stdarg.h

#include <stdio.h> /* for vprintf, printf */
#include <stdarg.h> /* for va_start, */
/* va_list, va_end */

void errmsg(const char *fmt, ...)

{

va_list ap;

va_start (ap, fmt);
printf ("Error: ");
vprintf (fmt, ap);
va_end(ap) ;

int main(void)

{

int num = 3;

errmsg ("The letter '%c' is not %s\n", 'a',
"an integer value.");
errmsg ("Requires %d%s\n", num,
" or more characters.\n");
}

Output:
Error: The letter 'a' is not an integer value.
Error: Requires 3 or more characters.

DS51456B4-page 276

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

vsprintf

Description:
Include:

Prototype:

Arguments:

Return Value:

Remarks:

Example:

Prints formatted text to a string using a variable length argument list
<stdio.h>

<stdarg.h>

int vsprintf (char *s, const char *format, va list
ap) ;

s storage string for output

format format control string

ap pointer to a list of arguments

Returns number of characters stored in s excluding the terminating null
character.

The format argument has the same syntax and use that it has in
printf.

To access the variable length argument list, the ap variable must be
initialized by the macro va_start and may be reinitialized by
additional calls to va_arg. This must be done before the vsprintf
function is called. Invoke va_end after the function returns. For more
details see stdarg.h

#include <stdio.h> /* for vsprintf, printf */
#include <stdarg.h> /* for va_start, */
/* va_list, va_end */

void errmsg(const char *fmt, ...)
{

va_list ap;

char buf[100];

va_start (ap, fmt);
vsprintf (buf, fmt, ap);
va_end(ap) ;

printf ("Error: %s", buf);

int main(void)

{

int num = 3;

errmsg ("The letter '%c' is not %s\n", 'a',
"an integer value.");

errmsg ("Requires %d%s\n", num,
" or more characters.\n");

Output:
Error: The letter 'a' is not an integer value.
Error: Requires 3 or more characters.

© 2005 Microchip Technology Inc.

DS51456B4-page 277

16-Bit Language Tools Libraries

4.14 <STDLIB.H> UTILITY FUNCTIONS

The header file stdlib.h consists of types, macros and functions that provide text
conversions, memory management, searching and sorting abilities, and other general

utilities.

div_t

Description: A type that holds a quotient and remainder of a signed integer division
with operands of type int.

Include: <stdlib.h>

Prototype: typedef struct { int quot, rem; } div t;

Remarks: This is the structure type returned by the function div.

Idiv_t

Description: A type that holds a quotient and remainder of a signed integer division
with operands of type long.

Include: <stdlib.h>

Prototype: typedef struct { long quot, rem; } 1ldiv t;

Remarks: This is the structure type returned by the function 1div.

size t

Description: The type of the result of the sizeof operator.

Include: <stdlib.h>

wchar_t

Description: A type that holds a wide character value.

Include: <stdlib.h>

EXIT_FAILURE

Description: Reports unsuccessful termination.

Include: <stdlib.h>

Remarks: EXIT FAILURE is a value for the exit function to return an
unsuccessful termination status

Example: See exit for example of use.

EXIT_SUCCESS

Description:
Include:
Remarks:

Example:

Reports successful termination
<stdlib.h>

EXIT SUCCESS is a value for the exit function to return a successful
termination status.

See exit for example of use.

DS51456B4-page 278

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

MB_CUR_MAX
Description: Maximum number of characters in a multibyte character
Include: <stdlib.h>
Value: 1
NULL
Description: The value of a null pointer constant
Include: <stdlib.h>
RAND_MAX
Description: Maximum value capable of being returned by the rand function
Include: <stdlib.h>
Value: 32767
abort
Description: Aborts the current process.
Include: <stdlib.h>
Prototype: void abort (void) ;
Remarks: abort will cause the processor to reset.
Example: #include <stdio.h> /* for fopen, fclose, */
/* printf, FILE, NULL */
#include <stdlib.hs> /* for abort */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("samp.fil", "r")) == NULL)

{

printf ("Cannot open samp.fil\n");
abort () ;

}

else
printf ("Success opening samp.fil\n") ;

fclose (myfile) ;
}

Output:
Cannot open samp.fil
ABRT

© 2005 Microchip Technology Inc. DS51456B4-page 279

16-Bit Language Tools Libraries

abs

Description: Calculates the absolute value.
Include: <stdlib.h>

Prototype: int abs(int 1);
Argument: 1 integer value

Return Value:

Returns the absolute value of 1.

Remarks: A negative number is returned as positive; a positive number is
unchanged.
Example: #include <stdio.h> /* for printf =*/
#include <stdlib.h> /* for abs */
int main(void)
{
int 1i;
i =12;
printf ("The absolute value of %d is %d\n",
i, abs(i));
i=-2;
printf ("The absolute value of %d is %d\n",
i, abs(i));
i=0;
printf ("The absolute value of $d is %d\n",
i, abs(i));
}
Output:
The absolute value of 12 is 12
The absolute value of -2 is
The absolute value of 0 is 0
atexit
Description: Registers the specified function to be called when the program
terminates normally.
Include: <stdlib.h>
Prototype: int atexit (void(*func) (void)) ;
Argument: func function to be called
Return Value: Returns a zero if successful; otherwise, returns a non-zero value.
Remarks: For the registered functions to be called, the program must terminate
with the exit function call.
Example: #include <stdio.h> /* for scanf, printf */

#include <stdlib.h> /* for atexit, exit */

void good msg(void) ;
void bad msg(void) ;
void end msg(void) ;

DS51456B4-page 280

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

atexit (Continued)

int main(void)

{

int number;

atexit (end msg) ;
printf ("Enter your favorite number:");
scanf ("%d", &number) ;
printf (" %d\n", number) ;
if (number == 5)
{
printf ("Good Choice\n") ;
atexit (good msg) ;
exit (0) ;
!
else
{
printf ("%d!?\n", number) ;
atexit (bad msg) ;
exit (0) ;
!
!

void good msg(void)
{

printf ("That's an excellent number\n") ;

}

void bad msg(void)
{

printf ("That's an awful number\n") ;

}

void end msg(void)
{

printf ("Now go count something\n") ;

}

Input:
With contents of UartIn.txt (used as stdin input for simulator):
5

Output:

Enter your favorite number: 5
Good Choice

That's an excellent number
Now go count something

Input:
With contents of UartIn.txt (Used as stdin input for simulator):
42

Output:

Enter your favorite number: 42
4217?

That's an awful number

Now go count something

© 2005 Microchip Technology Inc.

DS51456B4-page 281

16-Bit Language Tools Libraries

atof

Description: Converts a string to a double precision floating-point value.

Include: <stdlib.h>

Prototype: double atof (const char *s);

Argument: s pointer to the string to be converted

Return Value: Returns the converted value if successful; otherwise, returns 0.

Remarks: The number may consist of the following:

[whitespace] [sign] digits [.digits]
[{ e | E }[signldigits]

optional whitespace, followed by an optional sign then a sequence
of one or more digits with an optional decimal point, followed by one
or more optional digits and an optional e or E followed by an optional
signed exponent. The conversion stops when the first unrecognized
character is reached. The conversion is the same as strtod (s, 0, 0)
except it does no error checking so errno will not be set.

Example: #include <stdio.h> /* for printf =*/

#include <stdlib.h> /* for atof */

int main(void)

{

char a[] = " 1.28";
char b[] = "27.835e2";
char c/[] "Numberl";
double x;

x = atof(a);

printf ("String \"$s\" float = %$f\n", a, x);

x = atof (b);
printf ("String = \"%s\" float = %f\n", b, x);

x = atof (c);

printf ("String = \"%s\" float = %f\n", c, Xx);

}

Output:

String = "1.28" float = 1.280000
String = "27.835:e2" float = 2783.500000
String = "Numberl" float = 0.000000

DS51456B4-page 282

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

atoi

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Converts a string to an integer.

<stdlib.h>

int atoi(const char *s);

s string to be converted

Returns the converted integer if successful; otherwise, returns 0.

The number may consist of the following:

[whitespace] [sign] digits
optional whitespace, followed by an optional sign then a sequence
of one or more digits. The conversion stops when the first
unrecognized character is reached. The conversion is equivalent to
(int) strtol(s,0,10) exceptitdoes no error checking so errno
will not be set.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for atoi */

int main(void)

{
char al[] = " -127";
char b[] = "Numberl";
int x;
x = atoi(a);
printf ("String = \"%s\"\tint = %d\n", a, x);
x = atoi(b);
printf ("String = \"%$s\"\tint = %d\n", b, x);
}
Output:
String = " -127" int = -127
String = "Numberl" int = 0

atol

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Converts a string to a long integer.
<stdlib.h>
long atol (const char *s);
s string to be converted
Returns the converted long integer if successful; otherwise, returns 0
The number may consist of the following:

[whitespace] [sign] digits
optional whitespace, followed by an optional sign then a sequence
of one or more digits. The conversion stops when the first
unrecognized character is reached. The conversion is equivalent to

(int) strtol(s,0,10) exceptit does no error checking so errno
will not be set.

© 2005 Microchip Technology Inc.

DS51456B4-page 283

16-Bit Language Tools Libraries

atol (Continued)

Example:

#include <stdio.h>

/* for printf */

#include <stdlib.h> /* for atol */

int main(void)
{
char all]
char bl[]
long x;

" -123456";
"2Number" ;

x = atol(a);

printf ("String = \"%s\"

x = atol(b);

}

Output:
String
String =

printf ("String = \"%s\"

" -123456"
"2Number"

int

int

= %$1ld\n", a, x);

$1d\n", b, x);

-123456
2

bsearch

Description:
Include:
Prototype:

Arguments:

Return Value:

Remarks:

Performs a binary search
<stdlib.h>

void *bsearch(const void *key,
size t nelem, size t size,
int (*cmp) (const void *ck,

key object to search for
base
nelem number of elements

size size of elements

const void *base,

const void *ce)) ;

pointer to the start of the search data

cmp pointer to the comparison function
ck pointer to the key for the search
ce pointer to the element being compared with the key.

Returns a pointer to the object being searched for if found; otherwise,

returns NULL.

The value returned by the compare function is <0 if ck is less than ce,
0if ck is equal to ce, or >0 if ck is greater than ce.

In the following example, gsort is used to sort the list before bsearch
is called. bsearch requires the list to be sorted according to the
comparison function. This comp uses ascending order.

DS51456B4-page 284

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

bsearch (Continued)

Example:

#include <stdlib.h> /* for bsearch, gsort */

#include <stdio.h> /* for printf, sizeof */

#define NUM 7
int comp (const void *el,

int main(void)

{

const void *e2);

int list[NUM] = {35, 47, 63, 25, 93, 16, 52};

int x, y;
int *r;
gsort (list, NUM, sizeof (int), comp) ;

printf ("Sorted List:

")

for (x = 0; x < NUM; xX++)
printf("sd ", list[x]);

Yy 25;
r = bsearch(&y, list,
if (r)

printf ("\nThe value
else

printf ("\nThe value

y = 75;
r = bsearch(&y, list,
if (r)

printf ("\nThe value
else

printf ("\nThe value

int comp (const void *el,

{

const int * al = el;
const int * a2 = e2;

if (*al < *a2)
return -1;

NUM, sizeof (int), comp) ;
$d was found\n", vy);

$d was not found\n", vy);

NUM, sizeof (int), comp) ;
$d was found\n", y);

$d was not found\n", v);

const void *e2)

else if (*al == *a2)
return 0;
else
return 1,
}
Output:
Sorted List: 16 25 35 47 52 63 93

The value 25 was found

The value 75 was not found

© 2005 Microchip Technology Inc.

DS51456B4-page 285

16-Bit Language Tools Libraries

calloc

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Allocates an array in memory and initializes the elements to 0.
<stdlib.h>

void *calloc(size t nelem, size t size);
nelem number of elements

size length of each element

Returns a pointer to the allocated space if successful; otherwise,
returns a null pointer.

Memory returned by calloc is aligned correctly for any size data
element and is initialized to zero.

/* This program allocates memory for the */
/* array 'i' of long integers and initializes */
/* them to zero. */

#include <stdio.h> /* for printf, NULL */
#include <stdlib.hs> /* for calloc, free */

int main(void)

{

int x;
long *i;
i = (long *)calloc(5, sizeof (long)) ;
if (i != NULL)
{
for (x = 0; X < 5; X++)
printf ("i[%d] = %1d\n", x, i[x]);
free (i) ;
!
else

printf ("Cannot allocate memory\n") ;

}

Output:
ifo]
i[1] =
i[2] =
i[3] =
if4] =

O O O O o

div

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Calculates the quotient and remainder of two numbers
<stdlib.h>

div_t div(int numer, int denom) ;

numer numerator

denom denominator

Returns the quotient and the remainder.

The returned quotient will have the same sign as the numerator divided
by the denominator. The sign for the remainder will be such that the
quotient times the denominator plus the remainder will equal the
numerator (quot * denom + rem = numer). Division by zero will invoke
the math exception error, which by default, will cause a reset. Write a
math error handler to do something else.

DS51456B4-page 286

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

div (Continued)

Example: #include <stdlib.h> /* for div, div_t */
#include <stdio.h> /* for printf */
void _ attribute ((__interrupt))

_MathError (void)

{
printf ("Illegal instruction executed\n") ;
abort () ;

}

int main(void)
int x, y;
div_t z;

x = 7;

y = 3;

printf ("For div(%d, %d4d)\n", x, vy);

z = div(x, vy);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

X = 7;

y = -3;

printf ("For div(%d, %d4d)\n", x, vy);
z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

X = -5;

y = 3;

printf ("For div(%d, %d)\n", x, y);

z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

X = 7;

y =7;

printf ("For div(%d, %d)\n", x, vy);

z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

X = 7;

y = 0;

printf ("For div(%d, %d)\n", x, vy);
z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

© 2005 Microchip Technology Inc. DS51456B4-page 287

16-Bit Language Tools Libraries

div (Continued)

Output:
For div(7, 3)
The quotient is 2 and the remainder is 1

For div (7, -3)
The quotient is -2 and the remainder is 1

For div (-5, 3)
The quotient is -1 and the remainder is -2

For div (7, 7)
The quotient is 1 and the remainder is 0

For div(7, 0)
Illegal instruction executed
ABRT

exit

Description: Terminates program after clean up.

Include: <stdlib.h>

Prototype: void exit (int status) ;

Argument: status exit status

Remarks: exit calls any functions registered by atexit in reverse order of
registration, flushes buffers, closes stream, closes any temporary files
created with tmpfile, and resets the processor. This function is
customizable. See pic30-1ibs.

Example: #include <stdio.h> /* for fopen, printf, */

/* FILE, NULL *x/
#include <stdlib.hs> /* for exit */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("samp.fil", "r")) == NULL)

{

printf ("Cannot open samp.fil\n");
exit (EXIT FAILURE) ;

}

else

{

printf ("Success opening samp.fil\n") ;
exit (EXIT SUCCESS) ;

}

printf ("This will not be printed");
!

Output:
Cannot open samp.fil

DS51456B4-page 288

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

free
Description: Frees memory.
Include: <stdlib.h>
Prototype: void free (void *ptr);
Argument: ptr points to memory to be freed
Remarks: Frees memory previously allocated with calloc, malloc, or
realloc. If free is used on space that has already been deallocated
(by a previous call to free or by realloc) or on space not allocated
with calloc, malloc, or realloc, the behavior is undefined.
Example: #include <stdio.h> /* for printf, sizeof, */
/* NULL */
#include <stdlib.h> /* for malloc, free */
int main(void)
{
long *i;
if ((i = (long *)malloc(50 * sizeof (long))) ==
NULL)
printf ("Cannot allocate memory\n");
else
{
printf ("Memory allocated\n");
free(i);
printf ("Memory freed\n") ;
}
}
Output:
Memory allocated
Memory freed
getenv
Description: Get a value for an environment variable.
Include: <stdlib.h>
Prototype: char *getenv(const char *name) ;
Argument: name nhame of environment variable
Return Value: Returns a pointer to the value of the environment variable if successful;
otherwise, returns a null pointer.
Remarks: This function must be customized to be used as described (see

pic30-1ibs). By default there are no entries in the environment list
for getenv to find.

© 2005 Microchip Technology Inc. DS51456B4-page 289

16-Bit Language Tools Libraries

getenv (Continued)

Example: #include <stdio.h> /* for printf, NULL */
#include <stdlib.h> /* for getenv */

int main(void)

{

char *incvar;

incvar = getenv ("INCLUDE") ;

if (incvar != NULL)
printf ("INCLUDE environment variable = %s\n",
incvar) ;
else
printf ("Cannot find environment variable "
"INCLUDE ") ;
}
Output:

Cannot find environment variable INCLUDE

labs

Description: Calculates the absolute value of a long integer.

Include: <stdlib.h>

Prototype: long labs(long 1i);

Argument: 1 long integer value

Return Value: Returns the absolute value of i.

Remarks: A negative number is returned as positive; a positive number is
unchanged.

Example: #include <stdio.h> /* for printf */

#include <stdlib.hs> /* for labs */

int main(void)

{

long i;

1 = 123456;
printf ("The absolute value of %71d is %61d\n",
i, labs(i));

i = -246834;
printf ("The absolute value of %$71d is %61d\n",
i, labs(i));

i = 0;
printf ("The absolute value of %71d is %61d\n",
i, labs(i));
}

Output:

The absolute value of 123456 is 123456
The absolute value of -246834 is 246834
The absolute value of 0 is 0

DS51456B4-page 290 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

Idiv

Description: Calculates the quotient and remainder of two long integers.
Include: <stdlib.h>

Prototype: ldiv_t 1ldiv(long numer, long denom) ;
Arguments: numer numerator

Return Value:

Remarks:

Example:

denom denominator
Returns the quotient and the remainder.

The returned quotient will have the same sign as the numerator divided
by the denominator. The sign for the remainder will be such that the
quotient times the denominator plus the remainder will equal the
numerator (quot * denom + rem = numer). If the denominator is zero,
the behavior is undefined.

#include <stdlib.h> /* for 1ldiv, 1ldiv_t */
#include <stdio.h> /* for printf */

int main(void)

{

long x,vy;

ldiv_t z;

X = 7;

y = 3;

printf ("For 1ldiv(%1d, %1d)\n", x, v);

z = 1ldiv(x, y);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n", z.quot, z.rem);

x = 7;

y = -3;

printf ("For 1div(%1ld, %1d)\n", x, y);

z = 1div(x, vy);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n", z.quot, z.rem);

X = -5;

y = 3;

printf ("For 1ldiv(%1d, %1d)\n", x, v);

z = 1div(x, vy);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n", z.quot, z.rem);

X = 7;

y = 7;

printf ("For 1ldiv(%1d, %1d)\n", x, v);

z = 1div(x, y);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n", z.quot, z.rem);

x = 7;

y = 0;

printf ("For 1div(%1ld, %1d)\n", x, y);

z = 1div(x, vy);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n",
z.quot, z.rem);

!

© 2005 Microchip Technology Inc.

DS51456B4-page 291

16-Bit Language Tools Libraries

Idiv (Continued)

Output:

For 1div (7, 3)
The quotient is 2 and the remainder is 1

For 1ldiv (7, -3)
The quotient is -2 and the remainder is 1

For 1ldiv (-5, 3)
The quotient is -1 and the remainder is -2

For 1ldiv (7, 7)
The quotient is 1 and the remainder is 0

For 1div (7, 0)
The quotient is -1 and the remainder is 7

Explanation:

In the last example (1div (7, 0)) the denominator is zero, the behavior

is undefined.

malloc

Description: Allocates memory.

Include: <stdlib.h>

Prototype: void *malloc(size t size);
Argument: size number of characters to allocate

Return Value:

Remarks:
Example:

Returns a pointer to the allocated space if successful; otherwise,
returns a null pointer.

malloc does not initialize memory it returns.

#include <stdio.h> /* for printf, sizeof, */

/* NULL */
#include <stdlib.h> /* for malloc, free */
int main(void)
{
long *1i;
if ((i = (long *)malloc (50 * sizeof (long))) ==
NULL)
printf ("Cannot allocate memory\n") ;
else

{

printf ("Memory allocated\n") ;
free (i) ;
printf ("Memory freed\n") ;

}
}
Output:
Memory allocated
Memory freed

DS51456B4-page 292

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

mblen

Description: Gets the length of a multibyte character. (See Remarks.)
Include: <stdlib.h>

Prototype: int mblen(const char *s, size t n);
Arguments: s points to the multibyte character

Return Value:

n number of bytes to check
Returns zero if s points to a null character; otherwise, returns 1.

Remarks: MPLAB C30 does not support multibyte characters with length greater
than 1 byte.

mbstowcs

Description: Converts a multibyte string to a wide character string. (See Remarks.)

Include: <stdlib.h>

Prototype: size t mbstowcs (wchar_t *wcs, const char *s,
size t n);

Arguments: wcs points to the wide character string

Return Value:

s points to the multibyte string
n the number of wide characters to convert.

Returns the number of wide characters stored excluding the null
character.

Remarks: mbstowcs converts n number of wide characters unless it encounters
a null wide character first. MPLAB C30 does not support multibyte
characters with length greater than 1 byte.

mbtowc

Description: Converts a multibyte character to a wide character. (See Remarks.)

Include: <stdlib.h>

Prototype: int mbtowc (wchar t *pwc, const char *s, size t n);

Arguments: pwc points to the wide character

Return Value:
Remarks:

s points to the multibyte character
n number of bytes to check
Returns zero if s points to a null character; otherwise, returns 1

The resulting wide character will be stored at pwc. MPLAB C30 does
not support multibyte characters with length greater than 1 byte.

© 2005 Microchip Technology Inc.

DS51456B4-page 293

16-Bit Language Tools Libraries

gsort
Description: Performs a quick sort.
Include: <stdlib.h>
Prototype: void gsort (void *base, size t nelem, size t size,
int (*cmp) (const void *el, const void *e2));
Arguments: base pointer to the start of the array
nelem number of elements
size size of the elements
cmp pointer to the comparison function
el pointer to the key for the search
e2 pointer to the element being compared with the key
Remarks: gsort overwrites the array with the sorted array. The comparison
function is supplied by the user. In the following example, the list is
sorted according to the comparison function. This comp uses
ascending order.
Example: #include <stdlib.h> /* for gsort */

#include <stdio.h>

#define NUM 7

int comp (const void *el,

int main(void)

{
int list [NUM] =
int x;

/* for printf */

const void *e2);

{35, 47, 63, 25, 93, 16, 52};

printf ("Unsorted List: ");

for (x = 0;
printf ("%d ",
gsort (list, NUM,

printf ("\n") ;

X < NUM; xX++)

list[x]);

sizeof (int), comp) ;

printf ("Sorted List: "

for (x = 0;
printf("sd ",

int comp (const void *el,

{

const int * al
const int * a2 =

if (*al < *a2)
return -1;
else 1f (*al ==
return 0;
else
return 1;
}

Output:
Unsorted List: 35
Sorted List: 16

X < NUM; xX++)

list[x]);

const void *e2)

el;
e2;

*a2)

47 63 25 93 16 52
25 35 47 52 63 93

DS51456B4-page 294

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

rand

Description: Generates a pseudo-random integer.
Include: <stdlib.h>

Prototype: int rand(void) ;

Return Value:

Remarks:

Example:

Returns an integer between 0 and RAND MAX.

Calls to this function return pseudo-random integer values in the range
[O,RaND MAX]. To use this function effectively, you must seed the
random number generator using the srand function. This function will
always return the same sequence of integers when no seeds are used
(as in the example below) or when identical seed values are used. (See
srand for seed example.)

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for rand */

int main(void)

{

int x;

for (x = 0; X < 5; X++)
printf ("Number = %d\n", rand());
}

Output:

Number = 21422
Number = 2061

Number = 16443
Number = 11617
Number = 9125

Notice if the program is run a second time, the numbers are the same.
See the example for srand to seed the random number generator.

realloc

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Reallocates memory to allow a size change.
<stdlib.h>

void *realloc(void *ptr, size t size);
ptr points to previously allocated memory
size new size to allocate to

Returns a pointer to the allocated space if successful; otherwise,
returns a null pointer.

If the existing object is smaller than the new object, the entire existing
object is copied to the new object and the remainder of the new object
is indeterminate. If the existing object is larger than the new object, the
function copies as much of the existing object as will fit in the new
object. If realloc succeeds in allocating a new object, the existing
object will be deallocated; otherwise, the existing object is left
unchanged. Keep a temporary pointer to the existing object since
realloc will return a null pointer on failure.

© 2005 Microchip Technology Inc.

DS51456B4-page 295

16-Bit Language Tools Libraries

realloc (Continued)

Example:

#include <stdio.h> /* for printf, sizeof, NULL */
#include <stdlib.h> /* for realloc, malloc, free */

int main(void)

{

long *i, *j;

if ((i = (long *)malloc (50 * sizeof (long)))
== NULL)
printf ("Cannot allocate memory\n") ;
else

{

printf ("Memory allocated\n") ;

/* Temp pointer in case realloc() fails */

j = 1i;

if ((i = (long *)realloc(i, 25 * sizeof (long)))
== NULL)

printf ("Cannot reallocate memory\n") ;
/* j pointed to allocated memory */
free(3j);
}
else
{
printf ("Memory reallocated\n") ;
free (i) ;
}

}
}

Output:
Memory allocated
Memory reallocated

DS51456B4-page 296

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

srand

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Set the starting seed for the pseudo-random number sequence.
<stdlib.h>

void srand(unsigned int seed) ;

seed starting value for the pseudo-random number sequence
None

This function sets the starting seed for the pseudo-random number
sequence generated by the rand function. The rand function will
always return the same sequence of integers when identical seed
values are used. If rand is called with a seed value of 1, the sequence
of numbers generated will be the same as if rand had been called
without srand having been called first.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for rand, srand */

int main(void)

{

int x;
srand (7) ;
for (x = 0; X < 5; X++)
printf ("Number = %d\n", rand());
}
Output:

Number = 16327
Number = 5931
Number = 23117
Number = 30985
Number = 29612

strtod

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Converts a partial string to a floating-point number of type double.
<stdlib.h>

double strtod(const char *s, char **endptr) ;

s string to be converted

endptr pointer to the character at which the conversion stopped
Returns the converted number if successful; otherwise, returns 0.

