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ABSTRACT

Unarbitrated contention over shared resources at different levels of

the memory hierarchy represents a major source of temporal inter-

ference. Hardware manufacturers are increasingly more receptive

to issues with temporal interference and are starting to propose

concrete solutions to mitigate the problem. Intel Resource Director

Technology (RDT) represents one such attempt. Given the wide

adoption of Intel platforms, RDT features can be an invaluable asset

for the consolidation of real-time systems on complex multi- and

many-core machines.

Unfortunately, to date, a systematic analysis of the capabilities

introduced by the RDT framework has not yet been conducted.

Moreover, no clear understanding has been matured about the

implementation-specific behavior of RDT primitives across pro-

cessor generations. And ultimately, the ability of RDT to provide

real-time guarantees is yet to be established.

In our work, we conduct a systematic investigation of the RDT

mechanisms from a real-time perspective. We experimentally eval-

uate the functionality and interpretability of RDT-aided allocation

and monitoring controls across the two most recent processor gen-

erations. Our evaluations show that while some features like Cache

Allocation Technology (CAT) yield promising results, the implemen-

tation of other primitives such as Memory Bandwidth Allocation

(MBA) has much room for improvement. Moreover, in some cases,

the presented interfaces range from blurry to incomplete, as is the

case for MBA and Memory Bandwidth Monitoring (MBM).
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1 INTRODUCTION

As multi-core systems have become more prevalent, providing

accurate performance guarantees has become increasingly chal-

lenging. With the advent of additional computing units, such as

accelerators, the pressure on the limited shared cache and mem-

ory controllers has increased [3, 51, 55, 56]. Embedded research

areas, such as real-time edge computing have become increasingly

more data-intensive. The real-time community has developed mul-

tiple hardware and software techniques to mitigate both spatial

and temporal interference at different levels of the memory hierar-

chy [9, 12, 13, 19, 49, 63, 67]. As already recognized in some of these

works, high-performance platforms are an attractive alternative for

complicated, highly interconnected real-time systems in need of

soft real-time guarantees [60, 61, 63].

Shared caches lead to inter-core interference as different tasks

can evict each other’s data from the cache and, as a result, make

calculating the worst-case execution time (WCET) convoluted and

pessimistic [32, 41, 64, 66] or overly pessimistic [20, 59]. Similarly,

main memory bandwidth is a significant bottleneck when various

applications are concurrently access DRAM [2, 30, 49, 66].

Hence, hardware techniques for cache partitioning and main

memory bandwidth regulation have found widespread adoption in

the real-time community [6, 67]. For example, ARM introduced a

specification for Memory Partitioning and Monitoring (MPAM) in

2017, which enables monitoring and control over the main mem-

ory usage [5]; ARM QoS extensions are already available in com-

mercial systems [49, 50]. In parallel, Intel has implemented new

hardware support for cache partitioning and memory bandwidth

regulation under their Resource Director Technology (RDT) um-

brella. For cache partitioning, Intel has introduced Cache Alloca-

tion Technology (CAT), which has already been used in a number

of works [61, 63]. For bandwidth regulation, Intel has introduced

Memory Bandwidth Allocation (MBA) [46, 60]. The management

tools are accompanied by their corresponding monitoring support,

i.e., Cache Monitoring Technology (CMT) and Memory Bandwidth

Monitoring (MBM).

In this paper, we provide a comprehensive analysis of the RDT

mechanisms as their use become more common in the real-time

community. Using synthetic benchmarks, we study their effective-

ness in providing temporal isolation for co-running applications.

Furthermore, we also investigate RDT monitoring features. We

substantiate our conclusion on the maturity of these features with

experiments conducted on two Intel platforms of different genera-

tions, namely Cascade Lake and Ice Lake.
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2 RELATEDWORK

Shared resource contention is a well-known issue in the real-time

community, and many research papers have explored performance

degradation in multi-core systems [38]. For example, Sha et al. [48]

demonstrated how contention at both the shared last-level cache

(LLC) and main memory impacts real-time performance. Know-

ing this, research works have proposed and used several resource

allocation techniques to limit and bound contention over shared

resources at different levels of the memory hierarchy [19, 39, 39,

44, 52, 57, 62, 65, 67, 68]. Some works mandate strict resource par-

titioning between individual cores [31, 40, 48], or propose to de-

compose real-time tasks into a sequence of memory and execution

phases that can be explicitly scheduled. The Predictable Execution

Model (PREM) [47] and Acquisition Execution Restitution (AER)

model [37] are such examples. Additionally, specific works have pro-

posed custom hardware resource management primitives to resolve

contention over shared resources at different levels of the memory

hierarchy [15, 35, 36, 38]. For instance, the work in [36] proposes

a methodology to prioritize memory requests from high critical-

ity tasks by tagging them. Tag-based prioritization is enforced via

customizable hardware modules in the memory sub-system. In this

work, we focus on a commercially available resource management

primitives.

In particilar, we focus on the analysis of Intel RDT. Intel intro-

duced RDT features in the latest-generation Xeon processors to

manage contention over key memory resources. Several research

works have already employed Intel RDT technologies. Most notably,

many works employed CAT to manage cache allocation for critical

applications [19, 61, 63]. Farshin et al. implemented a slice-aware

cache management framework and compared it to CAT [16]. In

particular, they find that enabling CAT does not provide the desired

isolation and that limiting the available cache ways can instead add

more pressure on main memory bandwidth. However, the critical

assumption in these works is that CAT partitioning provides deter-

ministic results and can be trusted in providing way-based cache

partitioning.

Similarly, many techniques to regulate DRAM bandwidth have

been proposed. In software, a popular approach has been to monitor

memory bandwidth at the OS-level with LLC miss performance

counters and throttle cores that exceed a set bandwidth thresh-

old [67]. More recently, hardware-level designs have proposed

arbiters capable of enforcing bandwidth partitioning among co-

running applications [14, 44, 49, 57, 68]. Intel MBA—which is part

of RDT—is one such hardware-based bandwidth regulation mecha-

nism. Even though MBA is a recent addition to RDT, some works

have already attempted to apply MBA to decrease the performance

degradation caused by unregulated applications sharing the limited

main memory bandwidth [46, 60]. However, these works focus on

the earlier version of MBA which is known to have major limita-

tions and bugs [27].

