CS 454/654

Lab Manual
Spring 2019 (Revision: 2.5)

Table of Contents

1 Reference Documents

2 Introduction

3 Microchip dsPIC Microcontroller (dsPIC33FJ256MC710)

3.1

3.2
3.3

3.4

3.5
3.6

3.7

Microcontroller Programming Techniques
3.1.1 DataTypes o o o o e
3.1.2 Specifying Hexadecimal Constants
3.1.3 Bitwise Operations
3.1.4 Microcontroller Registers oo
Inputs/Outputs oo
Interrupts
3.3.1 Interrupt Service Routines oo
Timers/Counters L
Output Compare o e e
Analog to Digital Converter (ADC)
3.6.1 Initialization
3.6.2 Operation e
UART . . o e e
3.7.1 Imitialization
3.7.2 Transmitting
3.7.3 Recelving e

4 Amazing Ball System (ABS)

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

Board Layout e
FLEX Light Base Board
FLEX Demo2 Daughter Board
FLEX UI Custom Board
Light Emitting Diodes (LEDs)
Joystick . . . Lo e
4.6.1 Joystick Analog Axes
4.6.2 Joystick Buttons
4.6.3 Button Debouncing L
LCD module e
Touchscreen oL e
SEIVOS . . o

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

4.10 Serial Ports 30
4.11 Digital to Analog Converter (DAC) 30
4.11.1 Concept of Operation 32

4.12 General Purpose I/O (GPIO) 33
4.12.1 1/O Port Write/Read Timing 33

5 Microchip MPLab IDE 33
6 Linux 34
6.1 Reference Documents 34
6.2 Return Value Checking e 34
6.3 Pointers and Memory Allocation o o oo 34
6.4 Signals oL e 36
6.4.1 Asynchronous Signal Handlers 36
6.4.2 Blocking 37

6.5 Timers e 37
6.5.1 Resolution e 38
6.5.2 Operation e 38

6.6 PCADC/DAC Cards i 40
6.6.1 LabJack U3-LV USB DAQ 40
6.6.2 PCI-DAS1602/12 Card 43

6.7 Serial Port 45
6.7.1 Communication Settings L 45
6.7.2 Sending and Receiving Lo 45

6.8 Processes 46
6.8.1 Message Queues e e e 46

6.9 Threads L 46
6.9.1 Creating and Terminating 47
6.9.2 Mutual Exclusion 47
6.9.3 Signals. 47

7 Appendix 49
7.1 FLEX-UI Schematic e 49
7.2 FLEX-UI Pinouts. e 49
7.2.1 Linux Serial Demo 49

1 Reference Documents

1. dsPIC-datasheet.pdf: General description of the dsPIC33f family (including description
of all modules and their registers).

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

2. dsPIC33F.xx - xxxx.pdf: Full dsPIC33f manual with detailed description of dsPIC33f’s
components (e.g. dsPIC33F.11 - Timers.pdf is the full manual for the Timers which is
an extention of Section 11 in dsPIC-datasheet.pdf)

3. dsPIC-C-compiler.pdf: dsPIC microcontroller C compiler manual.

4. LCD-datasheet.pdf: Datasheet of the LCD module from SparkFun. Includes basic concept
of operation and supported commands.

5. MCP4822-datasheet.pdf: Datasheet of the MCP4822 dual output Digital to Analog Con-
verter. Includes concept of operation, command registers and timing sequences.

6. MPLab-IDE.pdf: manual for MPLab IDE.

2 Introduction

A significant portion of CS 454/654 is laboratory work. This lab manual is designed to supplement
the course lectures with the detailed information and references required to carry out the lab
assignments. Sections 3.3 and 4 discuss the dsPIC33 microprocessor and the Amazing Ball System.
Section 6 talks about Linux programming and the USB-DAQ device that will be used in the course.

3 Microchip dsPIC Microcontroller (dsPIC33FJ256MC710)

dsPIC33F (Figure 1) is 16-bit microcontroller using a modified Harvard architecture. The following
table summarizes some key parameters of dsPIC33F.

Parameter Name Value

Architecture 16-bit

CPU Speed (MIPS) 40

Program Memory (KB) 256

RAM Bytes 30,720

I/O Pins 85

Pin Count 100

Digital Communication Peripherals | 2-UART, 2-SPI, 2-12C
Analog Peripherals 2-A /D 32x12-bit at 500(ksps)
Timers 9 x 16-bit 4 x 32-bit
CAN 2 ECAN

16-bit PWM resolutions 16

DMA 8

3.1 Microcontroller Programming Techniques

In this course all programming for the microcontroller will be done in C on the Microchip MPLab
IDE and compiled with an dsPIC cross-compiler.

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

o
o
~ © =
wER8I 2
iy poEE ESEEED
T e Cxd9385E2 2023CSamuoasxs
28d,u.2200888E B555525885
™ o < R 2 52 22 29 5 =X
SSSPSTSE8SEEEE g3R5 8825308
T EArPRRaAAZZO0G0ESB88880C888
O O®WMN~O©W S OO —
E (o> B e) BN o)l R« Be) B o) JNe)]
RG15 1 Vss
DD 2 PGEC2/SOSCOM1CK/CNO/RC14
PWM3H/RES 3 PGED2/SOSCI/CN1/RC13
PWM4L/RES [| 4 OC1/RDO
PWM4H/RET 5 IC4/RD11
AN16/T2CK/T7CK/RC1 <] IC3/RD10
AN17/T3CK/T6CK/RC2 7 IC2/RD9
AN18/T4CK/TICK/RC3 8 IC1/RD8
AN19/T5CK/T8CK/RC4 <] INT4/RA15
SCK2/CN8/RG6 10 INT3/RA14
SDI2/CNS/RGT 1" Vss
SDO2/CN10/RG8 12 dsPIC33FJ64MC710 OSC2/CLKO/RC15
MCLR 13 dsPIC33FJ128MCT710 OSC1/CLKINRC12
sszentiRoe I 14 dsPIC33FJ256MC710 Voo
Vss 15 TDO/RAS
VDD 16 TDI/RA4
TMS/RAC [17 SDA2/RA3
AN20/FLTA/INT1/RE8 18 SCL2/RA2
AN21/FLTB/INT2/RES 19 SCL1/RG2
ANS/QEB/CNT/RBS 20 SDA1RG3
AN4/QEA/CNG/RB4 21 SCK1/INTO/RF6
AN3/INDX/CN5/RB3 22 SDI/RF7
AN2/SS1/CN4/RB2 23 SDO1/RF8
PGECIAN1/CN3RB1 [| 24 U1RX/RF2
PGED3/ANO/ICN2/RBO [25 UITX/RE3
O MN~WOMO ~ N T W O~
K(\I NN ANOOOOOOOOOM
O~ OO O WO O «—~ UWO—MNNMSLW W A=<t ws wn
oo m — OV omoMn > N - = — — — O 0O ~— v L WL
Bz ZCERE S ERRRR SR REE
LZhi ZzZ2¢= SPp@esssa Sz 2
Ssgu <<=z = FRlb=ZZZ = 286586
25 g < <€ Nl << <O OO0 R R
Sw == @ IR S
Y =} ‘S‘E 855
2 3 515
Q = G 8
o =z =~ =

Figure 1: dsPIC33f Microprocessor

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

3.1.1 Data Types

When programming for a microcontroller with limited memory and CPU speed, it is often beneficial
to carefully choose the size and signedness of integer data types. Use of int, long, char, etc. can
be troublesome since the size and/or signedness of those types is machine dependent.

Using the smallest integer required for a particular task has two payoffs. First, it obviously
takes up less memory. Second, the dsPIC33F microcontroller can only operate on 16-bit values in
hardware. Operations (arithmetic, etc.) on larger values require additional assembly instructions,
which take longer to execute.

Unless signed values are required for arithmetic, the use of unsigned integers is encouraged.
This is because performing some bitwise operations on signed types can cause unexpected side
effects. For example, when right shifting a negative value, sign extension will fill in 1s instead of
Os to maintain the result’s negativeness.

The following list shows some useful data types defined in labs/include/types.h.

uint8_t 8-bit unsigned integer
uintl6_t 16-bit unsigned integer
uint32_t 32-bit unsigned integer
int8.t 8-bit signed integer
int16._t 16-bit signed integer
int32.t 32-bit signed integer
float 32-bit floating point value
double! 32-bit floating point value

long double 64-bit floating point value

When declaring a global variable that will be accessed within an interrupt service routine, the
volatile keyword should be used. For example, volatile uint8_t var rather than uint8_t var.
This tells the compiler not to make any assumptions about the variable’s value.

3.1.2 Specifying Hexadecimal Constants

In addition to specifying numeric constants in decimal notation, the C compiler allows hexadecimal
values to be provided. This is done by prefixing the value with 0x. For example, 0x8f is equivalent
to 143 (decimal) and 10001111 (binary). This feature is very useful because it is trivial to convert
hex values to binary and vice-versa.

3.1.3 Bitwise Operations

To effectively discuss bitwise manipulations, there must be a clear way to identify each bit within a
value. In CS-454/654, the following convention will be used. An n-bit value will have bits numbered
consecutively from 0 through n — 1. Bit 0 is the least significant bit in the value. Bit n — 1 is the
most significant bit.

1On the dsPIC architecture, double is equivalent to long double if ~fno-short-double is used.

CS 454/654

Lab Manual Spring 2019 (Revision: 2.5)

uint8_t x, y;

X
X
X
X
X

&

&_

Operator

Example

Bitwise AND
Bitwise OR

)y — &

<< Left shift
>> Right shift

Bitwise inverse (one’s compliment)

Bitwise XOR (exclusive OR)

~00101111 = 11010000

01010101 & 11110000 = 01010000
01010101 | 11110000 = 11110101
01010101 ~ 11110000 = 10100101
00101111 << 2 = 10111100
00101111 >> 2 = 00001011

Table 1: Bitwise operators available in C

Bitwise operations are used frequently when programming a microcontroller. Table 1 shows C
bitwise operators that can be used on all integer types. Do not confuse bitwise AND and OR with
the logical operators && and | |.
All of these operators can be used just like the arithmetic operators +, -, *, and /. For example,
all of the following are legal.

// x and y are 8-bit unsigned integers

y << 2; // Shift the value of y by 2 bits to the left
//and store the result in x
x | 0x01; // Set the least significant bit in x to 1
|= 0x01; // Set the least significant bit in x to 1
Oxfe; // Set the least significant bit in x to O
~0x01; // Set the least significant bit in x to O
~= 0x01; // Toggle the least significant bit in x

Bits and Masks: When writing code for dspic33f, the BV(i) macro can be used to generate a
mask that consists of all Os, except for bit i which is 1. Mathematically, BV(i) is equivalent to 2°.
Table 2 shows the result of BV(i) for the first eight values of i. Note that since dsPIC33F is a
16-bit processor, you can have up to BV(16).

Using BV (i) can make manipulating bits easier and less error prone. The following examples
show how to perform some common bit operations.

uint8_t x, y;

™

™

BV(4);
“BV(4);
BV(4);

BV(2) | BV(4) | BV(5);
“(BV(2) | BV(4) | BV(5));
BV(2) | BV(4) | BV(5);

//

//
//
//

//
//
//

x and y are 8-bit unsigned integers

Set bit 4 in x to 1
Set bit 4 in x to O
Toggle bit 4 in x

Set bits 2, 4, and 5 in x to 1
Set bits 2, 4, and 5 in x to O
Toggle bits 2, 4, and 5 in x

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Macro Binary Hexadecimal Decimal

BV(0) 00000001 0x01 20 =1
BV(1) 00000010 0x02 2l =2
BV(2) 00000100 0x04 22 =4
BV(3) 00001000 0x08 23 =18
BV(4) 00010000 0x10 24 =16
BV(5) 00100000 0x20 2% =32
BV(6) 01000000 0x40 26 = 64
BV(7) 10000000 0x80 27 =128

Table 2: Evaluation of BV(i) for eight values of i

// The following two lines work together to "copy" bit 3 from y to bit 6 of x
x &= “BV(6); // This line sets bit 6 in x to O
x |= (y & BV(3)) >> 3 << 6; // This line picks out bit 3 from y,

// "moves" it to bit 6 with two shifts,

// and then ORs the result into x

Direct bit access: Beside bitwise operations, C language also provides a method for defining and
accessing fields directly. Using this method, bitwise operators are not needed as bit members can
be accessed the same as struct members. An example using a struct follows:

struct reg {
unsigned int bitO 1 1;
unsigned int bitl_4 : 4;
unsigned int bitb5_7 : 3;
s

You can have direct access to different bits of a varibale as follows:

struct reg regh;
reghA.bit0=1;
regh.bitl_4=16;
Two macros CLEARBIT(BIT) and SETBIT(BIT) provided in labs/include/types.h can be used to
set the value of BIT to 0 and 1, respectively.
3.1.4 Microcontroller Registers

The dsPIC33f microcontroller’s many features are controlled through the use of 16-bit I/O registers
These registers are memory mapped into the data address space. A full list of available I/O registers
can be found in the dsPIC data sheet (dsPIC-datasheet.pdf).

