
CAESAR: Coherence-Aided Elective and Seamless
Alternative Routing via on-chip FPGA

Shahin Roozkhosh∗§, Denis Hoornaert†§ and, Renato Mancuso∗
∗Boston University †Technical University of Munich

∗{shahin, rmancuso}@bu.edu, †denis.hoornaert@tum.de

Abstract—Prompted by the ever-growing demand for high-
performance System-on-Chip (SoC) and the plateauing of CPU
frequencies, the SoC design landscape is shifting. In a quest
to offer programmable specialization, the adoption of tightly-
coupled FPGAs co-located with traditional compute clusters has
been embraced by major vendors. This CPU+FPGA architectural
paradigm opens the door to novel hardware/software co-design
opportunities. The key principle is that CPU-originated memory
traffic can be re-routed through the FPGA for analysis and
management purposes. Albeit promising, the side-effect of this
approach is that time-critical operations—such as cache-line
refills—are fulfilled by moving data over slower interconnects
meant for I/O traffic.

In this article, we introduce a novel principle named Cache
Coherence Backstabbing to precisely tackle these shortcomings.
The technique leverages the ability to include the FGPA in
the same coherence domain as the core processing elements.
Importantly, this enables Coherence-Aided Elective and Seamless
Alternative Routing (CAESAR), i.e., seamless inspection and
routing of memory transactions, especially cache-line refills,
through the FPGA. CAESAR allows the definition of new memory
programming paradigms. We discuss the intrinsic potentials of
the approach and evaluate it with a full-stack prototype imple-
mentation on a commercial platform. Our experiments show an
improvement of up to 29% in read bandwidth, 23% in latency,
and 13% in pragmatic workloads over the state of the art.
Furthermore, we showcase the first in-coherence-domain run-
time profiler design as a use-case of the CAESAR approach.

Index Terms—Coherence Domain, FPGA, Memory Inspection

I. INTRODUCTION

On June 1, 2015 Intel® announced the definitive intention
to acquire Altera® with a transaction valued at about $16.7
billion1. Altera was at the time one of the two leading compa-
nies in the design of Field Programmable Gate Array (FPGA)
chips. The other being Xilinx®. The acquisition of Altera by
one of the largest players in the general purpose computing
world happened only 4 years after Xilinx announced a shift
from FPGA-only chips to ”all things programmable” Systems-
on-Chip (SoC). Meanwhile, the Xilinx UltraScale+ family of
CPU+FPGA SoCs has set a new standard for the collaborative
co-location of hard and re-programmable logic [1]. With an
estimated $50 billion move2, AMD® announced on February
14, 2022 the acquisition of Xilinx. At the time of writing this
article, the two major players in general purpose computing
systems have respectively acquired the largest companies in-
volved in the research and development of FPGA technologies.

§These authors contributed equally.
1See https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/.
2See https://www.amd.com/en/corporate/xilinx-acquisition.

Programmable specialization. If the recent news is of any
indication, CPU+FPGA SoCs are poised to become a standard
computing model not only within the embedded market where
significant penetration is already happening. But also in the
general purpose and high-performance computing segments.
One of the driving factors of this transformation is special-
ization. Following a plateau in CPU speeds, well-established
accelerator paradigms such as GPUs and TPUs have filled
the gap for some data-intensive workloads. FPGAs are just a
generalization of the same concept, i.e., the response to a need
to accelerate custom computational pipelines.

While the addition of onboard FPGA technology is a natural
next-step, we argue that the full extent of its implications in the
way we design, engineer, program, and analyze our systems is
yet to be determined. In other words, strong implications arise
from the co-location of hard and re-programmable logic that
goes well beyond the ability to design custom accelerators [2].
Revisiting memory semantics. One such implication is the
ability to redefine the semantics of memory operations initiated
by any of the processing elements (PE). This capability is of
particular interest for the real-time community since the inabil-
ity to explicitly program and arbitrates the behavior of (main)
memory components leads to performance non-determinism
and pessimistic worst-case execution time (WCET) estima-
tions. Roozkhosh and Mancuso pioneered this idea in [3],
where they demonstrated that FPGA logic can be interposed
between CPUs and main memory, following what they refer to
as the Programmable Logic In-the-Middle (PLIM) approach.
Under PLIM, memory transactions originating at the CPUs
and targeting main memory are re-routed through the FPGA.
Custom transformations can then be applied. The original work
in [3] demonstrates a use-case where page coloring is hidden
from the underlying memory to prevent fragmentation. Since
then, other works have surfaced that leverage PLIM to manage
the timing and ordering of main memory transactions [4], and
perform on-the-fly data re-organization to speed-up access to
relational data stores [5].

Bringing fine-grained control over memory operations into
the hands of system designers is a major milestone. But
existing approaches route memory traffic through the FPGA
via memory-mapping semantics. Not only this incurs a fixed
and non-negligible performance overhead, but it also limits the
management strategies that can be enacted on the FPGA.
Our focus. This paper focuses on hardware platforms in
which the FPGA can be cache-coherent with the CPU cluster

https://newsroom.intel.com/press-kits/intel-acquisition-of-altera/
https://www.amd.com/en/corporate/xilinx-acquisition

and proposes a basic principle, namely Coherence Back-
stabbing. Coherence backstabbing enables a novel approach
for through-FPGA memory traffic re-routing, which we call
Coherence-Aided Elective and Seamless Alternative Routing,
a.k.a. CAESAR. As the name suggests, CAESAR allows selec-
tive re-routing through the FPGA of memory transactions (or
their metadata) generated by the CPUs. CAESAR relies on the
ability of the FPGA to have a primary role in a cache-coherent
interconnect and to intercept/interject coherence traffic. By
doing so, the FPGA is logically elevated to sit right after
the last-level cache (LLC). Crucially, this unlocks a host
of opportunities that significantly complement and enhance
the vision of the PLIM approach. We showcase how such a
capability can be leveraged to achieve a new degree of FPGA-
aided management for CPU-originated memory traffic.
Contribution. This paper makes the following contributions.
(1) Theorizes and demonstrates for the first time previously
untapped opportunities arising from the ability of FPGA logic
to maintain two-way cache coherence with a CPU cluster.
Two-way coherence enables the FPGA to be seamlessly inter-
posed between CPUs and memory to manage CPU-originated
traffic, which is not possible with one-way coherence [6]
(2) Proposes a fundamental technique called Coherence Back-
stabbing to elevate the FPGA to become a first-class citizen
in the memory hierarchy of CPU+FPGA SoCs;
(3) Proposes proof-of-concept designs that leverage coher-
ence backstabbing to implement the CAESAR approach, i.e.
Coherence-Aided Elective and Seamless Alternative Routing;
(4) Showcases a full-stack system implementation that di-
rectly compares CAESAR to the work in [3] to discuss the
performance and paradigm enhancements unlocked by the
proposed CAESAR approach.

The rest of the article is divided in seven sections. We
outline the big picture in Section II and Section III in-
troduces key background principles. Section IV defines the
concept of coherence backstabbing and outlines the CAESAR
approach. In Section V, we provide in-depth technical details
on our prototype implementation. We evaluate the potential of
CAESAR for real-time system in Section VI. A discussion of
how CAESAR unlocks additional programmability of memory
semantics is discussed in Section VII. Closely related research
is surveyed in Section VIII. The paper concludes in Section IX

II. MOTIVATION AND VISION

The introduction of multiple CPUs, accelerators, and high-
bandwidth I/O devices that can initiate memory transactions
has had a transformational impact on the design and analysis of
real-time systems. In contrast, the performance improvements
offered by off-chip memory technology have not kept the
same pace. This has made the memory subsystem the main
performance bottleneck. In a bid to hide latency, hardware
designs have increased in complexity: multiple layers of on-
chip caching mechanisms, complex interconnect fabrics, and
sophisticated off-chip memory controllers are some of the de-
sign paradigms that have become commonplace in embedded
and general-purpose systems.

Fig. 1: CAESAR vision: leveraging onboard FPGA to shift
the programmability boundary to include hardware resources
in the memory hierarchy.

