Investigating and Mitigating Contention on Low-End Multi-Core
Microcontrollers

Daniel Oliveira
daniel.oliveira@dei.uminho.pt
Centro ALGORITMI, University of Minho
Guimaraes, Portugal

Sandro Pinto
sandro.pinto@dei.uminho.pt
Centro ALGORITMLI, University of Minho
Guimaraes, Portugal

ABSTRACT

In this paper, we investigate the problem of contention and loss of
predictability in modern microcontrollers (MCU). To address this
issue, we first present a framework to empirically analyze and ob-
serve the impact of interference on low-end MCUs. With carefully
crafted evaluation scenarios, we conduct experiments on an Arm’s
Musca-A1 platform and provide sufficient evidence that even with
common application setups, interference can slowdown applica-
tions by several orders of magnitude. Furthermore, we propose an
architecture for a novel mitigation system that enables applications
to monitor their timing progress slackness and mitigate temporal
interference over shared resources. This is achieved by suspend-
ing less critical cores and reconfiguring their priority on the bus
when intolerable contention delays are present. Our findings em-
phasize the critical importance of considering the impact of shared
resources, such as interconnects and memory access patterns, on
low-end multi-core MCUs. It is, therefore, crucial to design mecha-
nisms that can allow MCU-based applications to regain control of
their timeliness.

CCS CONCEPTS

« Computer systems organization — Real-time system specifica-
tion.

KEYWORDS

microcontrollers, multi-core, predictability, contention

ACM Reference Format:

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. 2023.
Investigating and Mitigating Contention on Low-End Multi-Core Microcon-
trollers. In Cyber-Physical Systems and Internet of Things Week 2023 (CPS-IoT
Week Workshops °23), May 9-12, 2023, San Antonio, TX, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3576914.3587513

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPS-IoT Week Workshops °23, May 9-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0049-1/23/05...$15.00
https://doi.org/10.1145/3576914.3587513

Weifan Chen
wfchen@bu.edu

Dep. of Computer Science, Boston University
Boston, MA, USA

Renato Mancuso
rmancuso@bu.edu
Dep. of Computer Science, Boston University
Boston, MA, USA

1 INTRODUCTION

The increasing demand for higher computing power in embedded
systems, such as automotive, avionics, and industrial automation,
has led to the adoption of multi-core systems, even in low-cost
devices [6, 23, 28]. These devices are typically powered by small
microcontrollers (MCUs) with simple architectures that allow for
predictable and deterministic operations. Thus, they are specifically
useful in real-time control systems, e.g., airbag collision detection
[24, 34, 35]. Leading industry players have introduced various MCU
platforms with dual-core architectures, such as STMicroelectronics’
STM32H7 line and NXP’s i MX RT1170 and i. MX RT1180, featuring
different dual-core setups [22, 32]. Unfortunately, as MCUs broadly
adopt multi-core architectures with more complex memory hierar-
chies, their predictability and suitability for scenarios with strict
real-time constraints are jeopardized [8, 26, 33].

The performance interference caused by shared hardware re-
sources can introduce timing variations that significantly hinder the
predictability of applications [4, 15]. In high-end multi-core systems,
common sources of contention include caches, bus interconnects,
and the DRAM memory banks and controller [3, 7-9, 29, 36, 38]. In
contrast, contention points have been seldom in MCUs due to their
use of different on-chip memory technologies and less complex
bus topologies. However, emerging applications require greater
memory space and performance. This has led to the integration of
CPUs with higher clock speeds, L1 instruction caches, DMA com-
ponents, multiple I/O peripherals, and on- and off-chip memories
(e.g., QSPI-/Hyper-Flash, data/code SRAMs) [10, 26].

The real-time systems community has extensively studied issues
with performance degradation due to hardware resource contention,
and several techniques have been proposed to restore predictability
(e.g., cache coloring [16, 18, 19], memory throttling [7, 36, 38]). How-
ever, these solutions tend to be geared towards high-end platforms
and require specialized hardware features that are not present in
MCUs (e.g., performance counters!, two-stage MMUs, cache lock-
ing). As a result, the problem of observing and addressing interfer-
ence in MCU systems has been largely overlooked in the literature.