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Each register can be read and written in C as though it were an 16-bit variable. In most cases,
p33Fxxxx.h has macros defining each I/O register and each set of bits in a I/O register by name.
Each register macro has the format of MODnREGm and each set of bits in a register has the format
of MODNnREGmbits.FUNC where:

e MODn refers to the module MOD number n - eg. AD1 refers to ADC 1, T3 refers to Timer 3.

e REGm refers to the register REG number m of module MOD - eg. AD1CON1 refers to Control
register 1 of ADC 1.

e FUNC refers to a set of function bits in the register - eg. AD1CON1bits. ADON refers to the
Operating Mode bit in Control register 1 of ADC 1.

The following code will turn ADC 1 on:

#include <p33Fxxxx.h>

// Set the ADON bit in the ADI1CON1 register to 1
SETBIT(AD1CON1bits.ADON) ;

3.2 Inputs/Outputs

All of the device pins (except VDD, VSS, MCLR and 0SC1/CLKIN) are shared between the peripherals
and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise
immunity. There are 7 I/O ports denoted by letters from A to G

The general purpose I/O ports allow the dsPIC33F to monitor and control other devices. Most
I/0 pins are multiplexed with alternate function(s). The multiplexing will depend on the peripheral
features on the device variant. In general, when a peripheral is functioning, that pin may not be
used as a general purpose 1/O pin.

All port pins have three main registers directly associated with their operation as digital I1/0:
TRIS, PORT, LAT. The data direction register TRIS determines whether the pin is an input or an
output. If the data direction bit is a 1, then the pin is an input. All port pins are defined as inputs
after a Reset.

Data on an I/O pin is accessed via a PORT register. A read of the PORT register reads the value
of the I/O pin, while a write to the PORT register writes the value to the port.

The LAT registers are not important in CS-454/654 labs. If you are interested in knowing more
about them, please read the dspic manual.

Note that p33Fxxxx.h has macros representing bits, which belong to each I/O pin, on the
above-mentioned registers. For example, to access the TRIS and PORT bits of I/O pin 6 on port
D, we can use TRISDbits.TRISD6 and PORTDbits.PORTD6, respectively.

The following example code sets up the I/O pin D6 to be an output pin and writes 1 to its.

CLEARBIT(TRISDbits.TRISD6) ;
SETBIT(PORTDbits.PORTD6) ;

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

3.3 Interrupts

The following steps must be taken in order to enable an interrupt (see Chapter 7 of dsPIC-
datasheet.pdf for more details).

1. Select the user-assigned priority level for the interrupt source by writing the control bits in the
appropriate IPCx Control register. There are 8 priority levels with 7 to be the highest one.
The CPU will handle the interrupt with the highest priority among all pending interrupts first.
The interrupts with the same priority level will be handed in the order of their interrupt vector
numbers. In the CS-454/654 labs, you can set every interrupts to priority level 1 (interrupts
with level 0 will be disabled).

2. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx Status
register.

3. Enable the interrupt source by setting the interrupt enable control bit associated with the
source in the appropriate IECx Control register.

Note that in the CS-454/654 labs you do not have to work with the nested interrupts and the
associated control bits can be left at the default values.
The following example shows code to enable interrupt of Timer 1.

IPCObits.T1IP
IFSObits.T1IF
IECObits.T1IE

0x01; // Set Timerl Interrupt Priority Level
0; // Clear Timerl Interrupt Flag
1; // Enable Timerl interrupt

The following section will describe how to connect an interrupt service routine with an interrupt.

3.3.1 Interrupt Service Routines

dsPIC33F C library provides the following macro to define ISR functions:
void __attribute_((__interrupt_)) PrimaryName(void)
where PrimaryName is the predefined name of the interrupt you want the ISR to connect with.

The following table shows all of the interrupts, which will be used (or may be used) in the CS-
454/654 labs, and their associated PrimaryName?.

2See Section 8 of dsPIC-C-compiler.pdf for more details

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Interrupt Number | Primary Name Function

2 _OClInterrupt OC1 Output compare 1
3 _Tllnterrupt TMR1 Timer 1 expired
6 _OC2Interrupt 0OC2 Output compare 2
7 _T2Interrupt TMR2 Timer 2 expired
8 _T3Interrupt TMR3 Timer 3 expired

11 _UlRXInterrupt | UART1RX Uart 1 Receiver

12 _UlTXInterrupt | UART1TX Uart 1 Transmitter
13 _ADCl1Interrupt | ADC 1 convert completed

20 INT1Interrupt | INT1 External interrupt 1

21 _ADC2Interrupt | ADC 2 convert completed

30 _U2RXInterrupt | UART2RX Uart 2 Receiver

31 _U2TXInterrupt | UART2TX Uart 2 Transmitter

Note that in dsPIC33F, you have clear the interrupt flag inside its ISR. Following is an example
of a simple interrupt service routine.

// Interrupt Service Routine triggered when Timerl’s counter matches the timer period.
// Interrupts will be globally disabled during the ISR’s execution.

void __attribute__((__interrupt__)) _TlInterrupt(void)

{

global_counter++; // Increment a global counter
IFSObits.T1IF = O; // clear the interrupt flag

3.4 Timers/Counters

The dsPIC33F device family offers several 16-bit Timer modules. With certain exceptions, all
16-bit timers have the same functional circuitry, and are classified into the following three types
according to their functional differences:

e Type A timer (Timerl)
e Type B timer (Timer2, Timer4, Timer6 and Timer)
e Type C timer (Timer3, Timer5, Timer7 and Timer9)

The Type A timer has access to an external 32kHz clock. The Type B and Type C timers can
be combined to form a 32-bit timer. Each Timer module is a 16-bit timer/counter consisting of the
following readable/writable registers:

e TMRx: 16-bit Timer Count register
e PRx: 16-bit Timer Period register associated with the timer

e TxCON: 16-bit Timer Control register associated with the timer

10

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Each Timer module also has these associated bits for interrupt control:

e Interrupt Enable Control bit (TxIE)
e Interrupt Flag Status bit (TxIF)

e Interrupt Priority Control bits (TxIP<2:0>)

The Timer module can operate in 4 different modes, in which we only use Timer mode. In Timer
mode, the input clock to the timer is derived from the internal clock (Fry = 12.8Mhz), divided by
a programmable prescaler (TxCONbits.TCKPS). When the timer is enabled, TMRx increments by one
on every rising edge of the input clock and the timer generates an interrupt when TMRx matches
the period set on PRx. After a period match, TMRx is automatically reset to 0.

The following code setup Timer 1 to raise an interrupt every 5ms (note that the system clock
operates at 12.8Mhz).

CLEARBIT(T1CONbits.TON) ; // Disable Timer

CLEARBIT(T1CONbits.TCS) ; // Select internal instruction cycle clock
CLEARBIT(T1CONbits.TGATE) ; // Disable Gated Timer mode

TMR1 = 0x00; // Clear timer register

T1CONbits.TCKPS = 0b10; // Select 1:64 Prescaler

PR1 = 1000; // Load the period value

IPCObits.T1IP = 0x01; // Set Timerl Interrupt Priority Level

CLEARBIT (IFSObits.T1IF); // Clear Timerl Interrupt Flag
SETBIT(IECObits.T1IE); // Enable Timerl interrupt
SETBIT(T1CONbits.TON) ; // Start Timer

For detailed description of Timers see Section 11 of the dsPIC33F manual.

Timerl has access to a 32kHz crystal that is helpful in timing longer intervals (>ms). To use
the 32kHz crystal you must use the macro below to enable it, then set Timerl to use an external
clock. This sample code will trigger an interrupt every 1 second.

//enable LPOSCEN

__builtin_write_0SCCONL(OSCCONL | 2);
T1CONbits.TON = 0; //Disable Timer

T1CONbits.TCS = 1; //Select external clock
T1CONbits.TSYNC = 0; //Disable Synchronization
T1CONbits.TCKPS = 0b00; //Select 1:1 Prescaler
TMR1 = 0x00; //Clear timer register

PR1 = 32767; //Load the period value
IPCObits.T1IP = 0x01; // Set Timerl Interrupt Priority Level
IFSObits.T1IF = 0; // Clear Timerl Interrupt Flag
IECObits.T1IE = 1;// Enable Timerl interrupt
T1CONbits.TON 1;// Start Timer

11

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

3.5 Output Compare

The module controls output pins (OCx) by comparing the value of a timer with the value of one
or two compare registers depending on the operating mode selected. The state of the output pins
change when the timer value matches the compare register value. The Output Compare module
can select either Timer2 or Timer3 for its time base. The Output Compare module generates either
a single output pulse or a sequence of output pulses, by changing the state of the output pin on the
compare match events. Each Output Compare module consists of the following readable/writable
registers:

e OCxR: 16-bit Output Compare register
e OCxRS: 16-bit Secondary Output Compare register
e OCxCON: 16-bit control register associated with the Output Compare

Output Compare Operations: The Output Compare has 7 operating modes of which "PWM
mode without fault protection” will be used in CS-454/654 labs. Figure 2 illustrates the output
compare operation in this mode. It works as follows:

e When the PWM mode is enabled, the OCx pin is:

— Driven high if the OCxR register value is non-zero (refer to Case 1 in Figure 2)

— Driven low if the OCxR register value is zero (refer to Case 2 in Figure 2)

e When a selected timer is enabled, it starts incrementing until it reaches the value in the
period register. The Compare Register (OCxR) value is constantly compared with the timer
value. When a match occurs, the OCx pin is driven low.

e On a timer rollover, the OCxRS value is loaded into the OCxR register and the OCx pin is:

— Driven high if the OCxR register value is non-zero

— Driven low if the OCxR register value is zero

Ouput Compare setup: The following steps must be taken to configure the Output Compare
module to control output pins OCx.

1. set the related timer with desired values
2. set OCx to be an output (see Section 3.2),
3. set the Output Compare module to a desired operating mode,

The following code sets up OC8 to work in PWM mode and be controlled by Timer 2. When
operating, the OC8 pin will be set to high for 5ms every 40ms.

12

CS 454/654

Lab Manual

Spring 2019 (Revision: 2.5)

CASE 1

CASEZ

=

TMRy

QCxR5

OCxR

OCx

OCx=R

OCx

| ra

Timer is reset on
L period match

- —

n

n

-

A
]
|
I
1
I
T
I
]
I
I
I

- — s -] = 4 = =

)

éfaé{aa

I
I
T
I
T
I
I
I
i
I
I
I
|
|
I
I

1

i
I
I
I

The duty cycle for first PWM cycle is written to OCxR register hefore enabling the PWM mode.
The duty cycle for second PWM cycle is written to OCxRS register.

PWM mode is enabled, OCx pin is driven low if OCxR is zero. OCx pin is driven high if OCxR is non-zero.
Timer is enabled and starts incrementing.
On a compare match, the OCx pin is driven low.

On timer rollover, OCxRS value is loaded into OCxR register. OCx pin is driven high if OCxR is zero. OCx pin is
driven low if OCxR is non-zero.
The duty cycle for third PWM cycle is written to the OCxRS register.