Unfortunately, the explosion in complexity has had a detri-
mental effect on our ability to understand and manage the
temporal behavior of data movements through the mem-
ory hierarchy. The performance unpredictability that emerges
in modern platforms can be traced back to the ubiquitous
compute-oriented paradigm that has driven the jump from
single-core to multi-core and (more recently) to accelerator-
enabled platforms. As exemplified in Fig. 1, this has defined
a programmability boundary where CPUs, accelerators, and
certain I/O devices (e.g., smart network interface cards) offer
explicitly observable and programmable operational semantics.
Conversely, the memory hierarchy components offer limited
(or non-existent) programmability that often materializes only
as a set of configuration knobs. Observability is also limited
to performance counters designed to be accessed by software
on the CPUs. As such, strategies that attempt to cope with the
unpredictability of modern memory hierarchies—be it WCET
analysis tools or OS-level resource management strategies—
must overcome three main hurdles.
(1) Opacity. Unlike the extensive documentation available to
describe the operational semantics of CPUs and accelerators,
significantly less information is released by vendors regarding
the exact behavior of memory components and their interplay.
Often, the such interplay is not well understood, let alone
documented, and left to be uncovered via reverse engineering.
(2) Lack of Control. Even if the behavior of a given compo-
nent is well understood, affecting it in a meaningful way via
CPU-centric management remains a challenge. For instance,
it is known that predictability benefits can be achieved by
mapping a disjoint set of DRAM banks to CPUs [7], [8].
Nonetheless, it is non-trivial to rework physical memory
allocation to implement DRAM bank partitioning. And, not
unlike page coloring-based cache partitioning [9], the side-
effects of resource partitioning can outweigh its benefit [10].
(3) Lack of Programmability. Even when some degree of
control can be exerted, programmability hardly extends beyond
parameter tuning. Conversely, being able to program exact
management policies directly into main memory components

is currently only possible via custom hardware re-design.
The main research question tackled in this work is: What
are the implications of FPGA-CPU interaction via cache co-
herence on the ability to shift the programmability boundary?
With reference to Fig. 1, we investigate what new program-
ming paradigms are available to observe and/or act upon the
logical and temporal semantics of memory operations.

III. SYSTEM MODEL AND BACKGROUND

This section describes the system model and assumptions.
We review key background concepts necessary to understand
the presented research, implementation, and results.

A. CPU+FPGA System Model

We consider CPU+FPGA platforms where a computing
cluster (CPU) is instantiated in silicon together with a block
of programmable logic (FPGA). While we primarily refer to
the presence of CPUs within the computing cluster, we make
no assumption on the exact composition of the cluster. In
other words, the cluster might contain a single or multiple
CPUs and/or accelerators. Other works refer to the same archi-
tectural paradigm as heterogeneous partially reprogrammable
platforms [3], [11], [12], or PS+PL platforms, where PS and
PL refer to the Processor Subsystem and Programmable Logic.

For simplicity, we assume all the processors within the
computing cluster share a single LLC. The downstream mem-
ory hierarchy components must resolve LLC misses. We
consider a physically-indexed, physically-tagged (PIPT) LLC
that implements a write-back write-allocate (WBWA) policy.
By WBWA, dirty lines are written back upon eviction, and a
write miss allocates a new line in the LLC.
Memory-mapped FPGA. We assume that the FPGA is as-
signed a static aperture within the physical addressing space.
When CPU-originated transactions have a physical address
that falls within the FPGA aperture, a miss in LLC initiates
a read memory transaction (and potentially a write-back)
towards the FPGA. We refer to this approach to initiate CPU-
to-FPGA communication as memory-mapped semantics.
High-performance CPU-to-FPGA communication. When
transactions are initiated towards the FPGA, they are carried
over (a set of) dedicated high-performance CPU-to-FPGA
bus segments. We further assume that the onboard FPGA is
capable of initiating transactions towards the main memory
(DDR). Transactions initiated by the FPGA towards main
memory travel on bus segments of comparable performance.

B. Advanced Extensible Interface (AXI)

On ARM-based CPU+FPGA systems, which are the imme-
diate target of this work, it is reasonable to assume that on-chip
memory streams are carried out using the Advanced Extensible
Interface (AXI) protocol [13] or extensions of thereof. The
protocol exist in three variants: Lite, Stream, and Full. The
latter is the object of this section.

Fig. 2: Overview of AXI and ACE channels.

The AXI protocol relies on two key concepts: (1) the Main-
Secondary3 duality and (2) the handshake mechanism in order
to carry out read and write operations. An AXI bus segment
is a point-to-point connection directed from the main port to
a secondary port. The main port can initiate a request, while
the secondary port serves requests initiated by the main.

The handshake between main and secondary allows (1) the
former to indicate the validity of the current data on the bus
lines; and (2) the latter to indicate whether it can accept the
data. This mechanism is crucial to enable the asynchronous
nature of the protocol and decouple the main design from the
secondary response time.
AXI channels. To carry out read transactions, two channels
are defined, as illustrated in Fig. 2. First, the main initiates an
address phase on channel AR; the secondary responds on the
R channel with the requested data payload. Write transactions,
as depicted in Fig. 2, proceed in three steps. The main initiates
an address phase (AW channel) before initiating an arbitrarily
long data phase on the W channel. It is only once the data
phase is over that the secondary responds via channel B to
acknowledge the completion of the transfer.

C. Programmable Logic In-the-Middle (PLIM)

The work in [3] describes the possibility of logically inter-
posing the FPGA between then CPUs and main memory by (1)
using memory-mapped semantics to assign physical memory
within the address range corresponding to the FPGA aperture;
and (2) by fulfilling CPU-originated memory requests by using
the FPGA to access main memory and forward the data.
During step (2), data, address, and timing manipulations can
be applied before returning the final data items.
Example. Consider 1 GB of main memory and an FPGA
mapped at the aperture [0x0000_0000, 0x3fff_ffff]
and [0xc000_0000, 0xffff_ffff], respectively. The
CPU wants to access address 0x1234_5000. Its page tables
are modified to use the physical address 0xd234_5000 with
an added constant offset 0xc000_0000. The request reaches
the FPGA, which subtracts the offset, retrieves the data from
main memory and returns the result.

3The authors do not endorse the master and slave terminology used in
the official referenced manuals. The keywords main and secondary are used
instead throughout the article.

Fig. 3: Snoop-based coherence via the ACE protocol.

Doing so effectively creates a secondary route to the main
memory. Memory traffic is routed via a cacheable I/O-like
path through the on-chip FGPA. This is different from the
customary use of hardware accelerators that operates following
a load-unload fashion [2]. The concept of PLIM applies to
a ever-broadening class of FPGA+CPU commercial systems
from vendors such as Intel [14], Xilinx [11], and Microsemi
with their PolarFire SoC [15], while large-scale research-grade
prototypes are being studied [16], [17].

D. Cache Coherence Model

In complex systems, multiple components might cache data.
Coherence protocols allow caching to be distributed across the
SoC, while a consistent view of data items is offered to all the
parties participating in the protocol. In this work, we assume a
snoop-based cache coherence protocol facilitated by a central
cache-coherent interconnect (CCI), as depicted in Fig. 3. If
caches in two or more subsystems (e.g., CPU cluster and
FPGA) are kept coherent, they are said to belong to the same
coherence domain. In ARM-based platforms, this is referred
to with the term shareability domain.

We assume that the LLC of the compute cluster is a cache-
coherent main attached to the CCI. Via the CCI, the content of
the LLC can be kept coherent with other caches defined out-
side of the compute cluster. Note that we make no assumption
about the protocol used by CPUs and accelerators within the
compute cluster (Shareability Domain A in Fig. 3). Beyond
assuming a snoop-based coherence protocol used by the mains
attached to the CCI, no specific protocol is assumed. However,
to ensure broader applicability, we assume that the protocol
supports write-back caches and data passing between caches
(e.g., the Illinois [18] protocol, a.k.a. the Modified-Exclusive-
Shared-Invalid or MESI). More specifically, we require that
(1) upon a read/write miss in the LLC, a snoop request is
broadcasted by the CCI; and (2) when responding to a snoop
request, other mains on the CCI can directly pass the most
recent copy of the requested cache line.
Cache-coherent FPGA. Mains within the same domain must
expose appropriate interfaces to follow the same cache coher-
ence protocol. Importantly, we assume that the FPGA defines
one such interface and that it can be included within the same

coherence domain as the LLC of the compute cluster. This is
the case for the “Coherent Main” block in Fig. 3, since the
LLC and said block are both parts of Shareability Domain B.

E. AXI Coherency Extensions (ACE)

In ARM-based platforms, the CCI generally implements
the AXI Coherence Extension (ACE) protocol, as depicted in
Fig. 3. ACE extends the AXI protocol by adding three channels
to support hardware-assisted cache coherence, as illustrated
in Fig. 2. In the ACE protocol, upon a load/store cache-
miss at the LLC 1⃝4, the CCI broadcasts the event to all the
coherent mains 2⃝. It uses the snoop address (AC) channel
as a medium to provide the snoop transactions’ address and
associated control information. Every snoop transaction has a
single response associated with it, which (when appropriate)
can be used by a snooped main to provide the data for the
requested cache line. The snoop response (CR) channel is
used to provide one such response 3⃝. In case the snooped
request can be served by another coherent main, the snoop
data (CD) channel 4⃝ is used to transfer the data payload. If
the LLC cache miss is not resolved via coherence, the CCI
satisfies the cache line fill from DDR 4∗⃝.

F. Software Layer

We assume the platform software uses cacheable and
shareable memory. Beyond that, we make no assumptions
regarding the software layers. The hardware mechanisms we
discuss function independently from the software layers. As
such, we assume unmodified user-space applications, OS, and
hypervisor layers.

IV. CAESAR DESIGN AND PARADIGMS

This section discusses the proposed cache coherence back-
stabbing principle and outlines how it can be leveraged to
enable the CAESAR approach.