The number may consist of the following:

[whitespace] [sign] digits [.digits]

[{ e | E }[signldigits]

optional whitespace, followed by an optional sign, then a sequence
of one or more digits with an optional decimal point, followed by one
or more optional digits and an optional e or E followed by an optional
signed exponent.
strtod converts the string until it reaches a character that cannot be
converted to a number. endptr will point to the remainder of the string
starting with the first unconverted character.
If a range error occurs, errno will be set.

© 2005 Microchip Technology Inc.

DS51456B4-page 297

16-Bit Language Tools Libraries

strtod (Continued)

Example:

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for strtod */

int main(void)

{
char *end;
char a[] = "1.28 inches";
char b[] = "27.835e2i";
char c[] = "Numberl";
double x;

X = strtod(a, &end);
printf ("String = \"%s\" float = %f\n", a, x);
printf ("Stopped at: %$s\n\n", end)

’

x = strtod (b, &end);
printf ("String = \"%s\" float = %f\n", b, x);
printf ("Stopped at: %s\n\n", end);

x = strtod(c, &end);

printf ("String = \"%s\" float = %f\n", c, x);
printf ("Stopped at: %s\n\n", end);

}

Output:

String = "1.28 inches" float = 1.280000

Stopped at: inches

String = "27.835e2i" float = 2783.500000
Stopped at: 1

String = "Numberl™" float = 0.000000
Stopped at: Numberl

DS51456B4-page 298

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strtol

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Converts a partial string to a long integer.

<stdlib.h>

long strtol (const char *s, char **endptr, int base) ;
s string to be converted

endptr pointer to the character at which the conversion stopped
base number base to use in conversion

Returns the converted number if successful; otherwise, returns 0.

If base is zero, strtol attempts to determine the base automatically.
It can be octal, determined by a leading zero, hexadecimal, determined
by a leading Ox or 0X, or decimal in any other case. If base is specified
strtol converts a sequence of digits and letters a-z (case
insensitive), where a-z represents the numbers 10-36. Conversion
stops when an out of base number is encountered. endpt r will point to
the remainder of the string starting with the first unconverted character.
If a range error occurs, errno will be set.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for strtol */

int main(void)

{

char *end;

char a[] = "-12BGEE";
char b[] = "1234Number";
long x;

x = strtol(a, &end, 16);
printf ("String = \"%s\" long = %1d\n", a, x);
printf ("Stopped at: %s\n\n", end);

x = strtol (b, &end, 4);
printf ("String = \"%s\" long = %1d\n", b, x);
printf ("Stopped at: %s\n\n", end);

}

Output:

String = "-12BGEE" 1long = -299

Stopped at: GEE

String = "1234Number" Ilong = 27
Stopped at: 4Number

© 2005 Microchip Technology Inc.

DS51456B4-page 299

16-Bit Language Tools Libraries

strtoul

Description: Converts a partial string to an unsigned long integer.

Include: <stdlib.h>

Prototype: unsigned long strtoul (const char *s, char **endptr,
int base) ;

Arguments: s string to be converted

Return Value:

Remarks:

Example:

endptr pointer to the character at which the conversion stopped

base

number base to use in conversion

Returns the converted number if successful; otherwise, returns 0.

If base is zero, strtol attempts to determine the base automatically.
It can be octal, determined by a leading zero, hexadecimal, determined
by a leading Ox or 0X, or decimal in any other case. If base is specified
strtol converts a sequence of digits and letters a-z (case
insensitive), where a-z represents the numbers 10-36. Conversion
stops when an out of base number is encountered. endpt r will point to
the remainder of the string starting with the first unconverted character.
If a range error occurs, errno will be set.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for strtoul */

int main(void)

{

}

char *end;

char all]
char b/[]
char cI]
unsigned

= "12BGET3";
= "0x1234Number";
= "-123abc";
long x;

X = strtoul (a, &end, 25);
printf ("String = \"%s\" long = %lu\n", a, x);
printf ("Stopped at: %s\n\n", end);

x = strtoul (b, &end, 0);
printf ("String = \"%s\" long = %lu\n", b, x);
printf ("Stopped at: %s\n\n", end);

x = strtoul (¢, &end, 0);
printf ("String = \"%s\" long = %lu\n", c, x);
printf ("Stopped at: %s\n\n", end);

Output:

String = "12BGET3" long = 429164
Stopped at: T3

String = "0x1234Number" long = 4660

Stopped at: Number

String = "-
Stopped at:

123abc" long = 4294967173
abc

DS51456B4-page 300

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

system
Description: Execute a command.
Include: <stdlib.h>
Prototype: int system(const char *s);
Argument: s command to be executed
Remarks: This function must be customized to be used as described (see
pic30-1ibs). By default system will cause a reset if called with
anything other than NULL. system (NULL) will do nothing.
Example: /* This program uses system */
/* to TYPE its source file. */
#include <stdlib.h> /* for system */
int main(void)
{
system("type sampsystem.c");
}
Output:
System(type sampsystem.c) called: Aborting
wctomb
Description: Converts a wide character to a multibyte character. (See Remarks.)
Include: <stdlib.h>
Prototype: int wctomb (char *s, wchar t wchar);
Arguments: s points to the multibyte character
wchar the wide character to be converted
Return Value: Returns zero if s points to a null character; otherwise, returns 1.
Remarks: The resulting multibyte character is stored at s. MPLAB C30 does not
support multibyte characters with length greater than 1 character.
wcstombs
Description: Converts a wide character string to a multibyte string. (See Remarks.)
Include: <stdlib.h>
Prototype: size t wcstombs (char *s, const wchar t *wcs,
size t n);
Arguments: s points to the multibyte string
wcs points to the wide character string
n the number of characters to convert
Return Value: Returns the number of characters stored excluding the null character.
Remarks: wcstombs converts n number of multibyte characters unless it

encounters a null character first. MPLAB C30 does not support
multibyte characters with length greater than 1 character.

© 2005 Microchip Technology Inc. DS51456B4-page 301

16-Bit Language Tools Libraries

4.15 <STRING.H> STRING FUNCTIONS

The header file string.h consists of types, macros and functions that provide tools
to manipulate strings.

size t

Description: The type of the result of the sizeof operator.
Include: <string.h>

NULL

Description: The value of a null pointer constant.

Include: <string.h>

memchr

Description: Locates a character in a buffer.

Include: <string.h>

Prototype: void *memchr (const void *s, int ¢, size t n);
Arguments: s pointer to the buffer

Return Value:

Remarks:

Example:

¢ character to search for
n number of characters to check

Returns a pointer to the location of the match if successful; otherwise,
returns null.

memchr stops when it finds the first occurrence of c or after searching
n number of characters.

#include <string.h> /* for memchr, NULL */

#include <stdio.h> /* for printf */
int main(void)
{

char bufl[50] = "What time is it?";

char chl = 'i', ch2 = 'y';

char *ptr;

int res;

printf ("bufl $s\n\n", bufl);
ptr = memchr (bufl, chl, 50);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("$c found at position %d\n", chl, res);
}
else
printf ("$c not found\n", chl);

DS51456B4-page 302

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

memchr (Continued)

printf ("\n") ;

ptr = memchr (bufl, ch2, 50);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("$c found at position %d\n", ch2, res);
!
else
printf ("%c not found\n", ch2);

}

Output:
bufl : What time is 1it?

i found at position 7

y not found

memcmp

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Compare the contents of two buffers.

<string.h>

int memcmp (const void *sl, const void *s2, size t n);
s1 first buffer

s2 second buffer

n number of characters to compare

Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

This function compares the first n characters in s1 to the first n
characters in s2 and returns a value indicating whether the buffers are
less than, equal to or greater than each other.

#include <string.h> /* memcmp */

#include <stdio.h> /* for printf */

int main(void)

{

char bufl[50]
char buf2[50]
char buf3[50]
int res;

"Where is the time?";
"Where did they go?";
n Why? n ;

printf ("bufl : %s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 : %$s\n\n", buf3);

res = memcmp (bufl, buf2, 6);
if (res < 0)
printf ("bufl comes before buf2\n") ;
else if (res == 0)
printf ("6 characters of bufl and buf2 "
"are equal\n") ;
else
printf ("buf2 comes before bufl\n") ;

© 2005 Microchip Technology Inc.

DS51456B4-page 303

16-Bit Language Tools Libraries

memcmp (Continued)

printf ("\n") ;

res = memcmp (bufl, buf2, 20);
if (res < 0)
printf ("bufl comes before buf2\n") ;
else if (res == 0)
printf ("20 characters of bufl and buf2
"are equal\n") ;
else
printf ("buf2 comes before bufl\n") ;

printf ("\n") ;

res = memcmp (bufl, buf3, 20);
if (res < 0)
printf ("bufl comes before buf3\n");
else if (res == 0)
printf ("20 characters of bufl and buf3
"are equal\n") ;
else
printf ("buf3 comes before bufl\n") ;
}

Output:

bufl : Where is the time?

buf2 : Where did they go?

buf3 : Why?

6 characters of bufl and buf2 are equal

buf2 comes before bufl

bufl comes before buf3

n

n

DS51456B4-page 304

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

memcpy

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Copies characters from one buffer to another.

<string.h>

void *memcpy (void *dst , const void *src , size t n);
dst buffer to copy characters to

src buffer to copy characters from

n number of characters to copy

Returns dst.

memcpy copies n characters from the source buffer src to the
destination buffer dst. If the buffers overlap, the behavior is undefined.

#include <string.h> /* memcpy */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] = "";
char buf2[50] = "Where is the time?";
char buf3[50] = "Why?";

printf ("bufl : %$s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 : %$s\n\n", buf3);

memcpy (bufl, buf2, 6);
printf ("bufl after memcpy of 6 chars of "
"buf2: \n\t%s\n", bufl);

printf ("\n") ;

memcpy (bufl, buf3, 5);
printf ("bufl after memcpy of 5 chars of "
"buf3: \n\t%s\n", bufl);
}

Output:

bufl

buf2 : Where is the time?
buf3d : Why?

bufl after memcpy of 6 chars of buf2:
Where

bufl after memcpy of 5 chars of buf3:
Why?

© 2005 Microchip Technology Inc.

DS51456B4-page 305

16-Bit Language Tools Libraries

memmove

Description: Copies n characters of the source buffer into the destination buffer,
even if the regions overlap.

Include: <string.h>

Prototype: void *memmove (void *sl, const void *s2, size t n);

Arguments: s1 buffer to copy characters to (destination)

Return Value:
Remarks:

Example:

s2 buffer to copy characters from (source)
n number of characters to copy from s2 to s1
Returns a pointer to the destination buffer

If the buffers overlap, the effect is as if the characters are read first from
s2 then written to s1 so the buffer is not corrupted.

#include <string.h> /* for memmove */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] "When time marches on";
char buf2[50] = "Where is the time?";
char buf3[50] "Why?";

printf ("bufl : %$s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 : %s\n\n", buf3);

memmove (bufl, buf2, 6);
printf ("bufl after memmove of 6 chars of "
"buf2: \n\t%s\n", bufl);

printf ("\n") ;

memmove (bufl, buf3, 5);
printf ("bufl after memmove of 5 chars of "
"buf3: \n\t%s\n", bufl);
}

Output:

bufl : When time marches on
buf2 : Where is the time?
buf3 : Why?

bufl after memmove of 6 chars of buf2:
Where ime marches on

bufl after memmove of 5 chars of buf3:
Why?

DS51456B4-page 306

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

memset

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:
Example:

Copies the specified character into the destination buffer.

<string.h>

void *memset (void *s,

s buffer
c character to put in buffer

n number of times
Returns the buffer with characters written to it.
The character c is written to the buffer n times.

#include <string.h> /* for memset */
#include <stdio.h>

int main(void)

int ¢,

/* for printf */

size t n);

);\n", bufl, chil);

bufl) ;

;\n", buf2, ch2);

buf2) ;

{
char bufl[20] = "What time is it?";
char buf2[20] = "";
char chl = '?', ch2 = 'y';
char *ptr;
int res;
printf ("memset (\"%s\", \'sc\’
memset (bufl, chl, 4);
printf ("bufl after memset: %s\n",
printf ("\n") ;
printf ("memset (\"%s\", \'%c\',10)
memset (buf2, ch2, 10);
printf ("buf2 after memset: %s\n",
}
Output:
memset ("What time is it?", '?',4);

bufl after memset:

memset ("", 'y',10);

buf2 after memset:

???? time is it?

YYYYYYYYYY

© 2005 Microchip Technology Inc.

DS51456B4-page 307

16-Bit Language Tools Libraries

strcat

Description: Appends a copy of the source string to the end of the destination string.

Include: <string.h>

Prototype: char *strcat (char *sl, const char *s2);

Arguments: s1 null terminated destination string to copy to
s2 null terminated source string to be copied

Return Value: Returns a pointer to the destination string.

Remarks: This function appends the source string (including the terminating null
character) to the end of the destination string. The initial character of
the source string overwrites the null character at the end of the
destination string. If the buffers overlap, the behavior is undefined.

Example: #include <string.h> /* for strcat, strlen */

#include <stdio.h> /* for printf */

int main(void)
char bufl[50] "We're here";
char buf2[50] = "Where is the time?";

printf ("bufl : %s\n", bufl);
printf ("\t (%d characters)\n\n", strlen(bufl));
printf ("buf2 : %s\n", buf2);
printf ("\t (%d characters)\n\n", strlen(buf2));

strcat (bufl, buf2);

printf ("bufl after strcat of buf2: \n\t%s\n",
bufl) ;

printf ("\t (%d characters)\n", strlen(bufl));

printf ("\n") ;

strcat (bufl, "Why?");

printf ("bufl after strcat of \"Why?\": \n\t%s\n",
bufl) ;

printf ("\t (%d characters)\n", strlen(bufl));

}

Output:
bufl : We're here
(10 characters)

buf2 : Where is the time?
(18 characters)

bufl after strcat of buf2:
We're hereWhere is the time?
(28 characters)

bufl after strcat of "Why?":
We're hereWhere is the time?Why?
(32 characters)

DS51456B4-page 308 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strchr

Description: Locates the first occurrence of a specified character in a string.

Include: <string.h>

Prototype: char *strchr (const char *s, int c);

Arguments: s pointer to the string
¢ character to search for

Return Value: Returns a pointer to the location of the match if successful; otherwise,
returns a null pointer.

Remarks: This function searches the string s to find the first occurrence of the
character c.

Example: #include <string.h> /* for strchr, NULL */

#include <stdio.h> /* for printf */

int main(void)
char bufl[50] = "What time is it?";
char chl = 'm', ch2 = 'y';
char *ptr;
int res;

printf ("bufl : %$s\n\n", bufl);

ptr = strchr (bufl, chl);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("$c found at position %d\n", chl, res);
!
else
printf ("%c not found\n", chil);

printf ("\n") ;

ptr = strchr (bufl, ch2);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("%c found at position %d\n", ch2, res);
}
else
printf ("$c not found\n", ch2);
!

Output:
bufl : What time is 1it?

m found at position 8

y not found

© 2005 Microchip Technology Inc. DS51456B4-page 309

16-Bit Language Tools Libraries

strcmp

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Compares two strings.

<string.h>

int strcmp(const char *sl, const char *s2);
s1 first string

s2 second string

Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

This function compares successive characters from s1 and s2 until
they are not equal or the null terminator is reached.

#include <string.h> /* for strcmp */
#include <stdio.h> /* for printf */

int main(void)
{
char bufl[50]
char buf2[50]
char buf3[50]
int res;

"Where is the time?";
"Where did they go?";
n Why? n ;

printf ("bufl : %$s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 $s\n\n", buf3);

res = strcmp (bufl, buf2);
if (res < 0)
printf ("bufl comes before buf2\n") ;

else if (res == 0)
printf ("bufl and buf2 are equall\n");
else

printf ("buf2 comes before bufl\n") ;

printf ("\n") ;

res = strcmp (bufl, buf3l);
if (res < 0)

printf ("bufl comes before buf3\n");
else if (res == 0)

printf ("bufl and buf3 are equal\n");
else

printf ("buf3 comes before bufl\n");

printf ("\n") ;

res = strcmp ("Why?", buf3l3);
if (res < 0)

printf ("\"Why?\" comes before buf3\n");
else if (res == 0)

printf ("\"Why?\" and buf3 are equal\n");
else

printf ("buf3 comes before \"Why?\"\n") ;

DS51456B4-page 310

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strcmp (Continued)

Output:

bufl : Where is the time?
buf2 : Where did they go?
buf3 : Why?

buf2 comes before bufl

bufl comes before buf3

"Why?" and buf3 are equal

strcoll

Description: Compares one string to another. (See Remarks.)

Include: <string.h>

Prototype: int strcoll (const char *sl, const char *s2);
Arguments: s1 first string

Return Value:

s2 second string

Using the locale-dependent rules, it returns a positive number if s1 is
greater than s2, zero if s1 is equal to s2, or a negative number if s1 is
less than s2.

Remarks: Since MPLAB C30 does not support alternate locales, this function is
equivalent to st rcmp.

strcpy

Description: Copy the source string into the destination string.

Include: <string.h>

Prototype: char *strcpy(char *sl, const char *s2);

Arguments: s1 destination string to copy to

Return Value:

Remarks:

Example:

s2 source string to copy from

Returns a pointer to the destination string.

All characters of s2 are copied, including the null terminating character.
If the strings overlap, the behavior is undefined.

#include <string.h> /* for strcpy, strlen */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] = "We're here";
char buf2[50] "Where is the time?";
char buf3[50] = "Why?";

printf ("bufl : %$s\n", bufl);
printf ("buf2 : %s\n", buf2);
printf ("buf3 $s\n\n", buf3);

strcpy (bufl, buf2);
printf ("bufl after strcpy of buf2: \n\t%s\n\n",
bufl) ;

© 2005 Microchip Technology Inc.

DS51456B4-page 311

16-Bit Language Tools Libraries

strcpy (Continued)

strcpy (bufl, buf3l3);
printf ("bufl after strcpy of buf3: \n\t%s\n",
bufl) ;
}

Output:

bufl : We're here

buf2 : Where is the time?
buf3 : Why?

bufl after strcpy of buf2:
Where is the time?

bufl after strcpy of buf3:
Why?

strcspn

Description: Calculate the number of consecutive characters at the beginning of a
string that are not contained in a set of characters.

Include: <string.h>

Prototype: size t strcspn(const char *sl, const char *s2);

Arguments: sl pointer to the string to be searched

Return Value:

Remarks:

Example:

s2 pointer to characters to search for

Returns the length of the segment in s1 not containing characters
found in s2.

This function will determine the number of consecutive characters from
the beginning of s1 that are not contained in s2.

#include <string.h> /* for strcspn */
#include <stdio.h> /* for printf */

int main(void)
{
char strl
char str2
char str3
char str4
int res;

20] = "hello";
20] = "aeiou";
20] = "animal";
20] = "xyz";

res = strcspn(strl, str2);
printf ("strcspn (\"%s\", \"%s\") = %d\n",
strl, str2, res);

res = strcspn(str3, str2);
printf ("strcspn (\"%s\", \"%s\")
str3, str2, res);

$d\n",

res = strcspn(str3, str4);
printf ("strcspn (\"%s\", \"%s\")
str3, str4, res);

$d\n",

}

Output:

strcspn ("hello", "aeiou") = 1
strcspn ("animal", "aeiou") = 0
strespn ("animal", "xyz") = 6

DS51456B4-page 312

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strcspn (Continued)

Explanation:

In the first result, e is in s2 so it stops counting after h.

In the second result, a isin s2.

In the third result, none of the characters of s1 are in s2 so all
characters are counted.

strerror

Description: Gets an internal error message.
Include: <string.h>

Prototype: char *strerror(int errcode) ;
Argument: errcode number of the error code

Return Value:

Returns a pointer to an internal error message string corresponding to
the specified error code errcode.

Remarks: The array pointed to by strerror may be overwritten by a
subsequent call to this function.
Example: #include <stdio.h> /* for fopen, fclose, */
/* printf, FILE, NULL */
#include <string.h> /* for strerror */
#include <errno.h> /* for errno */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("samp.fil", "r+")) == NULL)
printf ("Cannot open samp.fil: %s\n",
strerror (errno)) ;
else
printf ("Success opening samp.fil\n") ;
fclose (myfile) ;
}
Output:
Cannot open samp.fil: file open error
strlen
Description: Finds the length of a string.
Include: <string.h>
Prototype: size t strlen(const char *s);
Argument: s the string

Return Value:

Remarks:

Returns the length of a string.

This function determines the length of the string, not including the
terminating null character.

© 2005 Microchip Technology Inc.

DS51456B4-page 313

16-Bit Language Tools Libraries

strlen (Continued)

Example:

#include <string.h> /* for strlen */
#include <stdio.h> /* for printf */

int main(void)
{
char strl1[20]
char str2[20]
char str3[20]

"We are here";
nmn .
i

"Why me?";

printf ("strl : %s\n", strl);

printf ("\t(string length = %d characters)\n\n",
strlen(strl)) ;

printf ("str2 : %$s\n", str2);

printf ("\t (string length = %d characters)\n\n",
strlen(str2));

printf ("str3 : %s\n", str3);

printf ("\t (string length = %d characters)\n\n\n",
strlen(str3));

}

Output:
strl : We are here
(string length = 11 characters)

str2

(string length = 0 characters)

str3 : Why me?
(string length = 7 characters)

strncat

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Append a specified number of characters from the source string to the
destination string.

<string.h>

char *strncat (char *sl, const char *s2, size t n);
s1 destination string to copy to

s2 source string to copy from

n number of characters to append

Returns a pointer to the destination string.

This function appends up to n characters (a null character and
characters that follow it are not appended) from the source string to the
end of the destination string. If a null character is not encountered, then
a terminating null character is appended to the result. If the strings
overlap, the behavior is undefined.

#include <string.h> /* for strncat, strlen */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] "We're here";
char buf2[50] = "Where is the time?";
char buf3[50] "Why?";

DS51456B4-page 314

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strncat (Continued)

printf ("bufl : %$s\n", bufl);

printf ("\t (%d characters)\n\n", strlen(bufl));
printf ("buf2 : %$s\n", buf2);

printf ("\t (%d characters)\n\n", strlen(buf2));
printf ("buf3 : %s\n", buf3);

printf ("\t (%d characters)\n\n\n", strlen(buf3l));

strncat (bufl, buf2, 6);

printf ("bufl after strncat of 6 characters "
"of buf2: \n\t%s\n", bufl);

printf ("\t (%d characters)\n", strlen(bufl));

printf ("\n") ;

strncat (bufl, buf2, 25);

printf ("bufl after strncat of 25 characters "
"of buf2: \n\t%s\n", bufl);

printf ("\t (%d characters)\n", strlen(bufl));

printf ("\n") ;

strncat (bufl, buf3, 4);

printf ("bufl after strncat of 4 characters "
"of buf3: \n\t%s\n", bufl);

printf ("\t (%d characters)\n", strlen (bufl));

}

Output:
bufl : We're here
(10 characters)

buf2 : Where is the time?
(18 characters)

buf3 : Why?
(4 characters)

bufl after strncat of 6 characters of buf2:
We're hereWhere
(16 characters)

bufl after strncat of 25 characters of buf2:
We're hereWhere Where is the time?
(34 characters)

bufl after strncat of 4 characters of buf3:
We're hereWhere Where is the time?Why?
(38 characters)

© 2005 Microchip Technology Inc. DS51456B4-page 315

16-Bit Language Tools Libraries

strncmp

Description: Compare two strings, up to a specified number of characters.

Include: <string.h>

Prototype: int strncmp (const char *sl1, const char *s2,

size t n);

Arguments: s1 first string
s2 second string
n number of characters to compare

Return Value: Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

Remarks: strncmp returns a value based on the first character that differs
between s1 and s2. Characters that follow a null character are not
compared.

Example: #include <string.h> /* for strncmp */

#include <stdio.h> /* for printf =*/

int main(void)
{
char bufl[50]
char buf2[50]
char buf3[50]
int res;

"Where is the time?";
"Where did they go?";
n Why? n ;

printf ("bufl : %s\n", bufl);
printf ("buf2 : %s\n", buf2);
printf ("buf3 : %$s\n\n", buf3);

res = strncmp (bufl, buf2, 6);
if (res < 0)
printf ("bufl comes before buf2\n") ;
else if (res == 0)
printf ("6 characters of bufl and buf2 "
"are equal\n") ;
else
printf ("buf2 comes before bufl\n") ;

printf ("\n") ;

res = strncmp (bufl, buf2, 20);
if (res < 0)
printf ("bufl comes before buf2\n") ;
else if (res == 0)
printf ("20 characters of bufl and buf2 "
"are equal\n") ;
else
printf ("buf2 comes before bufl\n");

DS51456B4-page 316 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strncmp (Continued)

printf ("\n") ;

res = strncmp (bufl, buf3, 20);

if (res < 0)
printf ("bufl comes before buf3\n");

else if (res == 0)
printf ("20 characters of bufl and buf3 "

"are equal\n") ;
else

printf ("buf3 comes before bufl\n") ;

Output:

bufl : Where is the time?

buf2 : Where did they go?

buf3d : Why?

6 characters of bufl and buf2 are equal

buf2 comes before bufl

bufl comes before buf3

strncpy

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Copy characters from the source string into the destination string, up to
the specified number of characters.

<string.h>

char *strncpy(char *sl, const char *s2, size t n);
s1 destination string to copy to

s2 source string to copy from

n number of characters to copy

Returns a pointer to the destination string.

Copies n characters from the source string to the destination string. If
the source string is less than n characters, the destination is filled with
null characters to total n characters. If n characters were copied and no
null character was found then the destination string will not be
null-terminated. If the strings overlap, the behavior is undefined.