Figure 2: Output Compare Operation: PWM mode

13

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

PIN PORT ADC Single Ended Analog Input Connection

RB4 B ADC2CH4 Joystick’s x-axis
RB5 B ADC2CH5 Joystick’s y-axis
RB15 B ADCI1CH15 Balance Board’s x-axis
RB9 B ADC1CH9 Balance Board’s y-axis

Table 3: Microcontroller ADC analog input connections

//setup Timer 2

CLEARBIT(T2CONbits.TON) ; // Disable Timer

CLEARBIT(T2CONbits.TCS) ; // Select internal instruction cycle clock
CLEARBIT(T2CONbits.TGATE); // Disable Gated Timer mode

TMR2 = 0x00; // Clear timer register

T2CONbits.TCKPS = 0b10; // Select 1:64 Prescaler

CLEARBIT (IFSObits.T2IF); // Clear Timer2 interrupt status flag

CLEARBIT (IECObits.T2IE); // Disable Timer2 interrupt enable control bit
PR2 = 8000; // Set timer period 40ms:

// 8000= 40*10°-3 * 12.8%10°6 * 1/64

//setup 0C8
CLEARBIT(TRISDbits.TRISD7); /* Set 0C8 as output */

0C8R = 1000; /* Set the initial duty cycle to 5ms*/
0C8RS = 1000; /* Load OCRS: next pwm duty cycle */
0C8CON = 0x0006; /* Set 0C8: PWM, no fault check, Timer2 */

SETBIT(T2CONbits.TON); /* Turn Timer 2 on */

For detailed description of the Output Compare module see Section 13 of the dsPIC33F manual.
Other related sections are Section 11 and 10.

3.6 Analog to Digital Converter (ADC)

The dsPic microcontroller contains two analog to digital converters (ADC). They have an extremely
flexible confirguration, we suggest that you review Section 16 Analog-to-Digital Converter (ADC)
in the dsPic33f manual (DS70183A). Each converter can operate in 10-bit or 12-bit mode, the result
can be an integer or floating point, and can measure voltages between 0 and 3.3 volts. 32 analog
input pins (ANO0-31) are connected to the ADC1 and 16 analog input pins (ANO0-15) are conneced
to ADC2, the joystick and balance board connections are as shown in Table 3. Notice that RBx
(bit x of PORTB) and ANx (x analog input pin) share the same physical microcontroller PIN (as
mentioned in the table). See picture of microcontroller (Figure 1) for a complete listing of dsPic
pin overloading.

14

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

3.6.1 Initialization

The dsPic has four configuration registers, ADxCON1 - ADxCON4. Both ADC1 and ADC2 have
their own set of configuration registers so below we use ADx to refer generically in commands. In
your code it should read, for example AD1ICON1 or AD2CON1 depending on the appropriate ADC
you are configuring or reading. ADxCH123, and ADxCHO configure what analog input pins and
channels® are sampled; however, ADxCH123 is used for scanning (simultaneous) sampling, which is
unnecessary for the labs. ADxSSH and ADxSSL are used in scanning sampling and are also therefore
unnecessary. Each analog input pin can also function in digital mode so ADxPCFGL configures pins
as analog or digital for ANO-15. AD1PCFGH configures AN16-31 as analog or digital; note since
ADC?2 has no access to AN16-31, there is NO AD2PCFGH register. Each analog input pin must
also be set as an input in its appropriate TRISx register where x is the appropriate port (A, B, C,
etc.).
Therefore the following steps must be taken to configure the ADC for use in the lab.

1. make sure the ADC is disabled by clearing the ADxCON1 ADON bit.

2. Set the appropriate analog input pins to input using TRISx, where x is the appropriate port
(A, B, C, etc.), and then set the appropriate analog input pins to analog using the ADxPCFGL
for ANO-15 or ADxPCFGH for AN16-31.

3. set ADxCONL1 to configure 10 or 12 bit Operation Mode, Data Output Format, and Sample
Clock Source. We suggest using the appropriate bit mode, integer, and automatic conversion.

4. set ADxCON2 to configure scanning sampling. We suggest you set it to zero (i.e. no scanning
sampling).

5. set ADxCON3 to configure the Conversion Clock Source, Auto Sample Time Bits, and Auto
Conversion Clock Select. See following sample code and the ADC reference manual for proper
lab values.

6. set ADxCON4 to configure Number of DMA Buffer Locations per Analog Input. This by
default is set to one, so should not need to be modified for these labs.

7. Enable the ADC unit, using ADxCON1 by setting the ADDON bit.

The code below configures and enables ADC1, AN20 (PIN = RES) to 10 bit, integer, automatic
conversion mode, with no scanning.

//disable ADC

CLEARBIT(AD1CON1bits.ADON) ;

//initialize PIN

SETBIT(TRISEbits.TRISES) ; //set TRISE RE8 to input

3The ADC units support four channels for simultaneous sampling of up to 4 different analog input pins. This
feature is not used in CS-454/654 Lab, so only channel 0 will be used. Channel 0 can be used both by ADC1 and
ADC2.

15

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

CLEARBIT (AD1PCFGHbits.PCFG20) ; //set AD1 AN20 input pin as analog
//Configure AD1CON1

CLEARBIT(AD1CON1bits.AD12B) //set 10b Operation Mode
AD1CON1bits.FORM = 0; //set integer output

AD1CON1bits.SSRC = 0x7; //set automatic conversion
//Configure AD1CON2

AD1CON2 = 0; //not using scanning sampling

//Configure AD1CON3

CLEARBIT (AD1CON3bits.ADRC) ; //internal clock source
AD1CON3bits.SAMC = 0x1F; //sample-to-conversion clock = 31Tad
AD1CON3bits.ADCS = 0x2; //Tad = 3Tcy (Time cycles)

//Leave AD1CON4 at its default value

//enable ADC

SETBIT(AD1CON1bits.ADON) ;

3.6.2 Operation
The following steps must be taken to read the ADC.
1. set ADxCHSO to the proper analog input pin.
2. set the SAMP bit in the ADxCONL1 to start a sample.
3. wait on DONE bit in the ADxCONL1 to signal the sample and conversion are done.
4. clear DONE bit and retrieve the value from ADCxBUFO.

The code below will sample ADC1 AN20 with the above configuration:

AD1CHSObits.CHOSA = 0x014; //set ADC to Sample AN20 pin
SETBIT(AD1CON1bits.SAMP); //start to sample
while(!'AD1CON1bits.DONE) ; //wait for conversion to finish
CLEARBIT(AD1CON1bits.DONE) ; //MUST HAVE! clear conversion done bit
return ADC1BUFO; //return sample

3.7 UART

The dsPic has a two built-in USART (Universal Synchronous and Asynchronous serial Receiver
and Transmitter) channels that can be used for serial communication. Both Ul and U2 have their
own set of configuration registers so below we use Ux to refer generically in commands. In your
code it should read, for example UIMODE or U2MODE depending on the appropriate UART you
are configuring or reading. Each UART can be configured for interrupts as well using the IECy and
IFSy registers, where y is 0 for Ul and 1 for U2. So for Ul you would use IECO and IFSO. UART1
is connected to the FlexUI LCD, and UART?2 is connected to the FlexUI DB-9 RS-232 connector
for communication with the lab PC. Ul and U2 connections are as shown in Table 4. See Section
17 UART in the dsPic33f manual (DS70188C)for detailed information.

16

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

PIN PORT Interrupt Registers Connection

RF?2 F IEC0/IFS0 UART1 RX
RF3 F IECO0/IFS0 UART1 TX
RF4 F IEC1/IFS1 UART2 RX
RF5 F IEC1/IFS1 UART2 TX

Table 4: Microcontroller UART connections

3.7.1 Initialization

The following steps must be taken to configure the UART for use.

1.

2.

6.
7.

Stop the UART Port with register UxXMODE UARTEN bit.

Disable and Clear UART Interrupts on correspondent ICE and IFS registers. The registers
are ICEO and IFSO for UART1, and ICE1 and IFS1 for UART2.

. Set I/O Pins in the TRISF register.

. Configure UART speed by setting the baud rate in UxBRG register. Since CPU clock frequency

is 12.8Mhz, the following formula is used to calculate the value of UxBRG: UxBRG=800000 /
baud -1, where baud is the desired baudrate e.g. baud=115200. Note that, dsPIC33F allows
UART to run at higher baudrates by setting UxMODEbits.BRGH to 1. However in this lab,
this mode is not needed and UxMODEbits.BRGH should be set to 0.

. Configure the UART mode using the UxXMODE register.

Start the UART Port with register UXMODE UARTEN bit.

Configure Interrupts with the UxSTA register.

The following code intitializes UART1 to transmit and receive at the baudrate of 9600 with
disabled interrupts.

/* Stop UART port */
CLEARBIT(U1MODEbits.UARTEN); //Disable UART for configuration

/* Disable Interrupts */
TECObits.U1RXIE = O;
TECObits.U1TXIE = O;

/* Clear Interrupt flag bits */

IFSObits.U1RXIF = O;
IFSObits.U1TXIF = 0;

17

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

/* Set IO pins */
TRISFbits.TRISF2 = 1; //set as input UART1 RX pin
TRISFbits.TRISF3 = 0; //set as output UART1 TX pin

/* baud rate */

// use the following equation to compute the proper

// setting for a specific baud rate

UIMODEbits.BRGH = O; //Set low speed baud rate

U1BRG = (uint32_t)800000 / 9600 -1; //Set the baudrate to be at 9600

/* Operation settings and start port */

UIMODE = 0; // 8-bit, no parity and, 1 stop bit
U1MODEbits.RTSMD = O; //select simplex mode
U1MODEbits.UEN = O; //select simplex mode
U1MODE |= 0x00;

U1MODEbits.UARTEN = 1; //enable UART
U1STA = O;
U1STAbits.UTXEN = 1; //enable UART TX
3.7.2 Transmitting
The following steps must be taken to send data through the UART. Note that you need to first

enable transmitting mode in the UART module (see the previous section).

1. Wait on UTxBF bit in the UxSTA register.
2. Load the UxTXREG register with an 8 bit value.

3. Wait on TRMT bit in the UxSTA register.

The following code is used to transmit data on UART1.

while (U1STAbits.UTXBF);
U1TXREG = data;
while (!U1STAbits.TRMT) ;

3.7.3 Receiving

The heart of the receiver is the Receive (Serial) Shift (UxRSR) register. However, The UxRSR
register is not mapped in data memory, so it is not available to the user application. After sampling
the UxRX pin for the Stop bit, the received data in UxRSR is transferred to the receive FIFO (if
it is empty). The UART receiver has a 4-deep, 9-bit wide FIFO receive data buffer. UxRXREG is
a memory mapped register that provides access to the output of the FIFO. It is possible for four

18

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

words of data to be received and transferred to the FIFO and a fifth word to begin shifting to the
UxRSR register before a buffer overrun occurs.

UART RX can be enabled to operate in interrupt mode. Alternatively, the user can poll the
UxSTADbits. URXDA bit to check the contents of the receive FIFO buffer. The following steps must
be taken to read the receiving data from UART. Note that you first need to enable receiving mode
in the UART module (see the previous section).

1. Check if there is data overflow error (by checking UxSTAbits.OERR). You must clear this bit
if it has been set in order to receive new data.

2. Check if there is data in the buffer (by checking UxSTAbits. URXDA. If yes, then read the data
from UxRXREG.

The following code read the data from the buffer of UART1I.

if (U1STAbits.OERR) {
U1STAbits.OERR = 0;
}

if (U1STAbits.URXDA) {
*data = U1RXREG & OxOOFF;
}

4 Amazing Ball System (ABS)

The Amazing Ball System is a platform designed to give CS-454/654 students experience program-
ming an actual embedded system. The core of the system is a dsPIC33f microcontroller running
at 12.8Mhz. The system consits of three main circuit boards in a stacked configuration: FLEX
Light Base Board, FLEX Demo2 Daughter Board, and our custom designed FLEX-UI board. Each
board extends the capability of the FLEX Light Base Board.