A. Coherence Backstabbing

We define coherence backstabbing as the principle of lever-
aging the cache-coherent interface(s) exposed to the FPGA for
purposes other than maintaining cache coherence within the
shareability domain. We use the word backstabbing to refer to
the idea that the FPGA inserts itself on the back of a protocol
where (1) useful information about the behavior of the CPUs
is transferred (observability); (2) the state of the upstream
caches, and the semantics and timing of the downstream data
accesses can be impacted following user-defined logic (pro-
grammability). When performing coherence backstabbing, it
is vital that the correctness of the protocol is maintained.
Backstabber designs. A backstabber design (or backstabber
IP) is an FPGA design that performs coherence backstabbing.
I.e., it maintains protocol correctness while implementing
custom functionalities with different degrees of intrusiveness.

4Note that both a load and a store cache-miss will appear as a read
transaction on the R channel of the ACE interface due to the WBWA policy.
In ARM Aarch64, only non-temporal loads/stores (LDNP/STNP), which are
seldomly used instructions, can cause a different behavior.

Backstabbed interface. On the other hand, a memory inter-
face (e.g. a memory-mapped aperture) is said to be back-
stabbed if a backstabber design is actively or passively in-
teracting with the traffic directed to the interface employing
coherence backstabbing.

B. The CAESAR Approach

We propose to use coherence backstabbing as a building
block for what we define as the Coherence-Aided Elective
and Seamless Alternative Routing (CAESAR) approach. The
key features of CAESAR are the following. First, it enables
memory traffic to follow routes that are alternative to those that
would be followed with traditional memory-mapped semantics
(see Section III-A). Because such a route bypasses slower SoC
interconnects meant for I/O traffic, it also enables lower re-
routing overheads. Second, it allows re-routing of data and
metadata with different trade-offs between seamlessness and
resulting overheads. Third, it allows dynamic activation of the
alternative route (for cache-line refill traffic) without the need
to modify a page-table translation. From the properties above,
we hereby describe a set of immediate memory programming
paradigms enabled by the CAESAR approach.
Silent Observer. Once a CPU undergoes an LLC miss, the
CCI broadcasts a snoop to a CAESAR IP implemented on the
FPGA. The most immediate programming paradigm consists
of single-ended listening without active participation. We refer
to this paradigm as the silent observer. This paradigm supports
designs that only need to rely on collecting meta-data of
the traffic produced by the CPUs. In this case, only transfer
metadata are being re-routed, but not actual data. For instance,
the silent observer paradigm can be used to acquire a precise
trace of such traffic, as we investigate in Section V-C. This is
arguably the approach that incurs the minimum overhead.
Read-Only Re-routing. Intuitively, this paradigm follows the
”I do not have the data, but I am going to lie about it”
principle. The CAESAR IP behaves as an active component in
the coherency domain. Upon receiving a snooped LLC miss, it
can take charge of providing the corresponding data. In other
words, the IP responds by simulating a cache-hit on its side.

To maintain correctness w.r.t. the coherence protocol, it is
now the burden of the IP to pass the data. From here, the
IP has two broad choices. First, it can directly interface with
a memory storage device (e.g., main memory) to fetch the
data (not necessarily at the same address!), or it can make up
the data by constructing it on the fly. A combination of both
approaches is also possible.

Consequently, this approach allows re-routing read traffic to
the FPGA without requiring the modification of the underlying
physical addresses. The CAESAR IP discussed in Section V-B
precisely explores the read-only re-routing potential.
Read-Write Re-routing. Under the WBWA semantics, if
the LLC follows a MESI [18] coherence protocol, only two
cases cause snoops to be broadcasted by the CCI. (1) Tran-
sition to Modified state upon write-hits on a cache line in
Shared state; (2) cache refills caused by a read/write LLC
miss (i.e., transitions to Shared, Modified, or Exclusive state

from Invalid state). Conversely, write-backs (resulting in write
memory transactions) are only triggered upon the eviction (or
clean+invalidation) of dirty LLC cache lines. Therefore, write-
backs are not snooped and the CCI forwards the transaction to
the downstream component depending on the physical address
of the cache line to be written back.

As such, re-routing of write traffic requires modifying the
virtual-to-physical translation of the data to be re-routed via
the FPGA. In this case, a CAESAR IP will handle snoop
requests for cache refills like in the previous paradigm. Write
traffic (and only write traffic!) will reach the FPGA following
traditional memory-mapped semantics instead. This paradigm
allows the FPGA to act upon the entirety of memory traffic,
while still handling read requests faster than using memory-
mapped semantics for both read and write traffic. Because
reads are located on the critical path from the point of view
of CPUs’ performance, doing so still achieves noticeable
performance improvements, as we evaluate in Section VI-C.

If, instead of re-routing write-backs, one wanted to expose
to the FPGA which cache-lines are modified by the CPUs,
for instance, to analyze read/write patterns and false-sharing,
another approach can be used. Specifically, in cases where the
LLC controller follows a MOSI [19] or MOESI [20] protocol,
a write-hit on a cache-line in Owned state causes a snoop
request with the most recent data payload to be broadcasted
by the CCI. The FPGA could theoretically force the state of
the cache lines in the LLC for which read/write traffic needs
to be re-routed to the Owned state. Exploring this direction is
currently out of scope.

Correctness and Generalization. The system model de-
scribed in Section III-A is aligned with the architectural
organization of existing CPU+FPGA systems with a single
CPU cluster and a CCI connecting its LLC to the FPGA. In
this case, the occurrence of a miss in the LLC is sufficient
to guarantee that the most updated version of the requested
data item is in main memory. Thus, a CAESAR IP can safely
reroute data fetches by replying to the corresponding snoop
transactions without breaking cache coherence. Nevertheless,
it is foreseeable that future CPU-FPGA architectures might
feature multiple CPU clusters and FPGA modules kept coher-
ent through the same CCI. Performing coherence backstabbing
in such architectures will require a generalization of our
approach, the details of which currently lie outside of the scope
of this paper. The intuition, however, is that in multi-cluster
SoCs, a CAESAR IP (or equivalent) will need to implement
a full coherence protocol. With that, through-FPGA handling
of memory requests can be initiated only when the state of a
cache line is safely determined to be in the ”invalid” state in
all the CPU-side caches.

V. PRACTICAL INSTANTIATION

This section describes a practical full-stack implementation
carried out on a commercially available CPU+FPGA platform
that follows the model and assumptions outlined in Section III.

A. Target Platform

The implementation of a set of CAESAR prototype designs
and their evaluation has been conducted on Xilinx UltraScale+
MPSoC, specifically the ZCU102 development board. The
ZCU102 is a CPU+FPGA platform equipped with a compute
cluster grouping four ARM Cortex-A53 cores running at
1.5GHz and a shared LLC of 1MB. The sizeable onboard
FPGA (600k+ LUTs) exports two high-performance (HPM)
CPU-to-FPGA ports with memory-mapped semantics. The
FPGA can initiate direct transactions to the main memory.

Cache-coherent FPGA. Importantly, the FPGA is also con-
nected to the system’s CCI via an ACE port, which places the
FPGA in the shareability domain of the LLC (see Section III).
The CCI used in this platform is an instance of a standard
ARM CCI-400 component [21]. Usually, the CCI-400 is used
to connect two clusters of heterogeneous cores following the
ARM big.LITTLE [22], [23] architectural paradigm. Instead,
on the ZCU102, the second cluster is replaced by an FPGA.
We selected Xilinx’s ZCU102 as the target platform for
evaluation to be immediately applicable and comparable to
existing works [3], [4], [12]. The overhead for involving the
FPGA in the coherence domain is evaluated in VI-A.

In this platform, the CCI supports not only coherent data
caching but also Distributed Virtual Memory (DVM) [13].
DVM is used to keep translation look-aside (TLB) entries
coherent across the SoC if multiple entities implement memory
management units (MMU) with cached virtual-to-physical
address translations. DVM management causes specific snoop
requests on the ACE port that any CAESAR IP must correctly
handle. There are two classes of DVM transactions that need
to be handled by the IP. (1) DVM operations: these transac-
tions convey particular operations, such as TLB invalidation
requests. (2) DVM sync: a synchronization transaction that
component issues to check that all previous coherence-related
requests have been completed. DVM Sync requests are served
to enforce barrier-like semantics for TLB operations beyond
the boundaries of the CPU cluster.

The CCI is configured at the power-up by the ARM Trusted
Firmware (ATF). We modified the BL31 stage (resident boot-
loader part of the ATF) to activate the FPGA-facing ACE
port. The BL31 bootloader stage executes right after the FPGA
bitstream is loaded and before booting any OS or hypervisor.
This is safe to do as long as a valid backstabber IP is
contained in the programmed bitstream. From the moment
when the coherence domain is extended to include the FPGA,
the CCI expects the FPGA to correctly handle all the snoop
requests, including the DVM snoops. As such, a litmus test
for the correctness of the design is the ability of the system to
complete the boot sequence that includes a full Linux kernel
boot and (potentially) that of a hypervisor. Indeed, a burst
of cache and TLB maintenance operations are issued during
the boot sequence. Hiccups in the way the instantiated IP
participates in the coherence protocol cause a fail-stop failure
of the system.