#include <string.h> /* for strncpy, strlen */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] = "We're here";
char buf2[50] = "Where is the time?";
char buf3[50] = "Why?";
char buf4[7] = "Where?";
printf ("bufl : %$s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 : %$s\n", buf3);
printf ("buf4 : %s\n", buf4);

© 2005 Microchip Technology Inc.

DS51456B4-page 317

16-Bit Language Tools Libraries

strncpy (Continued)

strncpy (bufl, buf2, 6);

printf ("bufl after strncpy of 6 characters "
"of buf2: \n\t%s\n", bufl);

printf ("\t(%d characters)\n", strlen(bufl));

printf ("\n") ;

strncpy (bufl, buf2, 18);

printf ("bufl after strncpy of 18 characters "
"of buf2: \n\t%s\n", bufl);

printf ("\t(%d characters)\n", strlen(bufl));

printf ("\n") ;

strncpy (bufl, buf3, 5);

printf ("bufl after strncpy of 5 characters "
"of buf3: \n\t%s\n", bufl);

printf ("\t(%d characters)\n", strlen(bufl));

printf ("\n") ;

strncpy (bufl, buf4, 9);
printf ("bufl after strncpy of 9 characters "
"of buf4: \n\t%s\n", bufl);
printf ("\t(%d characters)\n", strlen(bufl));
}
Output:
bufl : We're here
buf2 : Where is the time?
buf3 : Why?
buf4 : Where?
bufl after strncpy of 6 characters of buf2:
Where here
(10 characters)

bufl after strncpy of 18 characters of buf2:
Where is the time?
(18 characters)

bufl after strncpy of 5 characters of buf3:
Why?
(4 characters)

bufl after strncpy of 9 characters of buf4:
Where?
(6 characters)

DS51456B4-page 318 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strncpy (Continued)

Explanation:

Each buffer contains the string shown, followed by null characters for a
length of 50. Using strlen will find the length of the string up to but not
including the first null character.

In the first example, 6 characters of but2 (“Where “) replace the first 6
characters of buf1 ("We're ") and the rest of buf1 remains the same
("here" plus null characters).

In the second example, 18 characters replace the first 18 characters of
bufl and the rest remain null characters.

In the third example, 5 characters of buf3 ("Why?" plus a null
terminating character) replace the first 5 characters of buf1. buf1 now
actually contains ("Why?", 1 null character, " is the time?", 32 null
characters). strlen shows 4 characters because it stops when it
reaches the first null character.

In the fourth example, since buf4 is only 7 characters st rncpy uses 2
additional null characters to replace the first 9 characters of buf1. The
result of buf1 is 6 characters ("Where?") followed by 3 null characters,
followed by 9 characters ("the time?"), followed by 32 null characters.

strpbrk

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Search a string for the first occurrence of a character from a specified
set of characters.

<string.h>

char *strpbrk (const char *sl, const char *s2);
sl pointer to the string to be searched

s2 pointer to characters to search for

Returns a pointer to the matched character in s1 if found; otherwise,
returns a null pointer.

This function will search s1 for the first occurrence of a character
contained in s2.

#include <string.h> /* for strpbrk, NULL */
#include <stdio.h> /* for printf */

int main(void)

{
char strl1[20] = "What time is 1it?";
char str2[20] = "xyz";
char str3[20] = "eou?";
char *ptr;
int res;
printf ("strpbrk (\"%s\", \"$s\")\n", strl, str2);
ptr = strpbrk(strl, str2);
if (ptr != NULL)
{

res = ptr - strl + 1;

printf ("match found at position %d\n", res);
else

printf ("match not found\n") ;

© 2005 Microchip Technology Inc.

DS51456B4-page 319

16-Bit Language Tools Libraries

strpbrk (Continued)

printf ("\n") ;

printf ("strpbrk (\"%s\", \"%s\")\n", strl, str3);
ptr = strpbrk(strl, str3);
if (ptr != NULL)
{
res = ptr - strl + 1;
printf ("match found at position %d\n", res);

!
else
printf ("match not found\n") ;
}
Output:
strpbrk ("What time is it?", "xyz")

match not found

strpbrk ("What time is it?", "eou?")
match found at position 9

strrchr

Description: Search for the last occurrence of a specified character in a string.
Include: <string.h>

Prototype: char *strrchr (const char *s, int c¢);

Arguments: s pointer to the string to be searched

Return Value:

Remarks:

Example:

¢ character to search for

Returns a pointer to the character if found; otherwise, returns a null
pointer.

The function searches the string s, including the terminating null
character, to find the last occurrence of character c.

#include <string.h> /* for strrchr, NULL */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] = "What time is it?";
char chl = 'm', ch2 = 'y';
char *ptr;
int res;

printf ("bufl : %s\n\n", bufl);

ptr = strrchr (bufl, chl);
if (ptr != NULL)

{

res = ptr - bufl + 1;

printf ("%c found at position %d\n", chl, res);
}
else

printf ("$c not found\n", chl);

DS51456B4-page 320

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strrchr (Continued)

printf ("\n") ;

ptr = strrchr (bufl, ch2);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("$c found at position %d\n", ch2, res);
!
else
printf ("%c not found\n", ch2);

}

Output:
bufl : What time is 1it?

m found at position 8

y not found

strspn

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:
Example:

Calculate the number of consecutive characters at the beginning of a
string that are contained in a set of characters.

<string.h>

size t strspn(const char *sl, const char *s2);
s1 pointer to the string to be searched

s2 pointer to characters to search for

Returns the number of consecutive characters from the beginning of s1
that are contained in s2.

This function stops searching when a character from s1 is notin s2.

#include <string.h> /* for strspn */
#include <stdio.h> /* for printf */

int main(void)

{
char strl1[20] = "animal";
char str2[20] = "aeiounm";
char str3[20] = "aimnl";
char str4[20] = "xyz";
int res;

res = strspn(strl, str2);
printf ("strspn (\"%s\", \"%s\") = %d\n",
strl, str2, res);

res = strspn(strl, str3);
printf ("strspn (\"%s\", \"%s\") = %d\n",
strl, str3, res);

res = strspn(strl, str4);
printf ("strspn(\"%s\", \"%s\") = %d\n",
strl, str4, res);

© 2005 Microchip Technology Inc.

DS51456B4-page 321

16-Bit Language Tools Libraries

strspn (Continued)

Output:

strspn("animal", "aeiounm") = 5
strspn("animal", "aimnl") = 6
strspn("animal", "xyz") = 0
Explanation:

In the first result, 1 is not in s2.
In the second result, the terminating null is not in s2.
In the third result, a is not in s2, so the comparison stops.

strstr

Description: Search for the first occurrence of a string inside another string.
Include: <string.h>

Prototype: char *strstr(const char *sl, const char *s2);
Arguments: s1 pointer to the string to be searched

Return Value:

Remarks:

Example:

s2 pointer to substring to be searched for

Returns the address of the first element that matches the substring if
found; otherwise, returns a null pointer.

This function will find the first occurrence of the string s2 (excluding the
null terminator) within the string s1. If s2 points to a zero length string,
s1 is returned.

#include <string.h> /* for strstr, NULL */
#include <stdio.h> /* for printf */

int main(void)
{
char strl1[20]
char str2[20]
char str3[20]
char *ptr;
int res;

"What time is it?";
IliSII .

;
le-y-zll ,.

printf ("strl : %s\n", strl);
printf ("str2 : %$s\n", str2);
printf ("str3 : %$s\n\n", str3);

ptr = strstr(strl, str2);
if (ptr != NULL)
{
res = ptr - strl + 1;
printf ("\"%s\" found at position %d\n",
str2, res);
!

else
printf ("\"%s\" not found\n", str2);

DS51456B4-page 322

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strstr (Continued)

printf ("\n") ;

ptr = strstr(strl, str3);
if (ptr != NULL)
res = ptr - strl + 1;
printf ("\"%s\" found at position %d\n",
str3, res);
!

else
printf ("\"%s\" not found\n", str3);

Output:

strl : What time is it?
str2 : is

str3 : xyz

"is" found at position 11

"xyz" not found

strtok

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Break a string into substrings, or tokens, by inserting null characters in
place of specified delimiters.

<string.h>

char *strtok(char *sl, const char *s2);

s1 pointer to the null terminated string to be searched

s2 pointer to characters to be searched for (used as delimiters)

Returns a pointer to the first character of a token (the first character in
s1 that does not appear in the set of characters of s2). If no token is
found, the null pointer is returned.

A sequence of calls to this function can be used to split up a string into
substrings (or tokens) by replacing specified characters with null
characters. The first time this function is invoked on a particular string,
that string should be passed in s1. After the first time, this function can
continue parsing the string from the last delimiter by invoking it with a
null value passed in s1.

It skips all leading characters that appear in the string s2 (delimiters),
then skips all characters not appearing in s2 (this segment of
characters is the token), and then overwrites the next character with a
null character, terminating the current token. The function st rtok then
saves a pointer to the character that follows, from which the next
search will start. If strtok finds the end of the string before it finds a
delimiter, the current token extends to the end of the string pointed to
by s1. If this is the first call to strtok, it does not modify the string (no
null characters are written to s1). The set of characters that is passed
in s2 need not be the same for each call to strtok.

If strtok is called with a non-null parameter for s1 after the initial call,
the string becomes the new string to search. The old string previously
searched will be lost.

© 2005 Microchip Technology Inc.

DS51456B4-page 323

16-Bit Language Tools Libraries

strtok (Continued)

Example:

#include <string.h> /* for strtok, NULL */
#include <stdio.h> / * for printf */

int main(void)
char strl1[30] "Here, on top of the world!";
char delim[5] "
char *word;
int x;

printf ("strl : %s\n", strl);

x = 1;
word = strtok(strl,delim) ;
while (word != NULL)

{

printf ("word %d: %s\n", x++, word) ;
word = strtok (NULL, delim) ;
}
!

Output:

strl : Here, on top of the world!
word 1: Here

word 2: on

word 3: top

word 4: of

word 5: the

word 6: world!

strxfrm

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Transforms a string using the locale-dependent rules. (See Remarks.)
<string.h>

size t strxfrm(char *sl, const char *s2, size t n);
s1 destination string

s2 source string to be transformed

n number of characters to transform

Returns the length of the transformed string not including the
terminating null character. If nn is zero, the string is not transformed (s1
may be a point null in this case) and the length of s2 is returned.

If the return value is greater than or equal to n, the content of s1 is
indeterminate. Since MPLAB C30 does not support alternate locales,
the transformation is equivalent to st rcpy, except that the length of
the destination string is bounded by n-1.

DS51456B4-page 324

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

4.16 <TIME.H> DATE AND TIME FUNCTIONS

The header file time . h consists of types, macros and functions that manipulate time.

clock_t

Description: Stores processor time values.

Include: <time.h>

Prototype: typedef long clock t

size t

Description: The type of the result of the sizeof operator.

Include: <time.h>

struct tm

Description: Structure used to hold the time and date (calendar time).

Include: <time.h>

Prototype: struct tm {
int tm_sec; /*seconds after the minute (0 to 61) */

/* allows for up to two leap seconds */
int tm _min; /* minutes after the hour (0 to 59) */
int tm _hour; /* hours since midnight (0 to 23) */
int tm mday; /* day of month (1 to 31) x/
int tm_mon; /* month (0 to 11 where January = 0) */
int tm_year; /* years since 1900 */
int tm wday; /* day of week (0 to 6 where Sunday = 0) */
int tm_yday; /* day of year (0 to 365 where January 1 = 0) */
int tm_isdst; /* Daylight Savings Time flag */
}

Remarks: If tm_isdst is a positive value, Daylight Savings is in effect. If it is
zero, Daylight Saving time is not in effect. If it is a negative value, the
status of Daylight Saving Time is not known.

time_t

Description: Represents calendar time values.

Include: <time.h>

Prototype: typedef long time t

CLOCKS_PER_SEC

Description: Number of processor clocks per second.

Include: <time.h>

Prototype: #define CLOCKS PER_SEC

Value: 1

Remarks: MPLAB C30 returns clock ticks (instruction cycles) not actual time.

© 2005 Microchip Technology Inc. DS51456B4-page 325

16-Bit Language Tools Libraries

NULL

Description: The value of a null pointer constant.

Include: <time.h>

asctime

Description: Converts the time structure to a character string.
Include: <time.h>

Prototype: char *asctime (const struct tm *tptr) ;
Argument: tptr time/date structure

Return Value:

Returns a pointer to a character string of the following format:
DDD MMM dd hh:mm:ss YYYY

DDD is day of the week

MMM is month of the year

dd is day of the month

hh is hour

mm iS minute

ss is second

YYYY is year
Example: #include <time.h> /* for asctime, tm */
#include <stdio.h> /* for printf */
volatile int 1i;
int main(void)
struct tm when;
time t whattime;
when.tm sec = 30;
when.tm min = 30;
when.tm hour = 2;
when.tm mday = 1;
when.tm mon = 1;
when.tm year = 103;
whattime = mktime (&when) ;
printf ("Day and time is %s\n", asctime (&when)) ;
Output:
Day and time is Sat Feb 1 02:30:30 2003
clock
Description: Calculates the processor time.
Include: <time.h>
Prototype: clock t clock(void) ;

Return Value:

Returns the number of clock ticks of elapsed processor time.

Remarks: If the target environment cannot measure elapsed processor time, the
function returns -1, cast as a clock_t. (i.e. (clock_t) -1) By default,

MPLAB C30 returns the time as instruction cycles.

DS51456B4-page 326 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

clock (Continued)

Example:

#include <time.h> /*
#include <stdio.h> /*

volatile int 1i;

int main(void)

{

clock _t start, stop;
int ct;

start = clock();

for (i = 0; 1 < 10;

stop = clock()

for clock */
for printf */

i++)

printf ("start = %1d\n", start);

printf ("stop = %1d\n",

}

Output:
start = 0
stop = 317

stop) ;

ctime

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Converts calendar time to a string representation of local time.

<time.h>

char *ctime(const time t *tod);

tod pointer to stored time

Returns the address of a string that represents the local time of the

parameter passed.

This function is equivalent to asctime (localtime (tod)).

#include <time.h> /*
#include <stdio.h> /*

int main(void)
time t whattime;
struct tm nowtime;

nowtime.tm sec = 30;
nowtime.tm min = 30;
nowtime.tm hour = 2;
nowtime.tm mday = 1;
nowtime.tm mon = 1;

for mktime, tm,
for printf

nowtime.tm year = 103;

whattime = mktime (&nowtime) ;

printf ("Day and time %s\n",

}

Output:
Day and time Sat Feb

1 02:30:30 2003

ctime */

*/

ctime (&whattime)) ;

© 2005 Microchip Technology Inc.

DS51456B4-page 327

16-Bit Language Tools Libraries

difftime

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Find the difference between two times.

<time.h>

double difftime(time t t1, time t tO0);
t1l1 endingtime

t0 beginning time

Returns the number of seconds between t1 and to.

By default, MPLAB C30 returns the time as instruction cycles so
difftime returns the number of ticks between t1 and to.

#include <time.h> /* for clock, difftime */
#include <stdio.h> /* for printf */

volatile int 1i;

int main(void)

{
clock _t start, stop;
double elapsed;

start = clock();

for (i = 0; 1 < 10; 1i++)

stop = clock() ;

printf ("start = %1d\n", start);

printf ("stop = %$1d\n", stop);

elapsed = difftime(stop, start);

printf ("Elapsed time = %.0f\n", elapsed);

}

Output:
start = 0
stop = 317

Elapsed time = 317

gmtime

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:

Converts calendar time to time structure expressed as Universal Time
Coordinated (UTC) also known as Greenwich Mean Time (GMT).

<time.h>

struct tm *gmtime (const time t *tod) ;
tod pointer to stored time

Returns the address of the time structure.

This function breaks down the tod value into the time structure of type
tm. By default, MPLAB C30 returns the time as instruction cycles. With
this default gmt ime and localtime will be equivalent except gmt ime
will return tm_isdst (Daylight Savings Time flag) as zero to indicate
that Daylight Savings Time is not in effect.

DS51456B4-page 328

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

gmtime (Continued)

Example: #include <time.h> /* for gmtime, asctime, */
/* time_t, tm */
#include <stdio.h> /* for printf */

int main(void)

time t timer;

struct tm *newtime;

timer = 1066668182; /* Mon Oct 20 16:43:02 2003 */

newtime = gmtime (&timer) ;

printf ("UTC time = %s\n", asctime(newtime)) ;
Output:

UTC time = Mon Oct 20 16:43:02 2003

localtime

Description: Converts a value to the local time.

Include: <time.h>

Prototype: struct tm *localtime(const time t *tod);

Argument: tod pointer to stored time

Return Value: Returns the address of the time structure.

Remarks: By default, MPLAB C30 returns the time as instruction cycles. With this
default localtime and gmtime will be equivalent except localtime
will return tm_isdst (Daylight Savings Time flag) as -1 to indicate that
the status of Daylight Savings Time is not known.

Example: #include <time.h> /* for localtime, */

/* asctime, time t, tm */
#include <stdio.h> /* for printf */

int main(void)

time t timer;

struct tm *newtime;

timer = 1066668182; /* Mon Oct 20 16:43:02 2003 */

newtime = localtime (&timer) ;

printf ("Local time = %s\n", asctime (newtime)) ;
Output:

Local time = Mon Oct 20 16:43:02 2003

© 2005 Microchip Technology Inc. DS51456B4-page 329

16-Bit Language Tools Libraries

mktime
Description: Converts local time to a calendar value.
Include: <time.h>
Prototype: time t mktime (struct tm *tptr);
Argument: tptr a pointer to the time structure
Return Value: Returns the calendar time encoded as a value of time t.
Remarks: If the calendar time cannot be represented, the function returns -1, cast
asatime t(i.e.(time_t)-1).
Example: #include <time.h> /* for localtime, */
/* asctime, mktime, */
/* time_t, tm */
#include <stdio.h> /* for printf */
int main(void)
{
time t timer, whattime;
struct tm *newtime;
timer = 1066668182; /* Mon Oct 20 16:43:02 2003 */
/* localtime allocates space for struct tm */
newtime = localtime (&timer) ;
printf ("Local time = %s", asctime (newtime)) ;
whattime = mktime (newtime) ;
printf ("Calendar time as time t = %$1d\n",
whattime) ;
}
Output:
Local time = Mon Oct 20 16:43:02 2003
Calendar time as time t = 1066668182
strftime
Description: Formats the time structure to a string based on the format parameter.
Include: <time.h>
Prototype: size t strftime(char *s, size_t n,
const char *format, const struct tm *tptr);
Arguments: s output string
n maximum length of string
format format-control string
tptr pointer to tm data structure
Return Value: Returns the number of characters placed in the array s if the total

including the terminating null is not greater than n. Otherwise, the
function returns 0 and the contents of array s are indeterminate.

Remarks: The format parameters follow:
%a abbreviated weekday name
%A full weekday name
%Db abbreviated month name
%B full month name
%c appropriate date and time representation
%d day of the month (01-31)
%H hour of the day (00-23)

DS51456B4-page 330 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

strftime (Continued)

Example:

%I hour of the day (01-12)

%j day of the year (001-366)
%m month of the year (01-12)
%M minute of the hour (00-59)
%p AM/PM designator

%S second of the minute (00-61)
allowing for up to two leap seconds

%U week number of the year where Sunday is the first day of week 1
(00-53)

%w weekday where Sunday is day 0 (0-6)

%W week number of the year where Monday is the first day of week 1
(00-53)

%x appropriate date representation

%X appropriate time representation

%y year without century (00-99)

%Y year with century

%Z time zone (possibly abbreviated) or no characters if time zone is
unavailable

%% percent character %

#include <time.h> /* for strftime, */

/* localtime, */
/* time_t, tm */
#include <stdio.h> /* for printf */

int main(void)
time t timer, whattime;
struct tm *newtime;
char buf[128];

timer = 1066668182; /* Mon Oct 20 16:43:02 2003 */
/* localtime allocates space for structure */
newtime = localtime (&timer) ;

strftime (buf, 128, "It was a %A, %d days into the "
"month of %B in the year %Y.\n", newtime) ;
printf (buf) ;

strftime (buf, 128, "It was %W weeks into the year "
"or %j days into the year.\n", newtime) ;
printf (buf) ;
}
Output:
It was a Monday, 20 days into the month of October in
the year 2003.
It was 42 weeks into the year or 293 days into the
year.

© 2005 Microchip Technology Inc.

DS51456B4-page 331

16-Bit Language Tools Libraries

time

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Calculates the current calendar time.

<time.h>

time t time(time t *tod) ;

tod pointer to storage location for time

Returns the calendar time encoded as a value of time t.

If the target environment cannot determine the time, the function
returns -1, cast as a time_t. By default, MPLAB C30 returns the time
as instruction cycles. This function is customizable. See pic30-1ibs.

#include <time.h> /* for time */
#include <stdio.h> /* for printf */

volatile int 1i;

int main(void)

{

time t ticks;

time (0); /* start time */

for (i = 0; 1 < 10; i+4+) /* waste time */
time (&ticks); /* get time */

printf ("Time = %$1d\n", ticks);

}

Output:
Time = 256

DS51456B4-page 332

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

417 <MATH.H> MATHEMATICAL FUNCTIONS

The header file math . h consists of a macro and various functions that calculate com-
mon mathematical operations. Error conditions may be handled with a domain error or
range error (see errno.h).

A domain error occurs when the input argument is outside the domain over which the
function is defined. The error is reported by storing the value of EDOM in errno and
returning a particular value defined for each function.

A range error occurs when the result is too large or too small to be represented in the
target precision. The error is reported by storing the value of ERANGE in errno and
returning HUGE VAL if the result overflowed (return value was too large) or a zero if the
result underflowed (return value is too small).

Responses to special values, such as NaNs, zeros, and infinities, may vary depending
upon the function. Each function description includes a definition of the function's
response to such values.

HUGE_VAL

Description: HUGE_VAL is returned by a function on a range error (e.g., the function
tries to return a value too large to be represented in the target
precision).

Include: <math.h>

Remarks: -HUGE_VAL is returned if a function result is negative and is too large
(in magnitude) to be represented in the target precision. When the
printed resultis +/- HUGE_VAL, it will be represented by +/- inf.

acos

Description: Calculates the trigonometric arc cosine function of a double precision
floating-point value.

Include: <math.h>

Prototype: double acos (double x);

Argument: x value between -1 and 1 for which to return the arc cosine

Return Value: Returns the arc cosine in radians in the range of 0 to pi (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.

Example: #include <math.h> /* for acos */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x,y;

errno = 0;
X = -2.0;
y = acos (x);
if (errno)
perror ("Error") ;
printf ("The arccosine of %f is %f\n\n", x, v);

© 2005 Microchip Technology Inc.

DS51456B4-page 333

16-Bit Language Tools Libraries

acos (Continued)

errno = 0;
x = 0.10;
y = acos (x);
if (errno)
perror ("Error") ;
printf ("The arccosine of %f is %f\n\n", x, v);

Output:
Error: domain error
The arccosine of -2.000000 is nan

The arccosine of 0.100000 is 1.470629

acosf

Description: Calculates the trigonometric arc cosine function of a single precision
floating-point value.

Include: <math.h>

Prototype: float acosf (float x);

Argument: x value between -1 and 1

Return Value: Returns the arc cosine in radians in the range of 0 to pi (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.

Example: #include <math.h> /* for acosf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
x = 2.0F;
y = acosf (x);
if (errno)
perror ("Error") ;
printf ("The arccosine of %f is %f\n\n", x, v);

errno = 0;
x = 0.0F;
y = acosf (x);
if (errno)
perror ("Erroxr") ;
printf ("The arccosine of %f is %f\n", x, y);

Output:
Error: domain error
The arccosine of 2.000000 is nan

The arccosine of 0.000000 is 1.570796

DS51456B4-page 334

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

asin

Description: Calculates the trigonometric arc sine function of a double precision
floating-point value.

Include: <math.h>

Prototype: double asin (double x);

Argument: x value between -1 and 1 for which to return the arc sine

Return Value:

Returns the arc sine in radians in the range of -pi/2 to +pi/2 (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.
Example: #include <math.h> /* for asin */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */
int main(void)
{
double x, vy;
errno = 0;
X = 2.0;
y = asin (x);
if (errno)
perror ("Error") ;
printf ("The arcsine of %f is %f\n\n", x, v);
errno = 0;
x = 0.0;
y = asin (x);
if (errno)
perror ("Error") ;
printf ("The arcsine of %$f is %f\n\n", x, v);
}
Output:
Error: domain error
The arcsine of 2.000000 is nan
The arcsine of 0.000000 is 0.000000
asinf
Description: Calculates the trigonometric arc sine function of a single precision
floating-point value.
Include: <math.h>
Prototype: float asinf (float x);
Argument: x value between -1 and 1
Return Value: Returns the arc sine in radians in the range of -pi/2 to +pi/2 (inclusive).
Remarks: A domain error occurs if x is less than -1 or greater than 1.
Example: #include <math.h> /* for asinf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

© 2005 Microchip Technology Inc.

DS51456B4-page 335

16-Bit Language Tools Libraries

asinf (Continued)

errno = 0;
X = 2.0F;
y = asinf (x);
if (errno)
perror ("Error") ;
printf ("The arcsine of %$f is %f\n\n", x, v);

errno = 0;
x = 0.0F;
y = asinf (x);
if (errno)
perror ("Erroxr") ;
printf ("The arcsine of %$f is %f\n\n", x, v);

Output:
Error: domain error
The arcsine of 2.000000 is nan

The arcsine of 0.000000 is 0.000000

atan

Description: Calculates the trigonometric arc tangent function of a double precision
floating-point value.

Include: <math.h>

Prototype: double atan (double x);

Argument: x value for which to return the arc tangent

Return Value: Returns the arc tangent in radians in the range of -pi/2 to +pi/2
(inclusive).

Remarks: No domain or range error will occur.