While much prior research fundamentally assumed that CAT and

MBA have been correctly implemented, our goal is to specifically

put this hypothesis to the test. The description of the errors in the

document presented by Intel is vague and not comprehensive [27].

For example, specific workloads, especially memory intensive, can

use more of the shared cache than what allocated to them. Also,

MBA might throttle the cores at a different setting than the one

applied if the hardware register controlling the settings is read di-

rectly after changing the MBA level. Differently from the provided

errata documents, our approach is experiment-driven and our con-

clusions are tailored to the applicability of RDT from a real-time

perspective.

As RDT mechanisms become more common and more research

works attempt to build atop RDT to restore predictability, it is

crucial to analyze their functionality and maturity in depth. We

experimentally investigate the performance of both allocation and

monitoring primitives across two generations of processors. Fur-

thermore, we study whether the RDT framework is reliable enough

to be used by the real-time community by documenting the level

of isolation guarantees the resource allocations offer and the accu-

racy of the monitoring counters. Therefore, this paper sets itself

apart from previous works that have used Intel RDT mechanisms

as black-boxes.

3 RESOURCE DIRECTOR TECHNOLOGY

In this section, we provide an overview of the different components

of Intel RDT. The objective of these techniques, as explained by

Intel, is to reduce performance interference at the shared cache and

the main memory subsystem while enabling "key" applications to

maintain desired progress when the system has multiple applica-

tions running [10, 23]. These design goals are in line with the effort

placed by the real-time community in ensuring that high-criticality

tasks receive temporal isolation. Hence, the RDT framework is (in

principle) a viable alternative to existing techniques and tools.

RDT is made up of five mechanisms that can be subdivided

into resource allocation and resource monitoring capabilities - 1)

Cache Allocation Technology (CAT), 2) Code and Data Prioritiza-

tion (CDP), 3) Cache Monitoring Technology (CMT), 4) Memory

Bandwidth Allocation (MBA), and 5) Memory Bandwidth Moni-

toring (MBM). CAT and MBA help manage the shared cache and

main memory bandwidth, respectively. CDP is an extension of CAT

which enables the user to select the placement of code and data in

the shared cache. CMT and MBM monitor the shared cache and

mainmemory bandwidth. RDTwas first introduced in Intel Xeon E5

v3 family of processors with limited functionality [25]. Our paper

uses two different generations of Intel platforms: 1) 2nd Generation

Xeon Scalable Processors (Cascade Lake), and 2) 3rd Generation

Xeon Scalable Processors (Ice Lake). Table 1 lists the platforms that

support RDT features.

3.1 Resource Allocation

It has been extensively shown that sharing of unregulated hardware

resources leads to performance degradation due to a lack of tem-

poral isolation [7, 8, 43, 58, 65, 67]. Partitioning resources ensures

high-criticality applications can maintain their quality of service

(QoS) by mitigating interference. The resource allocation mecha-

nisms provided by RDT work on the same principle. They allow

system designers to enforce specific limits on using performance-

critical shared hardware resources by applications scheduled on

individual cores.
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Table 1: RDT with Availability Details

RDT Components Variations Generations

A

L

L

O

C

A

T

E

Cache Allocation

Technology

L2

Atom Server C3000

11th Gen i3,i5,i7

Atom X Series

Xeon W

L3

Xeon E3 v4

Xeon E5 v3,v4

Xeon D

Xeon Scalable

Xeon Scalable Gen2

Xeon Scalable Gen3

11th Gen i3,i5,i7

Atom X Series

Xeon W

Code and Data

Prioritization

L2

11th Gen i3,i5,i7

Atom X Series

Xeon W

L3

Xeon E5 v4

Xeon Scalable

Xeon Scalable Gen2

Xeon Scalable Gen3

Memory Bandwidth

Allocation

MBA 1.0

Xeon Scalable

Xeon Scalable Gen2

MBA 2.0

Xeon Scalable Gen3

Snow Ridge

MBA 3.0 Xeon Scalable Gen4

M

O

N

I

T

O

R

Cache Monitoring

Technology

N/A

Xeon E3 v4

Xeon E5 v3,v4

Xeon D

Xeon Scalable

Xeon Scalable Gen2

Xeon Scalable Gen3

Memory Bandwidth

Monitoring

N/A

Xeon E5 v4

Xeon D

Xeon Scalable

Xeon Scalable Gen2

Xeon Scalable Gen3

Currently, RDT specifications support management of L2 cache,

L3 cache, and main memory bandwidth. The number of imple-

mented management controls differs between processor genera-

tions. For cachemanagement, the partitioning is way-based, whereas

the main memory bandwidth controls limit the amount of band-

width extracted on a per-core basis. In this paper, we focus on LLC

partitioning and bandwidth throttling. In Section 3.1.1 we discuss

CAT, followed by two versions of MBA in Section 3.1.2.

RDT uses a notion of "criticality" to manage applications. In-

tel calls this Class of Service (CLOS/COS). The number of CLOS

available on a machine varies. Multiple cores can be mapped to

one CLOS. All cores with the same CLOS abide to the resource

allocation policy associated with that CLOS.

The CPUID assembly instruction can be used to see the resource

allocation features that exist for a particular platform [24]
1
. If allo-

cation for a resource exists, additional information about various

1
When RDT exists, use CPUID with EAX=0X10 and ECX=0x0 to obtain the list of RDT

features available on the current platform. Register EDX reveals which resources for

either monitoring or allocating exist. Please refer to the Intel Software Manual for

more details [26].

knobs for controlling the resource partition is also provided. Specifi-

cally, for each resource type, CPUID instruction tabulates the number

of CLOS and the available allocation settings. By using per-CLOS

model-specific registers (MSRs), one can define the quantity of a

particular resource available to a given CLOS.

Once the values are assigned to each CLOS using the various

MSRs, a one-to-many mapping can be created to associate each

processor to its respective CLOS’s available resources. Thismapping

is established by setting the value for an MSR that exists on each

logical core to one of the CLOS identifiers. This control register,

namely IA32_PQR_ASSOC, can also be read to retrieve the current

CLOS at each context switch.

To summarize, to correctly allocate resources to applications, the

following steps need to be performed: 1) for each resource that can

be managed (e.g. shared cache, main memory bandwidth) use the

MSRs to define a partitioning scheme for shared resources for each

of the CLOS, and 2) create a mapping of cores to CLOS.

The remainder of this section describes the interfaces for man-

aging shared cache and memory bandwidth resource allocations.