At the core of the board is a dsPIC33 microcontroller running at 12.8 MHz. The selected
dsPIC33 is a modified Harvard archiecture with 256 Kbytes on-chip Flash and 30 Kbytes of Data
SRAM. The dsPIC33 also has two Analog-to-Digital hardware modules (24 channels with either
10-bit or 12-bit resolution), nine 16-bit timers, and two UART modules. With the two additional
circuit boards, the system also contains the following features.

4.1 Board Layout

As mentioned before the Amazing Ball System consits of three main circuit boards in a stacked
configuration: FLEX Light Base Board, FLEX Demo2 Daughter Board, and the custom designed
FLEX-UI board. Each board extends the capability of the FLEX Light Base Board.

The system run on 12V which is supplied to the FLEX-UI (with the main power switch) which
then supplies 1A of current to itself and 1A to the FLEX Light Base board via the jumper wires

19

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

| =
r Erika FLEX 3‘.;’:3 Plug-in Oscillating Plate
\ Egterpnse Multibus Modules

I Rsa85 &y ¥ 2
| :ggllﬂ:s.-_,.. "-‘? \ Spare Jumpers,
L W Links & Screws

Figure 3: Amazing Ball System

in the front. Both of these two boards have over-current fuse protection and their own voltage
regulators.

The FLEX Light Base board is mounted to the system’s base plate with the servo motors
and touch screen. It extends most of the I/O capability through two main headers CON5 and
CONG6 which is mounting point for the Demo2 Daughter board. Some of the I/O capability is then
extended to the FLEX-UI board via the Demo2 CONS8 and CON16 with ribbon cables.

4.2 FLEX Light Base Board

The dsPIC33 microcontroller and the power system for the FLEX Demo2 Daughter board are
located on this board along with the RJ45 connection for the programmer.

4.3 FLEX Demo2 Daughter Board

The FLEX Demo2 Daughter Board primarily provides communication capability with a CAN
tranceiver module, RS232 (UART') module and also has a power and control module for the touch
screen sensors and servo motors.

4.4 FLEX UI Custom Board

The primary purpose of the FLEX-UI board is provide an nice user interface to the system with
standard connections for power, joystick gameport and RS232-DE9 connection for serial communi-
cations. It also has the 5 LEDs, a dual-channel 12-bit DAC and 4 GPIO pins that can be used for
future labs.

20

CS 454/654 Lab Manual Spring 2019 (Rewvision

0 2.5)

power supply
IC02 - "5 _12v

® (. . ' ' e)

™

line voltage
egulator

Figure 4: FLEX Light Base Board

Figure 5: Demo2 Daughter Board

21

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

% 19 1 13 1 SN: 1.0
o oo/ 8888888888 18888888, - o I
i CON8 CON16 Uer 1.2__Jun 20811
coo o
] T
5 ° ‘ l
(o)
‘ 00O d
|
O =
‘ [a g
O ¢
. 1
-8
[e] g
oO 8
S 52 O
o o [o] o -
Oo < e DZ4 o°
09 O | ———— [] oo P
5 Y4 o
Oqi i’ 09 O
el
éy—w Cocc @y 83 e Bt @, 85y, UsbRc
iO@ g e . o O
o U R e o Td g n o o
. & - “ = - Y O o °(0000"
RLSET 2 LED1 LED2 LED3 LEDS
000/ . = =5 5 = 5l o 10000 ()
MORS1 Flex Ul - CS Embedded Systems Lab U of Illinois Urbana-Champaign

Figure 6: FLEX UI Custom Board

The LCD Screen (which uses UART1) is also mounted to the FLEX-UI board and is supplied
with an on-board 6V voltage regulator. The LEDs and associated MOSFET transistors are powered
from subsequent dual channel voltage regulator at 5V. The supporting analog Joystick hardware is
supplied at 3.3V which is required for the dsPIC33 I/O pins (3.6V max).

The final item provided on the FLEX-UI board is the reset button located at the lower left
corner. When pressed, this grounds the MCLR signal of the dsPIC33 and resets the microcontroller
only. The associated LED is an indicator of the reset condition.

4.5 Light Emitting Diodes (LEDs)

There are five LEDs on the FLEX UI board that can be controlled by the microcontroller. These
are connected to 5 MOSFET Transistors that are controlled by the digital input/output (I/O) port
A: pins 0, 4, 5, 9, and 10. Primarily the function of these pins are controlled by the TRISA register
(stands for tri-state) which determines whether each pin associated with the I/O port is an input
or an output and the PORTA register which sets the value of the pin, 1 for HIGH and 0 for LOW.
The following macros are defined in led.h to make controlling the LEDs easier.

// Tri-state registers

#define LEDTRIS TRISA
#define LED1_TRIS TRISAbits.TRISA4
#define LED2_TRIS TRISAbits.TRISAS
#define LED3_TRIS TRISAbits.TRISA9
#define LED4_TRIS TRISAbits.TRISA10

22

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

#define LEDS5_TRIS TRISAbits.TRISAO

// Port registers using predefined structs

#define LEDPORT PORTA

#define LED1_PORT PORTAbits.RA4
#define LED2_PORT PORTAbits.RAS
#define LED3_PORT PORTAbits.RA9
#define LED4_PORT PORTAbits.RA10
#define LED5_PORT PORTAbits.RAO

// LEDPORT Bitwise definitions

#define LED1 4
#define LED2 5
#define LED3 9
#define LED4 10
#define LEDS 0

If the TRIS bit for an I/O pin is a ’0’, then the pin is configured for an output. Hence, if pin 4
of TRISA register is set to 0 and pin 4 of PORTA register is set to 1, then LED1 will light.

Special care must be taken with dsPIC33F 1/O ports; in fact, one instruction cycle is required
between a port direction change or port write operation and a read operation of the same 1/0 port,
so you may need to insert a Nop() between consecutive manipulations of PORTA. Therefore the
code below is incorrect.

CLEARBIT(LED1_TRIS); //set Pin to Output
CLEARBIT(LED2_TRIS); //set Pin to Output
SETBIT(LED1_TRIS); //Turn on LED1
SETBIT(LED2_TRIS); //Turn on LED2

To correct the code typically an instruction would be inserted, such as the NOP or Nop() macro
function call (alias to an assembly level instruction). See the dsPIC33F datasheet section 11.4 for
more details. The led.h file has included some macros that account for the NOP. As a result, the
following code examples can be used.

CLEARLED(LED1_TRIS); // set Pin to Output
CLEARLED(LED2_TRIS); // set Pin to Output
CLEARLED (LED3_TRIS); // set Pin to Output
CLEARLED(LED4_TRIS); // set Pin to Output
CLEARLED (LED5_TRIS); // set Pin to Output

/* Using macros defined in \path{labs/include/types.h} */
SETLED (LED1_PORT) ; // Turn on LED1

CLEARLED (LED1_PORT) ; // Turn off LED1

TOGGLELED (LED1_PORT); // Toggle LED1(BIT "= 1)

23

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

If you want to use these macro functions as part of a conditional statement, you must ensure
that you also surround them with brackets since the macro is a multiline definition (see the below
example):

if (n == 5)

{SETLED(LED5_PORT) ;} // correct use of brackets
else if (n == 3)

SETLED(LED1_PORT); // incorrect\, needs brackets and will not compile
else

CLEARLED(LED1_PORT); // compiles, but sematically incorrect

Alternately you can also control the LEDs using bitwise operations (make sure to use NOP
instructions where appropriate):

/* Setting individual pins */

LED2_PORT = 1; // Turn on LED2
NopQ) ;

LED2_PORT = 0; // Turn off LED2
NopQ) ;

LED2_PORT "= 1; // Toggle LED2
//Nop(Q);

//uncomment Nop() if performing additonal PORTA (LED) manipulation

You can also control the LEDs using following bitwise operations:

/* Setting pins using bitwise operations*/

LEDPORT "= 1<<LED1; Nop(); // Toggle LED1 by setting 1 and shifting to bit postion
LEDPORT |= (1<<LED2) | (1<<LED3); Nop(); // Turn on LED2 and LED3

LEDPORT &= ~((1<<LED3) | (1<<LED4)); // Turn off LED3 and LED4

//Nop Q) ;

//uncomment Nop() if performing additonal LEDPORT manipulation

4.6 Joystick
4.6.1 Joystick Analog Axes

See section 3.6 for configuration of analog sampling of the X and Y axis. Due to the construction of
the joysticks and the FlexUI, the voltage range seen on each analog axis will differ. If an accurate
position is required, obtain calibration data (such as the x-axis and y-axis voltages at the upper
left and lower right corners) and scale future samples accordingly.

24

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

4.6.2 Joystick Buttons

One standard game port joystick may be connected to the Flex Ul board at once. The joystick has
two active buttons. The trigger is button #1 and one of the top thumb buttons is #2. These pins
are normally held at a high voltage by an external pull-up resistor. When a button is pressed, its
pin gets shorted to ground. Therefore, if bit PORTDbits.RD10 is a 1, the joystick’s button #2 is
not pressed, and if bit PORTEDbits.RE8 is a 0, then the joystick’s button #1 is pressed.

The following Registers are necessary to configure the buttons.

AD1PCFGHbits.PCFG20 //ADC1 Port Configuration Register High Channel 20
TRISEbits.TRISE8 //PortE Pin 8 I/0 Configuration
PORTEbits.RE8 //PortE Pin 8 value
IEC1bits.INT1IE //Interrupt Enable Control Register 1

//External Interrupt 1 Enable bit
IPC5bits.INT1IP //Interrupt Priority Control Register 5

//External Interrupt 1 Priority bits
IFS1bits.INT1IF //Interrupt Flag Status Register 1
INTCON2bits.INT1EP /*Interrupt Control Register 2 External

Interrupt 1 Edge Detect Polarity Select bitx/

TRISDbits.TRISD10 //PortD Pin 10 I/0 Configuration
PORTDbits.RD10 //PortD Pin 10 value

Button #2 is located on PORTD PIN10 configure it as you would a standard I/O pin as described
in section 3.2. The state can be read from PORTDbits.RD10.

Button #1 is located on PORTE PIN8 and is shared with ADC1CH20 so AD1PCFGHbits.PCFG20
must be set to '1’ to place it in digital mode. Set TRISEbits. TRISE8 to 1 to enable the reading of
button#1 state from PORTEDbits.RE8. In addition to reading the buttons as described above, button
#1 the joystick trigger is connected to a pin which can be set up to generate external interrupt
requests. See section 3.3 for more information on how to enable and configure the interrupt. A
special note that since the button is active high set INTCON2bits.INT1EP to ’1’ for falling edge
triggering of the interrupt.

As a result, code such as the following examples can be used.

if (PORTEbits.RE8 == 0)
{
// The statement is true when joystick A’s button #1 (trigger) is pressed.

// Spin until joystick B’s button #1 (trigger) is pressed.
while (PORTEbits.RE8 == 1);
// Set x equal to 0x01 if joystick A’s button #2 (thumb) is pressed

//and 0x00 otherwise.
uint8_t x = ~(PORTDbits.RD10);

25

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Voltage l— Button Pressed
A

5
Logic
Threshold
: R Time
Digital o |
Value RN s
A | | | | |
. Lo !
0 ~ Time

Figure 7: Mechanical switch contact bounce

// The first line here turns off LED2. The second line then turns on
// LED2 only if joystick A’s button #1 (trigger) is currently pressed.
LEDPORT &= ~(1<<LED2);

LEDPORT |= ~(PORTEbits.RE8) << LED2;

4.6.3 Button Debouncing

Mechanical switches, such as the joystick buttons, can suffer from an issue known as contact bounce.
The problem results because, immediately after the button is pressed or released, the voltage across
the switch can fluctuate for a brief period of time. As illustrated in Figure 7, these changes in voltage
often cross the logic threshold, thereby causing the digital input bit to oscillate between 1 and O.
The bouncing only lasts for several milliseconds, but this is long enough to be noticeable on the
microcontroller.