Example: #include <math.h> /* for atan */

#include <stdio.h> /* for printf */

int main(void)

{

double x, vy;

X = 2.0;
y = atan (x);
printf ("The arctangent of %f is %f\n\n", x, y);

x = -1.0;

y = atan (x);

printf ("The arctangent of %f is %f\n\n", x, y);
}
Output:
The arctangent of 2.000000 is 1.107149

The arctangent of -1.000000 is -0.785398

DS51456B4-page 336 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

atanf

Description: Calculates the trigonometric arc tangent function of a single precision
floating-point value.

Include: <math.h>

Prototype: float atanf (float x);

Argument: x value for which to return the arc tangent

Return Value:

Returns the arc tangent in radians in the range of -pi/2 to +pi/2
(inclusive).

Remarks: No domain or range error will occur.
Example: #include <math.h> /* for atanf */
#include <stdio.h> /* for printf */
int main(void)
{
float x, y;
x = 2.0F;
y = atanf (x);
printf ("The arctangent of %f is %f\n\n", x, y);
x = -1.0F;
y = atanf (x);
printf ("The arctangent of %f is %f\n\n", x, y);
}
Output:
The arctangent of 2.000000 is 1.107149
The arctangent of -1.000000 is -0.785398
atan2
Description: Calculates the trigonometric arc tangent function of y/x.
Include: <math.h>
Prototype: double atan2 (double y, double x);
Arguments: vy value for which to return the arc tangent

Return Value:

Remarks:

Example:

x X value for which to return the arc tangent

Returns the arc tangent in radians in the range of -pi to pi (inclusive)
with the quadrant determined by the signs of both parameters.

A domain error occurs if both x and y are zero or both x and y are
+/- infinity.

#include <math.h> /* for atan2 */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x, vy, 2Z;

© 2005 Microchip Technology Inc.

DS51456B4-page 337

16-Bit Language Tools Libraries

atan2 (Continued)

errno = 0;

X = 0.0;

y = 2.0;

z = atan2(y, x);

if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",

Y, X, Z);
errno = 0;
X = -1.0;
y = 0.0;
z = atan2(y, x);

if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",

Y, X, Z);
errno = 0;
X = 0.0;
y = 0.0;
z = atan2(y, x);

if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",
Y, X, Z);

Output:
The arctangent of 2.000000/0.000000 is 1.570796

The arctangent of 0.000000/-1.000000 is 3.141593

Error: domain error
The arctangent of 0.000000/0.000000 is nan

DS51456B4-page 338

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

atan2f

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Calculates the trigonometric arc tangent function of y/x.
<math.h>

float atan2f (float y, float x);

vy value for which to return the arc tangent

x X value for which to return the arc tangent

Returns the arc tangent in radians in the range of -pi to pi with the
qguadrant determined by the signs of both parameters.

A domain error occurs if both x and y are zero or both x and y are
+/- infinity.

#include <math.h> /* for atan2f */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float %, y, z;

errno = 0;
x = 2.0F;
y = 0.0F;

z atan2f (y, x);
if (errno)
perror ("Erroxr") ;
printf ("The arctangent of %f/%f is %f\n\n",

Y, X, Z);
errno = 0;
x = 0.0F;
y = -1.0F;

P atan2f (y, x);
if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",

Y, X, Z);
errno = 0;
x = 0.0F;
y = 0.0F;
z = atan2f (y, x);

if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",
Y, X, Z);

Output:
The arctangent of 2.000000/0.000000 is 1.570796

The arctangent of 0.000000/-1.000000 is 3.141593

Error: domain error
The arctangent of 0.000000/0.000000 is nan

© 2005 Microchip Technology Inc.

DS51456B4-page 339

16-Bit Language Tools Libraries

ceil

Description: Calculates the ceiling of a value.

Include: <math.h>

Prototype: double ceil (double x);

Argument: x afloating-point value for which to return the ceiling.
Return Value: Returns the smallest integer value greater than or equal to x.
Remarks: No domain or range error will occur. See floor.

Example: #include <math.h> /* for ceil */

#include <stdio.h> /* for printf */

int main(void)
double x[8] = {2.0, 1.75, 1.5, 1.25, -2.0,
-1.75, -1.5, -1.25};
double y;
int 1i;

for (i=0; 1<8; i++)
{
y = ceil (xI[i]l);
printf ("The ceiling for %f is %f\n", x[i], v);

} }

Output:

The ceiling for 2.000000 is 2.000000
The ceiling for 1.750000 is 2.000000
The ceiling for 1.500000 is 2.000000
The ceiling for 1.250000 is 2.000000

The ceiling for -2.000000 is -2.000000
The ceiling for -1.750000 is -1.000000
The ceiling for -1.500000 is -1.000000
The ceiling for -1.250000 is -1.000000

DS51456B4-page 340 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

ceilf

Description: Calculates the ceiling of a value.
Include: <math.h>

Prototype: float ceilf (float x);
Argument: x floating-point value.

Return Value:

Returns the smallest integer value greater than or equal to x.

Remarks: No domain or range error will occur. See floorf.
Example: #include <math.h> /* for ceilf */
#include <stdio.h> /* for printf */
int main(void)
{
float x[8] = {2.0F, 1.75F, 1.5F, 1.25F,
-2.0F, -1.75F, -1.5F, -1.25F};
float y;
int 1i;
for (i=0; 1<8; i++)
{
y = cellf (x[il]);
printf ("The ceiling for %f is $f\n", x[i], v);
}
}
Output:
The ceiling for 2.000000 is 2.000000
The ceiling for 1.750000 is 2.000000
The ceiling for 1.500000 is 2.000000
The ceiling for 1.250000 is 2.000000
The ceiling for -2.000000 is -2.000000
The ceiling for -1.750000 is -1.000000
The ceiling for -1.500000 is -1.000000
The ceiling for -1.250000 is -1.000000
COoS
Description: Calculates the trigonometric cosine function of a double precision
floating-point value.
Include: <math.h>
Prototype: double cos (double x);
Argument: x value for which to return the cosine
Return Value: Returns the cosine of x in radians in the ranges of -1 to 1 inclusive.
Remarks: A domain error will occur if x is a NaN or infinity.
Example: #include <math.h> /* for cos */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x,y;

errno = 0;
X = -1.0;
y = cos (x);
if (errno)
perror ("Erroxr") ;
printf ("The cosine of %f is %f\n\n", x, v);

© 2005 Microchip Technology Inc.

DS51456B4-page 341

16-Bit Language Tools Libraries

cos (Continued)

errno = 0;
X = 0.0;
y = cos (x);
if (errno)
perror ("Error") ;
printf ("The cosine of %f is %f\n\n", x, vy);

Output:
The cosine of -1.000000 is 0.540302

The cosine of 0.000000 is 1.000000

cosf

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the trigonometric cosine function of a single precision
floating-point value.

<math.h>

float cosf (float x);

x value for which to return the cosine

Returns the cosine of x in radians in the ranges of -1 to 1 inclusive.
A domain error will occur if x is a NaN or infinity.

#include <math.h> /* for cosf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
x = -1.0F;
y = cosf (x);
if (errno)
perror ("Erroxr") ;
printf ("The cosine of %f is %f\n\n", x, v);

errno = 0;
X = 0.0F;
y = cosf (x);
if (errno)
perror ("Error") ;
printf ("The cosine of %f is %f\n\n", x, Vv);

Output:
The cosine of -1.000000 is 0.540302

The cosine of 0.000000 is 1.000000

DS51456B4-page 342

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

cosh

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the hyperbolic cosine function of a double precision
floating-point value.

<math.h>

double cosh (double x);

x value for which to return the hyperbolic cosine
Returns the hyperbolic cosine of x

A range error will occur if the magnitude of x is too large.

#include <math.h> /* for cosh */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = -1.5;
y = cosh (x);

if (errno)
perror ("Error") ;
printf ("The hyperbolic cosine of %f is %$f\n\n",
X, Y)i

errno = 0;
X = 0.0;
y = cosh (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic cosine of %f is %$f\n\n",

X, Y)i
errno = 0;
x = 720.0;

y = cosh (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic cosine of %f is %$f\n\n",
X, Y)i

Output:
The hyperbolic cosine of -1.500000 is 2.352410
The hyperbolic cosine of 0.000000 is 1.000000

Error: range error
The hyperbolic cosine of 720.000000 is inf

© 2005 Microchip Technology Inc.

DS51456B4-page 343

16-Bit Language Tools Libraries

coshf

Description: Calculates the hyperbolic cosine function of a single precision
floating-point value.

Include: <math.h>

Prototype: float coshf (float x);

Argument: x value for which to return the hyperbolic cosine

Return Value: Returns the hyperbolic cosine of x

Remarks: A range error will occur if the magnitude of x is too large.

Example: #include <math.h> /* for coshf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;
errno = 0;
x = -1.0F;

y = coshf (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic cosine of %f is %$f\n\n",
X, ¥Y)i

errno = 0;
x = 0.0F;
y = coshf (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic cosine of %f is %$f\n\n",
X, ¥Y)i

errno = 0;
X = 720.0F;
y = coshf (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic cosine of %f is %$f\n\n",
X, Y)i

Output:
The hyperbolic cosine of -1.000000 is 1.543081
The hyperbolic cosine of 0.000000 is 1.000000

Error: range error
The hyperbolic cosine of 720.000000 is inf

DS51456B4-page 344

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

exp

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the exponential function of x (e raised to the power x where
x is a double precision floating-point value).

<math.h>
double exp (double x);
x value for which to return the exponential

Returns the exponential of x. On an overflow, exp returns inf and on
an underflow exp returns 0.

A range error occurs if the magnitude of x is too large.

#include <math.h> /* for exp */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = 1.0;
y = exp (x);

if (errno)
perror ("Error") ;
printf ("The exponential of $f is %f\n\n", x, v);

errno = 0;
x = 1E3;
y = exp (x);
if (errno)
perror ("Error") ;
printf ("The exponential of %f is %$f\n\n", x, y);

errno = 0;
x = -1E3;
y = exp (x);

if (errno)
perror ("Error") ;
printf ("The exponential of $f is %f\n\n", x, v);

}

Output:
The exponential of 1.000000 is 2.718282

Error: range error
The exponential of 1000.000000 is inf

Error: range error
The exponential of -1000.000000 is 0.000000

© 2005 Microchip Technology Inc.

DS51456B4-page 345

16-Bit Language Tools Libraries

expf

Description: Calculates the exponential function of x (e raised to the power x where
X is a single precision floating-point value).

Include: <math.h>

Prototype: float expf (float x);

Argument: x floating-point value for which to return the exponential

Return Value:

Remarks:
Example:

Returns the exponential of x. On an overflow, expf returns inf and on
an underflow exp returns 0.

A range error occurs if the magnitude of x is too large.

#include <math.h> /* for expf */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float x, y;

errno = 0;
x = 1.0F;
y = expf (x);
if (errno)
perror ("Error") ;
printf ("The exponential of $f is %f\n\n", x, v);

errno = 0;
X = 1.0E3F;
y = expf (x);
if (errno)
perror ("Error") ;
printf ("The exponential of %f is $f\n\n", x, y);

errno = 0;
x = -1.0E3F;
y = expf (x);
if (errno)
perror ("Erroxr") ;
printf ("The exponential of $f is %f\n\n", x, v);

}

Output:
The exponential of 1.000000 is 2.718282

Error: range error
The exponential of 1000.000000 is inf

Error: range error
The exponential of -1000.000000 is 0.000000

DS51456B4-page 346

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fabs

Description: Calculates the absolute value of a double precision floating-point value.
Include: <math.h>

Prototype: double fabs (double x);

Argument: x floating-point value for which to return the absolute value

Return Value:

Returns the absolute value of x. (A negative number is returned as
positive, a positive number is unchanged.)

Remarks: No domain or range error will occur.
Example: #include <math.h> /* for fabs */
#include <stdio.h> /* for printf */
int main(void)
{
double x, vy;
x = 1.75;
y = fabs (x);
printf ("The absolute value of %f is %f\n", x, vy);
X = -1.5;
y = fabs (x);
printf ("The absolute value of %f is %f\n", x, v);
}
Output:
The absolute value of 1.750000 is 1.750000
The absolute value of -1.500000 is 1.500000
fabsf
Description: Calculates the absolute value of a single precision floating-point value.
Include: <math.h>
Prototype: float fabsf (float x);
Argument: x floating-point value for which to return the absolute value

Return Value:

Remarks:
Example:

Returns the absolute value of x. (A negative number is returned as
positive, a positive number is unchanged.)

No domain or range error will occur.

#include <math.h> /* for fabsf */
#include <stdio.h> /* for printf */

int main(void)

{

float x,vy;

x = 1.75F;
y = fabsf (x);
printf ("The absolute value of %f is %f\n", x, y);

X = -1.5F;
y = fabsf (x);
printf ("The absolute value of %f is %f\n", x, v);

}

Output:
The absolute value of 1.750000 is 1.750000
The absolute value of -1.500000 is 1.500000

© 2005 Microchip Technology Inc.

DS51456B4-page 347

16-Bit Language Tools Libraries

floor

Description: Calculates the floor of a double precision floating-point value.
Include: <math.h>

Prototype: double floor (double x);

Argument: x floating-point value for which to return the floor.

Return Value:

Returns the largest integer value less than or equal to x.

Remarks: No domain or range error will occur. See ceil.
Example: #include <math.h> /* for floor */
#include <stdio.h> /* for printf */
int main(void)
{
double x[8] = {2.0, 1.75, 1.5, 1.25, -2.0,
-1.75, -1.5, -1.25};
double vy;
int 1i;
for (i=0; 1<8; i++)
{
y = floor (x[il);
printf ("The ceiling for %f is %f\n", x[i], v);
}
}
Output:
The floor for 2.000000 is 2.000000
The floor for 1.750000 is 1.000000
The floor for 1.500000 is 1.000000
The floor for 1.250000 is 1.000000
The floor for -2.000000 is -2.000000
The floor for -1.750000 is -2.000000
The floor for -1.500000 is -2.000000
The floor for -1.250000 is -2.000000
floorf
Description: Calculates the floor of a single precision floating-point value.
Include: <math.h>
Prototype: float floorf (float x);
Argument: x floating-point value.

Return Value:

Remarks:

Returns the largest integer value less than or equal to x.
No domain or range error will occur. See ceilf.

DS51456B4-page 348

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

floorf (Continued)

Example:

#include <math.h> /*
#include <stdio.h> /*

int main(void)

{
float x[8] = {2.0F,
-2.0F,
float vy;
int 1i;

for (i=0; 1<8; i++)

{

y = floorf (x[i]);

for floorf */
for printf */

1.75F,
-1.75F, -1.5F,

printf ("The floor for
}

}
Output:
The floor for 2.000000 is
The floor for 1.750000 is
The floor for 1.500000 is
The floor for 1.250000 is

The floor for -2.000000 is
The floor for -1.750000 is
The floor for -1.500000 is
The floor for -1.250000 is

st

I I N

1.5F, 1.2

S5F,
-1.25F};

is %f\n", xI[il, v);

.000000
.000000
.000000
.000000
-2.000000
-2.000000
-2.000000
-2.000000

fmod

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Calculates the remainder of x/y as a double precision value.

<math.h>
double fmod (double x,

double y);

x adouble precision floating-point value.
y adouble precision floating-point value.
Returns the remainder of x divided by y.

If y =0, a domain error occurs. If y is non-zero, the result will have the
same sign as x and the magnitude of the result will be less than the

magnitude of y.

#include <math.h> /* for fmod
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno

int main(void)

{

double x,vy,z;

errno = 0;
X = 7.0;
y = 3.0;
z = fmod (x, Vy);
if (errno)
perror ("Erroxr") ;

*/
*/

printf ("For fmod (%f, %f) the remainder is %f\n\n",

X, V. Z);

© 2005 Microchip Technology Inc.

DS51456B4-page 349

16-Bit Language Tools Libraries

fmod (Continued)

errno = 0;

X = 7.0;

y = 7.0;

z = fmod(x, vy);

if (errno)

perror ("Error") ;

printf ("For fmod(%f, %f) the remainder is %f\n\n",

X, Y, 2);
errno = 0;
X = -5.0;
y = 3.0;
z = fmod(x, vy);
if (errno)

perror ("Error") ;

printf ("For fmod(%f, %f) the remainder is %f\n\n",

X, Y, 2);
errno = 0;
X = 5.0;
y = -3.0;
z = fmod(x, vy);
if (errno)

perror ("Error") ;

printf ("For fmod(%f, %f) the remainder is %f\n\n",

X, Y. Z);

errno = 0;

X = -5.0;

y = -5.0;

z = fmod(x, vy);
if (errno)

perror ("Error") ;

printf ("For fmod(%f, %f) the remainder is %f\n\n",

X, Y, 2);
errno = 0;
X = 7.0;
y = 0.0;
z = fmod(x, vy);
if (errno)

perror ("Error") ;

printf ("For fmod(%f, %f) the remainder is %f\n\n",

X, ¥, 2Z)i
Output:
For fmod(7.000000, 3.000000) the remainder is 1.000000

For

For

For

For

fmod (7.000000, 7.000000) the remainder is 0.000000

fmod (-5.000000, 3.000000) the remainder is -2.000000

fmod (5.000000, -3.000000) the remainder is 2.000000

fmod (-5.000000, -5.000000) the remainder is -0.000000

Error: domain error
For fmod(7.000000, 0.000000) the remainder is nan

DS51456B4-page 350

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

fmodf

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Calculates the remainder of x/y as a single precision value.
<math.h>

float fmodf (float x, float y);

x asingle precision floating-point value

y asingle precision floating-point value

Returns the remainder of x divided by y.

If y =0, a domain error occurs. If yis non-zero, the result will have the
same sign as x and the magnitude of the result will be less than the
magnitude of y.

#include <math.h> /* for fmodf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x,v,z;

errno = 0;
x = 7.0F;
y = 3.0F;

z = fmodf (x, y);
if (errno)
perror ("Erroxr") ;
printf ("For fmodf (%f, %f) the remainder isg"
" $f\n\n", x, vy, 2z);

errno = 0;
x = -5.0F;
y = 3.0F;

z = fmodf (x, y);
if (errno)
perror ("Erroxr") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, vy, 2z);

errno = 0;
x = 5.0F;
y = -3.0F;

z = fmodf (x, vy);
if (errno)
perror ("Error") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, vy, 2z);

errno = 0;
x = 5.0F;
y = -5.0F;

z = fmodf (x, y);
if (errno)
perror ("Error") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, vy, 2z);

© 2005 Microchip Technology Inc.

DS51456B4-page 351

16-Bit Language Tools Libraries

fmodf (Continued)

errno = 0;
x = 7.0F;
y = 0.0F;

z = fmodf (x, vy);
if (errno)
perror ("Error") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, y, 2z);

errno = 0;
x = 7.0F;
y = 7.0F;

z = fmodf (x, vy);
if (errno)
perror ("Error") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, vy, 2);
!

Output:
For fmodf (7.000000, 3.000000) the remainder is 1.000000

For fmodf (-5.000000, 3.000000) the remainder is -2.000000
For fmodf (5.000000, -3.000000) the remainder is 2.000000
For fmodf (5.000000, -5.000000) the remainder is 0.000000

Error: domain error
For fmodf (7.000000, 0.000000) the remainder is nan

For fmodf (7.000000, 7.000000) the remainder is 0.000000

frexp
Description: Gets the fraction and the exponent of a double precision floating-point
number.
Include: <math.h>
Prototype: double frexp (double x, int *exp) ;
Arguments: X floating-point value for which to return the fraction and
exponent

Return Value:
Remarks:

Example:

*exp pointer to a stored integer exponent

Returns the fraction, exp points to the exponent. If x is 0, the function
returns 0O for both the fraction and exponent.

The absolute value of the fraction is in the range of 1/2 (inclusive) to 1
(exclusive). No domain or range error will occur.

#include <math.h> /* for frexp */
#include <stdio.h> /* for printf */

int main(void)
{
double x,y;
int n;

DS51456B4-page 352

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

frexp (Continued)

x = 50.0;

y = frexp (x, &n);

printf ("For frexp of %f\n the fraction is %f\n ",
X, V)i

printf (" and the exponent is %d\n\n", n);

X = -2.5;

y = frexp (x, &n);
printf ("For frexp of %f\n the fraction is %f\n ",

X, V)i

printf (" and the exponent is %d\n\n", n);

X = 0.0;

y = frexp (x, &n);

printf ("For frexp of %f\n the fraction is %f\n ",
X, V)i

printf (" and the exponent is %d\n\n", n);

Output:

For frexp of 50.000000
the fraction is 0.781250
and the exponent is 6

For frexp of -2.500000
the fraction is -0.625000
and the exponent is 2

For frexp of 0.000000
the fraction is 0.000000
and the exponent is 0

frexpf

Description:

Include:
Prototype:
Arguments:

Return Value:
Remarks:

Example:

Gets the fraction and the exponent of a single precision floating-point

number.

<math.h>

float frexpf (float x, int *exp);

x floating-point value for which to return the fraction and
exponent

*

exp pointer to a stored integer exponent

Returns the fraction, exp points to the exponent. If x is 0, the function
returns O for both the fraction and exponent.

The absolute value of the fraction is in the range of 1/2 (inclusive) to 1
(exclusive). No domain or range error will occur.

#include <math.h> /* for frexpf */
#include <stdio.h> /* for printf */

int main(void)
float x,vy;
int n;

© 2005 Microchip Technology Inc.

DS51456B4-page 353

16-Bit Language Tools Libraries

frexpf (Continued)

X 0.15F;

vy frexpf (x, &n);

printf ("For frexpf of %f\n
X, Y);

printf (" and the exponent

x = -2.5F;

y = frexpf (x, &n);

printf ("For frexpf of %f\n
X, ¥)i

printf (" and the exponent

x = 0.0F;

y = frexpf (x, &n);

printf ("For frexpf of %f\n
X, ¥Y)i

printf (" and the exponent

Output:
For frexpf of 0.150000

the fraction is 0.600000
and the exponent is -2

For frexpf of -2.500000

the fraction is -0.625000
and the exponent is 2

For frexpf of 0.000000

the fraction is 0.000000
and the exponent is 0

the fraction is %f\n ",

is %d\n\n", n);

the fraction is %f\n ",

is %d\n\n", n);

the fraction is %f\n ",

is %d\n\n", n);

Idexp

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:
Example:

Calculates the result of a double precision floating-point number
multiplied by an exponent of 2.

<math.h>

double ldexp (double x,

X

floating-point value

ex integer exponent

int ex);

Returns x * 2"ex. On an overflow, 1dexp returns inf and on an
underflow, 1dexp returns 0.

A range error will occur on overflow or underflow.

#include <math.h>

/* for ldexp */

#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x,vy;
int n;

DS51456B4-page 354

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

Idexp (Continued)

errno = 0;
x = -0.625;
n = 2;

y = ldexp (x, n);
if (errno)
perror ("Error") ;

printf ("For a number = %f and an exponent = %d\n",
X, n);

printf (" 1ldexp(%f, %d4) = %f\n\n",
X, n, v);

errno = 0;

X = 2.5;

n = 3;

y = ldexp (x, n);

if (errno)
perror ("Erroxr") ;

printf ("For a number = %f and an exponent = %d\n",
X, n);

printf (" 1ldexp(%$f, %d) = %f\n\n",
X, n, v);

errno = 0;

x = 15.0;

n = 10000;

y = ldexp (x, n);

if (errno)
perror ("Error") ;

printf ("For a number = $f and an exponent = %d\n",
X, n);
printf (" 1ldexp(%f, %d) = %f\n\n",
X, n, y);
}
Output:
For a number = -0.625000 and an exponent = 2
ldexp(-0.625000, 2) = -2.500000
For a number = 2.500000 and an exponent = 3
ldexp(2.500000, 3) = 20.000000

Error: range error
For a number = 15.000000 and an exponent = 10000
ldexp (15.000000, 10000) = inf

Idexpf

Description:

Include:
Prototype:
Arguments:

Return Value:

Calculates the result of a single precision floating-point number
multiplied by an exponent of 2.

<math.h>

float ldexpf (float x, int ex);
X floating-point value

ex integer exponent

Returns x * 2"ex. On an overflow, 1dexp returns inf and on an
underflow, 1dexp returns O.

© 2005 Microchip Technology Inc.

DS51456B4-page 355

16-Bit Language Tools Libraries

Idexpf (Continued)

Remarks: A range error will occur on overflow or underflow.

Example: #include <math.h> /* for ldexpf */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float x,vy;
int n;

errno = 0;

x = -0.625F;
n = 2;

y = ldexpf (x, n);
if (errno)
perror ("Error") ;

printf ("For a number = $f and an exponent = %d\n",
X, n);

printf (" ldexpf (%f, %d) = $f\n\n",
X, n, v);

errno = 0;

x = 2.5F;

n = 3;

y = ldexpf (x, n);

if (errno)
perror ("Error") ;

printf ("For a number = %f and an exponent = %d\n",
X, n);

printf (" 1ldexpf (%f, %d) = $f\n\n",
X, n, v);

errno = 0;

x = 15.0F;

n = 10000;

y = ldexpf (x, n);
if (errno)
perror ("Exrror") ;

printf ("For a number = %f and an exponent = %d\n",
X, n);
printf (" 1ldexpf (%f, %d) = %f\n\n",
X, n, v);
}
Output:
For a number = -0.625000 and an exponent = 2
ldexpf (-0.625000, 2) = -2.500000
For a number = 2.500000 and an exponent = 3
ldexpf (2.500000, 3) = 20.000000

Error: range error
For a number = 15.000000 and an exponent = 10000
ldexpf (15.000000, 10000) = inf

DS51456B4-page 356 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

log

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the natural logarithm of a double precision floating-point
value.

<math.h>
double log(double x);
x any positive value for which to return the log

Returns the natural logarithm of x. -inf is returned if x is 0 and NaN is
returned if x is a negative number.

A domain error occurs if x < 0.