3.1.1 Cache Allocation Technology. CAT has been extensively used

to provide temporal isolation at the shared cache level [19, 34, 61,

63]. CAT itself is a hardware way-based partitioning mechanism.

On the two micro-architectures that we considered, i.e., Cascade

Lake and Ice Lake, there are 16 CLOS available.

To do CLOS-based cache way partitioning, CAT provides a set

of per-CLOS MSRs where a bitmask forces the assignment of cache

ways. In each of those registers, the least𝑊 significant bits encode

whether each of the𝑊 ways can be used for allocation by any

of the CPUs in the considered CLOS. These registers are called,

IA32_L3_MASK_n MSRs where n ∈ {0, ...., 15} is the number of

CLOS available.

For example, setting IA32_L3_MASK_5=0b00011100000 expresses
that CLOS5 allows a core to allocate cache lines in only three cache

ways. This can be used to portion out a fixed number of ways

that are not allocated to any other CLOS. However, nothing in the

current definition prevents CLOS from sharing cache ways. For

example, IA32_L3_MASK_4=0b00110000000 could be assigned this

value, which means that CLOS4 and CLOS5 share only one cache

way. By default, all CLOS have access to all the cache ways as all of

the bits in their MSR bitmasks are set to one after reset.

Until now the literature has employed CAT for isolation, but no

systematic effort has been placed in investigating the strength of

the isolation that can be achieved with CAT. Over the years, many

researchers have also reported bugs in different generations of

CAT, including Intel themselves [27]. In this paper, we provide one

systematic approach to assess CAT’s validity along with methods

to improve temporal isolation when using current implementations

of CAT.

3.1.2 Memory Bandwidth Allocation. Currently, there are three

different implementations of MBA: MBA1.0, MBA2.0, and MBA3.0.

The available CLOS are different in the three versions of MBA, and

the granularity of MBA controls is linear, starting at 10% up to 100%

in increments of 10%. Percentage to represent regulation settings is

a piece of notation used by Intel [26]. Because it is unclear what

these percentages refer to, we call these settings "throttling levels

"(TLs).
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Like CAT, MBA uses CLOS-based bandwidth allocation and pro-

vides a set of MSR registers, IA32_L2_QoS_Ext_BW_Thrtl_nMSRs,

where n represents the CLOS. Only values corresponding to avail-

able throttling levels are acceptable, such as 10%, 20%.

MBA1.0: The initial implementation of MBA enacted indirect

throttling over the bandwidth. This implementation of MBA uses

a Programmable Rate Controller (Figure 1a) between the per-core

L2 cache and the L3 interconnect. It would appear that the con-

troller introduces a constant delay on L2 cache misses based on

the throttling level. This hypothesis on the behavior of MBA1.0 is

consistent with the use of the term “delay” interchangeably with

threshold in the documentation, as well as with the statement that

"MBA throttles accesses to the last-level cache, and care should be

taken to not throttle applications which are LLC-intensive [26]."

Core[0]

Private L2

MBA

Core[n]

Private L2

Chip Multiprocessor Platform

New 
MBA 
Feature

MBA

Shared L3 Cache

High-speed interconnect 
Memory 

Controller

(a) MBA 1.0

Thread 0

Thread 0

L2 Cache

L3 Cache

DRAM

Rate Limit (MBA)

Other throttling

L3 Miss Predictor

Software

(b) MBA 2.0

Figure 1: Implementation differences between MBA1.0 [22]

and MBA2.0 [28]

MBA2.0: In MBA2.0, the changes can be separated into two

components. First, the amount of throttling enacted by each MBA

TL is not fixed but is subject to change with BIOS calibration. Using

different calibration settings, the control over the inter-spacing be-

tween requests for different MBA settings can be modified
2
. Second,

the addition of a new hardware controller to measure the precise

bandwidth delivered to a CPU allows the controller to limit the

request rate to meet the bandwidth setpoint specified for the as-

sociated CLOS [28]. This is similar to traditional feedback-based

bandwidth control [1].

By having a hardware controller external to the core parts of the

processor, the newer implementation ofMBA can, in theory, provide

more refined control over the bandwidth allocated to different

CLOS. Furthermore, as the controller tracks the requests made to

the DRAM and not to the last-level cache. This prevents throttling

requests that could be satisfied by the L3 cache.

MBA3.0: The only difference between MBA2.0 and MBA3.0 is

that the assignment of throttling levels is no longer restricted to a

per-core basis. As the CLOS association registers are defined on a

per-logical-core basis, MBA settings can be set to different levels

for each hyper-thread. This is different from MBA1.0 and MBA2.0

2
Albeit the feature is mentioned in the manuals, both the machines we used provided

no options for the calibration of MBA in the BIOS. This might be available in the

future.

where the same throttling level was applied to all the hyper-threads

on the same physical core.

3.2 Resource Monitoring

Monitoring the resource utilization of an application at different

levels of the memory hierarchy can help ensure adequate amount

of resource allocation and prevent over-provisioning [19, 61]. Fur-

thermore, monitoring can also help contextualize the observed

performance degradation when contention over shared resources

occurs [18, 49].

Monitoring is performed by tagging each core via a Resource

Monitoring ID (RMID) [26]. This infrastructure in RDT is common

across both of the monitoring features (CMT and MBM). Multiple

cores can be set to the same RMID; this can be useful to monitor an

application running on multiple cores simultaneously. The set of

supported event types (resources that can be monitored) varies by

generation.

An event code represents the shared resource that needs to

be monitored. Currently, RDT only supports three event codes:

1) L3 cache occupancy, 2) total external bandwidth, and 3) lo-

cal bandwidth. Before we can retrieve the data, the MSR register,

IA32_QM_EVTSEL needs to be set with an event code and RMID for
which the resource monitoring is presented. Multiple event codes

can be stored in this register to monitor multiple resources simulta-

neously. Same with RMIDs. Once this is done, the data can be read

from the counter register IA32_QM_CTR.

3.2.1 Cache Monitoring Technology. The RMID along with CMT

event code provides the last-level cache occupancy for the appli-

cation/core linked to it. CMT and other L3 performance counters

can help configure the appropriate cache partitioning for sensitive

cache tasks subject to temporal constraints.