The act of overcoming the contact bounce problem is called debouncing. One approach is to
implement a low pass filter in hardware (capacitors and resistors or other). Although all I/O input
ports of the dsPIC33F feature Schmitt Trigger inputs for improved noise immunity and eliminate
high frequency bouncing (essentially forcing the noisy signal to logic HIGH or logic LOW) they do
not account for the oscillating digital results. So debouncing (or filtering) must be done in software.
A simple algorithm is to check the digital value periodically. Only when the previous T consecutive
samples are 0 is the button considered pressed. Similarly, only when the previous T consecutive
samples are 1 is the button considered released. An appropriate value for the threshold T can be

26

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

determined experimentally.

4.7 LCD module

The LCD module used on the FlexUI board contains 128x64 pixels. When used for text, the display
can hold 8 rows of 21 ASCII characters each. Low level communication with controller chips on the
LCD module is not complicated, but some basic code to perform primary functions is provided in
led.c. Students interested in advanced features, or low level LCD details should review led.h, the
led.c code, as well as the LCD-09351 data sheets.

The LCD is connected to UART1 on the dsPic for the purpose of connecting to the dsPic for
serial communication. Using the LCD for text output is relatively straightforward. Include led.h
call the function lcd intialize function.

The following functions may then be used to control the display. Additional functions are listed
in led.h.

void lcd_initialize(); //Initialize the LCD UART connection.

void lcd_clear(); //Clear the entire LCD. (Turn off all pixels.)

void lcd_clear_row(uint8 row); //Clear the specified row on the LCD.

//Valid values for row are O through 7.

void lcd_locate(uint8 column, uint8 row); //Move the cursor to location
//(column, row). Valid values
//for row are O through 7.
//Valid values for column are
//0 through 20.

A note on the use of stdio.h. The firmware of the microcontroller that controls the LCD interprets
the newline (n) character different than most terminal programs. It will be interpreted as a strict
line feed, moving the cursor to the next row, but the same column. You should instead use a
carriage return (r) which is will result in both a new line and a carriage return to the first column.
Also the dsPic does not flush its UART buffer unless a newline (n) or carriage return (r) is present in
a printf or with use of the fllush() command. There is an additional macro that will automatically
perform the flush for you. This method requires the use of the lcd locate command to move the
cursor, which gives you greater control over where the cursor is.

void lcd_printf(const char * format, ...); /*functions as printf
with an fflush() afterwards, use lcd_locate to go to a newline. */

the following statements are equivalent to each other

//using printf with fflush()

printf("Hello World!"); //print to buffer
fflush(); //flush to LCD
lcd_locate(0,1); //carriage return

//using lcd_printf

27

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Figure 8: 4-wire Touchscreen

lcd_printf("Hello World!"); //print to buffer and flush to LCD
lcd_locate(0,1); //carriage return

//using printf with newline
printf ("Hello World! \n"); //print to buffer flush to LCD and newline
lcd_locate(0,1); //carriage return

//using lcd_printf with carriage return
lcd_printf ("Hellow World! \r"); //print to buffer flush to LCD and carriage return

Read section 4.13 STDIO.H INPUT AND OUTPUT in the 16-BIT LANGUAGE TOOLS LI-
BRARIES (DS51456C) reference manual for the permitted printf() format strings. Note that the
language tool libraries are 16 bit, and therefore printing values larger than 16 bits is not supported
by the libraries.

Finally, note that characters written past the right edge of the display will wrap around to the
following line. Characters written past the bottom line of the display will wrap around to the top
line.

4.8 Touchscreen

The Amazing Ball System (ABS) has a four-wire touch screen. The touchscreen has two homo-
geneous resistive layers. The point of contact divides each layer in a series of resistor network
with two resistors (see Figure 8). By measuring the voltage at this point the user gets information
about the position of the contact point orthogonal to the voltage gradient. To get a complete set of
coordinates, the voltage gradient must be applied once in vertical and then in horizontal direction:

28

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Bottom (X+) | Top (X-) | Right (Y+) | Left (Y-)
Standby Hi-Z Hi-Z Hi-Z GND
Read X-coordinate Vdd GRN Hi-Z (AN15) Hi-Z
Read Y-coordinate Hi-Z (AN9) Hi-Z Vdd GND

Table 5: Connections while measuring the touchscreen’s coordinates

first a supply voltage must be applied to one layer and a measurement of the voltage across the
other layer is performed, next the supply is instead connected to the other layer and the opposite
layer voltage is measured. For example, to measure the X-coordinate, the user must apply Vdd
to the bottom, GRN to the top and connect the left to high impedance (Hi-Z), and measure the
signal from the right. Please refer to Table 5 for connections while measuring the coordinates.

In the ABS, the measuring pin of the touchscreen’s X-coordinate is connected to ADC pin
AN15 and that of touchscreen’s Y-coordinate is connected to ADC pin AN9. There is also a circuit
designed to control the touchscreen measurement. This circuit is controlled through three I/O pins
E1l, E2, E3. For example, setting E1=1, E2=1, E3=0 puts touchscreen into the standby mode.
Please refer to Table 6 for the details on how these pins work.

The following example code will enable the touchscreen X-coordinate pin to connect to the
ADC

//set up the I/0 pins E1, E2, E3 to be output pins
CLEARBIT(TRISEbits.TRISE1); //I/0 pin set to output
CLEARBIT(TRISEbits.TRISE2); //I/0 pin set to output
CLEARBIT(TRISEbits.TRISE3); //I/0 pin set to output

//set up the I/0 pins E1, E2, E3 so that the touchscreen X-coordinate pin
//connects to the ADC

CLEARBIT(PORTEbits.RE1);

SETBIT(PORTEbits.RE2) ;

SETBIT(PORTEbits.RE3) ;

Note that it takes about 10ms for the touchscreen output signal to be stable when the touch-
screen is switched from one operation mode to another.

4.9 Servos

The Amazing Ball System (ABS) has two servos: one for X dimension and one for Y dimension.
Each servo is controlled by three wires: ground (black), power (red), and command (yellow). Servos
are commanded through ”Pulse Width Modulation,” or PWM), signals sent through the command
wire. Essentially, the width of a pulse defines the position. For the servos in this lab, sending a
0.9ms pulse to the servo, tells the servo that the desired position is 0 degrees, while sending 1.5ms

29

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Bottom (X+) | Top (X-) | Right (Y+) | Left (Y-)
El=1 Hi-Z Hi-Z No effect No effect
E1=0 Vdd GRN No effect No effect
E2=1 No effect No effect Hi-Z No effect
E2=0 No effect No effect Vvdd No effect
E3=1 No effect No effect No effect Hi-Z
E3=0 No effect No effect No effect GRN

Table 6: The effect of I/O pin E1, E2, and E3

Figure 9: Servo

and 2.1ms pulse will render 90 degree and 180 degree positions, respectively (see Figure 10). In
order for the servo to hold this position, the command must be sent at about 50Hz, or every 20ms.
If command pulse is longer than 2.1ms or shorter than 0.9ms, the servo would attempt to overdrive
(and possibly damage) itself.

In the ABS, the command wires of X and Y servo are connected to Output Compare pin OC8
and OCT7, respectively, through servo controllers. Notice that the servo controllers invert the signal
from OC8 and OC7, so when the Output Compare pin is 1 the servo command signal is 0 and vice-
versa. As a consequence, to correctly drive the servo motors, the Output Compare module needs
to generate an ‘inverted’ signal as shown in Figure 11 in order to output a servo command signal
as shown in Figure 10. Finally, to control the servos, users will have to setup OC8 and OC7 to
work in PWM mode. See Section 3.5 for references on how the Output Compare works.

4.10 Serial Ports

The FlexUI has a single DB-9 RS-232 port connected to UART2 on the dsPic for the purpose of
connecting to the computer for serial communication. See the Section 3.7 for information on how
to configure the UART on the dsPic.

4.11 Digital to Analog Converter (DAC)

The FLEX UI board contains a Microchip MCP4822 dual-voltage output digital to analog converter
chip (labeled U3). These chips have 12 bits of resolution with the ideal output range of (a) 0.0V
to 2.048V when gain setting = 1x; or (b) 0.0V to 4.096V when gain setting = 2x. The MCP4822

30

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

0 degree I_l

0.9ms
20ms
90 degree |
1.5ms
20ms
180 degree |
2.1ms
20ms

Figure 10: Servo Control Timing

0 degree I_I |

0.9ms

20ms

90 degree

1.5ms

20ms

180 degree | |

2.1ms

20ms

Figure 11: Output Compare Output Timing

31

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Microcontroller DAC Description
PORTD bit 8 CS Chip Select
PORTB bit 11 ~ SCK Serial Clock Input
PORTB bit 10 SDI Serial Data Input
PORTB bit 13 LDAC Latch DAC Input

Table 7: Digital to analog converter chip connections to the microcontroller

FLEX UI Jumper J3 MCP4822 DAC Functions

Pin 5 VOUTA
Pin 6 GND
Pin 7 VOUTB
Pin 8 GND

Table 8: MCP4822 DAC Output Pin Functions

is controlled through a Serial Peripheral Interface (SPI). Table 7 shows how the DAC is wired to
the microcontroller.

Several of I/O pins connected to the DAC are also internally connected to the microcontroller’s
ADC modules (ADC1 and ADC2) which is denoted by ANx. This includes SDI (RB10/AN10),
SCK (RB11/AN11) and LDAC (RB13/AN13). In order to use these pins as digital I/O, these must
be configured as digital for both ADC registers by setting the ADxPCFGL registers for both ADC
modules. The following example shows code to configure the SCK pin:

#define DSCK_AD1 AD1PCFGLbits.PCFG11
#define DSCK_AD2 AD2PCFGLbits.PCFG11
#define DSCK_TRIS TRISBbits.TRISB11

SETBIT(DSCK_AD1); // set Pin to Digital
SETBIT(DSCK_AD2); // set Pin to Digital
CLEARBIT(DSCK_TRIS); // set Pin to Output

The output of each DAC channel is connected to the J3 header on the right side of the FLEX
UI board, pins 5 and 7 (see table). An oscilloscope or volt meter may be connected to these posts
to verify the output voltage. For more wiring details see the FLEX UI schematic.

4.11.1 Concept of Operation

Commands and data are sent to the device via the SDI pin, with data being clocked-in on the
rising edge of SCK. The communications are unidirectional and, thus, data cannot be read out of
the MCP4822 devices. The CS pin must be held low for the duration of a write command. The
write command consists of 16 bits and is used to configure the DACs control and data latches. Bit

32

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

FLEX UI Jumper J3 Microcontroller Functions

Pin 1 RB3/AN3/INDX/CN5
Pin 2 RG9/CN11

Pin 3 RA1/TCK

Pin 4 RB12/AN12

Table 9: GPIO connections to the microcontroller

5J3 l_e‘
2000,

Figure 12: Jumper J3 of the Flex UI board (lower right corner of board)

15 of the command specifes the DAC channel and which input latch register to load, DACA and
DACB.

Once the desire input latch register has been programmed, the LDAC (latch DAC synchroniza-
tion input) pin is used to transfer its value to the corresponding DAC registers (output latches,
VOUT). When this pin is low, both VOUTA and VOUTB are updated at the same time with their
input register contents.

Section 5 of the MCP4822 data sheet provides more detailed instructions and timing information
for operating the chips.

4.12 General Purpose I/0 (GPIO)

The FLEX UI board extends four General Purpose In/Out (GPIO) pins to jumper J3. Table 9
shows which pins are connected to the microcontroller. For more details on using the GPIO pins,
see the dsPIC33F datasheet

4.12.1 I/0O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read
operation of the same port. Typically, this instruction would be a NOP or Nop() macro function
call (alias to an assembly level instruction).

5 Microchip MPLab IDE

In the CS-454/654 labs, we use MPLab Integrated Developement Environment (IDE) to write code
and program the dsPIC33F processor. MPLab-IDE.pdf has a full manual of the IDE. You only
need to read Chapter 2 of this manual. Most of the steps need to be taken to create a project

33

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

has been done for you in the provided project template. The project template can be found in
cs454 /labs/template/.

When using MPLab, you should only use the Debug mode when it is absolutely necessary, e.g
when you want to see the content of registers etc.. Most of the time you should use the Release
mode and use LCD and LEDs for debugging. The Release mode runs much faster than the Debug
mode.