#include <math.h> /* for log */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = 2.0;
y = log (x);

if (errno)
perror ("Error") ;
printf ("The natural logarithm of %f is %f\n\n",

X, ¥Y)i
errno = 0;
X = 0.0;
y = log (x);

if (errno)
perror ("Error") ;
printf ("The natural logarithm of %f is %f\n\n",

X, Y)i
errno = 0;
X = -2.0;
y = log (x);

if (errno)
perror ("Error") ;
printf ("The natural logarithm of %f is %f\n\n",
X, Y)i

Output:
The natural logarithm of 2.000000 is 0.693147
The natural logarithm of 0.000000 is -inf

Error: domain error
The natural logarithm of -2.000000 is nan

© 2005 Microchip Technology Inc.

DS51456B4-page 357

16-Bit Language Tools Libraries

log10

Description: Calculates the base-10 logarithm of a double precision floating-point
value.

Include: <math.h>

Prototype: double logl0 (double x);

Argument: x any double precision floating-point positive number

Return Value:

Remarks:
Example:

Returns the base-10 logarithm of x. -inf is returned if x is 0 and NaN
is returned if x is a negative number.

A domain error occurs if x < 0.

#include <math.h> /* for loglO */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = 2.0;
y = logl0o (x);
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, Y)i

errno = 0;
X = 0.0;
y = logl0 (x);
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, Y)i

errno = 0;

X = -2.0;

y = logl0 (x);

if (errno)

perror ("Error") ;

printf ("The base-10 logarithm of %f is %f\n\n",

X, ¥Y)i
!

Output:
The base-10 logarithm of 2.000000 is 0.301030

The base-10 logarithm of 0.000000 is -inf

Error: domain error
The base-10 logarithm of -2.000000 is nan

DS51456B4-page 358

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

log10f

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the base-10 logarithm of a single precision floating-point
value.

<math.h>
float loglof (float x);
x any single precision floating-point positive number

Returns the base-10 logarithm of x. -inf is returned if x is 0 and NaN
is returned if x is a negative number.

A domain error occurs if x < 0.

#include <math.h> /* for loglOf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{
float x, y;
errno = 0;
X = 2.0F;
y = loglOf (x) ;
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, Y)i
errno = 0;
X = 0.0F;
y = logloOf (x) ;
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, Y)i
errno = 0;
X = -2.0F;
y = loglof (x) ;
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, ¥Y)i
}
Output:

The base-10 logarithm of 2.000000 is 0.301030

Error: domain error
The base-10 logarithm of 0.000000 is -inf

Error: domain error
The base-10 logarithm of -2.000000 is nan

© 2005 Microchip Technology Inc.

DS51456B4-page 359

16-Bit Language Tools Libraries

logf

Description: Calculates the natural logarithm of a single precision floating-point
value.

Include: <math.h>

Prototype: float logf (float x);

Argument: x any positive value for which to return the log

Return Value:

Remarks:
Example:

Returns the natural logarithm of x.
returned if x is a negative number.

A domain error occurs if x < 0.

#include <math.h> /* for
#include <stdio.h> /* for
#include <errno.hs> /* for

int main(void)

{

float x, y;

errno = 0;
X = 2.0F;
y = logf (x);
if (errno)
perror ("Error") ;

-inf is returned if xis 0 and NaN is

logf */
printf, perror */
errno */

printf ("The natural logarithm of %f is %f\n\n",

X, Y)i
errno = 0;
X = 0.0F;
y = logf (x);

if (errno)
perror ("Error") ;

printf ("The natural logarithm of %f is %f\n\n",

X, Y)i
errno = 0;
x = -2.0F;

y = logf (x);
if (errno)
perror ("Error") ;

printf ("The natural logarithm of %f is %f\n\n",

X, ¥)i
}
Output:

The natural logarithm of 2.000000 is 0.693147

The natural logarithm of

Error: domain error
The natural logarithm of

0.000000 is -inf

-2.000000 is nan

DS51456B4-page 360

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

modf

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Splits a double precision floating-point value into fractional and integer
parts.

<math.h>

double modf (double x, double *pint);

X double precision floating-point value

pint pointer to a stored the integer part

Returns the signed fractional part and pint points to the integer part.

The absolute value of the fractional part is in the range of O (inclusive)
to 1 (exclusive). No domain or range error will occur.

#include <math.h> /* for modf */
#include <stdio.h> /* for printf */

int main(void)

{
double x,y,n;
X = 0.707;
y = modf (x, &n);
printf ("For %f the fraction is %f\n ", x, Vy);
printf (" and the integer is %0.f\n\n", n);
x = -15.2121;
y = modf (x, &n);
printf ("For %f the fraction is %f\n ", x, Vv);
printf (" and the integer is %0.f\n\n", n);
}
Output:

For 0.707000 the fraction is 0.707000
and the integer is 0

For -15.212100 the fraction is -0.212100
and the integer is -15

© 2005 Microchip Technology Inc.

DS51456B4-page 361

16-Bit Language Tools Libraries

modff

Description: Splits a single precision floating-point value into fractional and integer
parts.

Include: <math.h>

Prototype: float modff (float x, float *pint);

Arguments: X single precision floating-point value

Return Value:

Remarks:

Example:

pint pointer to stored integer part
Returns the signed fractional part and pint points to the integer part.

The absolute value of the fractional part is in the range of O (inclusive)
to 1 (exclusive). No domain or range error will occur.

#include <math.h> /* for modff */
#include <stdio.h> /* for printf */

int main(void)

{

float x,vy,n;

X = 0.707F;
y = modff (x, é&n);
printf ("For %f the fraction is %f\n ", x, Vy);
printf (" and the integer is %0.f\n\n", n);
X = -15.2121F;
y = modff (x, &n);
printf ("For %f the fraction is %f\n ", x, Vv);
printf (" and the integer is %0.f\n\n", n);
}
Output:

For 0.707000 the fraction is 0.707000
and the integer is 0

For -15.212100 the fraction is -0.212100
and the integer is -15

DS51456B4-page 362

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

pow

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Calculates x raised to the power y.
<math.h>

double pow (double x, double y);
x the base

y the exponent

Returns x raised to the power y (xy).

If yis 0, pow returns 1. If xis 0.0 and y is less than 0 pow returns inf
and a domain error occurs. If the result overflows or underflows, a
range error occurs.

#include <math.h> /* for pow */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{
double x,vy,z;
errno = 0;
X = -2.0;
y = 3.0;
z = pow (X, V);
if (errno)
perror ("Erroxr") ;
printf ("$f raised to %f is $f\n\n ", x, vy, z);
errno = 0;
X = 3.0;
y = -0.5;
z = pow (x, V);
if (errno)
perror ("Erroxr") ;
printf ("$f raised to %f is %$f\n\n ", x, vy, z);
errno = 0;
X = 4.0;
y = 0.0;
z = pow (x, V);
if (errno)
perror ("Error") ;
printf ("$f raised to %f is %f\n\n ", x, vy, 2z);
errno = 0;
X = 0.0;
y = -3.0;
z = pow (x, V);
if (errno)
perror ("Erroxr") ;
printf ("$f raised to %f is %f\n\n ", x, vy, 2z);
}
Output:

-2.000000 raised to 3.000000 is -8.000000

3.000000 raised to -0.500000 is 0.577350

4.000000 raised to 0.000000 is 1.000000

Error: domain error
0.000000 raised to -3.000000 is inf

© 2005 Microchip Technology Inc.

DS51456B4-page 363

16-Bit Language Tools Libraries

powf

Description: Calculates x raised to the power y.
Include: <math.h>

Prototype: float powf (float x, float y);
Arguments: x base

Return Value:

Remarks:

Example:

y exponent
Returns x raised to the power y (xy).

If yis 0, powf returns 1. If xis 0.0 and y is less than 0 powf returns
inf and a domain error occurs. If the result overflows or underflows, a

range error occurs.
#include <math.h> /* for powf

*/

#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float x,v,2z;

errno = 0;

x = -2.0F;

y = 3.0F;

z = powf (x, Vy);

if (errno)
perror ("Error") ;
printf ("$f raised to %f is %

errno = 0;
x = 3.0F;
y = -0.5F;

z = powf (x, Vy);
if (errno)
perror ("Error") ;

f\n\n ", x, vy, 2);

printf ("$f raised to %f is %f\n\n ", x, vy, 2z);

errno = 0;
x = 0.0F;
y = -3.0F;
z = powf (x, Vy);
if (errno)
perror ("Error") ;

printf ("$f raised to %f is %f\n\n ", x, vy, 2z);

}
Output:

-2.000000 raised to 3.000000 is -8.000000

3.000000 raised to -0.500000 is 0.577350

Error: domain error

0.000000 raised to -3.000000 is inf

DS51456B4-page 364

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

sin

Description: Calculates the trigonometric sine function of a double precision
floating-point value.

Include: <math.h>

Prototype: double sin (double x);

Argument: x value for which to return the sine

Return Value: Returns the sine of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if t x is a NaN or infinity.

Example: #include <math.h> /* for sin */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = -1.0;
y sin (x);
if (errno)
perror ("Error") ;
printf ("The sine of %f is %f\n\n", x, vy);

errno = 0;
x = 0.0;
y sin (x);
if (errno)
perror ("Error") ;
printf ("The sine of %f is %f\n\n", x, vy);

Output:
The sine of -1.000000 is -0.841471

The sine of 0.000000 is 0.000000

© 2005 Microchip Technology Inc. DS51456B4-page 365

16-Bit Language Tools Libraries

sinf

Description: Calculates the trigonometric sine function of a single precision
floating-point value.

Include: <math.h>

Prototype: float sinf (float x);

Argument: x value for which to return the sine

Return Value: Returns the sin of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if x is a NaN or infinity.

Example: #include <math.h> /* for sinf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
X = -1.0F;
y sinf (x);
if (errno)
perror ("Error") ;
printf ("The sine of %f is %f\n\n", x, vy);

errno = 0;
x = 0.0F;
y = sinf (x);

if (errno)
perror ("Error") ;
printf ("The sine of %f is %f\n\n", x, vy);

Output:
The sine of -1.000000 is -0.841471

The sine of 0.000000 is 0.000000

DS51456B4-page 366 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

sinh

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the hyperbolic sine function of a double precision
floating-point value.

<math.h>

double sinh (double x);

x value for which to return the hyperbolic sine

Returns the hyperbolic sine of x

A range error will occur if the magnitude of x is too large.

#include <math.h> /* for sinh */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = -1.5;
y sinh (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic sine of %f is %$f\n\n",
X, ¥Y)i

errno = 0;
X = 0.0;
y = sinh (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic sine of %f is %$f\n\n",
X, ¥Y)i

errno = 0;
x = 720.0;
y = sinh (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic sine of %f is %$f\n\n",
X, Y)i

Output:
The hyperbolic sine of -1.500000 is -2.129279
The hyperbolic sine of 0.000000 is 0.000000

Error: range error
The hyperbolic sine of 720.000000 is inf

© 2005 Microchip Technology Inc.

DS51456B4-page 367

16-Bit Language Tools Libraries

sinhf

Description: Calculates the hyperbolic sine function of a single precision
floating-point value.

Include: <math.h>

Prototype: float sinhf (float x);

Argument: x value for which to return the hyperbolic sine

Return Value: Returns the hyperbolic sine of x

Remarks: A range error will occur if the magnitude of x is too large.

Example: #include <math.h> /* for sinhf */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float x, y;

errno = 0;
x = -1.0F;
y = sinhf (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic sine of %f is %$f\n\n",
X, Y)i

errno = 0;
x = 0.0F;
y = sinhf (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic sine of %f is %f\n\n",
X, ¥Y)i

Output:
The hyperbolic sine of -1.000000 is -1.175201

The hyperbolic sine of 0.000000 is 0.000000

DS51456B4-page 368 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

sqrt

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the square root of a double precision floating-point value.
<math.h>

double sqgrt (double x);

x anon-negative floating-point value

Returns the non-negative square root of x..

If x is negative, a domain error occurs.

#include <math.h>

/* for sqrt */

#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = 0.0;
y = sgrt (x);
if (errno)
perror ("Error") ;
printf ("The square

errno = 0;
x = 9.5;
y = sqgrt (x);
if (errno)
perror ("Erroxr") ;
printf ("The square

errno = 0;
x = -25.0;
y = sgrt (x);
if (errno)
perror ("Error") ;
printf ("The square

Output:
The square root of 0.

The square root of 9.

Error: domain error
The square root of -25.000000 is nan

root of %f is %$f\n\n", x, vy);

root of %f is %$f\n\n", x, vy);

root of %f is %$f\n\n", x, vy);

000000 is 0.000000

500000 is 3.082207

© 2005 Microchip Technology Inc.

DS51456B4-page 369

16-Bit Language Tools Libraries

sqrtf

Description: Calculates the square root of a single precision floating-point value.

Include: <math.h>

Prototype: float sqgrtf (float x);

Argument: x non-negative floating-point value

Return Value: Returns the non-negative square root of x.

Remarks: If x is negative, a domain error occurs.

Example: #include <math.h> /* for sqrtf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x;

errno = 0;
x = sqgrtf (0.0F);
if (errno)
perror ("Erroxr") ;
printf ("The square root of 0.0F is %f\n\n", x);

errno = 0;
x = sqgrtf (9.5F);
if (errno)
perror ("Error") ;
printf ("The square root of 9.5F is %f\n\n", x);

errno = 0;
x = sqgrtf (-25.0F);
if (errno)
perror ("Erroxr") ;
printf ("The square root of -25F is $f\n", x);

Output:
The square root of 0.0F is 0.000000

The square root of 9.5F is 3.082207

Error: domain error
The square root of -25F is nan

DS51456B4-page 370 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

tan

Description: Calculates the trigonometric tangent function of a double precision
floating-point value.

Include: <math.h>

Prototype: double tan (double x);

Argument: x value for which to return the tangent

Return Value:

Returns the tangent of x in radians.

Remarks: A domain error will occur if x is a NaN or infinity.
Example: #include <math.h> /* for tan */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */
int main(void)
{
double x, vy;
errno = 0;
X = -1.0;
y = tan (x);
if (errno)
perror ("Error") ;
printf ("The tangent of %f is %f\n\n", x, v);
errno = 0;
x = 0.0;
y = tan (x);
if (errno)
perror ("Error") ;
printf ("The tangent of %f is %f\n\n", x, v);
}
Output:
The tangent of -1.000000 is -1.557408
The tangent of 0.000000 is 0.000000
tanf
Description: Calculates the trigonometric tangent function of a single precision
floating-point value.
Include: <math.h>
Prototype: float tanf (float x);
Argument: x value for which to return the tangent
Return Value: Returns the tangent of x
Remarks: A domain error will occur if x is a NaN or infinity.
Example: #include <math.h> /* for tanf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

© 2005 Microchip Technology Inc.

DS51456B4-page 371

16-Bit Language Tools Libraries

tanf (Continued)

errno = 0;
X = -1.0F;
y = tanf (x);
if (errno)

perror ("Error") ;

printf ("The tangent of %f is %f\n\n", x, v);

errno = 0;

x = 0.0F;

y = tanf (x);
if (errno)

perror ("Erroxr") ;

printf ("The tangent of %$f is %f\n", x, y);

Output:
The tangent of -1.000000 is -1.557408

The tangent of 0.000000 is 0.000000

tanh

Description: Calculates the hyperbolic tangent function of a double precision
floating-point value.

Include: <math.h>

Prototype: double tanh (double x);

Argument: x value for which to return the hyperbolic tangent

Return Value:
Remarks:
Example:

#include <math.h>

No domain or range error will occur.
/* for tanh

Returns the hyperbolic tangent of x in the ranges of -1 to 1 inclusive.

*/

#include <stdio.h> /* for printf */

int main(void)

{

}

double x, vy;

x = -1.0;
y = tanh (x);

printf ("The hyperbolic tangent of %$f is %f\n\n",

X, ¥Y)i

X = 2.0;
y = tanh (x);

printf ("The hyperbolic tangent of %f is %f\n\n",

X, ¥Y)i

Output:
The hyperbolic tangent of -1.000000 is -0.761594

The hyperbolic tangent of 2.000000 is 0.964028

DS51456B4-page 372

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

tanhf

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the hyperbolic tangent function of a single precision
floating-point value.

<math.h>

float tanhf (float x);

x value for which to return the hyperbolic tangent

Returns the hyperbolic tangent of x in the ranges of -1 to 1 inclusive.
No domain or range error will occur.

#include <math.h> /* for tanhf */
#include <stdio.h> /* for printf */

int main(void)

{ float x, y;
x = -1.0F;
y = tanhf (x);
printf ("The hyperbolic tangent of %$f is %f\n\n",
X, ¥Y)i
x = 0.0F;
y = tanhf (x);
printf ("The hyperbolic tangent of %$f is %f\n\n",
X, ¥Y)i
}
Output:

The hyperbolic tangent of -1.000000 is -0.761594

The hyperbolic tangent of 0.000000 is 0.000000

© 2005 Microchip Technology Inc.

DS51456B4-page 373

16-Bit Language Tools Libraries

4.18 PIC30-LIBS

The following functions are standard C library helper functions:

e exit terminate program execution

* brk set the end of the process's data space

* close close a file

e lseek move a file pointer to a specified location

e open open a file

* read read data from a file

* sbrk extend the process's data space by a given increment
* write write data to a file

These functions are called by other functions in the standard C library and must be
modified for the target application. The corresponding object modules are distributed in
the 1ibpic30-omf.a archive and the source code (for MPLAB C30) is available in
the src\pic3o0 folder.

Additionally, several standard C library functions must also be modified for the target
application. They are:

e getenv get a value for an environment variable
* remove remove a file

e rename rename a file or directory

* system execute a command

* time get the system time

Although these functions are part of the standard C library, the object modules are
distributed in the 1ibpic30-omf. a archive and the source code (for MPLAB C30) is
available in the src\pic30 folder. These modules are not distributed as part of
libc-omf.a.

4.18.1 Rebuilding the libpic30-omf.a library

By default, the helper functions listed in this chapter were written to work with the
sim30 simulator. The header file, simio.h, defines the interface between the library
and the simulator. It is provided so you can rebuild the libraries and continue to use the
simulator. However, your application should not use this interface since the simulator
will not be available to an embedded application.

The helper functions must be modified and rebuilt for your target application. The
libpic30-omf.a library can be rebuild with the batch file named makelib.bat,
which has been provided with the sources in src\pic30. Execute the batch file from
a command window. Be sure you are in the src\pic30 directory. Then copy the newly
compiled file (1ibpic30-omf.a) into the lib directory.

DS51456B4-page 374

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

4.18.2 Function Descriptions

This section describes the functions that must be customized for correct operation of
the Standard C Library in your target environment. The default behavior section
describes what the function does as it is distributed. The description and remarks
describe what it typically should do.

_exit

Description:
Include:
Prototype:
Argument:
Remarks:

Default Behavior:

File:

Terminate program execution.
None

void _exit (int status);
status exit status

This is a helper function called by the exit () Standard C Library
function.

As distributed, this function flushes stdout and terminates. The
parameter status is the same as that passed to the exit () standard C
library function.

_exit.c

brk

Description:
Include:
Prototype:
Argument:
Return Value:
Remarks:

Set the end of the process's data space.

None

int brk(void *endds)

endds pointer to the end of the data segment
Returns ‘0’ if successful, ‘-1’ if not.

brk () is used to dynamically change the amount of space allocated for
the calling process's data segment. The change is made by resetting
the process's break value and allocating the appropriate amount of
space. The break value is the address of the first location beyond the
end of the data segment. The amount of allocated space increases as
the break value increases.

Newly allocated space is uninitialized.

This helper function is used by the Standard C Library function
malloc ().

© 2005 Microchip Technology Inc.

DS51456B4-page 375

16-Bit Language Tools Libraries

brk (Continued)

Default Behavior: If the argument endds is zero, the function sets the global variable
__curbrk to the address of the start of the heap, and returns zero.
If the argument endds is non-zero, and has a value less than the
address of the end of the heap, the function sets the global variable
__curbrk to the value of endds and returns zero.
Otherwise, the global variable curbrk is unchanged, and the
function returns -1.
The argument endds must be within the heap range (see data space

memory map below).

PSV

Stack

Heap

variables

SFR

Notice that, since the stack is located immediately above the heap,
using brk () or sbrk () has little effect on the size of the dynamic
memory pool. The brk () and sbrk () functions are primarily intended
for use in run-time environments where the stack grows downward and
the heap grows upward.

The linker allocates a block of memory for the heap if the
-W1,--heap=n option is specified, where n is the desired heap size in
characters. The starting and ending addresses of the heap are reported
in variables heap and _eheap, respectively.

For MPLAB C30, using the linker's heap size option is the standard way
of controlling heap size, rather than relying on brk () and sbrk ().

File: brk.c

close

Description: Close afile.

Include: None

Prototype: int close (int handle) ;

Argument: handle handle referring to an opened file

Return Value: Returns ‘0’ if the file is successfully closed. A return value of ‘-1’
indicates an error.

Remarks: This helper function is called by the fclose () Standard C Library
function.

Default Behavior: As distributed, this function passes the file handle to the simulator,
which issues a close in the host file system.

File: close.c

DS51456B4-page 376 © 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

getenv

Description: Get a value for an environment variable
Include: <stdlib.h>

Prototype: char *getenv(const char *s);
Argument: s name of environment variable

Return Value:

Default Behavior:

Returns a pointer to the value of the environment variable if successful;
otherwise, returns a null pointer.

As distributed, this function returns a null pointer. There is no support
for environment variables.

File: getenv.c
Iseek
Description: Move a file pointer to a specified location.
Include: None
Prototype: long lseek(int handle, long offset, int origin);
Argument: handle refers to an opened file
offset the number of characters from the origin
origin the position from which to start the seek. origin may be

Return Value:

Remarks:

Default Behavior:

File:

one of the following values (as defined in stdio.h):
SEEK_SET — Beginning of file.

SEEK_CUR — Current position of file pointer.
SEEK_END - End-of-file.

Returns the offset, in characters, of the new position from the beginning
of the file. A return value of *-1L’ indicates an error.

This helper function is called by the Standard C Library functions
fgetpos (), ftell (), fseek (), £setpos, and rewind ().

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

lseek.c

© 2005 Microchip Technology Inc.

DS51456B4-page 377

16-Bit Language Tools Libraries

open
Description: Open afile.
Include: None
Prototype: int open(const char *name, int access, int mode) ;
Argument: name name of the file to be opened
access access method to open file
mode type of access permitted

Return Value:

Remarks:

Default Behavior:

File:

If successful, the function returns a file handle, a small positive integer.
This handle is then used on subsequent low-level file I/O operations. A
return value of ‘-1’ indicates an error.

The access flag is a union of one of the following access methods and
zero or more access qualifiers:

0 — Open a file for reading.

1 — Open a file for writing.

2 — Open a file for both reading and writing.

The following access qualifiers must be supported:

0x0008 — Move file pointer to end-of-file before every write operation.
0x0100 — Create and open a new file for writing.

0x0200 — Open the file and truncate it to zero length.

0x4000 — Open the file in text (translated) mode.

0x8000 — Open the file in binary (untranslated) mode.

The mode parameter may be one of the following:

0x0100 — Reading only permitted.

0x0080 — Writing permitted (implies reading permitted).

This helper function is called by the Standard C Library functions
fopen () and freopen ().

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system. If the host system returns a value of ‘-1’, the global variable
errno is set to the value of the symbolic constant EFOPEN defined in
<errno.h>.

open.c

DS51456B4-page 378

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

read

Description: Read data from a file.

Include: None

Prototype: int read(int handle, void * buffer,
unsigned int len) ;

Argument: handle handle referring to an opened file

Return Value:

Remarks:

Default Behavior:

buffer points to the storage location for read data
len the maximum number of characters to read

Returns the number of characters read, which may be less than len if
there are fewer than len characters left in the file or if the file was
opened in text mode, in which case each carriage return-linefeed
(CR-LF) pair is replaced with a single linefeed character. Only the
single linefeed character is counted in the return value. The
replacement does not affect the file pointer. If the function tries to read
at end-of-file, it returns ‘0’. If the handle is invalid, or the file is not open
for reading, or the file is locked, the function returns ‘-1'.

This helper function is called by the Standard C Library functions
fgetc (), fgets (), fread (), and gets ().

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

File: read.c

remove

Description: Remove a file.

Include: <stdio.h>

Prototype: int remove (const char *filename) ;
Argument: filename file to be removed

Return Value:

Default Behavior:

Returns ‘0’ if successful, ‘-1’ if unsuccessful.

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

File: remove.c
rename
Description: Rename a file or directory.
Include: <stdio.h>
Prototype: int rename (const char *oldname, const char
*newname) ;
Argument: oldname pointer to the old name
newname pointer to the new name

Return Value:

Default Behavior:

File:

Returns ‘0’ if it is successful. On an error, the function returns a
non-zero value.

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

rename.c

© 2005 Microchip Technology Inc.

DS51456B4-page 379

16-Bit Language Tools Libraries

sbrk

Description: Extend the process's data space by a given increment.
Include: None

Prototype: void * sbrk(int incr);

Argument: incr number of characters to increment/decrement

Return Value:
Remarks:

Default Behavior:

Return the start of the new space allocated, or ‘-1’ for errors.

sbrk () adds incr characters to the break value and changes the
allocated space accordingly. incr can be negative, in which case the
amount of allocated space is decreased.

sbrk () is used to dynamically change the amount of space allocated
for the calling process's data segment. The change is made by
resetting the process's break value and allocating the appropriate
amount of space. The break value is the address of the first location
beyond the end of the data segment. The amount of allocated space
increases as the break value increases.

This is a helper function called by the Standard C Library function
malloc().

If the global variable _ curbrk is zero, the function calls brk () to
initialize the break value. If brk () returns -1, so does this function.

If the incris zero, the current value of the global variable __ curbrk
is returned.

If the incris non-zero, the function checks that the address
(__curbrk + incr) is less than the end address of the heap. If it is
less, the global variable ~ curbrk is updated to that value, and the
function returns the unsigned value of __ curbrk.

Otherwise, the function returns -1.

See the description of brk ().

File: sbrk.c

system

Description: Execute a command.

Include: <stdlib.h>

Prototype: int system(const char *s);
Argument: s command to be executed.