Fig. 4: Minimalist design of a coherence-enabled CAESAR
IP: the Silent IP. Interaction with the CCI is depicted on the
left; finite state machine (FSM) is reported on the right.

B. Template CAESAR IPs.

CAESAR Silent IP. To the best of our knowledge, the only
publicly available ACE-enabled IP that can be instantiated on
the ZCU102 platform is the Xilinx System Cache [24], which
implements the semantics of an accelerator-facing cache.
However, the sources of the System Cache are not available.
Thus, we implemented from scratch a first template design
for an IP that has the bare-minimum logic to handle the
coherence protocol correctly. The internal organization of this
component, called the Silent IP, is depicted in Fig. 4

Looking at the left-hand side of Fig. 4, the IP must handle
three prominent cases, as reflected in the finite state machine
(FSM) states/transitions on the right-hand side. 1⃝ If a DVM
operation is received, the IP must acknowledge it, but no active
response is necessary. 2⃝ If a DVM synch is received, the IP
must acknowledge it, actively provide a reply message (DVM
complete), and finally exchange a round of acknowledgments
with the CCI. 3⃝ If a regular cache snoop is received, the IP
must simply acknowledge the transaction and reply that it does
not own a more recent version of the requested cache line.
CAESAR Read-Only IP. Next, we implemented a CAESAR
IP capable of performing read traffic re-routing over a con-
figurable range of physical addresses. Whenever the address
of a data snoop request falls within the configured range,
the IP commits to provide the data. A birds-eye view of the
implementation is provided in Fig. 5. The orange data path
refers to the scenario in which the IP accepts a request (lying
scenario, see Section IV).

All snoop transactions are strictly ordered. I.e., responses on
the snoop response channel (CR) must be issued in the same
order they arrived on the snoop address channel (AC). Via
three dedicated signals in the CR channel, the IP notifies the
interconnect about the state of the cache line of data to be sent.
These are PassDirty, IsShared or WasUnique [13]. If
the IP asserts the PassDirty signal, it passes to the LLC
the cache line data, but the line will be written back by the
LLC upon eviction. This is not ideal because the IP could
force more write-backs than necessary. If the IsShared is
asserted, additional snoop traffic will be generated if a store
is issued on the same line. Finally, asserting the WasUnique

Fig. 5: CAESAR Read-Only architecture. AXI to ACE route
(orange) compared to direct AXI route (blue). The read data
can be sent to the SPM (green route)

signal means that no other cache holds a copy of the cache
line and allows the snooping process to complete. Thus, our IP
uses the combination PassDirty = 0, IsShared = 0, and
WasUnique = 1 for any cache line fetch being re-routed. If
the IP commits to providing a cache-line, it then issues an AXI
request to the main memory and forwards the AXI response
data on the ACE data channel (orange route in Fig. 5).

Alternatively, the implemented IP can fetch the data from
any other AXI secondary, such as an on-chip scratchpad
(BRAM) memory (green route in Fig. 5). We performed la-
tency and bandwidth analysis of going through the highlighted
routes compared to the direct classic route (blue route), where
the CCI issues its own AXI request towards the main memory.
We present these experiments in Section VI-B.

When the CCI handles a cache-line refill, by default, it also
performs a speculative prefetch to main memory. This makes
sense as it is likely that a copy of the accessed cache-line is
not present in any other cache. Speculative fetching causes the
CCI to issue a downstream fetch in parallel (via the blue route
in Fig. 5) with the issuance of a coherent snoop transaction.
The speculative reads are discarded if a response on the snoop
channel is received. Hence, we disabled speculative fetches
through the CCI Control Override Register to prevent these
parallel memory accesses and let the backstabber have full
control over the DRAM. The effect of disabling speculative
fetches on the system’s performance and latency depends on
the benchmark access pattern. It reduces latency when the
probability of a snoop-miss is high but introduces extra access
to DDR if the snoop hits the cache. On the other hand,
disabling speculative fetching may relieve the load on the
DRAM if the prefetched data is discarded often. We investigate
the impact of disabling CCI prefetches in Section VI-A.
CAESAR Read-Write IP. Finally, we implemented a CAE-
SAR IP capable of performing both read and write traffic re-

Fig. 6: CAESAR routes (orange, green) for memory traffic
compared to existing routes (blue, purple).

routing over a configurable range of physical addresses. Write-
backs must be re-routed by modifying the page tables used by
the CPUs. In particular, the physical address must fall within
the range of the exposed CPU-to-FPGA port aperture (HPM).
To do so, it suffices to perform a linear translation by adding a
constant offset that is later removed by the IP when it interacts
with the DDR interface. Conversely, cache refills are handled
similarly to the read-only case.

Fig. 6 summarizes all the routes described so far. The blue
arrow represents the normal route to the main memory. The
purple arrow refers to the case where re-routing is performed
only using memory-mapped semantics (like in the PLIM
case [3]). The orange route refers to the route followed by
read traffic in a read-only or read+write CAESAR design. In
this case, it can be noted that the –slow– main interconnect is
bypassed. Lastly, the green route is followed by writes (LLC
write-backs) traffic in a read+write CAESAR design.

C. CAESAR use-case: Silent Profiler

Beyond improving well-known applications of through-
FPGA traffic re-routing, such as those mentioned in Section I,
we hereby showcase a novel memory traffic inspection tech-
nique. Specifically, we use the privileged position of the FPGA
in the SoC to capture and construct a trace of LLC cache
misses with minimal impact on their timing. For this purpose,
we implemented the Silent Profiler IP.

Essentially, the silent profiler is an altered instantiation of
a silent observer as defined in Section IV. The IP pushes
key meta-data extracted from the snooped transactions (i.e.,
timestamp and physical address) in an internal queue. The IP
can be activated on-demand from user space and configured
to redirect the queued meta-data to any write-able memory,
including another FPGA IP, a scratchpad memory, or main
memory. Because this IP follows the silent observer paradigm
(see Section IV), the timestamped trace of memory accesses
is acquired with minimum overhead, as we evaluate in Sec-
tion VI-A. A closer look at the type of introspection enabled
by the silent profiler is discussed in Section VI-D.

VI. EVALUATION

This section evaluates coherency backstabbing via multiple
CAESAR prototypes implementing the designs described in
Section V. The section is divided in four parts. First, in
Section VI-A, we assess the impact of including the FPGA
within the cache coherence domain. Then, in Section VI-B, we

investigate the intrinsic raw performance gains offered by the
coherence backstabbing approach for various memory targets.
Finally, in Section VI-C, we identify the performance posi-
tioning of CAESAR designs compared to their state-of-the-art
counterparts. In Section VI-D, we provide a first demonstration
of the in-coherence-domain profiling capabilities of the silent
profiler on a set of widely used pragmatic workloads.

Throughout the evaluation, we use the platform described in
Section V, i.e., the Xilinx UltraScale+ ZCU102 development
board. Unless stated otherwise, the FPGA always operates at
300MHz, the maximal frequency on the target platform. As
for the software layers, we use an unmodified Linux kernel
4.14 to operate the system and host the workloads of interest.
Exceptionally, for the experiments conducted in Section VI-C,
we leverage the virtualization capabilities offered by the target
platform. In such cases, we use the Jailhouse hypervisor [25].
Note that the combined use of a full-fledged OS (Linux) and
the hypervisor-layer (Jailhouse) is not strictly necessary to use
the CAESAR IP. Conversely, any software layer capable of
explicitly allocating physical memory address ranges for cases
such as the CAESAR Read-Write IP can be used.

The designs are evaluated using synthetic and pragmatic
workloads. The synthetic workloads are used to character-
ize the performance of the considered memory targets. We
selected the IsolBench [26] suite to extract the latency and
bandwidth measurements. On the other hand, to assess the
real-world impact of the coherency backstabbing approach,
we consider the real-time adaptation of the San-Diego Vi-
sion Benchmarks Suite [27] (SD-VBS) that is part of the
RT-Bench suite [28]. We focus only on the VGA input size for
the disparity, mser, texture-synthesis, stitch,
tracking, and sift benchmarks. The larger input size
(fullhd) induces runtimes that makes collecting multiple
samples of the same experiments impractical. This is the same
reason why the multi-ncut benchmark was excluded; the
smaller input sizes do not trigger enough memory operations to
yield interesting results. The svm benchmark does not function
reliably in our unmodified system, while localization
never yields interesting results. Thus, the two benchmarks
were also excluded.

A. PL-Snooping Overhead

The extension of the coherence domain to include the
FPGA is always required to perform backstabbing. Conversely,
disabling the prefetcher at the CCI is optional albeit recom-
mended when actively re-routing traffic through a CAESAR
IP. However, doing so incurs some performance degradation.
This section seeks to highlight the impact of these mechanisms
using synthetic and pragmatic workloads.

For both pragmatic and synthetic workloads evaluations,
four scenarios combining the inclusion of the FPGA in the
coherence domain and the activation of the prefetching are
considered. To focus our study on the delays introduced by
the inclusion of the FPGA, a silent observer is implemented.