6 Linux

Linux programming will be used to explore the basics of signals, timers, inter-process and intra-
process communication. Interfacing with the PCI-DAS1602/12 ADC/DAC card will also be per-
formed.

6.1 Reference Documents

When coding for Linux, most documentation will come in the form of man pages. These pages
are available for virtually all library functions and system calls. They describe each function’s
arguments, operation, return value, and any required header files.

To get the man page on a C function called name, execute: man name

Occasionally an executable program or shell command will have the same name as a C function
(printf, for example). In this case, tell man to only search sections 2, 3, and 3p by executing:
man 2 3 3p printf

Once in a man page, the arrow keys scroll, /blah searches for the text blah, n repeats the last
search, and q quits.

Details on the PCI-DAS1602/12 Analog & Digital I/O Board can be found in the following
manual: pci-das1602-12_register_map.pdf
http://www.mccdaq.com/registermaps/RegMapPCI-DAS1602-12.pdf

6.2 Return Value Checking

When invoking a library function or system call, it is good practice to check the return value for
errors. Many functions return 0 upon success and -1 to indicate an error. However, this is not
always the case. When in doubt, check the man page for a RETURN VALUE section near the end.

If an error has occurred, perror () can be used to print out a description of the errno value. Ex-
amples of checking the return value and using perror () will be provided throughout the remainder
of section 6.

6.3 Pointers and Memory Allocation

Several library functions and system calls used in this class take a pointer to a structure as an
argument. In these situations, it is vital to ensure that the passed pointer is valid and points to
correctly allocated memory.

34

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

For example, consider the following increment () function which takes an int pointer and in-
crements the integer that it points to.

void increment(int *pointer)
{

(xpointer)++;

The following code shows how not to use increment ().

// Declare an int pointer.
int *my_int_pointer;

// Pass the int pointer to increment(). This is INCORRECT because the

// pointer is current uninitialized and could be pointing anywhere in memory!
// A segmentation fault or otherwise unexpected behavior will result.
increment (my_int_pointer) ;

There are two ways to correct this. The easiest is to allocate an int on the stack and pass its
address to increment () as seen here.

// Declare an int on the stack.
int my_int;

// Pass the address of the int to increment().
increment (&my_int) ;

Alternatively, dynamic memory may be allocated for the int with malloc() as seen here.

// Declare an int pointer.
int *my_int_pointer;

// Allocate enough dynamic memory for an int and set the pointer equal to the
// start of that memory.
my_int_pointer = malloc(sizeof(int));

// Pass the int pointer to increment(). This is correct because the pointer now
// points to correctly allocated memory.

increment (my_int_pointer) ;

// ... use my_int_pointer ...

// When done, free the dynamic memory and set the pointer to NULL to be safe.

free(my_int_pointer);
my_int_pointer = NULL;

35

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Signal Description Default Action

SIGINT Interrupt (CTRL+C) Kill the process

SIGALRM Timer alarm (see section 6.5) Print “Alarm clock” and kill the process
SIGUSR1 User defined signal #1 Print “User defined signal 1”7 and kill the process
SIGUSR2 User defined signal #2 Print “User defined signal 2”7 and kill the process

Table 10: Some Linux signals and associated default actions

6.4 Signals

In Linux, a signal is a message sent by the operating system to a process to notify the program of
an event. For example, the SIGINT signal is sent to a process when CTRL+C has been pressed by
the user. Signals can be trapped by a process in several ways. In this class, both signal handler
functions and blocking will be used.

If a process is not configured to trap a particular signal and that signal arrives, then a default
action will be performed. Table 10 shows some signals and their default actions.

6.4.1 Asynchronous Signal Handlers

One way to trap a signal is to associate it with a handler function. Whenever the signal is received,
normal execution of the process will be suspended and the handler function will execute. When
the handler returns, normal execution of the process resumes where it left off. This is analogous to
the way hardware interrupts and interrupt service routines operate.

The association between a signal and a handler function is controlled by sigaction(). An
example of how to use sigaction() is seen below. Check the man page for additional information.

// Define a signal handler function. The function name can be anything, but
// it must accept a single integer.
void handler_function(int signum)
{
printf ("CTRL+C was pressed! Exiting.\n");
exit (0);

// This function associates the SIGINT signal with the handler function.
void setup_signal_handler()

{

struct sigaction action;

// Ensure that the entire structure is zeroed out.
memset (&action, 0, sizeof(action));

// Set the sa_handler member to point to the desired handler function.

36

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

action.sa_handler = handler_function;

// Call sigaction to change the action taken upon receipt of the SIGINT signal.
if (sigaction(SIGINT, &action, NULL) != 0)

{
// If there is an error, print out a message and exit.
perror("sigaction");
exit(1);

}

6.4.2 Blocking

Another way to detect when a signal has been received by a process is by blocking with sigwait ().
sigwait () takes a set of signals and suspends until one of the signals in the set is received. To
work reliably, the signal(s) being waited for must be blocked with sigprocmask(). The following
example shows how to set this up.

int signal_received;
sigset_t signal_set;

// Empty the set, and then add one (or more) signals to it that sigwait() will wait for.
sigemptyset(&signal_set);
sigaddset(&signal_set, SIGALRM);

// Set the process signal mask to block the signals that sigwait() will wait for.
sigprocmask (SIG_BLOCK, &signal_set, NULL);

while (1)

{
// sigwait() will suspend until one of the signals in signal_set is received.
sigwait(&signal_set, &signal_received);

// Do something useful here. signal_received will be set to the signal to
// that caused sigwait() to return.

6.5 Timers

In Linux, timers? can be used to send a signal to a process after a specified period of time has

elapsed. Timers may be used in one of two modes: one-shot or periodic.

“Not to be confused with Timer/Counter units on the microcontroller.

37

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

When a one-shot timer is set up, a value time is specified. When that time has elapsed, the
operating system sends the process a signal and deletes the timer.

When a periodic timer is set up, both a value and an interval time is specified. When the value
time has elapsed, the operating system sends the process a signal and reschedules the timer for
interval time in the future. When the interval time has elapsed, the OS sends another signal and
again reschedules the timer for interval time in the future. This will continue until the process
manually deletes the timer.

By default a timer will send the SIGALRM signal. If multiple timers are used in one process,
however, there is no way to determine which timer sent a particular SIGALRM. Therefore, an alternate
signal, such as SIGUSR1, may be specified when the timer is created.

6.5.1 Resolution

Timers are maintained by the operating system, and they are only checked periodically. A timer
that expires between checks will be signaled (and rescheduled if periodic) at the next check. As
a result, a process may not receive signals at the exact time(s) that it requested. For example,
suppose the OS checks the timers every 10 milliseconds and a process schedules a periodic timer
with value = 5 milliseconds and interval = 21 milliseconds. Then the process will receive a signal
after 10 milliseconds, and every 30 milliseconds thereafter.

The period at which the timers are checked, called the clock resolution, is operating system and
hardware dependent. The actual value can be determined at runtime by calling clock_getres()
on the system-wide real-time clock (CLOCK_REALTIME).

6.5.2 Operation

create_timer () is used to create a new timer. As with clock_getres(), the system-wide real-time
clock (CLOCK_REALTIME) should be used. The following code shows how to create a timer that sends
the default SIGALRM signal.

timer_t timeril;

// Create a new timer that will send the default SIGALRM signal.
if (timer_create(CLOCK_REALTIME, NULL, &timerl) != 0)

{
// If there is an error, print out a message and exit.
perror ("timer_create");
exit(1);

b

The following code shows how to create a timer that sends the SIGUSR1 signal.

timer_t timer2;
struct sigevent timer2_event;

38

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

// Zero out the structure and configure for use of the SIGUSR1 signal.
memset (&timer2_event, 0, sizeof (timer2_event));
timer2_event.sigev_notify = SIGEV_SIGNAL;

timer2_event.sigev_signo = SIGUSR1;

// Create a new timer that will send the SIGUSR1 signal.
if (timer_create(CLOCK_REALTIME, &timer2_event, &timer2) != 0)

{
// If there is an error, print out a message and exit.
perror ("timer_create");
exit(1);

}

The timer_settime() function is used to schedule a timer. The struct itimerspec definition
taken from /usr/include/linuz/time.h is seen here.

struct itimerspec {

struct timespec it_interval; /* timer period */
struct timespec it_value; /* timer expiration */
s
struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

The it_value member sets the time until the timer first expires. If it is set to 0, the timer will
never go off. The it_interval member sets the period of the timer after it first expires. If it is set
to 0, the timer will be one-shot.

Following is an example of scheduling timer1 (created in a preceding example) to go off in 2.5
seconds, and then every 100 milliseconds thereafter.

struct itimerspec timerl_time;

// The it_value member sets the time until the timer first goes off (2.5 seconds).
// The it_interval member sets the period of the timer after it first goes off (100 ms).

timerl_time.it_value.tv_sec = 2; // 2 seconds
timerl_time.it_value.tv_nsec = 500000000; // 0.5 seconds (5e8 nanoseconds)
timerl_time.it_interval.tv_sec = 0; // O seconds

timerl_time.it_interval.tv_nsec = 100000000; // 100 milliseconds (1e8 nanoseconds)

// Schedule the timer.

if (timer_settime(timerl, O, &timerl_time, NULL) != 0)
{

39

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Figure 13: LabJack U3-LV USB DAQ.

// If there is an error, print out a message and exit.
perror("timer_settime");
exit(1);

6.6 PC ADC/DAC Cards

The lab is equipped with two data acquisition systems (DAQ): a LabJack U3-LV USB DAQ), and
a PCI-DAS1602/12 Card. A summary of the respective functionalities and modes of operation is
summarized below.

6.6.1 LabJack U3-LV USB DAQ

The LabJack U3-LV USB DAQ device depicted in Figure 13 is a data acquisition and output system
featuring 16 flexible I/O and 4 dedicated digital 1/O. The flexible I/O ports can be configured as
either digital or analog, thus providing up to 16 analog inputs, or up to 20 digital I/O. It also
features two 10-bit analog outputs, up to 2 counters, and up to 2 timers.

Flexible I/0O: The first 16 I/O lines (FIO and EIO ports) on the LabJack U3-LV can be
individually configured as digital input, digital output, or analog input. In addition, up to 2 of
these lines can be configured as timers, and up to 2 of these lines can be configured as counters.

The first 8 flexible I/O lines (FI00-FIO7) appear on built-in screw terminals. The other 8
flexible I/O lines (EI00-EION7) are available on the DB15 connector in the front of the device. For
more information, see Section 2.5 - Flexible I/O (FIO/EIO) of the U3 Datasheet. The datasheet
is available on Piazza or through the course webpage.

Analog Inputs: The LabJack U3 has up to 16 analog inputs available on the flexible I/O
lines. Single-ended measurements can be taken of any line compared to ground, or differential

40

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

measurements can be taken of any line to any other line.

Analog input resolution is 12-bits. The range of single-ended low-voltage analog inputs on the
U3-LV is typically 0-2.4 volts or 0-3.6 volts, and the range of differential analog inputs is typically
+2.4 volts (pseudobipolar only). For valid measurements, the voltage on every analog input pin,
with respect to ground, must be within -0.3 to 4+3.6 volts.

Command /response (software timed) analog input reads typically take 0.6-4.0 ms depending
on number of channels and communication configuration. Hardware timed input streaming has a
maximum rate that varies with resolution from 2.5 ksamples/s at 12-bits to 50 ksamples/s at about
10-bits. For more information see the U3 Datasheet. For analog input information see Section
2.6 - AIN and Appendix A. For data rate information see Sections 3.1 - Command /Response and
Sections 3.2 - Stream Mode.

Analog Outputs: The LabJack U3 has 2 analog outputs (DACO and DAC1) that are available
on the screw terminals. Each analog output can be set to a voltage between 0 and 5 volts with
10-bits of resolution.