Default Behavior:

File:

As distributed, this function acts as a stub or placeholder for your
function. If sis not NULL, an error message is written to stdout and the
program will reset; otherwise, a value of -1 is returned.

system.c

DS51456B4-page 380

© 2005 Microchip Technology Inc.

Standard C Libraries with Math Functions

time

Description: Get the system time.

Include: <time.h>

Prototype: time t time(time t *timer) ;
Argument: timer points to a storage location for time

Return Value:

Default Behavior:

Returns the elapse time in seconds. There is no error return.

As distributed, if timer2 is not enabled, it is enabled in 32-bit mode. The
return value is the current value of the 32-bit timer2 register. Except in
very rare cases, this return value is not the elapsed time in seconds.

File: time.c

write

Description: Write data to a file.

Include: None

Prototype: int write(int handle, void *buffer, unsigned int
count) ;

Argument: handle refersto an opened file

Return Value:

Remarks:

Default Behavior:

File:

buffer points to the storage location of data to be written
count the number of characters to write.

If successful, write returns the number of characters actually written. A
return value of ‘-1’ indicates an error.

If the actual space remaining on the disk is less than the size of the
buffer the function is trying to write to the disk, write fails and does not
flush any of the buffer's contents to the disk. If the file is opened in text
mode, each linefeed character is replaced with a carriage return —
linefeed pair in the output. The replacement does not affect the return
value.

This is a helper function called by the Standard C Library function
fflush().

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

write.c

© 2005 Microchip Technology Inc.

DS51456B4-page 381

16-Bit Language Tools Libraries

NOTES:

DS51456B4-page 382 © 2005 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 5. MPLAB C30 Built-in Functions

5.1 INTRODUCTION

This chapter describes the MPLAB C30 built-in functions that are specific to 16-bit
devices.

Built-in functions give the C programmer access to assembler operators or machine
instructions that are currently only accessible using inline assembly, but are sufficiently
useful that they are applicable to a broad range of applications. Built-in functions are
coded in C source files syntactically like function calls, but they are compiled to
assembly code that directly implements the function, and do not involve function calls
or library routines.

There are a number of reasons why providing built-in functions is preferable to
requiring programmers to use inline assembly. They include the following:
1. Providing built-in functions for specific purposes simplifies coding.

2. Certain optimizations are disabled when inline assembly is used. This is not the
case for built-in functions.

3. For machine instructions that use dedicated registers, coding inline assembly
while avoiding register allocation errors can require considerable care. The
built-in functions make this process simpler as you do not need to be concerned
with the particular register requirements for each individual machine instruction.

This chapter is organized as follows:
 Built-In Function List

© 2005 Microchip Technology Inc. DS51456C-page 383

16-Bit Language Tools Libraries

5.2

BUILT-IN FUNCTION LIST

This section describes the programmer interface to the MPLAB C30 C compiler built-in
functions. Since the functions are “built in”, there are no header files associated with
them. Similarly, there are no command-line switches associated with the built-in
functions — they are always available. The built-in function names are chosen such that
they belong to the compiler's namespace (they all have the prefix __builtin), so
they will not conflict with function or variable names in the programmer's namespace.

__builtin_addab
Description: Add accumulators A and B with the result written back to the specified
accumulator. For example:
register int result asm("A");
result = _ builtin _addab() ;
will generate:
add A
Prototype: int _ builtin addab(void) ;
Argument: None
Return Value: Returns the addition result to an accumulator.
Assembler addad
Operator / Machine
Instruction:

Error Messages

An error message will be displayed if the result is not an accumulator
register.

__builtin_add

Description:

Prototype:
Argument:

Return Value:

Assembler
Operator / Machine
Instruction:

Error Messages

Add value to the accumulator specified by result with a shift
specified by literal shift. For example:

register int result asm("A");

int value;

result = _ builtin_add(value,0);

If value is held in w0, the following will be generated:
add w0, #0, A

int _ builtin add(int value, const int shift);

value Integer number to add to accumulator value.
shift Amount to shift resultant accumulator value.

Returns the shifted addition result to an accumulator.
add

An error message will be displayed if:
« the result is not an accumulator register
« the shift value is not a literal within range

DS51456C-page 384

© 2005 Microchip Technology Inc.

MPLAB C30 Built-in Functions

__builtin_btg

Description:

Prototype:
Argument:

Return Value:

Assembler
Operator / Machine
Instruction:

Error Messages

This function will generate a btg machine instruction.
Some examples include:

int 1i; /* near by default */
int 1 _ attribute ((far));

struct foo {
int bitl:1;
} barbits;

int bar;

void some bittoggles () {
register int j asm("w9");
int k;

k = 1i;

__builtin btg(&bar,barbits.bitl);
__builtin btg(&i,1);
__builtin btg(&j,3);
__builtin btg(&k,4);
__builtin btg(&l,11);

return j+k;

}

Note that taking the address of a variable in a register will produce
warning by the compiler and cause the register to be saved onto the
stack (so that its address may be taken); this form is not recommended.
This caution only applies to variables explicitly placed in registers by
the programmer.

void _ builtin btg(unsigned int *, unsigned intOxn) ;

* A pointer to the data item for which a bit should be toggled.

Oxn A literal value in the range of 0 to 15. As a convenience, it is
possible to pass a bit-field name as this argument. The builtin
will substitute the bit position of the identified field for the
argument and toggle the appropriate bit.

Returns a btg machine instruction.
btg

An error message will be displayed if the parameter values are not
within range

__builtin_clr

Description:

Prototype:
Argument:

Clear the specified accumulator. For example:
register int result asm("A");

result = _ builtin clr();
will generate:

clr A
int builtin clr(void);
None

© 2005 Microchip Technology Inc.

DS51456C-page 385

16-Bit Language Tools Libraries

__builtin_clr (Continued)

Return Value:

Assembler

Operator / Machine

Instruction:

Error Messages

Returns the cleared value result to an accumulator.

clr

An error message will be displayed if the result is not an accumulator

register.

__builtin_clr_prefetch

Description:

Prototype:

Clear an accumulator and prefetch data ready for a future MAC
operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
If AwWB is non null, the other accumulator will be written back into the
referenced variable.
For example:

register int result asm("A");

int x _memory buffer[256]

__attribute__ ((space (xmemory))) ;
int y memory buffer[256]
__attribute__ ((space (ymemory))) ;

int *xmemory;
int *ymemory;
int awb;

int xVal, yVval;

xmemory = x_memory buffer;

ymemory = y memory buffer;

result = builtin clr(&xmemory, &xVal, 2,
&ymemory, &yVal, 2, &awb) ;

might generate:
clr A, [w8]+=2, w4, [wlO0]+=2, w5, wl3

The compiler may need to spill w13 to ensure that it is available for the
write-back. It may be recommended to users that the register be
claimed for this purpose.
After this instruction:
 result will be cleared
e xVal will contain x memory buffer [0]
e yVval will contain y_memory buffer [0]
¢ xmemory and ymemory will be incremented by 2, ready for the
next mac operation
int builtin clr prefetch(
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB) ;

DS51456C-page 386

© 2005 Microchip Technology Inc.

MPLAB C30 Built-in Functions

__builtin_clr_prefetch (Continued)

Argument:

Return Value:

Assembler
Operator / Machine
Instruction:

Error Messages

xptr Integer pointer to x prefetch.

xval Integer value of x prefetch.

xincr Integer increment value of x prefetch.
yptr Integer pointer to y prefetch.

yval Integer value of y prefetch.

yincr Integer increment value of y prefetch.
AWB Accumulator selection.

Returns the cleared value result to an accumulator.

clr

An error message will be displayed if:

« the result is not an accumulator register
¢ xvalis a null value but xptris not null
e yvalis anull value but yptris not null

__builtin_divsd

Description:

Prototype:
Argument:

Return Value:

Assembler
Operator / Machine
Instruction:

The function computes the quotient num/ den. A math error exception
occurs if den is zero. Function arguments are signed, as is the function
result. The command-line option -Wconversions can be used to
detect unexpected sign conversions.

int _ builtin divsd(const long num, const int den);

num numerator
den denominator

Returns the signed integer value of the quotient num/ den.
div.sd

__builtin_divud

Description:

Prototype:
Argument:

Return Value:

Assembler
Operator / Machine
Instruction:

The function computes the quotient num/ den. A math error exception
occurs if den is zero. Function arguments are unsigned, as is the
function result. The command-line option -Wconversions can be
used to detect unexpected sign conversions.
unsigned int __ builtin divud(const unsigned

long num, const unsigned int den) ;
num numerator
den denominator

Returns the unsigned integer value of the quotient num/ den.
div.ud

© 2005 Microchip Technology Inc.

DS51456C-page 387

16-Bit Language Tools Libraries

__builtin_dmaoffset

Description: Obtain the offset of a symbol within DMA memory.
For example:

int result;
char buffer[256] _ attribute ((space(dma))) ;

result = builtin dmaoffset (buffer);

Might generate:
mov #dmaoffset (buffer), wo

Prototype: int builtin dmaoffset (int buffer) ;

Argument: buffer DMA address value

Return Value: Returns the offset to an accumulator.

Assembler dmaoffset

Operator / Machine

Instruction:

Error Messages An error message will be displayed if the result is not an accumulator
register.

__builtin_ed

Description: Square sqr, returning it as the result. Also prefetch data for future

square operation by computing **xptr - **yptr and storing the
result in *distance.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
For example:

register int result asm("A");

int *xmemory, *ymemory;

int distance;

result = _ builtin ed(distance,
&xXmemory,
&ymemory,
&distance) ;

2,
2

I

might generate:
ed wd*wd, A, [w8]+=2, [W1l0]+=2, w4é

Prototype: int _ _builtin ed(int sgr, int **xptr, int xincr,
int **yptr, int yincr, int *distance) ;

Argument: sqr Integer squared value.
xptr Integer pointer to pointer to x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yincr Integer increment value of y prefetch.
distance Integer pointer to distance.

Return Value: Returns the squared result to an accumulator.

Assembler ed

Operator / Machine

Instruction:

DS51456C-page 388 © 2005 Microchip Technology Inc.

MPLAB C30 Built-in Functions

__builtin_ed (Continued)

Error Messages

An error message will be displayed if:

« the result is not an accumulator register
e xptrisnull

e yptrisnull

e distance s null

__builtin_edac

Description:

Prototype:

Argument:

Return Value:

Assembler
Operator / Machine
Instruction:

Error Messages

Square sqr and sum with the nominated accumulator register, return-
ing it as the result. Also prefetch data for future square operation by
computing **xptr - **yptr and storing the result in *distance.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
For example:

register int result asm("A");

int *xmemory, *ymemory;

int distance;

result = _ builtin ed(distance,
&Xmemory,
&ymemory,
&distance) ;

2,
2

I

might generate:
ed wda*wd, A, [w8]+=2, [W1l0]+=2, w4é

int _ builtin edac(int sqgr, int **xptr, int xincr,
int **yptr, int yincr, int *distance) ;

sqr Integer squared value.

xptr Integer pointer to pointer to x prefetch.

xincr Integer increment value of x prefetch.

yptr Integer pointer to pointer to y prefetch.

yincr Integer increment value of y prefetch.

distance Integer pointer to distance.
Returns the squared result to specified accumulator.

edac

An error message will be displayed if:

« the result is not an accumulator register
¢ xptrisnull

¢ yptrisnull

e distance s null

__builtin_fbcl

Description:

Prototype:

Find the first bit change from left in value. This function is useful for
dynamic scaling of fixed-point data. For example:

int result, value;

result = _ builtin fbcl (value) ;

might generate:
fbcl w4, w5

int builtin fbcl (int value) ;

© 2005 Microchip Technology Inc.

DS51456C-page 389

16-Bit Language Tools Libraries

__builtin_fbcl (Continued)

Argument: value Integer number of first bit change.

Return Value: Returns the shifted addition result to an accumulator.

Assembler fbel

Operator / Machine

Instruction:

Error Messages An error message will be displayed if the result is not an accumulator
register.

__builtin_lac

Description: Shift value by shirt (a literal between -8 and 7) and return the value to

be stored into the accumulator register. For example:
register int result asm("A");
int value;
result = builtin lac(value,3);

Might generate:
lac w4, #3, A

Prototype: int _ builtin lac(int value, int shift);
Argument: value Integer number to be shifted.
shift Literal amount to shift.
Return Value: Returns the shifted addition result to an accumulator.
Assembler lac
Operator / Machine
Instruction:
Error Messages An error message will be displayed if:

« the result is not an accumulator register
« the shift value is not a literal within range

DS51456C-page 390 © 2005 Microchip Technology Inc.

MPLAB C30 Built-in Functions

__builtin_mac

Description:

Prototype:

Argument:

Return Value:

Assembler
Operator / Machine
Instruction:

Error Messages

Compute a x b and sum with accumulator; also prefetch data ready for
a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
If AwWB is non null, the other accumulator will be written back into the ref-
erenced variable.
For example:

register int result asm("A");

int *xmemory;

int *ymemory;

int xVal, yVal;

result = _ builtin mac(xVal, yVal,
&xmemory, &xVal, 2,
&ymemory, &yval, 2, 0);

might generate:
mac wéd*w5, A, [w8]+=2, w4, [wl0]+=2, w5
int builtin mac(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB) ;

a Integer multiplicand.

b Integer multiplier.

xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yvincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Returns the cleared value result to an accumulator.

mac

An error message will be displayed if:

« the result is not an accumulator register
¢ xvalis a null value but xptris not null
¢ yvalis anull value but yptris not null

© 2005 Microchip Technology Inc.

DS51456C-page 391

16-Bit Language Tools Libraries

__builtin_movsac

Description:

Prototype:

Argument:

Return Value:

Assembler
Operator / Machine
Instruction:

Error Messages

Compute nothing, but prefetch data ready for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
If AwWB is non null, the other accumulator will be written back into the ref-
erenced variable.
For example:

register int result asm("A");

int *xmemory;

int *ymemory;

int xVal, yvVal;

result = _ builtin movsac (&xmemory, &xVal, 2,
&ymemory, &yVal, 2, 0);

might generate:
movsac A, [w8]+=2, w4, [wl0]+=2, w5
int _ builtin movsac(
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB) ;

xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Returns prefetch data.

movsac

An error message will be displayed if:

« the result is not an accumulator register
¢ xvalis anull value but xptris not null
e yvalis anull value but yptris not null

DS51456C-page 392

© 2005 Microchip Technology Inc.

MPLAB C30 Built-in Functions

__builtin_mpy

Description: compute a x b ; also prefetch data ready for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.

For example:
register int result asm("A");
int *xmemory;
int *ymemory;
int xVal, yval;

result = builtin mpy(xVal, yVal,
&xmemory, &xVal, 2,
&ymemory, &yVal, 2);

might generate:
mac wéd*w5, A, [w8]+=2, w4, [wl0]+=2, wbH
Prototype: int builtin mpy(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr);

Argument: a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Return Value: Returns the cleared value result to an accumulator.

Assembler mpy

Operator / Machine

Instruction:

Error Messages An error message will be displayed if:

« the result is not an accumulator register
e xvalis anull value but xptris not null
e yvalis anull value but yptris not null

© 2005 Microchip Technology Inc. DS51456C-page 393

16-Bit Language Tools Libraries

__builtin_mpyn

Description: compute -a X b ; also prefetch data ready for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.

For example:
register int result asm("A");
int *xmemory;
int *ymemory;
int xVal, yVval;

result = builtin mpy(xVal, yVal,
&xmemory, &xVal, 2,
&ymemory, &yVal, 2);

might generate:
mac wéd*w5, A, [w8]+=2, w4, [wl0]+=2, wb
Prototype: int builtin mpyn(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr);

Argument: a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Return Value: Returns the cleared value result to an accumulator.

Assembler mpyn

Operator / Machine

Instruction:

Error Messages An error message will be displayed if:

« the result is not an accumulator register
e xvalis a null value but xptris not null
e yvalis anull value but yptris not null

DS51456C-page 394 © 2005 Microchip Technology Inc.

MPLAB C30 Built-in Functions

__builtin_msc

Description: compute a X b and subtract from accumulator; also prefetch data ready

for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
If AwWB is non null, the other accumulator will be written back into the ref-
erenced variable.
For example:

register int result asm("A");

int *xmemory;

int *ymemory;

int xvVal, yVal;

result = _ builtin msc(xVal, yVal,
&xmemory, &xVal, 2,
&ymemory, &yvVal, 2, 0);

might generate:
msc wéd*w5, A, [w8]+=2, w4, [wl0]+=2, w5
Prototype: int _ builtin msc(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB) ;

Argument: a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yvincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Return Value: Returns the cleared value result to an accumulator.

Assembler msc

Operator / Machine

Instruction:

Error Messages An error message will be displayed if:

« the result is not an accumulator register
¢ xvalis anull value but xptris not null
¢ yvalis anull value but yptris not null

__builtin_mulss

Description: The function computes the product po x p1. Function arguments are
signed integers, and the function result is a signed long integer. The
command-line option -Wconversions can be used to detect
unexpected sign conversions.

Prototype: signed long _ builtin mulss(const signed int po,
const signed int pl);

© 2005 Microchip Technology Inc. DS51456C-page 395

16-Bit Language Tools Libraries

__builtin_mulss (Continued)

Argument: po multiplicand
pl multiplier
Return Value: Returns the signed long integer value of the product po x p1.
Assembler mul.ss
Operator / Machine
Instruction:

__builtin_mulsu

Description: The function computes the product po x p1. Function arguments are
integers with mixed signs, and the function result is a signed long
integer. The command-line option -Wconversions can be used to
detect unexpected sign conversions. This function supports the full
range of addressing modes of the instruction, including immediate
mode for operand p1.

Prototype: signed long _ builtin mulsu(const signed int po,
const unsigned int pl);

Argument: po multiplicand
pl multiplier

Return Value: Returns the signed long integer value of the product po x p1.

Assembler mul.su

Operator / Machine

Instruction:

__builtin_mulus

Description: The function computes the product po x p1. Function arguments are
integers with mixed signs, and the function result is a signed long
integer. The command-line option -Wconversions can be used to
detect unexpected sign conversions. This function supports the full
range of addressing modes of the instruction.

Prototype: signed long _ builtin mulus(const unsigned int po0,
const signed int pl);

Argument: po multiplicand
pl multiplier

Return Value: Returns the signed long integer value of the product po x p1.

Assembler mul .us

Operator / Machine

Instruction:

__builtin_muluu

Description: The function computes the product po x p1. Function arguments are
unsigned integers, and the function result is an unsigned long integer.
The command-line option -Wconversions can be used to detect
unexpected sign conversions. This function supports the full range of
addressing modes of the instruction, including immediate mode for

operand p1.

Prototype: unsigned long _ builtin muluu(const unsigned int po,
const unsigned int pl);

Argument: po multiplicand
pl multiplier

DS51456C-page 396 © 2005 Microchip Technology Inc.

MPLAB C30 Built-in Functions

__builtin_muluu (Continued)

Return Value:

Assembler
Operator / Machine
Instruction:

Returns the signed long integer value of the product po x p1.

mul.uu

__builtin_nop

Description:
Prototype:
Argument:
Return Value:

Assembler
Operator / Machine
Instruction:

This function will generate a nop instruction.
void _ builtin nop(void) ;

None.

Returns a no operation (nop).

nop

__builtin_psvpage

Description:

Prototype:
Argument:
Return Value:

Assembler
Operator / Machine
Instruction:

Error Messages

The function returns the psv page number of the object whose address
is given as a parameter. The argument p must be the address of an
object in an EE data, PSV or executable memory space; otherwise an
error message is produced and the compilation fails. See the space
attribute in the “MPLAB® C30 C Compiler User’s Guide” (DS51284).

unsigned int _ builtin psvpage (const void *p);
p object address

Returns the psv page number of the object whose address is given as a
parameter.

psvpage

The following error message is produced when this function is used
incorrectly:

“Argumentto __builtin psvpage () is not the address of an object
in code, psv, or eedata section”.

The argument must be an explicit object address.

For example, if obj is object in an executable or read-only section, the
following syntax is valid:

unsigned page = _ builtin psvpage (&obj) ;

__builtin_psvoffset

Description:

Prototype:
Argument:
Return Value:

The function returns the psv page offset of the object whose address is
given as a parameter. The argument p must be the address of an
object in an EE data, PSV or executable memory space; otherwise an
error message is produced and the compilation fails. See the space
attribute in the “MPLAB® C30 C Compiler User’s Guide” (DS51284)

unsigned int _ builtin psvoffset (const void *p);
p object address

Returns the psv page number offset of the object whose address is
given as a parameter.

© 2005 Microchip Technology Inc.

DS51456C-page 397

16-Bit Language Tools Libraries

__builtin_psvoffset (Continued)

Assembler
Operator / Machine
Instruction:

Error Messages

psvoffset

The following error message is produced when this function is used
incorrectly:

“Argumentto __ builtin psvoffset () is notthe address of an
object in code, psv, or eedata section”.

The argument must be an explicit object address.

For example, if ob7j is object in an executable or read-only section, the
following syntax is valid:

unsigned page = _ builtin psvoffset (&obj) ;

__builtin_return_address

Description:

Prototype:
Argument:
Return Value:

This function returns the return address of the current function, or of
one of its callers. For the Ievel argument, a value of 0 yields the
return address of the current function, a value of 1 yields the return
address of the caller of the current function, and so forth. When level
exceeds the current stack depth, 0 will be returned. This function
should only be used with a non-zero argument for debugging purposes.

int _ _builtin return address (const int level);

level Number of frames to scan up the call stack.

Returns the return address of the current function, or of one of its
callers.

Assembler return_address
Operator / Machine
Instruction:
__builtin_sac
Description: Shift value by shift (a literal between -8 and 7) and return the value.
For example:
register int value asm("A");
int result;
result = builtin sac(value, 3);
Might generate:
sac A, #3, woO
Prototype: int builtin sac(int value, int shift);
Argument: value Integer number to be shifted.
shift Literal amount to shift.

Return Value:

Assembler
Operator / Machine
Instruction:

Error Messages

Returns the shifted result to an accumulator.

sac

An error message will be displayed if:
« the result is not an accumulator register
« the shift value is not a literal within range

DS51456C-page 398

© 2005 Microchip Technology Inc.

MPLAB C30 Built-in Functions

__builtin_sacr
Description: Shift value by shift (a literal between -8 and 7) and return the value
which is rounded using the rounding mode determined by the
CORCONDbits.RND control bit.
For example:
register int value asm("A");
int result;
result = _ builtin_ sac(value,3);
Might generate:
sac.r A, #3, woO
Prototype: int _ _builtin sacr(int value, int shift);
Argument: value Integer number to be shifted.
shift Literal amount to shift.
Return Value: Returns the shifted result to CORCON register.
Assembler sacr
Operator / Machine
Instruction:
Error Messages An error message will be displayed if:
« the result is not an accumulator register
« the shift value is not a literal within range
__builtin_sftac
Description: Shift accumulator by shift. The valid shift range is -16 to 16.
For example:
register int result asm("A");
int 1i;
result = _ builtin sftac(i);
Might generate:
sftac A, w0
Prototype: int _ builtin sftac(int shift);
Argument: shift Literal amount to shift.
Return Value: Returns the shifted result to an accumulator.
Assembler sftac
Operator / Machine
Instruction:
Error Messages An error message will be displayed if:

« the result is not an accumulator register
« the shift value is not a literal within range

__builtin_subab

Description: Subtract acumulators A and B with the result written back to the
specified accumulator. For example:
register int result asm("A");

result = builtin subab();
will generate:
sub A
Prototype: int _ builtin subab(void) ;
Argument: None

© 2005 Microchip Technology Inc. DS51456C-page 399

16-Bit Language Tools Libraries

__builtin_subab (Continued)

Return Value: Returns the subtraction result to an accumulator.

Assembler subad

Operator / Machine

Instruction:

Error Messages An error message will be displayed if the result is not an accumulator
register.

__builtin_tblpage

Description: The function returns the table page number of the object whose
address is given as a parameter. The argument p must be the address
of an object in an EE data, PSV or executable memory space;
otherwise an error message is produced and the compilation fails. See
the space attribute in the “MPLAB® C30 C Compiler User’s Guide”

(DS51284).

Prototype: unsigned int _ builtin tblpage (const void *p);

Argument: p object address

Return Value: Returns the table page number of the object whose address is given as
a parameter.

Assembler tblpage

Operator / Machine

Instruction:

Error Messages The following error message is produced when this function is used
incorrectly:

“Argumentto __builtin_tblpage () is not the address of an object
in code, psv, or eedata section”.

The argument must be an explicit object address.

For example, if ob7j is object in an executable or read-only section, the
following syntax is valid:

unsigned page = _ builtin tblpage (&obj) ;

__builtin_tbloffset

Description: The function returns the table page offset of the object whose address
is given as a parameter. The argument p must be the address of an
object in an EE data, PSV or executable memory space; otherwise an
error message is produced and the compilation fails. See the space
attribute in the MPLAB® C30 C Compiler User’s Guide.

Prototype: unsigned int _ builtin tbloffset (const void *p);

Argument: p object address

Return Value: Returns the table page number offset of the object whose address is
given as a parameter.

Assembler tbloffset

Operator / Machine

Instruction:

Error Messages The following error message is produced when this function is used
incorrectly:

“Argumentto _ builtin tbloffset () is notthe address of an
object in code, psv, or eedata section”.

The argument must be an explicit object address.

For example, if obj is object in an executable or read-only section, the
following syntax is valid:

unsigned page = _ builtin tbloffset (&obj) ;

DS51456C-page 400

© 2005 Microchip Technology Inc.

MICROCHIP

16-BIT LANGUAGE TOOLS
LIBRARIES

Appendix A. ASCII Character Set

TABLE A-1: ASCII CHARACTER SET
Most Significant Character

Hex 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
3 ETX DC3 # 3 C S c s
E 4 EOT DC4 $ 4 D T d t
§ 5 ENQ NAK % 5 E U e u
§ 6 ACK SYN & 6 F \% f v
:_E 7 Bell ETB 7 G W g w
Sa 8 BS CAN (8 H X h X
% 9 HT EM) 9 [Y [y
3 A LF SUB * J 4 j z
B VT ESC + K [k {
C FF FS < L \ [|
D CR GS = M] m }
E SO RS > N n n ~

F Sl us / ? o} B 0 DEL

© 2005 Microchip Technology Inc.