The characterization of the CAESAR overhead is performed
by running tests using IsolBench [26] for each of the con-

0

500

1000

1500

2000

2500

Ba
nd

wi
dt

h
(M

Bp
s)

0

50

100

150

200

La
te

nc
y

(n
s)

Non-coherent FPGA, prefetching enabled
Non-coherent FPGA, prefetching disabled

Coherent FPGA, prefetching enabled
Coherent FPGA, prefetching disabled

Fig. 7: Bandwidth and latency for designs featuring a
combination of prefetching (on/off) and (non-)coherent FPGA.

figurations presented earlier. The Fig. 8 shows the extent of
the overhead w.r.t. the bandwidth (left inset) and the latency
(right inset). In this figure, one can observe that, regardless of
whether prefetching is enabled, both a bandwidth of 2.6 GBps
and a latency of 152 ns can be sustained as long as the FPGA
is non-coherent. However, performance degradation appears
when the FPGA is added to the coherence domain. In the case
where the prefetching is enabled, the bandwidth drop remains
limited to 100 MBps and the increase in latency is contained
to 5 ns. When the prefetcher is disabled, the bandwidth drops
to 1.64 GBps and the latency increases to 215 ns.

In addition to the aforementioned four scenarios, the ex-
periment on pragmatic workloads presented in Fig. 8 extends
the coherent FPGA scenarios by varying its frequency from
300MHz to 50MHz. Fig. 8 is divided in two insets: one for
the execution times obtained with the prefetcher enabled (left)
and disabled (right). In both insets, each workload is associated
with a bar cluster grouping the recorded execution times for
each scenario. Within each cluster, the execution times are
normalized over the non-coherent FPGA scenario.

Similarly to the observations made just before, Fig. 8
confirms that pragmatic workloads also suffer from little-to-
no interference when the FPGA is not coherent or when the
prefetching is enabled. In fact, except for variations smaller
than 1%, all scenarios remain reasonably close to the baseline.
However, in scenarios with coherent-FPGA, a non-negligible
increase in execution can be observed. For instance, memory
intensive workloads such as mser and disparity see their
execution time increased by 17% and 6%. Other workloads
such as tracking and sift manage to remain below
the symbolic threshold of 5% while non-memory-intensive
workloads like texture_synthesis and stictch re-
mains unaffected. Interestingly, the operating frequency of the
coherent FPGA does not seem to impact the raw system per-
formance despite the prefetching mechanism being disabled.

B. Latency and Bandwidth Comparison

We evaluate the improvements enabled by the inclusion
of various FPGA-located memory targets in the coherence
domain under several levels of contention. We consider four
targets with diverging profiles that have been used in closely
related works. In addition to the CPU-side DRAM controller,
this includes the (1) FPGA memory block primitive (or

mser disparity texture
synthesis

stitch tracking sift0.95

1.00

1.05

1.10

1.15

1.20
No

rm
al

ize
d

Ex
ec

. T
im

e
Prefetching Enabled

mser disparity texture
synthesis

stitch tracking sift

Prefetching Disabled

Non-coherent FPGA 300MHz 250MHz 200MHz 150MHz 100MHz 50MHz

Fig. 8: SD-VBS normalized exec. times with prefetching enabled (left) and disabled (right) using a silent observer IP synthesized
at various FPGA frequencies. The normalization baseline is the case with non-coherent FPGA.

BRAM, or SPM [12]) with low-latency and low memory-level
parallelism (MLP), (2) high-latency, high-MLP through-FPGA
memory loopback [3], and (3) low-latency, high bandwidth
AXI-Sink. The latter is a custom-made IP accepting and
responding with the best timings allowed by the protocol but
without providing any meaningful data. Except for DRAM,
all targets are evaluated in coherent (i.e., the read-only CAE-
SAR IP is used) and non-coherent (i.e., reads are served via
memory-mapped semantics like in [3]) mode. For each of these
seven configurations, we measure the bandwidth (Fig. 9) and
latency (Fig. 10) experienced by the core under analysis (core
3) under four levels of contention. The level of contention is
the number of other cores creating read memory activity.

To illustrate all seven scenarios under the four levels of
contention, Fig. 9 is organized around seven clusters of four
violin plots. The violin plots are composed of three horizontal
bars informing on the minimum, average, and maximum
bandwidth while the envelope shows their distribution. As
expected, the bandwidth decreases according to the contention
level. However, the bandwidth drops and the measurement
distributions vary widely depending on the scenarios. Starting
from the left, one can quickly observe that direct DRAM
access provides the highest bandwidth despite a sharp drop
under maximal contention. For lower contention levels, a high
average bandwidth can be sustained but at the cost of large
variations. For the BRAM configuration, the figure highlights
the improvements brought by coherence backstabbing. In
fact, under no contention, the sustained bandwidth reaches
1.49 GBps, a 29.5% improvement over the non-coherent
equivalent. Despite providing higher bandwidths, the gain
sharply fades away as the contention increases. Similarly, the
loopback route (CPU→FPGA→DRAM) consistently displays
a higher bandwidth when made coherent with a 949 MBps
top bandwidth, improving by 29.5% over the non-coherent
version. This observation correlates with the MLP of these
memory targets (8, 16, and 32, respectively). The FPGA can
use up to 3 direct DDR ports, while we currently use only
one. The design of a CAESAR IP capable of multiplexing
between them is left as future work. Overall, coherent routes
enabled by CAESAR tend to outperform their non-coherent
counterparts for lower levels of contention. However, the
results are more nuanced under contention, with the bandwidth

distributions for comparable memory targets overlapping.
While in slight contrast with the bandwidth results, Fig. 10

mainly mirrors previous observations in the sense that, across
the board, the coherent routes always provide lower latencies
than their non-coherent counterparts. Not only this observation
is true for on-chip targets such as BRAM and AXI-Sink, but it
is also the case for loopback routes. Unfortunately, the perfor-
mance gap decreases as contention increases. Interestingly, the
loopback route seems to be the most resilient to contention.
In fact, “Coherent loopback” displays a distinguishably lower
latency when running alongside up to two contenders in
comparison to “Non-coherent loopback”. In contrast, both
BRAM and AXI-Sink offer a marginal improvement in latency
for the same level of contention. On higher contention levels,
only smaller improvements are observed. Unlike the previous
experiment, the DRAM route is not providing the lowest
latency, an additional hint that the DRAM’s higher MLP
contributes to the high bandwidth observed in Fig. 9.

In the case of partial read-only rerouting, Fig. 9 clearly
shows for each type of memory target that access through
CAESAR is beneficial for low contention scenarios. Con-
versely, under high contention, CAESAR only provides im-
proved best and average bandwidth. This correlates with the
latency experiments displayed in Fig. 10. Together, these
experiments highlight the ability of CAESAR to provide high-
bandwidth, low-latency access to local memory targets such as
BRAM. This could prove valuable in hybrid scenarios where
tasks need to access coherent BRAM for performance-critical
read-only cache lines (e.g., instruction pages), while the rest
of the traffic targets main memory directly.

C. Complete Memory Traffic Rerouting

The previous experiments highlight the raw performance
benefits of backstabbing FPGA-located memory targets for
read transactions, which is the critical path in systems with
WBWA LLCs. However, the inability to directly handle write
transactions can hinder the benefits previously shown as the
write bandwidth and latency remain unchanged from numbers
reported in [4], [12]. To assess the exact extent of the impacts,
we emulate previous works [3], [4] in rerouting a whole OS
through the FPGA and comparing its workload execution times
for various path configurations. While not strictly necessary

DRAM Coherent
BRAM

Non-coherent
BRAM

Coherent
Loopback

Non-coherent
Loopback

Coherent
AXI-Sink

Non-coherent
AXI-Sink

400

600

800

1000

1200

1400

1600
Ba

nd
wi

dt
h(

MB
/S

)
Contending cores: 0
Contending cores: 1
Contending cores: 2
Contending cores: 3

Fig. 9: Bandwidth experienced by a core under multiple levels of contention for various memory targets and routes.

DRAM

Coh
ere

nt

BRAM

Non
-co

he
ren

t

BRAM Coh
ere

nt

Loo
pb

ack

Non
-co

he
ren

t

Loo
pb

ack Coh
ere

nt

AXI-S
ink

Non
-co

he
ren

t

AXI-S
ink

0

100

200

300

400

500

600

700

La
te

nc
y(

ns
)

Contending cores: 0
Contending cores: 1
Contending cores: 2
Contending cores: 3

Fig. 10: Latencies experienced by a core under multiple levels
of contention for various memory targets and routes.

for the purpose of this experiment, we utilize Jailhouse, a
hypervisor, to redirect a complete Linux virtual machine (VM)
through the FPGA by allocating it the exposed FPGA aperture.
The workloads under analysis run on top of this re-routed VM,
guaranteeing the re-routing of both read and write transactions.