The analog outputs are updated in command/response mode, with a typical update time of
0.6-4.0 ms depending on communication configuration. The analog outputs have filters with a
3 dB cutoff around 16 Hz, limiting the frequency of output waveforms to less than that. For
more information see the U3 Datasheet. For analog output information see Section 2.7 - DAC and
Appendix A. For data rate information see Section 3.1 - Command/Response.

Digital I/O: The LabJack U3 has up to 20 digital I/O channels. 16 are available from the
flexible I/0O lines, and 4 dedicated digital I/O (CI00-CI03) are available on the DB15 connector.
Each digital line can be individually configured as input, output-high, or output-low. The digital
I/O use 3.3 volt logic and are 5 volt tolerant.

Command /response (software timed) reads/writes typically take 0.6-4.0 ms depending on com-
munication configuration. The first 16 digital inputs can also be read in a hardware timed input
stream where all 16 inputs count as a single stream channel. For more information see the U3
Datasheet. For digital I/O information see Section 2.8 - Digital I/O and Appendix A. For data
rate information see Section 3.1 - Command/Response and Sections 3.2 - Stream Mode.

Timers: Up to 2 flexible I/O lines can be configured as timers. The timers are very flexi-
ble, providing options such as PWM output, pulse/period timing, pulse counting, and quadrature
input. For more information see the U3 Datasheet. For timers information see Section 2.9 -
Timers/Counters and Appendix A.

Counters: Up to 2 flexible I/O lines can be configured as 32-bit counters. For more information
see the U3 Datasheet. For counters information see Section 2.9 - Timers/Counters and Appendix A.

I/O Protection: All I/O lines on the U3 are protected against minor overvoltages. The FIO
lines can withstand continuous voltages of up to £10 volts, while the EI0/CIO lines withstand
continuous voltages of up to +6 volts.

Initialization: In order to use the LabJack U3-LV USB DAQ from C code, the labjackusb
library needs to be installed in the host system. Then, the code should include the header file u3.h
that contains the definition for the functions used to interact with the device. The implementation
of these functions is contained in the u3.c file that needs to be separately compiled and linked
together with the user code. The user code needs to be linked with the -11abjackusb parameter.

The following steps initialize the LabJack U3-LV USB DAQ for operation:

41

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

e Create a USB device handle of type HANDLE. This is returned by the LabJack library function
HANDLE openUSBConnection(int localID). If the localID parameter is passed as -1, the
library will attempt to open the first available USB device. Upon success, a non-NULL device
handle is returned.

e Read in the calibration info for the device. The calibration info are used to more accurately
control analog inputs and outputs. Device calibration info can be obtained via the library
function int getCalibrationInfo(HANDLE hDevice, u3CalibrarionInfo * caliInfo). Upon
success the user-allocated caliInfo structure will be filled with the calibration info for the
device, and 0 is returned. Upon failure, a negative error code is returned by the function.

The following functions can be used to perform analog and digital I/O using the LabJack U3-LV
device.

e long eDO(HANDLE Handle, long ConfigIO, long Channel, long State): this function
can be used to output a digital signal (0 or 1) on any of the 20 digital I/O ports. The
first parameter is the device handle obtained at initialization. The second paramters is a
boolean value. If 1 is passed, the device will perform appropriate configuration of the re-
quested pin into digital output mode. The Channel parameter is used to specify which of the
20 lines should be used for digital ouput. The channel number is 0 to 19. These correspond,
in order, to FI00-FIO7, EIO0-EIO7, CI00-CI03. The last parameter, State is used to specify
the desired status of the output line: 0=low, 1=high. Upon failure, a negative error code is
returned by the function.

e long eDI(HANDLE Handle, long ConfigIO, long Channel, long *State): this function
can be used to sample the input of a digital signal (0 or 1) on any of the 20 digital I/O ports.
The first parameter is the device handle obtained at initialization. The second paramters
is a boolean value. If 1 is passed, the device will perform appropriate configuration of the
requested pin into digital input mode. The Channel parameter is used to specify which of the
20 lines should be used for digital input. The channel number is 0 to 19. These correspond,
in order, to FIOO-FIO7, EIO0-EIO7, CI0O0-CI0N3. The last parameter, State is used to specify
the input buffer where the desired status of the input line will be stored. The interpretation
of the received value is: O=low, 1=high. Upon failure, a negative error code is returned by
the function.

e long eAIN(HANDLE Handle, u3CalibrationInfo *CalibrationInfo, long ConfigIO, long
*DAC1Enable, long ChannelP, long ChannelN, double *Voltage, long Range, long Resolution,
long Settling, long Binary, long Reservedl, long Reserved2): this function can be
used to sample the input of an analog signal on any of the 16 flexible I/O lines. The first
parameter is the device handle obtained at initialization. The second paramter is the calibra-
tion info obtained from the device at initializtion. The ConfigI0 parameter is a boolean. If 1
is passed, the device will perform appropriate configuration of the requested pin into analog
input mode. DAC1Enable is used to retrieve the status of DAC1 analog output port. Since
DACI1 can be used as a refernce for differential measurements, this is useful to be sure that
analog output on DAC1 is active. ChannelP is used to specify which cannel should be used for

42

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

the analog input. The channel number is 0 to 15. These correspond, in order, to FIO0O-FIQ7,
EIOO0-EIO7. ChannelN is used to specify the channel to be used as negative reference for
dual-ended measurements. For single-ended measurements, this value should be between 31
and 999. Voltage is used as a user buffer to store the value of the acquired analog sample.
Resolution: pass a nonzero value to enable QuickSample. This will produce a sample quicker
at the expense of precision. Settling: pass a nonzero value to enable LongSettling. This
will increase the precision of the measurement at the expense of sampling time. If the Binary
parameter is passed a nonzero (True) value, the Voltage parameter will return the raw binary
value. Upon failure, a negative error code is returned by the function.

e long eDAC(HANDLE Handle, u3CalibrationInfo *CalibrationInfo, long ConfigIO, long
Channel, double Voltage, long Binary, long Reservedl, long Reserved2): this func-
tion can be used to output an analog signal on any of the 16 flexible I/O lines. The first
parameter is the device handle obtained at initialization. The second paramter is the calibra-
tion info obtained from the device at initializtion. The ConfigI0 parameter is a boolean. If 1
is passed, the device will perform appropriate configuration of the requested pin into analog
output mode. The Channel parameter is used to specify which flexible I/O line should be
used to output the analog value. The channel number is 0 to 15. These correspond, in order,
to FIOO-FI07, EIO0-EIOQ7. The voltage value between OV and 5V to be produced in output
is specified via the Voltage parameter. The remaining parameters are not used and should
be set as 0. Upon failure, a negative error code is returned by the function.

Before exiting, the user code should release the USB device using the following function: void
closeUSBConnection (HANDLE hDevice), where the hDevice parameter is the device handle ob-
tained at initialization.

6.6.2 PCI-DAS1602/12 Card

The PCI-DAS1602/12 is a PCI card that contains an analog to digital converter (ADC) and two
digital to analog converters (DAC). In CS-454/654 labs, this card is used as an alternative to the
LabJack U3-LV USB DAQ described in the previous section. For this edition of the course, this
card will not be used.

Communication with the PCI-DAS1602/12 is performed via low-level port input (inw()) and
output (outw()) To use these functions, sys/io.h must be included. inttypes.h should also be
included to use the fixed width integer types (uint16_t, etc.).

e uintl6_t inw(uint16_t port)
Returns the byte read from the specified I/O port.

e void outw(uintl6_t val, uintl6_t port)
Writes byte val to the specified I/O port.

A description of the available ports on the card can be found in the PCI-DAS1602/12 Register
Map data sheet. To find the card’s base addresses, use the linux terminal command 1spci -v.
Example:

43

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

> 1spci -v

Class ff00: Measurement Computing PCI-DAS1602/12
Flags: bus master, fast devsel, latency 64, IRQ 9
I/0 ports at cccO [size=64]

I/0 ports at cc40 [size=32]

I/0 ports at cc60 [size=32]

I/0 ports at cc80 [size=32]

I/0 ports at ccal [size=32]

The output of this command tells you the the physical addresses for the base addresses of the
card, in this case: BADRO = 0xCCCO0, BADR1 = 0xCC40, BADR2 = 0xCC60, BADR3 = 0xCC80,
BADR4 = 0xCCAO0

When using the functions inw and outw, these will be the ports used for input/output. It is
best practice to declare these ports in your code, for example:

#define BADRO 0xCCCO
#define BADR1 0xCC40
#define BADR2 0xCC60
#define BADR3 0xCC80
#define BADR4 0xCCAO

Then, you can use the inw/outw functions with these port names, for example:
outw(0, BADRO+2);

I/O Permissions Wrapper Read and write access to I/O ports is restricted in Linux. A reg-
ular user program attempting to communicate with the PCI-DAS1602/12 will cause a segmen-
tation fault. To get around this problem, a wrapper program called wrap-ioperm is provided.
wrap-ioperm starts running set-uid root. It opens up read/write access to card’s base address
ports, switches to the invoking user, and executes the desired program.

To use the wrapper, simply prefix a normal command with wrap-ioperm. For example, instead
of running ./myprogram my args, execute wrap-ioperm ./myprogram my args.

Initialization The following steps initialize the card for digital to analog conversions:

e Set BADR1+48 configuration parameters

— Set LDAEMCL to 1, resets EMPTY status flag of DAC FIFO queue (FIFO queue has
four entries)

— Set DACEN to 1, enables the DACs

— Set DAPS bits low, tells DAC that data is from software source
— Set HS bits to select desired DAC chip

— Set DACnR bits to select voltage range (we will use bipolar 5V)
Set START bit to 1, tells DAC to start buffering data

44

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

Function Use

tcsetattr() Change device attributes (baud, parity, etc.)
tcgetattr() Read existing device attributes

tcflush() Flush pending sends or receives

fileno() Returns the integer file descriptor for a FILE * stream

Table 11: Linux serial port control functions

e Clear the DAC FIFO buffer by writing any value to BADR4 + 2

Digital to Analog Converter (DAC) The PCI-DAS1602/12 digital to analog converter has 12-
bits of resolution over a software programmable voltage range. We will use bipolar 5V (=5 volts
to +5 volts) as the voltage range in our labs.

To send the digital value and start the D/A conversion, write the value to the low bits of port
BADRA4+0. After the D/A conversion starts, you do not need to wait for the conversion to finish.
However, you can check the status of DAC FIFO queue by reading ADNE and LADFUL bits of
BADRI1+0.

6.7 Serial Port

Under Linux, the serial port can be accessed through /dev/ttyS[0-3], which correspond to COM1-
4 respectively.

The serial port is configured by the operating system at boot. To see the current settings for
ttyS0, execute: setserial -a /dev/ttySO0

The source for a simple Linux program that writes to the serial port is included in section 7.2.1
for reference.

6.7.1 Communication Settings

Serial port settings such as baud, data bits, stop bits, and parity can be adjusted by any process with
permission to access the serial device. Since the device resource is shared among many processes,
it is good practice to flush pending transfers and save/restore existing device settings whenever a
change is made.

The Linux serial port control functions are listed in table 11.

6.7.2 Sending and Receiving

Opening, closing, reading from, and writing to a serial device under Linux is identical to standard
file I/O. The code below sends “Hello world!” via the serial port using the existing baud rate and
data format.

int fd = open("/dev/ttyS0", O_WRONLY);
dprintf(fd, "Hello world!");
close(fd);

45

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

6.8 Processes

A process is simply an instance of a running program. In Linux, processes can communicate with
each other using a number of mechanisms such as pipes, sockets, shared memory, and message
queues. CS-454/654 will only focus on the use of message queues.