DS51456C-page 401

16-Bit Language Tools Libraries

NOTES:

DS51456C-page 402 © 2005 Microchip Technology Inc.

MICROCHIP

16-BIT LANGUAGE TOOLS

LIBRARIES

| ndex

Symbols

#define ... 10, 82, 84,107,114, 155,171, 193
BT e 219

HINCIUAE......ooeeeeeeeee e 10, 82, 202
%0, PErcentoevveveeeeeeeiiiieieeeeeiies 262, 267, 268, 331

\f, FOrM FEEAvvvvieieieiiiiieeecee s 209
\n, Newline 209, 233, 243, 248, 259, 260, 264
\r, Carriage Return 209
\t, Horizontal Tab...
\v, Vertical Tab.......

__builtin_add..........oooiiin
__builtin_addab
__builtin_btg..........

_builtin_clr...oooe
__builtin_clr_prefect.........ccccoiiiii 386
_ builtin_divsd ...
__builtin_divudc...cociiieen.

__builtin_dmaoffset
__builtin_ed........ooooiiiie
__builtin_edac........ccccoiiiiiiiie
_builtin_fbel .o
__builtin_lac
__builtin_mac.......ccccciiii
__buUiltin_movsaccccceveeiiiiii
__builtin_mpy........
__builtin_mpyn......
__builtin_msc.........
__builtin_mulss ..o,
__builtin_mulsu ...,
__builtin_mulus......
__builtin_muluu.....
__builtin_nop......ccoocceiinnnn.
__builtin_psvoffset
__builtin_psvpage
__builtin_return_address
__builtin_sac.......cooceeeeviiiinnnnnn
__builtin_sacr
__builtin_sftac
__builtin_subab ...
__builtin_tbloffset ..
__builtin_tblpage........ccccciiiiii

Numerics

Absolute Value
Double Floating Point...........ccccovveeiiiiviieeeenns 347
INteger....ccceevvieeeniieenns
Long Integer
Single Floating Point..........ccccccoeiiiiienieeiineen. 347
Absolute Value Function

Configure Interrupt..........cccveeee..
Disable Interrupt Macro
Enable Interrupt Macro
Example of USe......cooiiiiiiiii e

Set Interrupt Priority Macro

Start CoNVErsionccccovviiiieieeiiiee e

Stop Sampling......oooceeiiiiiie e
ADC, 12-Bit

Set Interrupt Priority Macro
Start CONVErSIONcoovveeeririerree e
Stop Sampling......ooocceeiiiiii e

© 2005 Microchip Technology Inc.

DS51456C-page 403

16-Bit Language Tools Libraries

Alphanumeric Character
Defined

arccosine

Double Floating Point...........ccccccvveeieiiiiieneee. 333

Single Floating Point............ccccoeviiiieee e, 334
arcsine

Double Floating Point...........cccccoiiiiiiiiieneen. 335

Single Floating Point...........ccccceeevciviiee e, 335
arctangent

Double Floating Point

Single Floating Point...........cccccooviiiieieeniiieeen.
arctangent of y/x

Double Floating Point...........cccccoieiiiiiiieneenn. 337

Single Floating Point..........ccccceevicivieee e, 339
Argument List.........cccocveeiiiiiineenes 229, 275, 276, 277
Arithmetic Error Message........cccovvveeeeeiiiiiieneesiins 224
ASCII Character Set.......cccoiiiiiiieiiiiiee e 401
asctime

assert
assert.h
AsSSIgNMeENt SUPPreSSION.ceeeeiiriiieeeeeiiieeeeee s 267
Asterisk

FLT_RADIX.............. 214, 215, 216, 217, 218, 219
Binary

SHEAMS ...t
Bitfields..........ccoevvvvvnnen.
BitReverseComplex
Blackmaninit.................

Buffer Size......cocovviiiiiii
BufferEmptyDCI
Buffering Modes
Buffering, See File Buffering
BUFSIZ.....oiiiieie e 234, 269
Built-In Functions
__builtin_add..........c..cc...
__builtin_addab
_ BUItIN_Btg e
_BUItIN_CIr e
__builtin_clr_prefect
__builtin_divsd
__builtin_divudl
__builtin_dmaoffset..........cccccvvreiiiiiiiniee e,
_builtin_ed ...
__builtin_edac
_builtin_fbel .o
__builtin_lac ...,
__builtin_mac.........ccceeeee
__builtin_movsac
__builtin_mpycocceees
_ bUIltin_mpyn ..o
_ BUIIN_MSC e,
__builtin_mulss
__builtin_mulsu
__builtin_mulus
__builtin_muluu ...
_ BUItIN_NOP e
__builtin_psvoffset
__builtin_psvpage
__builtin_return_address
__bUIltin_SacC ...vcvvviiiiii e,
__builtin_sacr
__builtin_sftac
__builtin_subab ..o
__builtin_tbloffset........ccccoeiiiiii e,
__builtin_tblpage
BusyADC10
BusyADC12
BUSYUAIMTX ...ttt
BUSYXLCD ...ttt

C

C Locale...................
Calendar Time

CAN Interrupts

CONfIQUIE. ...

Disable Macro

Enable Macro.............c........

Set Priority Macro
CAN, Example of Use
CANXxAbortAll
CANXGEtRXErorCount...........ccceeeeeeiiiieeeeeiiceeeeeeeen. 89
CANXGEtTXEorCountcoeeeeeiiiiieeeeeiieee e, 90
CANXxInitializeccooeeeeveeeeneennennnn,

CANXxIsBusOff.........
CANXxIsRXPassive..
CANXISRXREAAYccuvveiieeiiiiiee e
CANXISTXPASSIVE ... eeeeeeieeeeeieeeee et
CANXISTXREAAYcoiiiiiieeiiiiiiee et

DS51456C-page 404

© 2005 Microchip Technology Inc.

CANXRECIEVEMESSAQEevvvveeeeciiiiee e
CANxSendMessage.................
CANXSetFiltervvvvveeeeeennnnn.
CANXSEIMASK.....cevviiieeeeeecie e
CANxSetOperationModecoocouieeeeeiiiiineeeiins
CANxSetOperationModeNoWait.................
CANxSetRXMode
CANxSetTXMode

ceiling
Double Floating Pointccccccoevviiiivee i,
Single Floating Point...........ccoocooviiiiiniiieneen.
char
Maximum Valuecccooieiiiiiieiee e
MInImMumM Valueccoooeeiiiiiiiieeeeeee
Number of BitS
CHAR_BIT i
CHAR_MAX ..o
CHAR_MIN ...
Character ArTaYoceeeeeeiiiiieiee e
Character Case Mapping
Lower Case Alphabetic Character
Upper Case Alphabetic Character
Character Case Mapping Functions
TOIOWEN et 211
TOUPPET ettt 212
Character Handling, See ctype.h
Character Input/Output Functions

getc

putc

UNGEIC vttt e e e sribreerereeees 273
Character Testing

Alphabetic Characterccccccecviveeeeecninnnnn.
Alphanumeric Charactercccceeeeeninnen.
Control Characterccceeeeeeiiiiieieeieiieeen
Decimal Digit...........ccceeee...

Graphical Character
Hexadecimal Digit............c.oovvvvereeninns
Lower Case Alphabetic Character
Printable Character...........ccocceiiiiieiiiiiie.
Punctuation Character
Upper Case Alphabetic Character
White-Space Characterccceveeeeeeninnnnn.

Character Testing Functions
isalnum
isalpha.......

ISCNEIl e
10 [To | SO TUPI
isgraph
islower.......

isprint

ISPUNCE ... e
isspace
isupper
isxdigit

Characters
AIPhabetiCcvvvveeiiiieie e 204
AIPhanUMETNICcoooiiiiiiiieii e 204
(7] 011 7o] ISR 205
Convert to Lower Case Alphabetic 211
Convert to Upper Case Alphabetic 212
Decimal Digit.......c.cvvveeiiiiieiee e e
Graphical...........c.ccueee.

Hexadecimal Digit
Lower Case Alphabetic
Printable..........oooooii
Punctuationccccceeeevieeennneennn
Upper Case Alphabetic
White-Spacec.cccoevvvveeiicinnn.

Classifying Characterscoccoeeeeeeiiiienieeiiieen.

ClEAIEIT ..

Clearing Error Indicator

clock

CloseADCI10 ...
CIOSEADCL2 ...t
ClOSECAPIUIEX ..vvvviieeeeiiiiieeeeciiieee e e s esirarae e e e esraraee s
CloseDCl........ccceeeeevvvvnvnnnnnes

Closel2C

CloselNTx
CIOSEMCPWM.... .o
(01101110 105 G
CloseQEl.........
CloseSPlIx
CloseTimerx.....
CloseTimerxx
CloseUARTX
Common Definitions, See stddef.h

COoMPAre StriNGS ...veveeeiiiiiiee e
Comparison Function
Comparison Functions

strncmp
SIEXFIM e
Compiler Options
-fno-short-double.........cccceeeiiiiiiiiiiiiciieeeee 233
105 14T 1 T 233

© 2005 Microchip Technology Inc.

DS51456C-page 405

16-Bit Language Tools Libraries

Concatenation Functions

strncat
ConfigCNPUIUPSeeeeiiaiee e
ConfigintADC10
ConfigIntADC12
ConfigINtCANX ..coccveieeeecciiieee e,
ConfigIntCapturex
ConfIGINTCN ...ceii e
ConfigINtDCl....ccooiiieie e
ConfigIntl2C
ConfigIntlOCx................
ConfigIntMCPWM
ConfigINtQEL........ccviieie e
ConfigINtSPIX...ceeiiiiiiieieee e
ConfigIntTimerx
ConfigINtTIMEIXXeeveeeiiiiiiee e
ConfigINtUARTX ..o
CONFIGINTX wevvviiei e e
Control Character
Defined.........ooiiiiiiie e 205
TSt FOr i 205
Control Transfers. ..., 222
CONVEISIONooviiiiiiiiccircesree e 261, 267, 271
Convert
Character to Multibyte Character 301
Multibyte Character to Wide Character........... 293
Multibyte String to Wide Character String....... 293
String to Double Floating Point 282,297
String to INtegercoovvvvveeiee e, 283
String to Long Integercccovvvvveevininenen. 283, 299
String to Unsigned Long Integer 300
To Lower Case Alphabetic Character 211
To Upper Case Alphabetic Character............. 212
Wide Character String to Multibyte String....... 301
ConVertADCL0coovcvveeiiiie e 111
ConvertADCL2oocveiiiie e 104
Copying Functions
MEMCPY +enveeririintee it rree sttt eeesaee e e s sneens
MEMMOVE ..ottt see e
memset
SICPY wevvvvienreerriens
strncpy

cosine
Double Floating Point...........ccccccveeiiiiiiieneen. 341
Single Floating Point............cccoeiiiiieeeeniiieeen. 342
crt0, crtl

CLYPE.N e 204
isalnum
iscntrl................

[£]o o | PP
[£0] =T o o [PPSR
islapha..............
islower
ispring...............
1] 01U 0! SRS
[T o 1= 1o SRR
iISUpper
isxdigit

(10]10] o] o= SH PP PPPPPPTPTPT
Current ArgumMeENnt........coeeeeeriiiniiiieieee e
Customer Notification Service.....
CUSIOMEr SUPPOIT ..cceviiieeeeeeieieiieiiee e
Customized FUNCLON..........cccuvieee i

D

Dash (-) ccoovevveneene
DataRdyDCI
DataRAyI2C........ccviiiee it
DataRAYSPIX ...ccciieiiieeiiiee e
DataRdyUARTX
Date and TiMe........oeiiiiiiiiiieei e
Date and Time Functions, See time.h
Day of the Month..........ccccceeeeiiiiieneciis 325, 326, 330
Day of the WeeK..........ccccvvvveeiviiiieeecens 325, 326, 330
Day of the Yearcccoviiiiiiiiii e, 325,331
Daylight Savings Time
DBL_DIG...coiiiieeiee e
DBL_EPSILONutiiiiiie e
DBL_MANT_DIG.....ciiiiiiiiiieeiieeesiiee e
DBL_MAX
DBL_MAX_ 10 _EXP coceieiieeeeee e
DBL_MAX_EXP ..eiieecee e
DBL_MIN....oooiiiienireeiee e
DBL_MIN_10_EXP.......ccccvrenen.
DBL_MIN_EXP...ccitiiiiiiiiiiiee et
DCI Functions
ClOSE DCl..ciiiiiiieee e
Configure DCIccccceeeeneee
Configure DCI Interrupt
DCI RX Buffer Status
DCI TX Buffer Status..........ccocevveeeiiieenieeeene
Example of US€.....ccccceeviiiiiiiiie e,
Read DCI RX Buffer
Write DCI TX Buffer
DCI Macros
Disable DCI Interrupt.........cccoeeveeevicineeee e,
Enable DCI Interruptcccoveeeeeivciineee e,
Set DCI Interrupt Priority

Deallocate Memory
Debugging Logic Errors..............
Decimalcocoveeiiiiiiiiie e

DS51456C-page 406

© 2005 Microchip Technology Inc.

Decimal Digit
Defined
Number Of
IS A (o] SRR

Decimal POINt.....cccooieiiiieieiieeee e

Default Handlerccccvvvvveeieeeiiieieeee s 223

Diagnostics, See assert.h

AIfftIME v 328

Digit, Decimal, See Decimal Digit

Digit, Hexadecimal, See Hexadecimal Digit

Direct Input/Output Functions

DisablelntDCl ... 163
Disablelnterrupts.........ccccvvvveeeiiiiiiie e 127
DisableIntFLTA

DisableIntFLTB
DisablelntlC1
DisablelntlUXRXcoovvviiiiiieeeeeeeeeeeeeeeee e
DisableINtMCPWM..........covviiiieieeeeeeeeeeeeeee e
DisableIntMI2Cccvvvveeeeee.

DisableIntOCx
DisableIntQEI........

DisablelntSI2Cccoooviieeciee e

Divide

INEEQET e 286

LONG INtEOET...ccce i 291
Divide by Zero.......ccccceevvvieeeiiiiiiie e, 224,227,286
Document

LAYOUL ..coeiiiiiiiiee e 2
Documentation

CONVENLIONScuiiiiiiiiiiiiie e e 3

Domain Error... 213, 333, 334, 335, 337, 339, 341, 342,
349, 351, 357, 358, 359, 360, 365, 366, 369, 370, 371

Double Precision Floating Point
Machine EpsSilon ...
Maximum Exponent (base 10)
Maximum Exponent (base 2)...............
Maximum Valuecccocceevveineninnnnn
Minimum Exponent (base 10)
Minimum Exponent (base 2).........ccccceeevuenenen.
Minimum Valueccccoooiiiiinnineen.
Number of Binary DigitS........ccccceoevieeeerniinnnen.
Number of Decimal DigitSccccveeeiunnnen..
double TYPE ...uvveeieiiieeeeeee e
Dream Function
DSP LIDrariescceeeeieiiieiee e

EIlPSES (1) toverieeeeeeieee et 229, 268
Empty Binary File
Empty Text File
EnableCNXcooovvvvvvvvennnnn.
EnablelntADCoveeiieieeeeeeeee e
ENabIEINtCANX.......cceeiiiii it
EnableIntDCl..............cc......
EnableIntFLTAcccovneee
EnableIntFLTB
EnablelntICX........covvvviiiee e
EnablelntlUXTX ...
EnableIntMCPWM
EnablelntMI2C ..o
EnablelntOCx
EnableIntQEl.......................
EnableIntSI2C
EnableIntSPIx
ENabIEINITX cocvvvviiiiieeeeeeee e
EnablelntUXRX...........cooiiiiiiiiiiiiieieeee e
EnableINTXccvvvveveeeeenennnn,
End Of File
Indicator

L= S o] R OTOROPIR:
Environment Function

[0 <] =] 1Y PR
Environment Variable

Error Handling Functions
ClEAEIT ..ttt

ST 4 (o] U
Error Indicator
Error Indicators

Clearing......oocceeeeeeeiee e 237, 266
ENd Of File ..o 237,243
B I= TS o | USRS 240
Error Signalcevveviiiiiiiie e 223
Errors, See errno.h
Errors, Testing FOr ... 213

© 2005 Microchip Technology Inc.

DS51456C-page 407

16-Bit Language Tools Libraries

Example of Use
ADC, 10-Bit
ADC, 12-Bit

Input Capture
Output Compare ...
PWM Lo

SPl .

EXIT_FAILURE ...
EXIT_SUCCESS. ...

Exponential Function
Double Floating Point...........cccccoiiiiiiiieneenn. 345
Single Floating Pointcccccooviiiieieeriiieeen. 346

FFTComplex.................
FFTComplexIP
FOOIC i
FOOIPOS wevviie e
fgets
Field Width

frEOPEN ...
setbufccoee.

File Buffering
Fully Buffered..........cccoeee..
Line Buffered....
Unbuffered ...
File Operations

FILENAME_MAX
File-Position Indicator..... 233,234,241, 242, 247, 248,
25, e ———————————— 256
Files, Maximum Number Open..........cccccceviiieneen. 235
Filtering FUNCHONScvvvieeiiiiiiee e
FIR .o,
FIRDecimate
FIRDelaylnitccccceeeenne
FIRInterpDelaylnitcccooeeeiiiiiiiieei e 45
FIRINterpolateooveiiiiiiiiiiieie e
FIRLattiCE.......ceeeeeeeeeeiiinnnns
FIRLMS............
FIRLMSNorm ...
FIRSHIUCE ...,
FIRSIIUCEINIE ...
IIRCanonic
IIRCanoniclinit
HIRLALICE vovveviieeeeeeeeeee e
IIRLattice OCTAVE model
IIRLAttiCeINIt ...
IIRTransposed
IIRTransposedInit...........coocvieeeeriiiiiiiee e

DS51456C-page 408

© 2005 Microchip Technology Inc.

FlOAt.N e
DBL_DIGccovvvveeiiieene
DBL_EPSILON
DBL_MANT _DIG ...eviieiieeeiee e
DBL_MAX ...t e e
DBL_MAX_10_EXP
DBL_MAX_EXP.....cccceenn.e.
DBL_MINooviviieiiieenne
DBL_MIN_10 EXP ..oooiiiieeiie e
DBL_MIN_EXP ...ooiiiieiiiee e
FLT DIG ..o
FLT_EPSILON.........c..e.
FLT_MANT_DIG
FLT _MAX ittt
FLT_MAX_10_EXP ..oooiiieiieeeiee e
FLT_MAX_EXP
FLT_MIN e
FLT_MIN_10_EXP ..ooeiiiiiiiiiee e
FLT_MIN_EXP
FLT_RADIX ..cooviiieiieene
FLT_ROUNDS
LDBL_DIG ..eiiieiiiieeiee e
LDBL_EPSILON ...ceviiiiiee e
LDBL_MANT_DIG
LDBL_MAX ...ccvivieiiiienae
LDBL_MAX_10_EXP
LDBL_MAX_EXPeviiiiieeeeiee e
LDBL_MIN ..oiiiiiieeiiee e
LDBL_MIN_10_EXP
LDBL_MIN_EXP................

Floating Point
LIMIES e 214
NO CONVEISIONcceeeeiiiiiccciieeree e 233
Types, Properties Of ..., 214

Floating Point, See float.h

Floating-Point Error Signal.........cccccceevviveveeeeenne,

Double Floating Point
Single Floating Point.........

FLT _DIG oeiieiiee et
FLT_EPSILON......
FLT_MANT_DIG...
FLT_MAX .o
FLT_MAX_10_EXP...c.ooeieiiiieeiie e
FLT_MAX_EXP it
FLT_MIN e
FLT_MIN_10 EXP.......ccvveenn.
FLT_MIN_EXPccoocvvviiiininnnnn.
FLT _RADIX .oiiiiiiiiciiie et
FLT_RADIX Digit
Number Ofooovveciieieeeeeeee,

FOPEN_MAX ...ttt
FOrmM FEEAvvvviiiiiiieieieieeee e

Format Specifiers.........cccoevvvveeiviiiiieee e,
Formatted 1/0 Routines
Formatted Input/Output Functions
FPINEE
fscanf ..o

sprintf

SSCANT...eeieiie e

viprintf

vprintf........

vsprintf
Formatted Text

Printing.....ccvvereeiie e 271

SCANNING «eeeeiiee et 271
fpos_t
fprintf
FPULC e
FPULS e
fraction and exponent function

Double Floating Point............ccccoeieiiiiiiiieennns 352

Single Floating Pointcccccooeiiiiiiiienineen. 353
Fraction DIgitScooouueiieeiiiiee e 261

(0[] (oI
getchar
OELCSPIX . ciiiiiiiiii e
getcUARTX
getenv
getS e
getsSPIX..........
getsUARTX
GMT s
OMEIME e
Graphical Character

Defined........oooiiiiiiie e 206

TeSETOr i 206
Greenwich Mean Timeccovvviiiieieniicc 328

© 2005 Microchip Technology Inc.

DS51456C-page 409

16-Bit Language Tools Libraries

H

hmodifierooovveeeeiiic e, 262, 267
HammingInit..........coooiiiiieiiiee e 28
Handler

Interrupt

NESEEA.....eeeei i

Signal ..o

Signal TYPE . 223
Handling

Interrupt Signal.........ccooeiiiiiiii e 228
HanningInit ... 28
Header Files

ASSEIt.N i 203

CLYPE.N e 204

ermo.N. . 213,333,378

float.hcccccoeeie

limits.h......oooee.

locale.h..................

SEtMP.N e,
signal.h..................
stdarg.h....cceeeee
stddef.hoveveees
StAIO.N e
StAlib.N..e 278,377, 380
string.h ..o,
time.h

Hexadecimal Digit
DEfiNed.......ccooi it
Testfor......cccouu....

HUGE_VAL ...ttt
Hyperbolic Cosine
Double Floating Point...........ccccocveeiiiiiieneee 343
Single Floating Point
Hyperbolic Functions
cosh

Hyperbolic Sine

Double Floating Point...........ccccccvieiiiiiiienee, 367

Single Floating Point...........cccceevvciviie e, 368
Hyperbolic Tangent

Double Floating Point...........cccccoieiiiiiiieneen. 372
hyperbolic tangent

Single Floating Point............ccccooviiiiieeeniiieenn. 373

I/O Port Functions
Configure CN INterruptscccvvveeeeviinvieeeenns
Configure CN PUll-UpPS......ccccoevviiieiie e
Configure INT
Disable INT ...
I/O Port Macros
Disable CN INterrupts.........cccccveeeiiiiireeeeiinnn. 131
Disable INterruptsccccceevviveeee e,
Enable CN Interrupts
Enable Interrupts.................
Set Interrupts Priority
I12C Functions
Acknowledge I12C ...
Close 12C.cooeiieeeiiieee
Configure 12Cuviiieiiiee e
Configure 12C Interrupt
Data Ready 12C..................
Example of Use.........cccc......
IdIe 12C ..o
Master [12C Get Stringccccvvveveeeviiiieeee e,
Master [2C Put String.........ccccceveeevicinieee e,
Not Acknowledge I12C..........
Read Master I12C.
Read Slave I12C
Restart 12C ...
Slave 12C Get String
Slave 12C Put String
Start 12C
Stop 12C
Write Master 12C. ... 194
Write Slave 12C ... 197
I12C Macros
Disable Master 12C Interruptccccceeeunnene.
Disable Slave 12C Interruptcccccvvveeeernnnn.
Enable Master 12C Interrupt...................
Enable Slave 12C Interrupt
Set Master 12C Interrupt Priority
Set Slave 12C Interrupt Priority..........cccceeeeenns
IAICI2C .
IFFTComplex..........
IFFTComplexIP
Ignore Signal
IIRCANONIC. .. eiieeiiiiiiee et
IIRCANONICINIE ...ttt
IIRLALHCE ...eeevvveeeiiie e
IIRLattice OCTAVE model
IIRLatticelnitcccceeeeiiieneenn.
IIRTTraNSPOSEA.......eeiieiiiiiiiiee e
IIRTransposedInit.........c.ueeieeiiiiiiiee e
lllegal Instruction Signalcccccceevivviiiveeeiiiieeen,
Implementation-Defined Limits, See limits.h
Indicator
ENd Of Fileoveeieiiieeee e

File Position
INFINIEY oo
Input and Output, See stdio.h

DS51456C-page 410

© 2005 Microchip Technology Inc.

Input Capture Functions

Close Input Capture..........

Configure Input Capture

Configure Input Capture Interrupt................... 134

Example of USeccuviiiiiieee e 138

Read All Input Captures.........cccccecvvveeeeeinvnnnnn. 136
Input Capture Macros

Disable Capture Interrupt...........c.cccevvveeerennnn. 137

Enable Capture Interruptc.ccooeceveeeiinenn. 137

Set Capture Interrupt Priorityccccoeeveeeeen. 137
INPUE FOMMALSeviiiiiieiiiieee e

Instruction Cycles
int

Maximum Valueoceevveiininireereeeeeeee e 219
Minimum Valuecceeeeeiieiiiiiieeeeee e 219
INT_MAX

INT_MIN e
Integer LIMItScccvvvieiiiiiee e
Internal Error Message
Internet Address....
Interrupt Handler ...
Interrupt Signal..........ooooiiiiiiiii e
Interrupt Signal Handlingccccooviienienninen.
Interruption Messagecccovvveevieeenineenns
Invalid Executable Code Message
Invalid Storage Request Message
Inverse Cosine, See arccosine
Inverse Sine, See arcsine

Inverse Tangent, See arctangent
isalnum

ISCNEIL.cve e

[£o o | ST POUURRRPN 206
isgraph
islapha
islower

1] 0 1 | S SPPUURRRIt
ispunct
isspace........ccuo.....
ISUPPEr ..cccevirrinnn.
isSWDTTO
isWDTWU

L
[a0 o [1T=T S PPN 262, 267
I MOIfIEr coveeeeiiiiee e, 262, 267
L_tMPNAM oo 235,273
labs

LC_COLLATE ittt
LC_CTYPE...cooioioieioeeirnnn.