Four different path configurations are considered. In the
DRAM case, the VM is confined to a dedicated part of the
DRAM memory. In this configuration, used as a baseline,
neither read nor write transactions cross into the FPGA. In
contrast, with the HPM path, all transactions enter the FPGA
through one of the interfacing ports before being relayed to the
DRAM, like in [3]. In addition, we consider the backstabbed
version of these two paths. In these configurations, noth-
ing changes compared to their non-backstabbed counterparts
except that LLC refills are intercepted and routed by our
CAESAR IP through the FPGA. More accurately, backstabbed
DRAM means that write-backs and uncached transactions re-
main on the CPU side and directly reach the DRAM controller.
Instead, all LLC linefills are handled through the FPGA before
arriving to the DRAM controller. The latter configuration is
used as a secondary baseline to highlight the impact imputable
to the limited write MLP of the HPM paths. Similarly, for the
backstabbed HPM configuration, both writes and uncached
read transactions traverse the FPGA via the loopback, whereas
linefills are intercepted. This configuration, alongside HPM,
corresponds to the full memory traffic rerouting case, the main
object of this experiment.

Fig. 11 shows how these path configurations impact the
execution time of the selected SD-VBS workloads. Each

workload (x-axis) is associated with a bar cluster, one bar for
each of the above-mentioned path configurations. The height
of the bars (y-axis) reports the normalized execution time of
the workloads w.r.t. the baseline DRAM path configuration.

As expected from the previous experiments, none of the
configurations involving the FPGA perform as well as the
DRAM for memory intensive workloads such as mser,
disparity, tracking, and sift. The secondary base-
line, backstabbed DRAM, highlights the impact that rerouting
cached reads has, with all workloads seeing their execution
time increase. Globally, the HPM path configuration always
induces the highest execution times recorded, with increases
reaching up to 45%, 25%, and 8%. As proven by the numbers
for the backstabbed HPM, the simple addition of a read-
only CAESAR IP for the address range of interest manages
substantially reduce the gap with the backstabbed DRAM path
configuration. In comparison, increases in execution time are
reduced to 29%, 15%, and 6%.

Despite the noticeable improvements when compared to
PLIM routing (HPM), for all benchmarks in Fig. 11, back-
stabbed HPM still introduces large overheads. These can be
explained by three limitations in our implementation: (1) the
read MLP, (2) the write MLP, and (3) CPU-to-FPGA clock
domain-crossing overhead. In the current implementation, read
MLP is limited to about 50% of what is theoretically available.
This is due to the ACE port being capable of handling up
to 32 outstanding reads, while the FPGA-PS AXI port only
allows up to 16 outstanding reads. Comparing DRAM and
backstabbed DRAM helps to distill the impact of (1) and (3).
In the platform used, write MLP to the FPGA (via the HPM
port) is limited to 8, a third of the issuing capability of the
core cluster. The overhead imputable to (2) can be appreciated
by comparing the backstabbed version of HPM and DRAM.

D. Silent Profiler

This experiment showcases the silent profiler feature by
which we are able to capture the bus activity in both memory
space and time through its privileged position in the MPSoC.
For that, a Silent Spy is attached to the coherence domain in
passive collaboration and with prefetching enabled. Thus, all
tasks running on top of Linux reach the DRAM directly. As
discussed in SectionVI-A, this introduces negligible interfer-
ence compared to the system’s default configuration.

The traces for tracking, mser, and disparity have
been collected and are presented in Fig. 12a, 12b, and 12c.

mser disparity texture
synthesis

stitch tracking sift

1.0

1.1

1.2

1.3

1.4

1.5
No

rm
al

ize
d

Ex
ec

. T
im

e
ov

er
 D

RA
M

DRAM
HPM
Backstabbed HPM
Backstabbed DRAM

Fig. 11: Workload exec. times for various path configurations.

Each of these figures is composed of two insets. The upper in-
set shows the cumulative number of memory accesses captured
with a high resolution (i.e., transactions are accounted using
their exact timestamp) or with a coarser time-bin resolution of
1e6 clock cycles. The lower inset is a heat map depicting the
frequency at which the most popular 100 pages are requested
during the workload execution. The time on the x-axis is
divided in numerous time bins of 1e6 clock cycles, while the
y-axis represents the overall 100 most popular pages of the
workload. Popularity is defined by the number of accesses to
a page throughout workload execution. Each cell of the heat
map denotes the popularity of these pages during the current
time-bin. The color coding of each bin represents the per-bin
number of accesses to a given page.

We can observe on Fig. 12a, upper inset, that tracking
features a “four-steps” curve denoting an alternation of mem-
ory and computation intensive segments. The shape resonates
with the workload logic consisting in the identification and
tracking of an object on four images. Interestingly, while we
clearly see in the lower inset the interleaving of memory
intense and quiet segments, five intensive segments are ob-
served instead of the four expected. This suggests that the first
memory-intensive segment touches a larger range of pages,
including the less popular ones not shown in the inset.

As shown by Fig. 12b, the mser workload has a more
linear progression. It starts with a spike of accesses touching
three specific pages out of the most popular ones. Thereafter
follows a period of relative inactivity w.r.t. the memory traffic
even though the three previously mentioned pages still seem to
be particularly hit. After around 1.8e7 clock cycles, a point of
inflection is reached, marking the start of a memory-intensive
segment where the most popular pages are hit.

Finally, the trace obtained for the disparity workload
(Fig. 12c) highlights its memory-intensive nature. Indeed, the
upper inset depicts a sustained memory access pattern. The
heat map shows a high-frequency repetitive pattern of high and
low memory intensity, symptomatic of a workload sweeping
through its allocated memory. Despite not being shown in
Fig. 12c, we observed that all the top-accessed pages are
equally hit. The top-100 selection shown in the figure is likely
due to the randomness in the random policy of the LLC.

For the sake of clarity and space, the analysis above is
discrete and solely focuses on the 100 most popular pages.
However, traces obtained via the Silent Spy are substantially

more precise as all coherent requests are captured.

VII. DISCUSSION: CAESAR FOR REAL-TIME SYSTEMS

As mentioned in Section II, opacity and lack of con-
trol/programmability over memory resources are major road-
blocks toward the safe adoption of accelerator-enabled multi-
core SoCs in real-time systems. The proposed CAESAR
demonstrates that a sizable shift in the observability and
programmability boundary (Fig. 1) is possible in CPU+FPGA
systems, as reviewed in the following.
Observability. The profiling capability presented in Sec-
tion VI-D sets this work apart from other non-simulation-based
profiling tools such as those in [28], [29] that rely on sampling
of performance counters. These approaches can approximate
the cumulative access pattern (upper insets in Fig. 12) but
are unable to capture positional information about which
cache lines (or pages) are being accessed. Since the proposed
approach is hardware-based, it is also software-independent
with negligible overhead as shown in Section VI-A and Fig.7.
It opens the doors to FPGA-directed main memory bandwidth
management and DRAM bank orchestration.

Compared to using memory-mapped semantics (PLIM) [3],
[4], CAESAR IPs provide the same degree of profiling accu-
racy with a lower performance hit. For instance, the traces in
Fig. 4 can also be obtained with PLIM. However, as presented
in Section VI-A and VI-C, profiling via CAESAR IPs incurs
a fraction of PLIM’s overhead. Importantly, the magnitude
of the improvement depends on the profiling objective. For
instance, if profiling cached read requests through a Silent IP is
sufficient, a negligible overhead is introduced (see “Coherent
FPGA, prefetching enabled” in Fig.7). On the other hand,
profiling the metadata (e.g., QoS, protection attributes) of
cached read transactions implies the adoption of a Read-
Only IP. This introduces a larger overhead that is still below
what observed with PLIM, as highlighted by Fig. 9 and 10
(“Coherent Loopback”) and Fig. 11 (“Backstabbed HPM”).
Finally, profiling writes is only attainable by performing a
complete rerouting through the FPGA, which introduces the
largest (and yet less than PLIM’s) cost reported in this article
(see Fig. 11, “HPM” vs. “Backstabbed HPM”).
Programmability. All the CAESAR IPs described in Sec-
tion IV hide the complexity of the CPU-side ACE port for
ease of FPGA-side programming. The Read-Only and Read-
Write IPs also expose a standard AXI port through which
snooped transactions handled by the IP are transmitted. This
enables smooth integration with most memory targets and
other IPs—e.g., BRAMs [12], Relational Memory Engines [5],
cache bleachers [3]. Evaluating CAESAR for such IPs is part
of our future work roadmap.

We also envision two new classes of mechanisms leveraging
CAESAR capabilities for real-time applications. (1) For read-
only traffic, one can selectively and transparently cache in the
FPGA certain pages that are deemed important. This is akin
to having an explicitly programmable scratchpad that does
not need explicit DMA phases. When transactions are not
cached, the FPGA re-route is bypassed and the direct route is

(a) Workload: tracking (b) Workload: mser (c) Workload: disparity

Fig. 12: Traces obtained with the Silent Spy showing the evolution of memory traffic and physical pages’ popularity at run-time.

used instead, which was not possible with traditional PLIM.
The logic to decide whether transactions should be cached
or not is programmable. (2) For read-write traffic, the FPGA
can handle a cache refill by asserting ownership during the
CCI-generated snoop. If ownership is asserted (backstabbed
access), the route followed by that line refill bypasses the
main interconnect and is only queued with other re-routed read
requests. If ownership is not asserted (access via memory-
mapped semantics), the transaction follows a higher-latency
route also followed by write traffic. The logic according to
which certain (read) requests should be prioritized in this way
over others is programmable.