6.8.1 Message Queues

Message queues have a name (similar to files) and can be opened by multiple processes simulta-
neously for read and/or write access. mq_open() is used to open a message queue as seen in the
following example. See the man page for additional details.

struct mq_attr queue_attribute;
mgd_t queue;

// message can be of any type (basic type, struct, etc.).
uint8_t message;

// Setup the message queue attributes:

// - the queue can hold up to 10 messages

// - each message can be up to sizeof (message) bytes
memset (&queue_attribute, 0, sizeof (queue_attribute));
queue_attribute.mq_maxmsg = 10;
queue_attribute.mq_msgsize = sizeof (message);

// Open the queue write-only and non-blocking. If the queue does not exist,

// create it (O_CREAT) with permission 600. Note that on Linux, the name

// string must begin with a ’/’.

queue = mq_open("/queue_name", O_WRONLY | O_NONBLOCK | O_CREAT, 0600, &queue_attribute);
if (queue == ((mgd_t) - 1))

{
// If there is an error, print out a message and exit.
perror("mg_open") ;
exit(1);

}

Once a message queue is opened, mq_send () inserts a message into the queue, and mq_receive ()
removes a message from the queue. mq_close() and mq_unlink() close and delete a queue, respec-
tively. Check the man pages for how to use those functions.

6.9 Threads

A process may have several threads of execution concurrently running within it. The threads all
share the same memory space and permissions of the process.

46

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

6.9.1 Creating and Terminating

pthread_create() is used to create a new thread as seen here.

// Thread start routine.
void *new_thread(void *arg)
{

// When the new thread is created, it will start executing in this function.

// Create a new thread.
pthread_t new_thread_id;
if (pthread_create(&new_thread_id, NULL, new_thread, NULL) != 0)
{
// If there is an error, print out a message and exit.
perror ("pthread_create");
exit(1);

To terminate a thread, use pthread _exit(). If the initial “main” thread of a program is
terminated by reaching the end of executing or calling pthread_exit (), the entire process will
exit.

6.9.2 Mutual Exclusion

When multiple threads share access to a resource such as data (global variables), it is necessary to
ensure that the integrity of the data is maintained. For example, one thread should not modify the
data while another is in the process of reading it. One thread synchronization mechanism which
can solve this problem is a mutual exclusion lock, or mutex.

A mutex is in one of two states at all times: unlocked or locked. When unlocked, any thread
may acquire a lock on the mutex. All other threads requesting a lock are then queued up until the
thread holding the mutex unlocks it. To protect shared data with a mutex, each thread must lock
the mutex before accessing the data and unlock it after the data usage is complete.

The three functions for mutex control are pthread mutex_init (), pthread mutex_lock(), and
pthread mutex unlock(). See the man pages for details on their usage.

6.9.3 Signals

Some thread-related functions are not safe to be used within a signal handler. For example, calling
pthread mutex_lock() or pthread mutex_unlock() inside a signal handler can deadlock the calling
thread. A good thread-friendly alternative to signal handlers is the sigwait () blocking technique
discussed in section 6.4.2.

Instead of blocking each signal to wait on individually, the sigwait() man page makes the
following recommendation for multi-threaded applications:

47

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

For sigwait to work reliably, the signals being waited for must be blocked in all threads,
not only in the calling thread, since otherwise the POSIX semantics for signal delivery
do not guarantee that it’s the thread doing the sigwait that will receive the signal. The
best way to achieve this is to block those signals before any threads are created, and
never unblock them in the program other than by calling sigwait.

This can be accomplished by executing the following code before any new threads are created.

// Block all signals before creating any threads.
sigset_t signal_set;

sigfillset(&signal_set);

if (pthread_sigmask(SIG_BLOCK, &signal_set, NULL) != 0)

{
// If there is an error, print out a message and exit.
perror ("pthread_sigmask");
exit(1);

}

sigwait () can then be used as seen here

sigset_t signal_set;
int signal_received;

// Setup a signal set that contains all of the signals that sigwait() will wait for.
sigemptyset(&signal_set);

sigaddset(&signal_set, SIGALRM);

sigaddset(&signal_set, SIGUSR1);

while (1)

{
// Block until either SIGALRM or SIGUSR1 is received.
sigwait(&signal_set, &signal_received);

// Act according to the signal that was received.
if (signal_received == SIGALRM)

{
// Do SIGALRM stuff...
}
else if (signal_received == SIGUSR1)
{
// Do SIGUSR1 stuff...
}

48

CS 454/654 Lab Manual Spring 2019 (Revision: 2.5)

7 Appendix

7.1 FLEX-UI Schematic
Schematic diagram of the custom FLEX-UI board.

7.2 FLEX-UI Pinouts
Pin mapping from dsPIC microcontroller to FLEX-UI board.

7.2.1 Linux Serial Demo

This code can be found in ¢s454/labs/lab03/code/server/serialdebug.c on the lab machines. It
opens the serial port for write access and sends characters entered by the user.

49

2.5)

Spring 2019 (Revision

Lab Manual

CS 454/654

T/7 199US WY 8207 11/82/9 9180
a7
N3 219quNN 1USWND0Q
0o IN-X3TELSD +3TLIL
g3d °°2Bj491Ul 49SN-X314 TELST L2 A ,
NOIYdWEHI-UNGgdN SIONITI 40 ALISH3ININN i - A 2
CTX-Y0LLSAOD W z
@N1G-A00) CTA-MITLSAOD) (TX=>0118A0 AT
[owam e (TA->ILSAOL)
CINL8-A0D
o
£
. = ang
=) o2
FIoWII-630 lgvn R 14\
G-ZSd0M - %
SIS Ly, —zsuon - = oten
- ElR ang
E-ZSa0M = T
IOz 25N W e e e S| e oo B
GIIoGsITey O -ZsiH e oo H e lo H vos2TI00 TNE7ZTEa
L] woscosam DZE T wscosson DSBS 4]
o § u1D 2 T 13534
e1d 63
TSUOW - >28d Zowsg X314 Wo4dp pSpu&ix3 ne'e ne'e Zows(Q-X3714 Wo4p pspu9ix3
Jd 0y TYIY3S Z€2sy ne'e JOLIJ3NNOD d371 3T19NY-1HITd SJO0LI33NNOJ ddv08-01-0dv09
TNY
epnshory 1¥0d 3Wg9 GTUd
S ang o
e e T Y
oy byl 80I0d-2Z8+dIu ang
I < = ETgg ui.&H
El ¥ 1 1
ang Ju} amon 2= ZJE 198 °3]
S N RN e TR %
83 guz 28 gz [i v
w9 PL e N
o P o PR
za 3 d3d¥3H 0Id9 1I18-27 T13NNGHI 9Nnd NG J9d
Nl NEeR
RN 5820
3 3
oNg ang
ng ng
=1z @r
"R
ang wm
g5
od. . guz | S3., wuz [oo nen| 028 v
T © ey =5 sor Too =+ NWMM o
oy Ty et e e el il e .
53 L5 = s ~ EeInd NS 2] = K A10/N0
SRR Nag® she? serln = o T E IR, . V
oS53 ISP SIS) -l NI
> > > ne'e NI e - 24 o
e INS-5Zbpa1L ! o - S | 9ssour e 3M0d
nee ng o e
ng ns ng ng
OIJILSAQOL PU® JUd WBTT-X374 $0 TSHOW O1 pPapusix3
AYTdSIO 037 '
48M0d NEE ‘NG OF NS 49M0d N9 Oy NZT

FLEX UI Custom Board

Figure 14

2.5)

Spring 2019 (Rewvision

Lab Manual

CS 454/654

- ZINI/ #9114/ TZNY/ 634 6TNId 91 10309Uu0) I I0IOW DA — 9TINOD
(DEIA-0QT) AE°€+ ‘zuTd 3I04 dwed 8F¥/TINI- TV }ot13sior TINI/#YIT1d/0ZNY/83d 8INId i 10309Uu0) I I0IOW DA — 9TINOD
(DEIA-0QT) AE°€+ ‘LuTd 3I0d dwed 0TaQ¥- Z¥ yoT3sdor €0I/01Q¥ 0LNId 43 10309Uu0) I I0IOW DA — 9TINOD
8a¥ — SO ova 10I/8a¥ 89NId 0t 10309Uu0) I I0IOW DA — 9TINOD
1188 — ¥0S Ova TINY/T18Y GENId 8 10309Uu0) I I0IOW DA — 9TINOD
0T8¥ — IAs ova OTNY/0T8Y PENIA 9 10309Uu0) I I0IOW DA — 9TINOD
(DEYA-0QT) AE°€+ ‘€uTd 3I04 dwed (zoav) yNY- XV ¥oT3sdor 9ND/VED/ ¥NY/ vad TZNId 4 10309Uu0) I I0IOW DA — 9TINOD
(DEIA-0QT) AE° €+ ‘9UTd 3104 dwed (ZDav) GNY- ¥ ¥2T3skop LND/€d0/ SN/ S8Y 0ZNId z 10309Uu0) I I03O0W DA — 9TNOD
Te3ThTa — aNd aNs - 0z 10309Uu0D XNV — 8NOD
- A€+ - 6T 10309Uu0D XNV — 8NOD
- AG+ - 81 103039Uu0D XNV — 8NOD
PYd — 1Q31 I14L/%vd 09NId LT 10309Uu0D XNV — 8NOD
Sv¥ — zaal 0alL/svd T9NId 91T 10309Uu0D XNV — 8NOD
6V — £aa1 -JF4A/ 6¥d 8ZNId ST 10309Uu0D XNV — 8NOD
0IV¥ — %a@a1 +dTIA/0TVE 6ZNId i 10309Uu0D XNV — 8NOD
ddAv+ 0ENId 03 9d4r xadump - IXT QAAV+ - €1 10309Uu0D XNV — 8NOD
TIX 03 91dr xodump - OND/MOTL/0DS0S/ZONWE/ DDA/ ¥ 10d ¥ LNId 1T 10309Uu0D XNV — 8NOD
soeqdoot 103 3x0d DAV Se pasn aq ued GND/XANI/ENY/EEY — 0IdD GND/XANI/ENY/€gd ZZNId ot 10309Uu0D XNV — 8NOD —
(15€60) @1 oTydead TeTass unyyieds X¥T0 — X4 @d1 X410/ 244 ZSNId 6 10309Uu0D XNV — 8NOD o
(15€60) @1 oTydead TeTass unyyaeds XITA - XI @d1 XITN/€a4 TGNId 8 10309Uu0D XNV — 8NOD
oW — saa1 SWL/0vY LINId L 103039Uu0D) XNV — 8NOD
6D¥ - 0Idd TIND/#2SS/654 7INId 9 I0309UU0) XAV — 8SNOD
u3zgysnd 39say 3FOS #ITOW €INId S JI03D23UU0) XAV — 8NOD
£-ENOD se oures - 0ZND/#SIDT1N/LDI/¥1a¥ LYNId 4 10309Uu0D XNV — 8NOD
TV - 0Idd MOL/ TVY 8ENId € 10309Uu0D XNV — 8NOD
stoeqdooT 103 3x0d DAY Se pasn g ued CINY/ZT8d — 0IddD CINV/Z18d THNId z 10309Uu0D XNV — 8NOD
€184 - DVAT O¥a EINY/ET8Y ZYNId 1 10309Uu0) XN¥ — 8NOD
aND_I¥vn aNd - S 6g9a 3ndino o3 I¥¥n — LNOD
sxemprey 3xoddns Idv¥n Y3ITM 6ENIA #SI¥ZN — ST T¥WN (zzy)-xa’(s8%)ON’ (TLL)SI¥’ (Z€Z)STd - 4 6ga 3ndino o3 I¥¥n — LNOD
sxemprey 3xoddns Idvn YITM OGNId XIzn — XI I¥vn (zzy)+xa’'+58%* (TLL) XL’ (2€T)XT - € 6ga 3ndino o3 I¥¥n — LNOD
sxempiey 3xoddns Idvn Y3ITM 6HNId X¥gn — X¥ I¥vn (zzy)-XL'-58%" (T1L)X4’ (z€Z) XY - 4 6g9a 3nd3ino o3 I¥¥n — LNOD
sxempiey 3xoddns 1dvn Y3ITM OHNId #SI0ZN — SID T¥WN (zzy)+xL’ (g8%)ON’ (TILL)SID’ (2€Z)SLD - T 6ga 3nd3ino o3 I¥¥n — LNOD
utrd utd
S930N I9Y30 asn gdd wo3snd s3xod 3o uor3dradsaq | I€£DIdSP | onaa I03092Uuo)

pieog 19)ybneq owaq X314 WOy papualx3y suld