3.2.2 Memory Bandwidth Monitoring. In complex systems, appli-

cations can perform memory requests to memory subsystems out-

side the scope of the local processor. Multi-socket systems with

non-uniform memory access (NUMA) can differentiate the type of

memory requests into "local" and "remote." Local requests represent

L3 misses, including prefetches, that a memory controller completes

on the same socket [26]. Remote requests are L3 misses fulfilled by

a memory controller attached to a different socket. RDT has two

MBM event code options: 1) local external bandwidth and, 2) total

external bandwidth. The former only includes the bandwidth ex-

tracted by requests completed by memory controller(s) on the local

NUMA node. Conversely, the latter also includes the bandwidth

extracted from other NUMA nodes. The bandwidth extracted by

remote requests alone can be calculated by subtracting local from

total bandwidth. Lastly, even though the manuals refer to what is

measured as "bandwidth," in practice, the raw counter tracks the

number of transferred bytes.

Each of the RDT features can be manipulated via the correspond-

ing MSR register. The summary of the registers we considered is

provided in Table 2. All these registers can be modified at run-time.

3.3 Scope of RDT Analysis

Section 5 and Section 6 discuss the results of CAT, CMT, MBA, and

MBM on two different processor generations. The paper aims to
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Register Use

IA32_PQR_ASSOC
Set the desired CLOS and RMID

Defined for each logical processor

IA32_QM_EVTSEL
Contains event codes and the RMID to be monitored

Need to set before retrieving the data

IA32_QM_CTR
Reports the monitored data

Contains bits for checking errors and validation

IA32_L3_MASK_n
Bitmask to assign cache ways to each CLOS

n registers, one per CLOS

IA32_L2_QoS_Ext_BW_Thrtl_n
Set to one of the available throttling levels

n registers, one per CLOS

Table 2: Summary of the MSR registers used in RDT.

justify whether the current implementation of RDT mechanisms is

useful for the real-time community. We structured the two sections

by asking a set of questions that we must evaluate before we can

respond with a conclusive answer.

In particular, we focus on answering the following questions.

• Is CAT helpful to enforce LLC cache partitioning?

• Can we strengthen the degree of isolation provided by CAT?

• Are the results provided by CMT interpretable and in line

with the theoretical value of the synthetic benchmark?

• Is MBA effective in throttling interfering cores to protect a

target application?

• Are the limitations of MBA1.0 addressed in MBA2.0?

• How accurately is MBM able to track memory transactions

of known applications?

By answering these questions, we aim to help future works make

more informed design decisions when using RDT mechanisms.

4 TARGET PLATFORM AND SYNTHETIC

BENCHMARKS

To better understand the experimental studies conducted in the

following sections, we hereby introduce the target platforms. In

this section, we also describe the synthetic benchmarks used to

stress-test the systems and characterize the RDT tools’ workings.

4.1 Target Platforms

We provide an analysis of CAT, CMT, MBA, and MBM on two

different dual-socket Intel micro-architectures, released two years

apart, Cascade Lake and Ice Lake.We assume a single victim task

and the remaining physical cores on the same socket are used by

co-running tasks. A summary of the main system characteristics

can be found in Table 3 [11]. The platforms used in this paper were

released in April 2019 and 2021, respectively.

This paper uses more complex hardware than the traditional

embedded platform as our goal is to evaluate the most complete

RDT implementation available to date. Notwithstanding, a subset

of RDT mechanisms is available on Intel’s embedded platforms.

For instance, Tiger Lake, released in late 2020, introduces support

for CAT. We expect full-fledged RDT implementations to be more

available in embedded platforms as the remaining features (CMT,

MBA, MBM) become more stable.

The architecture of the Cascade Lake processor is shown in

Figure 2. The CPU cores are connected in a mesh, where mesh com-

ponents are the individual cores (with a slice of LLC), the memory

controllers, PCI lanes, and Ultra Path Interconnect (UPI) endpoints.

Cascade Lake systems have two memory controllers with three

Feature Details

CPU

Intel Xeon Gold 6248

40c/80t, dual socket

2.5 GHz base, 3.9 GHz boost

Cache

32 KB(I)/32KB(D) L1 cache

1 MB L2 cache

27.5 MB L3 cache (LLC)

Memory

∼ 376 GB Node 0

∼ 378 GB Node 1

6 DDR4-2933 MHz (per node)

2 Memory Controllers (per node)

RDT

L2 CAT (not tested)

L3 CAT

L3 CMT

MBA1.0

(a) Cascade Lake Machine (Released 2019)

Feature Details

CPU

Intel Xeon Gold 6338

64c/128t, dual socket

1.8 GHz base, 2.4 GHz boost

Cache

32 KB(I)/48 KB(D) L1 cache

1.25 MB L2 cache

48 MB L3 cache (LLC)

Memory

∼ 31GB Node 0

∼ 31.5GB Node 1

8 DDR4-3200 MHz (per node)

4 Memory Controllers (per node)

RDT

L3 CAT

L3 CMT

MBA2.0

MBM

(b) Ice Lake Machine (Released 2021)

Table 3: Notable System Characteristics

CHA/SF/LLC

 CLX Core

DDR4

DDR4

DDR4

MC

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

DDR4

DDR4

DDR4

MC

CHA/SF/LLC

CLX Core

CHA/SF/LLC

 CLX Core

CHA/SF/LLC

 CLX Core

2x UPI x20 PCIe x16 PCIe x16 On Pkg 1x UPI x20 PCIe x16
DMI x4 PCIe x16

 CLX Core

Figure 2: Cascade Lake Processor Architecture [17]

channels each. The newer Ice Lake systems have a similar design but

contain four memory controllers with two channels per controller.

4.2 Noise Control

In order to limit performance fluctuations, we configured the target

systems as follows. First, each of the experiments in this paper is

run 30 times to provide statistically significant results. Next, we

disable simultaneous multi-threading (SMT) and only consider a

single socket. We also disable the dynamic frequency governor
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such that the processor operates at the fixed base frequencies on

each micro-architecture mentioned in Table 3. We also disable Intel

Turbo Boost in our experiments.

Additional features that introduce non-determinism in the per-

formance measurements are disabled. These include hardware

prefetchers, OS-level load balancing and power-saving features.

Specifically, load balancing was restricted via the isolcpus Linux

kernel boot parameter [21] for all the cores in the socket under anal-

ysis. Furthermore, the kernel is compiled with the NOHZ_FULL [4]
configuration option to disable the scheduling ticks when the CPU

is idle or has only one application scheduled on the core. This is true

in our experimental setup as each application is explicitly pinned

to a core and not allowed to migrate. Power-saving features were

disabled by restricting the C-states [53] of the processors.