In this paper, we present a framework to empirically analyze
the reciprocal interference of shared resources on modern MCUs.
Our goal is to provide evidence on the extent of the problem and
highlight the need for systematically addressing it. To examine

!The recent Armv8.1-M-based Cortex-M55 provides a Performance Monitoring Exten-
sion, but boards are still unavailable.

https://orcid.org/0000-0003-4119-8482
https://orcid.org/0000-0003-4580-7484
https://orcid.org/0000-0003-3558-5216
https://doi.org/10.1145/3576914.3587513
https://doi.org/10.1145/3576914.3587513

CPS-loT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

the effect of contention, we conducted several experiments on the
Armv8-M-based Musca-A1 platform [2]. These experiments aim to
provide empirical evidence about the contention for different con-
current access paths to memory and micro-architectural resources.
In light of this problem, we propose a novel mitigation system that
automatically instruments an application with meaningful progress
milestones to be monitored in run-time. The run-time mechanism
is capable of taking corrective measures to restore the application’s
temporal behavior when negative time slack is detected.

In summary, our main contributions are:

o A flexible framework that enables the definition of different
evaluation scenarios specifically designed to maximize inter-
ference over shared memory resources in low-end MCUs. The
framework allows to (i) use different bus masters to create con-
tention (e.g., cores, DMAs), (ii) enable platform-dependent fea-
tures (e.g., caches, performance enhancers), (iii) interfere over
multiple shared resources, and (iv) configure several bench-
marks and synthetic interference applications.

o An extensive empirical evaluation on the Musca-A1 platform,
leveraging our framework. Our results provide evidence that
interference can slow applications up to starvation values (15x)
even with common memory layouts. We also unveil peculiar
behaviors of micro-architectural interconnects that lead to se-
vere slowdowns for specific memory layouts. We open-sourced
all artifacts to enable independent validation of the results.

o The proposal of a novel interference mitigation framework
composed of (i) a design-time tool that automatically instru-
ments applications with progress milestones. The milestones
serve as observation points for (ii) a run-time mechanism. The
latter leverages widely-available hardware features to tem-
porarily suspend interfering workloads, allowing the system
to restore the timely behavior of the application.

2 RELATED WORK

Interference Assessment Frameworks. Assessing and detecting
interference patterns in multi-core systems typically requires a deep
understanding of the platform’s underlying micro-architecture in
order to fine-tune the resource-stressing synthetic benchmarks. In
[27], the authors proposed a framework that utilizes a set of well-
defined benchmarks to stress specific shared resources and quantify
application slowdowns. Nowotsch et al. [21] evaluated multi-core
systems for safety-critical applications, finding that interference can
cause significant slowdowns in worst-case execution time (WCET)
estimations. Jorgar et al. [11] proposed an approach for measuring
multi-core interference through an auto-tuning framework that
maximizes interference on shared memory resources. RT-bench [20]
is an open-source framework that adds real-time features to exist-
ing benchmarks. It offers a set of automated analysis use-cases that
provide key real-time metrics such as as observed WCET and the im-
pact of contention on shared resources. While these approaches can
effectively evaluate temporal interference, they solely target high-
end systems. In contrast, our solution focus on low-end devices and
offers the flexibility to create hostile environments that maximize
interference according to MCU-specific architectural characteristics
(e.g., memory access paths, micro-architectural peculiarities).

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Interference Mitigation Techniques. The real-time systems com-
munity has proposed several mitigation techniques. These tech-
niques typically target high-end platforms and rely on hardware-
specific features such as performance counters [5, 29, 37], resource
partitioning and virtual memory capabilities [16-19, 36], or special-
ized interconnects (e.g., QoS modules that are available on specific
platforms [30, 31]). MemGuard leverages performance counters on
x86 architectures to provide temporal isolation through memory
bandwidth regulation [37]. Crespo et al. [5] proposed a feedback
control scheme that uses the Performance Monitoring Unit (PMU)
in a PowerPC platform to manage the execution of critical parti-
tions. In [29], Arm’s PMU and a platform-specific memory profiling
unit have been utilized to implement a mechanism that dynamically
regulates memory accesses of cores. Resource partitioning tech-
niques are applied to shared resources, such as cache and DRAM.
In [16], the authors proposed the Colored Lockdown concept that
combined page-coloring and cache lockdown to keep frequently
accessed pages in the cache. The PALLOC mechanism optimizes
the use of DRAM by allocating memory pages for each application
to specific banks [36]. Additionally, in [19], authors proposed a
cache coloring-based technique and in [18], authors implemented
support for cache coloring on Bao hypervisor. Regarding hardware
support for QoS, Arm offers hardware mechanisms that aim to pre-
vent congestion in the interconnect [31], which are evaluated on a
Xilinx UltraScale+ in [30]. In another line of works, Kritikakou et.
al [13] presented a formal description of a mechanism that, under
interference, suspends low criticality tasks until the termination of
the critical task; an implementation is presented in [14]. While this
variety of mechanisms have been proposed to address interference
in high-end systems, they are not directly applicable to low-end
devices. To the best of our knowledge, a single work [26] addresses
interference in low-end systems (Cortex-M33). The proposed static
memory allocation scheme distributes code/data segments across
different memory elements; however, this requires high engineering
effort and a complex analysis of the platform’s memory subsystem.