VIII. RELATED WORK

The CAESAR method presented in this paper fits within
a broad vision to define programmable memory subsystems.
As computing resources become increasingly bottlenecked by
memory resources, the idea of managing the performance and
the semantics of memory operations has been embraced by
many researchers. For instance, the works on Programming
in Memory (PIM) [30] propose the inclusion of key logic
operations close to memory cells. In other cases, the ability of
the software to augment memory semantics to include ad-hoc
operations has been explored in [31]. Rethinking the traditional
semantics of memory hierarchies has sparked much interest in
disparate sub-fields: from graph acceleration and large tree
traversal [32], [33] to garbage collection [34] and file-system
redundancy [35]; from (on-the-fly) data transformation [5],
[17], [36] to page de-duplication [37] and support to optimize
specific access patterns [38], [39].

A large number of works [40] within the last decade have
demonstrated that issues with unmanaged contention over
memory resources constitute a significant roadblock against
predictable consolidation of multi-core, accelerator-enabled
safety-critical systems. Many mitigation strategies have been
proposed. Software strategies have been investigated to throttle
the memory bandwidth used by the CPUs [9], [29], [41]
or partition DRAM banks between cores [7], [8]. Available

hardware support to regulate accelerators has been studied
in [29], [42]. Performing high-level scheduling of computation
and clusters of memory accesses was proposed in [43]–[45].
Revisions to traditional hardware components have also been
proposed to make them either more configurable, more capable
of enforcing QoS, or both [46]–[50]. The work in [6] offers
a performance evaluation of one-way coherence ports that are
useful for accelerators to remain coherent with CPU caches.

The most closely related works proposed re-routing
CPU-originated activity through an FPGA. That is, debug
traces [51], [52], or memory traffic [3]–[5]. Unlike the
aforementioned related works, CAESAR focuses on the new
opportunities offered by two-way coherency between the CPU
cluster and the FPGA. Other works have used cache-coherent
FPGAs for traditional acceleration purposes such as remote
memory accesses [53], arithmetic kernels [54], and machine
learning applications [55]. The proposed idea in [53], named
PBerry focuses on OS-level awareness of memory accesses
page management via FPGA as-a-proxy for networked/remote
memory only evaluated in simulation (PBSim). Conversely,
we explore the implications of a cache-coherent FPGA for
OS-agnostic low-overhead on-chip memory flow programming
with a full-stack implementation and real-hardware evaluation.

IX. CONCLUSION

This paper studies the potential of seamless FPGA inter-
action with cache-coherence protocols. We presented a novel
and previously unexplored set of techniques to manage CPU-
originated memory traffic. These techniques are enabled by
the ability to logically position the FPGA logic as a top-tier
component in the memory hierarchy of modern CPU+FPGA
SoCs. We evaluated our proof-of-concept CAESAR approach
through a full-stack system implementation considering four
designs and corresponding Silent, Read-Only, Read-Write,
and Silent Profiler IPs. Our results suggest that remarkable
paradigm enhancements and performance improvements are
unlocked by the proposed CAESAR method.

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant number CCF-2008799. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views
of the NSF. Denis Hoornaert was supported by the Chair for
Cyber-Physical Systems in Production Engineering at TUM
and the Alexander von Humboldt Foundation.

REFERENCES

[1] Xilinx. (2016) Zynq UltraScale+ MPSoC - All Programmable
Heterogeneous MPSoC. [Online]. Available: https://www.xilinx.com/
products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

[2] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. But-
tazzo, “A framework for supporting real-time applications on dynamic
reconfigurable FPGAs,” in 2016 IEEE Real-Time Systems Symposium
(RTSS), 2016, pp. 1–12.

[3] S. Roozkhosh and R. Mancuso, “The potential of programmable logic in
the middle: Cache bleaching,” in RTAS 2020, Sydney, Australia, 2020.

[4] D. Hoornaert, S. Roozkhosh, and R. Mancuso, “A Memory Scheduling
Infrastructure for Multi-Core Systems with Re-Programmable Logic,”
in 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021),
ser. Leibniz International Proceedings in Informatics (LIPIcs), B. B.
Brandenburg, Ed., vol. 196. Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021, pp. 2:1–2:22. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2021/13933

[5] S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational memory:
Native in-memory accesses on rows and columns,” in Proceedings 26th
International Conference on Extending Database Technology, EDBT
2023, Ioannina, Greece, March 28-31, 2023, J. Stoyanovich, J. Teubner,
N. Mamoulis, E. Pitoura, and J. Mühlig, Eds. OpenProceedings.org,
2023, pp. 66–79. [Online]. Available: https://doi.org/10.48786/edbt.
2023.06

[6] S. W. Min, S. Huang, M. El-Hadedy, J. Xiong, D. Chen, and W.-m. Hwu,
“Analysis and optimization of i/o cache coherency strategies for soc-fpga
device,” in 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), 2019, pp. 301–306.

[7] H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni, “Palloc: Dram
bank-aware memory allocator for performance isolation on multicore
platforms,” in 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2014, pp. 155–166.

[8] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Ra-
jkumar, “Bounding memory interference delay in cots-based multi-core
systems,” in 2014 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2014, pp. 145–154.

[9] P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting temporal
and spatial isolation in a hypervisor for ARM multicore platforms,” in
2018 IEEE International Conference on Industrial Technology (ICIT),
2018, pp. 1651–1657.

[10] N. Kim, B. C. Ward, M. Chisholm, J. H. Anderson, and F. D.
Smith, “Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning,” Real-Time
Syst., vol. 53, no. 5, p. 709–759, sep 2017. [Online]. Available:
https://doi.org/10.1007/s11241-017-9272-9

[11] Xilinx, Inc., “Zynq UltraScale+ MPSoC - All Programmable
Heterogeneous MPSoC,” August 2016, accessed 09.01.2020.
[Online]. Available: https://www.xilinx.com/products/silicon-devices/
soc/zynq-ultrascale-mpsoc.html

[12] G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni,
and M. Caccamo, “Designing mixed criticality applications on modern
heterogeneous MPSoC platforms,” in 31st Euromicro Conference on
Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

[13] ARM, “AMBA AXI and ACE Protocol Specification,” Tech. Rep., 2019.
[Online]. Available: https://static.docs.arm.com/ihi0022/g/IHI0022G
amba axi protocol spec.pdf

[14] Intel, Corp., “Intel’s Stratix 10 FPGA: Supporting the
smart and connected revolution,” October 2016, accessed
09.01.2020. [Online]. Available: https://newsroom.intel.com/editorials/
intels-stratix-10-fpga-supporting-smart-connected-revolution/

[15] Microsemi — Microchip Technology Inc., “PolarFire SoC -
Lowest Power, Multi-Core RISC-V SoC FPGA,” July 2020,
accessed 09.01.2020. [Online]. Available: https://www.microsemi.
com/product-directory/soc-fpgas/5498-polarfire-soc-fpga

[16] G. Alonso, T. Roscoe, D. Cock, M. Ewaida, K. Kara, D. Korolija,
D. Sidler, and Z. ke Wang, “Tackling hardware/software co-design from
a database perspective,” in Conference on Innovative Data Systems
Research (CIDR), Amsterdam, Netherlands, Jan. 2020.

[17] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He,
N. Hossle, D. Korolija, M. Licciardello, K. Martsenko, R. Achermann,
G. Alonso, and T. Roscoe, “Enzian: An open, general, cpu/fpga
platform for systems software research,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
434–451. [Online]. Available: https://doi.org/10.1145/3503222.3507742

[18] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence
solution for multiprocessors with private cache memories,” in
Proceedings of the 11th Annual International Symposium on Computer
Architecture, ser. ISCA ’84. New York, NY, USA: Association
for Computing Machinery, 1984, p. 348–354. [Online]. Available:
https://doi.org/10.1145/800015.808204

[19] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon,
“Implementing a cache consistency protocol,” in Proceedings of the 12th
Annual International Symposium on Computer Architecture, ser. ISCA
’85. Washington, DC, USA: IEEE Computer Society Press, 1985, p.
276–283.

[20] D. A. Patterson and J. L. Hennessy, Computer organization and design
ARM edition: the hardware software interface. Morgan kaufmann,
2016.

[21] Xilinx, “ARM® CoreLink™ CCI-400 Cache Co-
herent Interconnect,” Tech. Rep., 2015. [On-
line]. Available: https://developer.arm.com/documentation/ddi0470/k/
functional-description/snoop-connectivity-and-control

[22] A. L. or its affiliates, “Processing Architecture for Power Efficiency
and Performance,” Tech. Rep., 2022. [Online]. Available: https:
//www.arm.com/technologies/big-little

[23] H. Chung, M. Kang, and H.-D. Cho, “Heterogeneous multi-processing
solution of exynos 5 octa with arm big. little technology,” Samsung
White Paper, 2012.