Each socket in the target platform has multiple main memory

(DRAM) controllers, attached to a set of DRAM modules (DIMM)

local to the socket. We restrict physical memory allocation for

application workload to the local socket to limit inter-socket data

exchange. We do so with a combination of two methods. First,

we disable inter-socket memory interleaving. Second, we use the

numactl [45] utility to force physical memory allocation from the

local node/socket. We only consider one socket under analysis in

the remainder of this paper. The other socket is left unloaded and is

used for handling interrupts and other OS-level management tasks.

Platform Tot. Ways Vic. Ways Co-Runner Ways Vic. Part. MB

Cascade Lake 11 6 5 15

Ice Lake 12 6 6 24

Table 4: Static cache partitioning on two micro-architectures.

An essential factor that impacts performance isolation is con-

tention over shared LLC cache space. We use strict cache parti-

tioning for the workload under analysis via CAT [26]. We have

fixed the number of ways allotted to the core under analysis unless

mentioned otherwise. The rest of the LLC is collectively assigned

to the remaining cores on the socket. As shown in Table 4, the

same number of ways was assigned to the core under analysis for

both the Cascade Lake and Ice Lake machines. The number of ways

allocated to the victim core is 6 in both platforms, but the partition

size is different as the two systems drastically differ in terms of total

LLC size. In our Cascade Lake machine, six ways correspond to

15 MB of partitioned LLC, whereas in our Ice Lake machine, it adds

up to 24 MB. Lastly, any change to the RDT registers is verified by

reading back the registers value.

4.3 Synthetic Benchmarks

The synthetic workload we use in our experiments is designed to

be memory intensive. We use the same “bandwidth” benchmark as

in [67]. It iterates multiple times — until terminated — over a buffer

with a given size. Each iteration performs a load or store every

64 bytes of data, which corresponds to the cache line size. Since

there are no dependencies between consecutive requests, they can

be carried out in parallel which maximizes the load on the DRAM.

The benchmark estimates the bandwidth received by measuring

its runtime and the number of completed memory operations. De-

pending on the size of the data buffer, this benchmark can be made

LLC sensitive or DRAM sensitive.

DRAM-Bomb: In cases where we are interested in studying the

performance impact of contention over main memory resources,

we set up our synthetic benchmark to be DRAM sensitive. This is

done by using a buffer of 3X the size of the shared cache (much

bigger than the LLC cache partitioning in both platforms). When

the synthetic benchmark is configured with these parameters, we

refer to it as a “DRAM-Bomb.”

LLC-Bomb: Contention over LLC bandwidth is another important

aspect of our study. The synthetic benchmark described above is

configured to maximize LLC interference. For our Cascade Lake

machine experiments, we use a buffer size in the range [2.5 MB,

15 MB] since that is bigger than the L2 but still fits within the 15 MB

cache partition.

On Ice Lake, the buffer size is in the range [4 MB, 24 MB]. It is

three times the size of the L2 cache. When the synthetic benchmark

is configured in this way, we refer to it as a “LLC-Bomb.” Recall that

apart from the core under analysis, all the other cores share an LLC

partition of about 24 MB in our Ice Lake machine and 12.5 MB in

our Cascade Lake system.

5 ANALYSIS OF CAT AND CMT

Cache partitioning is a widely usedmechanism for providing tempo-

ral isolation at the shared last level cache between applications run-

ning on different cores simultaneously. In past research, both soft-

ware and hardware-based mechanisms have been used [39, 52, 63].

In general, hardware techniques have lower overheads and do not

need assistance from the OS or the compiler to create cache parti-

tions [61, 63]. An alternative hardware approach is implemented

in [16] where a slice-aware cache management methodology was

proposed. The paper shows that memory access latency can be re-

duced by allocating memory in LLC slices that are closer to the core

on the mesh architecture. The benefits of slice-aware allocation

are beyond the scope of this paper. Specifically, this work focuses

on Intel’s hardware-based cache partitioning mechanism, i.e., CAT,

which has previously been used in the real-time community. In this

section, we take a closer look at this mechanism and the related

cache monitoring primitive (CMT).

5.1 Is CAT Helpful to Enforce Partitioning?

Our first experiment is designed to understand the benefits of using

CAT for LLC sensitive benchmarks. This is done by running the

same application with and without a private cache partition allo-

cated via CAT. The victim core executes an LLC-Bombwith varying

buffer size performing read operations. The results are presented

in Figure 3. The 𝑥-axis tracks the number of other active cores run-

ning DRAM-Bombs performing write operations. As the number

of co-runners increases, the pressure exerted on the limited shared

cache grows. The 𝑦-axis captures the percentage of LLC misses

triggered by the victim core on two considered micro-architectures.

The four sub-plots in Figure 3 present the results of four different

configurations: 1) Ice Lake machine without CAT (Figure 3a), 2)

Ice Lake machine with CAT (Figure 3b), 3) Cascade Lake machine

without CAT (Figure 3c), and 4) Cascade Lake machine with CAT

(Figure 3d). The cache misses are recorded via perf; a userspace
utility for performance monitoring [33]. Also, as mentioned in Sec-

tion 4.2, when CAT is used, 6 ways in each platform are provided to
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the core under analysis. Each line on the four sub-plots represents

a different working set size (WSS). Hence, on our Cascade Lake

processor, the WSS of the application goes from 2.5 MB to 15 MB

and on our Ice Lake system from 4 MB to 24 MB. The increment in

theWSS is equivalent to the size of one cache way on the respective

machines. Additionally, the largest buffer size in our experiments is

when the WSS is equal to the size of the L3 cache partition provided

to the victim core via CAT.
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Figure 3: The difference between shared cache misses in percent-

age as the working set size increases with DRAM interference with

and without CAT partitioning.

The answer to whether CAT provides isolation in the shared

cache is multi-fold. When no hardware partitioning exists in both

platforms, as the number of contenders increases, there is a drastic

increase in the percentage of cachemisses, asmeasured by hardware

performance counters. In the worst-case scenario, the mainmemory

serves 80% of the data accesses. Even though the application is

cache sensitive, its progress is bounded by the rate at which main

memory can satisfy read/write requests. The inflection point in the

application’s performance is dependent on its WSS. The larger the

WSS, the earlier degradation in performance is observed.