LC_MONETARY
LC_NUMERIC ...t
LC_TIME oo,
LCD, External...

OPEIN ettt
PUL SEHNG -
Read Address
Read Data..............oe....

Set Display Data Address..........cccceeveeeivvvveeennn. 86
Write Command
Write Data....................
[[070] 0 V=Y 1 (U (o1 TR
LDBL_DIG...ciiiieiee ettt
LDBL_EPSILON..................
LDBL_MANT_DIG...............
LDBL_MAX ...oveiiiveriiieenne
LDBL_MAX_10_EXP
LDBL_MAX_EXP ...t
LDBL_MIN.....ccovevieeiiiireee
LDBL_MIN_10_EXP

Left Justify
libpic30, Rebuildingcoooiiiiiiiiiiiieie e
Libraries

Limits
Floating Point..........coooiiiiii e 214
INEEQET .

IMits.h e,
CHAR_BITS
CHAR_MAX
CHAR_MIN ..o
INT_MAX. oo 219
INT_MIN. ..o
LLONG_MAX
LLONG_MIN
LONG_MAX. .iiiiiiiiiiiiiciiie e 220
LONG_MIN. .o 220
MB_LEN_MAX
SCHAR_MAX ..ot
SCHAR_MIN ..ot
SHRT_MAX. ...cccvvinnn.
SHRT_MIN.....ccoovrrnnnn.
UCHAR_MAXc.cv...
UINT_MAX. oo
ULLONG_MAX ..ttt
ULONG_MAX.coe....
USHRT_MAX. ..oiiiiiiiiiii e

© 2005 Microchip Technology Inc.

DS51456C-page 411

16-Bit Language Tools Libraries

Line Buffered
Line Buffering
I modifier..........ccccvvveees
LLONG_MAX
LLONG_MIN
Load Exponent Function
Double Floating Point
Single Floating Point.................
Local TIME..uuveeeeeeieieeee e

Locale, Other......ccooovvvviiiiviiiiiiis
locale.h.......ccocvvvvvvnnnnnns
[0CAIECONY ...uvviiiiiiiiiiiieiieeeeee e
Localization, See locale.h
localtimeooovvvviieeeieeee e

Logarithm Function
Double Floating Point...........cccccoeeiiiiiieneen. 358
Single Floating Pointcccooviiiieeeeniiieeen. 359
Logarithm Function, Natural
Double Floating Point...........ccccccveiiiiiiiienee. 357

Single Floating Point
(0T | O PTTTPP
Logic Errors, Debugging........ccccceeeeiviiieeeeniiieneeenne
Long Double Precision Floating Point
Machine EpSiloN.........coccoiiiiiiiiiiiiee e
Maximum Exponent (base 10)...........cccveeennes
Maximum Exponent (base 2)ccccvvveeenne
Maximum Valueccccoveiiinieieiiinc e
Minimum Exponent (base 10)cccccoeeeeeenen.
Minimum Exponent (base 2)....
Minimum Valueccoooiiiiiie e,
Number of Binary DigitScccceveeeeiiiiveneenne
Number of Decimal Digits
long double TYPe......oocviieiiiiieee e
long int
Maximum Valueoccooieiiiiiieiieeeeeee 220
Minimum Valuecccoooiiiiii e, 220
long long int
Maximum Value
Minimum Value
long long unsigned int
Maximum Valueoccooieiiiiiiieiieeeeeee 221
long unsigned int
Maximum Value
LONG_MAXcccvvenunen.
LONG_MIN L.oiiiiiiiieiiiieeiiee e
(o7 0o /1001 o JO PRI
Lower Case Alphabetic Character
Convert To
DefiNed.......coviuiiiiiie e
Testfor....cccovveenee.

M

Machine Epsilon
Double Floating Point..........cccccceeoviiiieee e, 214
Long Double Floating Point.............cccccceeuneee. 218
Single Floating Pointcccccovieeeiiiiiiieeeees 216
Magnitude................ 333, 345, 346, 349, 351, 367, 368
MAOC ...cceiiiiiiee e
Mapping Charactersccceeeeeuvieeeeeiiiiee e
MasStergetsI2C ...
Masterputsi2C.........
MasterReadI2C
MasterWritel2Ccccccvveeeenn.
Math Exception Error
math.h

AtAN2F. Lo 339

ataNT. ..o 337

Mathematical Functions, See math.h

DS51456C-page 412

© 2005 Microchip Technology Inc.

Index

Matrix Functions
MatrixAdd..............
MatrixInvert
MatrixXMUIEIPIY ...
MaLriXSCAIEoeeiiieiiiie e
MatrixSubtract.......
MatrixTranspose
Maximum
Multibyte Character...........ccoceeiiiiiieeieeiiiee. 279
Maximum Value
Double Floating-Point Exponent (base 10)..... 215
Double Floating-Point Exponent (base 2)....... 215
Long Double Floating-Point Exponent (base 10)..
218
Long Double Floating-Point Exponent (base 2)....
218

Single Floating-Point Exponent (base 10) 216
Single Floating-Point Exponent (base 2) 217
TYPE Char. ...
Type DOUbIe ..o
TYPE INE i
Type Long Double
Type long int........ccccvveee.
Type long long int
Type long long unsigned int
Type long unsigned int
Type shortint....................

Type signed char

Type Single........cccocvvveenen.

Type unsigned charcccccoeevviviieee e,
Type unsigned intccoccooieeiiiiieeeee e,
Type unsigned short int

L001=T00 T 1 4] o

MEeMCPY .oovevvrnnnnnnn.

memmove

Memory
Allocate

MEMSEL .ttt

Message
Arithmetic Error.........ccooovciiiiiiiiiieieiieceeeeeeeee, 224
Interrupt
Invalid Executable Codecccccvvveveevvenenennnn. 225
Invalid Storage Requestccccvveveeeennnnenn. 226
Termination Request

Microchip Internet Web Site

Minimum Value

Double Floating-Point Exponent (base 10)..... 215

Double Floating-Point Exponent (base 2)....... 216

Long Double Floating-Point Exponent (base 10) ..
218

Long Double Floating-Point Exponent (base 2)....
219

Single Floating-Point Exponent (base 10) 217

Single Floating-Point Exponent (base 2) 217

Type Char ...

Type Double.................
Type int...oocceevvcvneneenn,
Type Long Double
Type long iNt ...ovveeeeiiiiiie e,
Type long long int.........ccoiiiiiiiiiiiieee,
Type short int
Type signed charcccoviiiiiieiieeeeee
TYPe SINGIE ...,
Minute

Multibyte Characterccccceeeiiiiienenn. 279, 293, 301
Maximum Number of Bytes............cccccoeeennns 220
Multibyte String
N
NAN .o 333
Natural Logarithm
Double Floating Point............ccccvveeiiiiviieeeenns 357
Single Floating Point............ccccoeiiiiiinieeiineen. 360
NDEBUG ..ottt 203

Nearest Integer Functions

Nested Signal Handlerccccoooieiiiniiiinnene 222
Newline 209, 233, 243, 248, 259, 260, 264
No Bufferingcccoeeevvveeeeeiiiieneeene 233, 234, 269, 270
Non-Local Jumps, See setjmp.h

NOTACKIZC ... 194

OPEIN ettt
OPENADCILO... .t
OPENADCILZ......eeeee et
OpenCapturex
OPENDCI ...
OPENIZ2C ... e

© 2005 Microchip Technology Inc.

DS51456C-page 413

16-Bit Language Tools Libraries

OpenMCPWM
OpenOCx
OpenQEl
OPENSPIX i
OPENTIMEIX eeiieiiiiiieee et
OpPeNTIMEIXX...veeeeerieeeeeeiieeeees s
OpenUART....
OPENXLCD ..ottt
Output Compare Functions
Close COMPAreocueeveeiiiiiiee e
Configure Compare..................
Configure Compare Interrupt ...
Example of Use.........cccceevunnee.
Read Compare Duty Cyclecccceeeevvvvenenn.
Read Compare Duty Cycle - PWM mode........ 143
Set Compare Duty Cycle........ccccooeivieeeerninnnnn. 146
Set Compare Duty Cycle - PWM mode........... 145
Output Compare Macros
Disable Compare Interrupt.........cccceveevvevnenennn. 147
Enable Compare Interrupt
Set Compare Interrupt Prioritycccceceueeee. 147
OULPUL FOIMALS ...t 233
Overflow Errors 213, 333, 345, 346, 354, 356, 363, 364
overlap......cccceveeriieennnns 305, 306, 308, 311, 314, 317

P

Plus Sign
Pointer, Temporary
PORSHAtRESEL......ceviiiiiiiiiii e

Power Function
Double Floating Point...........cccccoeiiiiiiiiieneenn. 363
Single Floating Point...........cccceeevciviee e, 364
Power Functions

precision....
PrefiX i,
Print FOrMatS.....uuvvieieieieeeieieeeeeee e
Printable Character

(D= {1 [To RS 208

Processor Clocks per Second
Processor TIMEcooovvevvviieeeeeeeeeeeeee e 325, 326
Pseudo-Random Number............ccccoevvvvvnnnnn... 295, 297
PEAIff e 231
Punctuation Character

Defined

Test for
Pushed BacKooovveeiiiiiieieiieeeeeeeiee e 273

putcUARTX
PUIFSXLCD ..ceiiiiieieeeec ettt

putsUARTX
PUESXLCD eiiiiiiieee ettt
PverrideMCPWM........ccociiiiiiiieeieeeee e 182
PWM Functions
CloSE PWM ..ot
Configure Override.........c..oooeiiiiiieeeieriiieeeee
Configure PWM ...
Configure PWM Interrupt
Example of US€......cccccvvvvviiiiiiieiiecce,
Set PWM Dead Time Assignment
Set PWM Dead Time Generation....................
Set PWM Duty Cycle
Set PWM FaultA..................
Set PWM FaultB..................
PWM Macros
Disable FLTA Interrupt
Disable FLTB Interrupt
Disable PWM Interrupt
Enable FLTA Interrupt.........ccccoeeeiiiinieeeeninne.
Enable FLTB Interrupt........cccoceveeeviiinieeeennnnnn,
Enable PWM Interrupt........ccccceeeevnnnnnnn.
Set FLTA Interrupt Priority
Set FLTB Interrupt Priority
Set PWM Interrupt Priority

Q
QEI Functions
Close QEl.......ccccoeccvvvrinnnnns
Configure QEIccccceeeens
Configure QEI Interrupt
Example of US€......cccceeviiiiiiiiie e,
Read QEI Position Count....
Write QEI Position Count ...
QEI Macros
Disable QEI Interrupt.........ccccccveeeviiinneeecnnnnnn,
Enable QEI Interruptcccoveeveeiviiiiee e,
Set QEI Interrupt Priority
[0 0] o QUSSP
QUICK SOM...uuiiiiiiiiiiiiecie e

DS51456C-page 414

© 2005 Microchip Technology Inc.

Range
Range Error 213, 299, 300, 343, 344, 345, 346, 354,
356, e 363, 364, 367, 368

ReadADC12........ccceevvveeiiiienns
ReadAddrXLCD
ReadCapture..........cevieiiiieieee e
ReadDataXLCDc.cooiuiiieeiiiiiiee e
ReadDClI
ReadDCOCxPWM
Reading, Recommendedccccoovvvvieeeiiiiiiie e,
ReadQElccooviiiiiiieeee,
ReadRegOCx........
ReadSPIx..............
REAATIMEIX ..vviiiiiieiieee e
REAATIMEIXX . .vee it
ReadUARTX..........
realloCooccveeeiiiiii e,
Reallocate Memory
Rebuilding the libpic30 librarycccccoeieeiinneen.
Registered FUNCLioONSccoccvvveeeiiiiiieeeee
Remainder

Double Floating Point

Single Floating Point...........ccoccoviiiiniiieeeene
Remainder Functions

Reset/Control Functions
Low Voltage Detect........cocvvveeeeeiiiiieeeeeiiiinen.
Master Clear RESEt.........cccccvvvvrveeeiieieieeeeeeenn,

Reset from Brown-out
Reset from Power-on........

Wake-up from Sleepccccceevevieeen.
Watchdog Timer Time-out
Watchdog Timer Wake-up

Reset/Control Macros

Disable All INterruptS........ccovvveeeeviiiieeee e
Disable Watchdog Timer ..
Enable Watchdog Timer
Reset BOR bit
Reset POR bit

RESLartI2C ...
FEWING Lovveiiiiiiiiieeeee s

Rounding Mode............oooiiiiiii e

S

L) o] 1 O 376, 380
Scan FOrmatS.......oooooviieiiiie e, 233
Yo7 11 | SR 233, 267
SCHAR_MAX ettt 220

SCHAR_MIN ..ot 220
Search Functions

strcspn
strpbrk
strrchr........
strspn
LS 11|

From Beginning of File..........cccccceeeiiiiiiieeeees 252
From Current POSItion.........ccceeeeeeeeiieievviviennnnn. 252
From End Of File
SEEK _CUR ...
SEEK _END ..ovvviiiiiciiie e

SetDCMCPWMcccueeee.
SetDCOCxPWM
SetDDRamAddr
S M et
SEeHMP. N 222
jmp_buf 222
longjmp
setjimp 222
SEHOCAIE ..ot 221
SetMCPWMDeadTimeAssignmentccceee.... 184
SetMCPWMDeadTimeGeneration
SetMCPWMFaultA
SetMCPWMFaultB
SetPointIntUXRXc.c....
SetPriorityIntADC.................
SetPrioritylIntCANX
SetPriorityINtDCIooiiiiiiiiiei e
SetPriorityINtFLTA ...
SetPriorityIntFLTB...............
SetPriorityIntlCXc....
SetPriorityIntMCPWM
SetPriorityIntMI2C ...
SetPriorityINtQEL ..o
SetPriorityIntSI2C................
SetPriorityIntSPIX................
SetPriorityIntTX.....ccccveeennns
SetPriorityIntUxTX
SetPriortYINtX.......eeeiiiiiii e
SetPulseOCXx....

short int
Maximum ValUueeeeveeeeeiiiiieeeiiiiicccccceiiinnnns 220
Minimum Value
SHRT_MAX...cooiviiiieeeienn
SHRT_MIN ..o
SIQ_AtOMIC_T.eiiiiiiiiiie e
SIG _DFL ittt

© 2005 Microchip Technology Inc.

DS51456C-page 415

16-Bit Language Tools Libraries

SIG_ERR
SIG_IGN........
SIGABRT
SIGFPEo
SIGILL ot
SIGINT Lo
Signal

Abnormal Termination................oceeeeevivvvennnnnns

Signal Handler..........ccoiiiiiieen

Signal Handler TYPe......coocveviieiiiiiiiie e
Signal Handling, See signal.h
signal.h......

SIg_AtOMIC_T..eeeiiiiiiiiiiee e
SIG_DFL ittt
SIG_ERR ..coiiiiiicciee e,
SIG_IGN ..ot
SIGABRToooiiiiiiiieieeneee
SIGFPE ...ttt

SIGTERM....utttiiiiiiiiiiiieeeeeee e
signed char

Maximum Valueooovveeeeiieeieeeeen, 220

Minimum Valueoovvvcieiiiieiiiieeeee. 220
SIGSEGV ...ttt
SIGTERM.......oooo i,
sim30 simulator
L] [

Double Floating Point...........cccccoiieiiiiiiieneenn. 365
Single Floating Point

Single Precision Floating Point

Machine EpSiloN.........ccccoiiiiiiiiiiiieeieeeee
Maximum Exponent (base 10)ccccceeeeennnee
Maximum Exponent (base 2)cccccecuvveeeenne
Maximum Valueccccoovee
Minimum Exponent (base 10)..
Minimum Exponent (base 2)ccccceevveeennn.
Minimum Valuecccoooiiiiii e,
Number of Binary Digits
Number of Decimal DigitScccceeeeiiiieneenn.

SIavegetSI2C ... 196
SIaVePULSI2C ... 197

SlaveReadI2Cccooooveeeiiieecc e
SlaveWritel2C
Sort, Quick..............
Source File Name
Source Line NUMbBEercooovvvviviiiieieeeeeeeeeeeei, 203
SPACE ...ttt 261
Space Character

DEfiNEd...cvvviiiiiiiieiiieee e 209

L= O (o] SO 209
SPECIfIEIS ..ot 261, 267
SPI Functions

ClOSE SPl ...t

Configure SPI

Configure SPI Interrupt

Example of USe.....cooiiiiiiieee e,

Read SPI RX Buffer

SPI Buffer Status.............cvvvvveeeeeeeeeeeeeeeeeiiinn,

SPI Get CharaCter......ueueeevieeeeeeeeeieieeeicieciininins

SPI Get Stringcccveveeeens

SPI Put Character

SPI Put String.......ccccveeeine

Write SPI TX BUffer......cceeeeeeiiiiiiieeieeee
SPI Macros

Disable SPI Interrupt........cccccvveveeeviiineeee e,

Enable SPI Interrupt............

Set SPI Interrupt Priority
SPHNE e

Square Root Function
Double Floating Point...........cccceeevviiiieeecinne, 369
Single Floating Pointccccccveee e 370
Square Root Functions

Standard C Library

Standard C Locale

Standard Error.......ccceeeeeeieeieiiieeeeeee e

Standard Input.........

Standard Output

Startl2C

SEAM-UP .ttt
Module, AREIMNALEccuniieieiieeeee e
Module, Primary

stdarg.h

wchar_t
SEIT .o 203, 233, 235, 236, 260
SN 233, 235, 236, 259, 267

DS51456C-page 416

© 2005 Microchip Technology Inc.

Index

freopen
fscanf

ftell

getc

SEEK_CUR
SEEK_END
SEEK_SET
setbuf......ccviiieeee,
setvbuf

spﬂﬁﬁ ..
SSCANT e
stderr

TMP_MAX
tmpfile
tmpnam..........
0o] oSS
VPRI o
VPN o

RAND_MAX
realloc

SEOPI2C ..
StopSampADC10
StopSampADC12
streat ..o

SHTCNT e
SEICIMP ittt
streoll................
Strepy.eeeeeeeenee
strespn..............
] (=T U 1P

ClOSING e
(©]7=1 o113 o PR
Reading From

Writing TO..ooeevviiiieeene
SETEITON ottt ettt e e e raee e
SHIME Lo

© 2005 Microchip Technology Inc.

DS51456C-page 417

16-Bit Language Tools Libraries

String

String Functions, See string.h
StNG.N oo
memchr.................
memcmp
memcpy
memmove

SIICAL .ttt
L) (o 2| SO

SIICPY vttt
strcspn
SEEITON v,

SIINCAL coveieieieeee e
S (1010711 o TS
strncpy
strpbrk
SHTCIT e

L) (1 (o] USSR
strtoul
struct Ilconv.........ccccuveee

structtmoeeeeennnnns

SEXTTM s
SUDSEIINGS ..
Subtracting Pointers............cccoc.......

Successful Termination

tangent
Double Floating Point
Single Floating Point.................

Temporary
File .coooovvvvvinennns
Filename
0] 0] (=] SRR
Termination
Request MeSSageccceeevvvviieeeeeviiiieee e
Request Signal...................
Successful......ccovvvvviiiveennnnns
UNsuccesSTul.........uveeeieieiiiiiieeee e
TEXEMOUE ...

AIfftiMe.. oo,
gmtime

localtime
mktime..............

OPEN <.t

Timer Macros
Disable Interrupt..........cccoeoiiieiie e,
Enable Interrupt...................

Set Interrupt Priority

TMP_IMAX ..ttt

IMPFilE e

(0101 o] o 1= SRR
Transferring Control

DS51456C-page 418

© 2005 Microchip Technology Inc.

Transform FUNCtionScooeeeeeeeeccivvnnnnnnns
BitReverseComplex
CosFactorlnit

FFTCompleX.........cccuveen..

FFTComplexIP..................

IFFTCompleX.........ccveen..

IFFTCOMPIEXIP ..o

TwidFactorinitooeoviiiieeeiieee e
Transform Stringooeeeeeeiiiiiieeee e
Trigonometric Functions

UART Functions
CloSE UARToiiiiiie et 149
Configure UARTooooiiiiiiiieie e
Configure UART Interrupt
Example of Usecccccvvvieiiiiieiieccn,
Read UART ..o
UART Buffer Statusccooeeeeiieiiiiiniiiiinnns
UART Get Character
UART Get String...............
UART Put Character.........
UART PUL SriNG .veveeeiiiieeececiee e
UART StatuS......eevuieeiiiieieeeieiiciieiee e ee e e
Write UART ..o
UART Macros
Disable UART RX Interrupt........cccccceveeeennnnnnnn.
Disable UART TX Interrupt........ccccceveeeeinnnnnnn.
Enable UART RX Interruptccccoevveeennnnnnn.
Enable UART TX Interrupt...................
Set UART RX Interrupt Priority
Set UART TX Interrupt Priority
UCHAR _MAX ..ottt
UINT_MAX oot
ULLONG_MAX
ULONG_MAX ..eiiiiiiiieee ettt
Underflow Errors213, 333, 345, 346, 354, 356, 363, 364
0o] o
Universal Time Coordinated
unsigned char
Maximum Valueccccooeeeviieiiiiie e 221

unsigned int

Maximum ValUueeeeveveieiiieeeeeiiiiccccccciiiinnnns 221
unsigned short int

Maximum Valueoooovvvviieeeeeeeeeeeeeeei, 221
Unsuccessful Termination.........ccceeeeeeeevievevvinieennn. 278
Upper Case Alphabetic Character

Convert To

Defined...........ccoeevvvnnnes

=TS O (o] SRR

. 231, 275, 276, 277
Variable Argument Lists, See stdarg.h

Variable Length Argument List 229, 231, 275, 276, 277
Vector Functions

VectorAddcoeeeeeenne

VECIOrCONVOIVEocoieeeeciiiirrreere e
VECLOTCOPY oevieieieiieeeeeee et
VectorCorrelate....................

VectorDotProduct
VectorMax........ccceeeeeeevnvnnns

VECIOMMIN ...ccoeiiiiei et
VeCtorMUIIPIY ..cccoiiiieie e
VectorNegate.

VectorPower
VectorScale.........cccccuuvennnnn.
VectorSubtract
VectorWindow
VectorZeroPad
VERBOSE_DEBUGGING........ccceeviieeiiieeeine e 203
Vertical Tab
viprintf
vprintf
vsprintf

White Space
White-Space Character

DefiNed......ooovvieeieeeeeeeeee e 209

=TS O (o] SRS 209
WIHE .ttt e e e e eeees 278
Wide Character 293,301
Wide Character String.......cccccceeeevvveeeeeivcinnnen. 293, 301
Wide Character Valueccccvvvvveeeeeieeiiieeeeeeeeeeennn 231
Wi e 261
LV To | { T 261, 267

© 2005 Microchip Technology Inc.

DS51456C-page 419

16-Bit Language Tools Libraries

Window Functions
BartlettInit..............
Blackmaninit
Hamminglnit
HanningINit ...
Kaiserlnit...............

WriteDCl......ccooeeeveennenn,
WriteQEI....
WteSPIX ..ccovvveveeeeeennn.

WIHEETIMEIX cevviiieieeeee et
WIETIMEIXX ..o
WriteUARTX

DS51456C-page 420

© 2005 Microchip Technology Inc.

Index

NOTES:

© 2005 Microchip Technology Inc. DS51456C-page 421

16-Bit Language Tools Libraries

NOTES:

DS51456C-page 422 © 2005 Microchip Technology Inc.

Index

NOTES:

© 2005 Microchip Technology Inc. DS51456C-page 423

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

http://support.microchip.com

Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose

Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

DS51456C-page 424

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

10/31/05

© 2005 Microchip Technology Inc.

	Preface
	Chapter 1. Library Overview
	1.1 Introduction
	1.2 OMF-Specific Libraries/Start-up Modules
	1.3 Start-up Code
	1.4 DSP Library
	1.5 16-Bit Peripheral Libraries
	1.6 Standard C Libraries (with Math Functions)
	1.7 MPLAB C30 Built-in Functions

	Chapter 2. DSP Library
	2.1 Introduction
	2.2 Using the DSP Library
	2.3 Vector Functions
	2.4 Window Functions
	2.5 Matrix Functions
	2.6 Filtering Functions
	2.7 Transform Functions
	2.8 Control Functions
	2.9 Miscellaneous Functions

	Chapter 3. 16-Bit Peripheral Libraries
	3.1 Introduction
	3.2 Using the 16-Bit Peripheral Libraries
	3.3 External LCD Functions
	3.4 CAN Functions
	3.5 ADC12 Functions
	3.6 ADC10 Functions
	3.7 Timer Functions
	3.8 Reset/Control Functions
	3.9 I/O Port Functions
	3.10 Input Capture Functions
	3.11 Output Compare Functions
	3.12 UART Functions
	3.13 DCI Functions
	3.14 SPI Functions
	3.15 QEI Functions
	3.16 PWM Functions
	3.17 I2C™ Functions

	Chapter 4. Standard C Libraries with Math Functions
	4.1 Introduction
	4.2 Using the Standard C Libraries
	4.3 <assert.h> diagnostics
	4.4 <ctype.h> character handling
	4.5 <errno.h> errors
	4.6 <float.h> floating-point characteristics
	4.7 <limits.h> implementation-defined limits
	4.8 <locale.h> localization
	4.9 <setjmp.h> non-local jumps
	4.10 <signal.h> signal handling
	4.11 <stdarg.h> variable argument lists
	4.12 <stddef.h> common definitions
	4.13 <stdio.h> input and output
	4.14 <stdlib.h> utility functions
	4.15 <string.h> string functions
	4.16 <time.h> date and time functions
	4.17 <math.h> mathematical functions
	4.18 pic30-libs

	Chapter 5. MPLAB C30 Built-in Functions
	5.1 Introduction
	5.2 Built-In Function List

	Appendix A. ASCII Character Set
	Index
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