[24] Xilinx, “System Cache v5.0 LogiCORE IP Product Guide,”
Tech. Rep., 2021. [Online]. Available: https://docs.xilinx.com/r/en-US/
pg118-system-cache

[25] J. Kiszka, V. Sinitsin, H. Schild, and contributors, “Jailhouse
Hypervisor,” accessed 09.01.2020. [Online]. Available: ttps://github.
com/siemens/jailhouse

[26] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2016, pp. 1–12.

[27] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Be-
longie, and M. B. Taylor, “SD-VBS: The san diego vision benchmark
suite,” in IISWC 2009, 2009, pp. 55–64.

[28] M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and
R. Mancuso, “Rt-bench: An extensible benchmark framework for
the analysis and management of real-time applications,” in Proceedings
of the 30th International Conference on Real-Time Networks and
Systems, ser. RTNS 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 184–195. [Online]. Available:
https://doi.org/10.1145/3534879.3534888

[29] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “E-WarP: a system-
wide framework for memory bandwidth profiling and management,” in
41st IEEE RTSS 2020, Houston, TX, USA, Dec. 2020.

[30] G. H. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. Meswani,
D. P. Zhang, and M. Ignatowski, “A processing in memory taxonomy
and a case for studying fixed-function pim,” in Workshop on Near-Data
Processing (WoNDP), 2013, pp. 1–4.

[31] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, Livia: Data-Centric Computing
Throughout the Memory Hierarchy. New York, NY, USA: Association

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://drops.dagstuhl.de/opus/volltexte/2021/13933
https://doi.org/10.48786/edbt.2023.06
https://doi.org/10.48786/edbt.2023.06
https://doi.org/10.1007/s11241-017-9272-9
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution/
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution/
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://doi.org/10.1145/3503222.3507742
https://doi.org/10.1145/800015.808204
https://developer.arm.com/documentation/ddi0470/k/functional-description/snoop-connectivity-and-control
https://developer.arm.com/documentation/ddi0470/k/functional-description/snoop-connectivity-and-control
https://www.arm.com/technologies/big-little
https://www.arm.com/technologies/big-little
https://docs.xilinx.com/r/en-US/pg118-system-cache
https://docs.xilinx.com/r/en-US/pg118-system-cache
ttps://github.com/siemens/jailhouse
ttps://github.com/siemens/jailhouse
https://doi.org/10.1145/3534879.3534888

for Computing Machinery, 2020, p. 417–433. [Online]. Available:
https://doi.org/10.1145/3373376.3378497

[32] S. Zhou and V. K. Prasanna, “Accelerating graph analytics on cpu-
fpga heterogeneous platform,” in 2017 29th International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD),
2017, pp. 137–144.

[33] R. Molina, F. Loor, V. Gil-Costa, F. M. Nardini, R. Perego, and
S. Trani, “Efficient traversal of decision tree ensembles with fpgas,”
Journal of Parallel and Distributed Computing, vol. 155, pp. 38–
49, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0743731521000915

[34] M. Maas, K. Asanović, and J. Kubiatowicz, “A hardware accelerator for
tracing garbage collection,” in 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2018, pp. 138–151.

[35] R. Kateja, N. Beckmann, and G. R. Ganger, “Tvarak: Software-managed
hardware offload for redundancy in direct-access nvm storage,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 624–637.

[36] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P.
Drumond, B. Falsafi, and C. Koch, Optimus Prime: Accelerating
Data Transformation in Servers. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1203–1216. [Online]. Available:
https://doi.org/10.1145/3373376.3378501

[37] D. Skarlatos, N. S. Kim, and J. Torrellas, “Pageforge: A near-memory
content-aware page-merging architecture,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 302–314. [Online]. Available: https:
//doi.org/10.1145/3123939.3124540

[38] Z. Wang, J. Weng, J. Lowe-Power, J. Gaur, and T. Nowatzki, “Stream
floating: Enabling proactive and decentralized cache optimizations,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 640–653.

[39] G. Weisz, J. Melber, Y. Wang, K. Fleming, E. Nurvitadhi, and J. C.
Hoe, “A study of pointer-chasing performance on shared-memory
processor-fpga systems,” ser. FPGA ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 264–273. [Online].
Available: https://doi.org/10.1145/2847263.2847269

[40] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I.
Davis, “A Survey of Timing Verification Techniques for Multi-Core
Real-Time Systems,” ACM Comput. Surv., vol. 52, no. 3, Jun. 2019.
[Online]. Available: https://doi.org/10.1145/3323212

[41] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “MemGuard:
Memory bandwidth reservation system for efficient performance iso-
lation in multi-core platforms,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2013, pp.
55–64.

[42] M. Zini, G. Cicero, D. Casini, and A. Biondi, “Profiling and controlling
I/O-related memory contention in COTS heterogeneous platforms,”
Software: Practice and Experience, vol. 52, no. 5, pp. 1095–1113, 2022.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.
3053

[43] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for COTS-based embedded
systems,” in 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, 2011, pp. 269–279.

[44] C. Maia, L. M. Nogueira, L. M. Pinho, and D. G. Pérez, “A closer
look into the AER model,” in 2016 IEEE International Conference on
Emerging Technology and Factory Automation, (ETFA 2016), September
2016.

[45] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pel-
lizzoni, and M. Caccamo, “A real-time scratchpad-centric OS for multi-
core embedded systems,” in 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2016, pp.
1–11.

[46] Y. Zhou and D. Wentzlaff, “MITTS: Memory inter-arrival time traffic
shaping,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 532–544, 2016.

[47] F. Farshchi, Q. Huang, and H. Yun, “BRU: Bandwidth regulation unit for
real-time multicore processors,” 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 364–375, 2020.

[48] M. Hassan, “Reduced latency DRAM for multi-core safety-critical real-
time systems,” Real-Time Systems, vol. 56, pp. 171–206, 2019.

[49] R. Mirosanlou, M. Hassan, and R. Pellizzoni, “DRAMbulism: balancing
performance and predictability through dynamic pipelining,” in 2020
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2020, pp. 82–94.

[50] P. K. Valsan and H. Yun, “MEDUSA: A predictable and high-
performance DRAM controller for multicore based embedded systems,”
in 2015 IEEE 3rd International Conference on Cyber-Physical Systems,
Networks, and Applications. IEEE, 2015, pp. 86–93.

[51] J. Freitag and S. Uhrig, “Closed Loop Controller for Multicore Real-
Time Systems,” in Architecture of Computing Systems – ARCS 2018,
M. Berekovic, R. Buchty, H. Hamann, D. Koch, and T. Pionteck, Eds.
Cham: Springer International Publishing, 2018, p. 45–56.

[52] L. Feng, J. Huang, J. Hu, and A. Reddy, “Fastcfi: Real-time control-flow
integrity using fpga without code instrumentation,” ACM Trans. Des.
Autom. Electron. Syst., vol. 26, no. 5, jun 2021. [Online]. Available:
https://doi.org/10.1145/3458471

[53] I. Calciu, I. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi, O. Mutlu,
and P. Subrahmanyam, “Project PBerry: FPGA acceleration for remote
memory,” ser. HotOS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 127–135. [Online]. Available:
https://doi.org/10.1145/3317550.3321424

[54] H. Giefers, R. Polig, and C. Hagleitner, “Accelerating arithmetic kernels
with coherent attached fpga coprocessors,” in 2015 Design, Automation
and Test in Europe Conference Exhibition (DATE), 2015, pp. 1072–1077.

[55] Z. Wang, J. Sim, E. Lim, and J. Zhao, “Enabling efficient large-
scale deep learning training with cache coherent disaggregated memory
systems,” in 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2022, pp. 126–140.

https://doi.org/10.1145/3373376.3378497
https://www.sciencedirect.com/science/article/pii/S0743731521000915
https://www.sciencedirect.com/science/article/pii/S0743731521000915
https://doi.org/10.1145/3373376.3378501
https://doi.org/10.1145/3123939.3124540
https://doi.org/10.1145/3123939.3124540
https://doi.org/10.1145/2847263.2847269
https://doi.org/10.1145/3323212
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3053
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3053
https://doi.org/10.1145/3458471
https://doi.org/10.1145/3317550.3321424

	Introduction
	Motivation and Vision
	System Model and Background
	CPU+FPGA System Model
	Advanced Extensible Interface (AXI)
	Programmable Logic In-the-Middle (PLIM)
	Cache Coherence Model
	AXI Coherency Extensions (ACE)
	Software Layer

	CAESAR Design and Paradigms
	Coherence Backstabbing
	The CAESAR Approach

	Practical Instantiation
	Target Platform
	Template CAESAR IPs.
	CAESAR use-case: Silent Profiler

	Evaluation
	PL-Snooping Overhead
	Latency and Bandwidth Comparison
	Complete Memory Traffic Rerouting
	Silent Profiler

	Discussion: CAESAR for Real-time Systems
	Related Work
	Conclusion
	References