Unfortunately, CAT behaves very differently in the two genera-

tions of processors. For fewer interfering cores (around less than 18

cores), the Ice Lake machine (newer generation) has more or equal

cache misses with CAT than without. Without reserved shared

cache, we see initial near 0% cache misses that increase slowly up

to ∼5%, regardless of the WSS. CAT changes this behavior as even

with a few contenders, the percentage of LLC misses remains con-

stant as shown in Figure 3b. For example, when the buffer size is

20 MB in the Ice Lake experiments, with no CAT, and when there

are no co-runners, we see 0% cache misses. But with CAT under

the same conditions, we observe ∼13% cache misses. Essentially,

CAT limits the LLC misses to a relatively constant value (flat line

observed in Figure 3b) which is dependent on the WSS of the task

compared to the allocated shared cache; the values start around 0%

and go up to ∼20% when theWSS is equal to the cache partition size.

In short, for our Ice Lake platform, the observed LLC misses do not

depend on the number of contenders performing DRAM-Bombs.

This deterministic behavior is better than having a sharp increase

in misses depending on the co-runners, as with no partitioning.

Even though the results for our Cascade Lake system (Figure 3c and

Figure 3d) initially perform similar to the newer generation, after a

certain number of contenders, a dramatic increase in cache misses

is observed. The initial flat lines for each WSS value ultimately

exhibit exponential growth, similar in magnitude to the case with

no hardware-based cache isolation. This increase is consistent with

different WSSs and occurs roughly at 11 contenders (Figure 3d).

(a) Ice Lake

  2.5 MB
     5 MB
  7.5 MB
   10 MB
12.5 MB
   15 MB

(b) Cascade Lake

Figure 4: Impact on applications bandwidth while using

CAT.

Because the number of cache misses is not null, even when CAT

partitioning provides some determinism in the cache miss rate, we

expect additional side effects as the number of contending cores

increases. Specifically, the victim core suffers in terms of extracted

main memory bandwidth. In our Cascade Lake platform, this de-

crease in bandwidth, as shown in Figure 4b, can be attributed to the

increase in LLC misses. But for the Ice Lake machine (Figure 4a),

the percentage of LLC misses stays constant even as the co-runners

increase. Hence, it is necessary to note that even if the LLC misses

reported by the application do not increase; this does not correlate

to the application performing at peak performance. For the core

under analysis, the main memory serves the LLC misses. As other

cores run instances of DRAM-Bomb, the victim core competes for

main memory bandwidth. Hence, even when LLC misses are con-

stant, the victim core’s performance will degrade due to contention

over main memory.

No matter the generation, even when the WSS is half of the

cache partition size, we observe a non-negative cache miss rate. As

seen on these two platforms, even allocating a partition size three

times larger than the WSS, our Ice Lake machine at 8 MB incurs

∼2% of cache misses and for Cascade Lake system for the 5 MBWSS

suffers∼8% cachemisses. Furthermore, there is a lack of consistency

between the results obtained on the two micro-architectures. While

over-provisioning the cache partition is beneficial, cache space is

an expensive resource, and over-provisioning negatively impacts

the rest of the system.

A plausible hypothesis for unexpectedly high LLC misses when

the partition size is larger than the WSS is set conflicts. Set conflicts
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are inevitable in CAT as CAT fundamentally reduces the associativ-
ity of the cache by partitioning cache ways. Reduced associativity

causes more set conflicts for the same cache space. In contrast, set-

based partitioning, i.e., page coloring, does not have this problem

of reduced associativity and thus can potentially better utilize the

given cache space [65].

Also, Intel platforms map addresses to cache sets by computing a

hash function over multiple bits of the physical address [16, 29, 42].

It is reasonable to assume that the hash function is balanced over

large enough continuous physical address spaces. In a typical OS,

physical memory is allocated at the granularity of 4 KB pages. De-

mand paging causes the allocated pages to be spread randomly

across the physical address space, creating unevenness in the cache

sets allocated to the user-space applications. We experiment with al-

locating larger continuous sequences of physical addresses space by

changing the default page size to be greater than 4 KB, as discussed

in Section 5.2.

5.2 Can Cache Partitioning be Strengthened?

We increased the page size from the default 4 KB to 1 GB (huge

pages). The findings from this experiment are depicted in Figure 5,

with results on the Ice Lake machine on the left and the Cascade

Lake system on the right. Increasing the page size helps distribute

the physical addresses across the shared cache via the unknown

hash function more uniformly. Reverse engineering the hash func-

tion is beyond the scope of this work, even though successful at-

tempts have been made in the past [16, 42]. In both these platforms,

there is abundant main memory. Hence, we study whether using

huge pages effectively limits self-eviction due to set conflicts.
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(a) Ice Lake - Huge Pages
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Figure 5: Percentage of LLC misses as the working set size in-

creases with DRAM interference and with CAT partitioning and

huge pages.

Again, the results in the twomicro-architectures vary. The newer

class of Intel platforms exhibit visible improvements from the use

huge pages. This can be observed in the zoomed inset of Figure 5a.

In most of the considered buffer sizes, the percentage of LLC misses

drops to almost zero. The only exception is when the WSS of the

synthetic LLC-Bomb is equal to the cache partition. Even in this

situation, the cachemisses areminimal at 0.10% compared to the 20%

observed when the page size was 4 KB. Unfortunately, our Cascade

Lake machine with huge pages does not exhibit the same drastic

performance boost. When the WSS of the synthetic benchmark is

equal to the allocated cache, the percentage of LLC misses drops

from ∼20% to ∼10%. This is only true up to a certain number of

contenders. When 11-15 co-runners are active, our victim core

suffers an exponential performance degradation even with huge

pages (Figure 5b).

Also, in our Ice Lake system (Figure 6a) we do not observe a

decrease in bandwidth extracted by the victim core. The results for

our Cascade Lake machine in Figure 6b corroborate the previous

results where we observed an increase in LLC misses (Figure 5b).

In conclusion, we can have better results when the page size

increases, but it is not guaranteed. It is crucial to analyze the perfor-

mance of a system with CAT as optimal temporal isolation using

CAT is strictly dependent on the specific RDT implementation. In-

deed, the results vary depending on the number of co-runners and

the considered micro-architectures.

(a) Ice Lake
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Figure 6: Impact on applications bandwidthwhile usingCAT

with huge pages.

5.3 Are CMT Results Interpretable?

Modern computing systems have substantially increased in com-

plexity. Numerous hardware performance features have been in-

troduced to shed light on the interplay between applications and

hardware resources [5, 25, 33, 54]. Intel CMT, which tracks the

cache occupancy for a given RMID, is another available perfor-

mance monitoring capability.

We deploy the LLC-Bomb benchmark with a known WSS. The

WSS ranges from size of one way to seven ways on respective

machines. The size of the cache partition is six ways, as in all

other experiments. For each of these scenarios, we monitor the

cache occupancy reported by CMT. Figure 7 shows the findings

of CMT on the considered two platforms. The cache occupancy

in both micro-architectures without huge pages is slightly higher

than the buffer size. Overall, it would appear that CMT can track

the WSS of the target application. With huge pages enabled, the

results on the two platforms differ drastically. The cache occupancy

reported by CMT on the Cascade Lake platform is almost equal to

the total cache size, whereas on the Ice Lake platform the cache

occupancy is greater than the buffer size until the 5/6 portion case.

In either case, it is hard to explain the values reported by CMT, as

it is not clear how the cache occupancy of an application can be

larger than the used buffer size. The discrepancy between the cache

occupancy value reported by CMT for the same buffer size with and

without huge pages is unexpected and undermines the reliability

of CMT. Hence, the results from CMT are inconclusive. In theory,

this counter might have remarkable practical value for conducting
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a live analysis of cache occupancy in deployed applications and

adjusting CAT-enforced partitioning accordingly. However, the

current implementation appears to be too imprecise (at least when

huge pages are used).

1/6 1/3 1/2 2/3 5/6 1 7/6
Portion of CAT Partition

5000

10000

15000

20000

25000

30000

Ca
ch

e 
Oc

cu
pa

nc
y 

(K
B)

Buffer Size
Cache Partition
Observed via CMT
Observed via CMT - Huge Pages

(a) Ice Lake

1/6 1/3 1/2 2/3 5/6 1 7/6
Portion of CAT Partition

5000

10000

15000

20000

25000

Ca
ch

e 
Oc

cu
pa

nc
y 

(K
B)

Buffer Size
Cache Partition
Observed via CMT
Observed via CMT - Huge Pages

(b) Cascade Lake

Figure 7: CMT results for Ice Lake and Cascade Lake with

and without huge pages.

6 ANALYSIS OF MBA AND MBM

Memory bandwidth regulators, both hardware and software-based,

are used in real-time systems to control the memory traffic to the

DRAM subsystem. The goal is to limit the temporal interference

between applications that share resources [3, 19]. A few research

works have looked at the earlier version of MBA [46, 60] in the

context of both real-time and general-purpose systems. This sec-

tion shows the differences in behavior between the two versions

experimentally and if they are viable for the real-time community.

MBA1.0, available on Cascade Lake machines, does not distin-

guish betweenmemory requests fulfilled by the shared cache versus

the main memory. This is due to the lack of additional hardware

present on this micro-architecture to track the memory transac-

tions leaving the core. Each MBA setting adds a fixed delay value

to the requests sent to LLC. On the other hand, MBA2.0, on Ice

Lake platforms, track the DRAM bandwidth through a hardware

controller and can change the inter-arrival between requests in

response.
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Figure 8: Degradation in performance due to interfering

cores on the same socket.

6.1 Performance Degradation due to Limited

Bandwidth

In Figure 8, our victim application experiences a drastic decline

in the bandwidth received when multiple memory intensive ap-

plications are contending over the same shared resource – main

memory. The 𝑥-axis shows the number of contending cores, and

the 𝑦-axis reports the extracted main memory bandwidth. As more

applications compete for the same limited main memory bandwidth,

both the Cascade Lake system and the Ice Lake machine exhibit

decline in performance. On our Ice Lake platform, when the victim

core is the sole runner performing reads, the reported bandwidth

is ∼8000 MB/s. However, when 31 contending cores do the same, it

drops to below 1500 MB/s, showing an 80% drop in main memory

bandwidth performance. Our Cascade Lake system also demon-

strates a similar trend, even with fewer cores contending on the

same socket.

(a) Ice Lake - Reads (b) Cascade Lake - Reads

(c) Ice Lake - Writes

\\

(d) Cascade Lake - Writes

Figure 9: Default relation of throttling settings and band-

width when performing reads vs writes.

6.2 How to Interpret MBA Settings?

For MBA to be useful, it is important to interpret the 10%, 20%,...,

throttling levels. To translate the throttling levels to a bandwidth

value, we run DRAM-Bomb pinned to a core and track the reported

bandwidth over several executions. The results on both micro-

architectures are shown in Figure 9. The 𝑥-axis denotes the throt-

tling levels, and the 𝑦-axis captures the main memory bandwidth

reported by the synthetic benchmark. The reported bandwidth over

multiple runs is consistent.

Figure 9b and Figure 9d depict the results for MBA1.0. The results

for bandwidth reported for both reads versus writes are comparable.

40% and above settings report the same bandwidth value. The main

memory bandwidth for each core for lower levels is not restrictive

enough. Furthermore, after the first few settings, the remainder of

the options quickly reach the peak bandwidth that can be extracted

via a core (∼5200 MB/s for writes and ∼8000 MB/s for reads). Lastly,

as mentioned before, the throttling controls are implemented be-

tween L2 and L3. So, memory requests that might be served in LLC

might also suffer delays.

On our Ice Lake platform (Figure 9a), when the victim core is

only performing loads, we observe a linear trend in the bandwidth.

This complies with the type of bandwidth control available on our

current platform reported via CPUID. Each throttling level offers
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a distinct main memory bandwidth for the restricted core. How-

ever, when the core performs write operations, the trend (Figure 9c)

becomes very similar to that of the Cascade Lake machine. The

initial three settings report different main memory bandwidth, but

beyond 30%, all throttling levels report the same extracted band-

width. Manipulating the inter-spacing of memory requests with

BIOS calibration might be possible. However, our current system

does not have support for this. Hence, we can not verify it in this

paper.

MBA’s throttling is designed to throttle reads (cache-line refills)

more harshly than writes (write-backs) in both implementations.

Furthermore, another limitation of MBA that is evident from the

current programming interface is that reads and writes cannot be

independently regulated, even though they have a different impact

on the application’s performance and main memory controller

saturation.

Knowing the limitations of MBA, it is still essential to investigate

if MBA-enforced regulation is enough to shield an application with

strict temporal constraints from performance interference.

6.3 Is MBA Enough to Provide Protection?

Realizing the need for restricting certain non-critical applications

while ensuring bandwidth guarantees for critical applications, In-

tel increased the scope of RDT to include MBA. In the next set

of experiments, we evaluate if one can protect applications with

strict temporal constraints by restricting the bandwidth available

to interfering cores via MBA controls. The results from this study

can be found in Figure 10. Each line on the plot represents an MBA

setting for the interfering cores. On our Cascade Lake processor,

only 8 options are available – 10%, 20%, 30%, 40%, 50%, 60%, 90%

and 100%. On the Ice Lake machine, we have the full range from

10% to 100% in 10% increments.
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Figure 10: Isolation guarantees to victim synthetic bench-

mark from interfering cores runningmemory intensive syn-

thetic benchmarks.

Figure 10a showcases the result on our Ice Lake platform when

the victim core and the co-runners are running DRAM-Bombs

performing reads. As mentioned earlier, reads are throttled more

than writes in the current implementations on MBA. Hence, the

maximum degree of protection to the victim core is observed in

Figure 10a. With all contenders throttled at maximum level, the

performance decline of 80%without any control has dropped to only

36%. We see a similar result on our Cascade Lake machine. When

the 19 co-runners are set to 10%, the victim cores bandwidth drops

by 20% compared to 40% earlier without bandwidth restrictions.

However, in most cases, limiting bandwidth even with few con-

tending cores is not restrictive enough to protect the critical task. To

provide better protection, we need to decrease further the amount

of bandwidth extracted by each core at 10% and other settings. The

manual mentions the possibility of calibration settings in the BIOS.

But we ascertained that the current version of the BIOS we are us-

ing does not support it, despite it being the latest firmware available

to us at the time of the writing.

In summary, a notable shortcoming is not being able to throttle

reads versus writing separately. Figure 8 depicts how the application

under analysis suffers different performance degradation when

contending cores perform loads versus stores. Also, the number

of available throttling levels (8 on Cascade Lake and 10 on Ice

Lake) is limited in number. This lack of fine granularity between

levels prevents users from providing precise bandwidth controls

to their applications. Even if calibration through the BIOS restricts

the bandwidth for each throttling level, there is a chance at runtime

this might be a significant limitation, especially when the set of

applications running has drastically different load characteristics.

With the current results, it is not viable to use MBA by itself to

restrict the non-critical cores to provide temporal isolation to high

criticality tasks, and software-based approaches might still be more

suitable for real-time workloads.

Write - Max TLWrite - No TLRead - Max TLRead - No TL

Ice Lake 96% 96% 108% 93%

Cascade Lake 80% 81% 92% 75%

Table 5: Percentage of memory transcation reported by

MBM compared to the theoretical value.

6.4 How Accurate are MBM Counters?

A plethora of research works have tracked the number of LLC

misses of an application in isolation to compute the rate of memory

transactions [30, 67]. To avoid doing so, certain new platforms

include counters to track the requests sent to the DRAM sub-

system [49]. MBM monitors per-core memory transactions to the

DRAM sub-systems. It can sepearte traffic between local and remote

sockets. In this paper, our focus is on local DRAM sub-syetem as

we use one socket and force all main memory transactions to be

completed by DRAM on the same node.

The findings of MBM are summarized in Figure 11. The 𝑥-axis

tracks the progress of the application in seconds. The target ap-

plication is run for 5 seconds and monitored every 1𝜇s on our Ice

Lake machine and every 1s on the Cascade Lake platform. The

massive difference in the monitoring interval is due to an improve-

ment in the granularity of measurements between the Cascade

Lake platform and the Ice Lake machine. All eight graphs report the

cumulative number of memory requests to the DRAM sub-system
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Figure 11: Comparing MBM results for Ice Lake (a-d) and

Cascade Lake (e-h) under different throttling conditions.

on the 𝑦-axis. The goal is to verify the results reported by MBM

compared to the synthetic benchmark on both micro-architectures.

We plot the theoretical data reported by the synthetic benchmark

(horizontal flat line). The vertical lines represent the application’s

beginning and ending. The initial slope of the curve is slower than

the trend in the remainder of the plot. Also, even though the loop

in the synthetic benchmark executes for five seconds, all of these

eight graphs show longer runtimes. These observations can be

attributed to the additional time and bandwidth needed to set up

the application. Table 5 summarizes the results for the percentage

of data transferred from the DRAM sub-system as reported byMBM

compared to the theoretical value. The figures also show that when

the benchmarks are throttled more, the data requests completed

decrease in number because the termination of the application is

time-triggered.

There appear to be non-negligible discrepancies between the

theoretical values expected in our synthetic benchmark and the

value reported by MBM. There is no immediate justification for

the under-accounting observed in all figures except Figure 11c.

Profiling the application for the precise memory bandwidth has

advantages as shown in previous works [49]. Hence, these counters

need to be accurate. MBM uses a single counter to accumulate main

memory read and write transactions. This makes characterizing the

impact of an unknown application even harder as read-intensive

applications have a rather different impact on the available system

bandwidth compared to write-intensive applications.

In short, even though the monitoring interval granularity has

changed significantly over one generation, further refinement is

needed for MBM to become an asset that can be confidently used

by the real-time community.

7 CONCLUSION

We analyzed the applicability of the Intel RDT framework for real-

time applications. The implementation of these features is changing

rapidly over processor generations. Our evaluation indicates that

RDT management and monitoring do not always behave as ex-

pected. Therefore, we currently caution against the indiscriminate

reliance on these features for real-time system consolidation. In-

stead, we encourage the reuse of our methodology to verify their

correctness on the considered platform experimentally. Even with

CAT, the most mature feature, there is a drastic difference in iso-

lation guarantees achieved by static partitioning between the two

generations of processors we considered. The monitoring tools also

need to be further refined to become interpretable enough to be

employed by the real-time community. Both CMT and MBM read-

ings cannot be wholly trusted, as neither accurately measured the

resource utilization of the synthetic benchmarks under observation.

We further invite the community to verify or contrast our findings

as newer generations of RDT-enabled platforms are released.
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