3 INTERFERENCE IN LOW-END MCUS

In this section, we present an experimental investigation to provide
conclusive evidence that MCUs are susceptible to interference when
different hardware elements (e.g., cores) attempt to access shared
resources (e.g., buses, flash, SRAM memories) concurrently. The
results reveal that the issue of contention can lead to significant
performance degradation and unpredictable execution times.

3.1 Highlighting the Problem

Our experiments were conducted on the Arm Musca-A1 platform [2].
The Musca-A1 lacks features such as multi-level shared caches or
memory virtualization mechanisms, which are known to be sources
of contention on high-end systems [8, 12]. However, increased de-
mand for Al on edge devices and the proliferation of connected
devices that integrate heavy-size communication protocols are lead-
ing to the need for MCUs to support various on- and off-chip mem-
ories to handle the large amount of data required for these appli-
cations [10]. To accommodate this, memory subsystems on MCUs
are becoming highly heterogeneous. Different types of memory
are accessed through different bus paths and controllers, clocked

Investigating and Mitigating Contention on Low-End Multi-Core Microcontrollers

at different frequencies, and shared between multiple masters in
the interconnect (e.g. cores, DMAs). In the case of the Musca-Al
platform, as depicted in Figure 1, two differently-clocked CPUs
have access to four distinct memory elements: (i) private-core 2KiB
instruction caches; (ii) on-chip 4x32KiB data iSRAM banks, which
serve as tightly-coupled memories for each corresponding core and
are organized with dedicated bus connections; (iii) an external 2MiB
code eSRAM, which is clocked at the same frequency as core 0; (iv)
and an off-chip 8MiB Flash memory, which is accessed through the
QPSI controller and therefore clocked at a much lower frequency
than the CPUs. The heterogeneity of the Musca’s memory hierarchy
offers the potential to create interference scenarios with varying
levels of contention. This provides an opportunity to evaluate per-
formance in both common and uncommon configurations.

3.2 Framework Methodology

In contrast to high-end systems, performance interference in multi-

core MCUs s is still a largely overlooked problem in the literature.

Yet, they are widely adopted for real-time applications with the

assumption of high predictability [24, 26, 34]. To address this gap

and raise awareness in the community, we developed an open-
source testing framework aimed at providing sufficient evidence of
the significant impact that interference can have on these systems.

Our framework is the first to support a comprehensive investigation

into this issue and to enable thorough analyses of how different

system configurations introduce contention on MCUs. Its primary
goals are:

e Portability: the framework can be adapted across different Arm-
based MCU platforms with the use of a BSP abstraction layer and
by providing a common boot-code per architecture. The boot
routine initializes platform-specific hardware (e.g., serial ports,
caches, performance enhancers, bus arbitration priorities), and
relocates each application to the targeted contended memory.

o Configurability: the framework can be easily modified to test
different interference scenarios. Therefore, the framework allows
for each test to: (i) place code and data regions on any memory
element; (ii) enable/disable platform components that impact
results; (iii) select the most effective benchmark and synthetic
interfering application; (iv) and choose optimization options.

o Reproducibility: the framework enables consistent and accurate
results to be obtained across multiple runs.

Inspired by the framework methodology proposed by Iorga et
al. [11], we present our testing framework that creates a hostile
environment to stress a specific shared resource and evaluate its
impact on system contention. This consists of selecting the most
suitable (i) benchmark program that will experience slowdowns
due to multi-core contention caused by (ii) an optimized, synthetic
interfering program that stresses key shared resources.

A user must primarily decide which shared resource they want
to target. Let R denote the set of possible hardware resources over
which contention can be created. For example, in case of the Musca-
A1 (mal), we define R;q1 = {flash,esram, isram, ahb5mux}. The
framework offers two benchmarks to be run on the observed core,
namely, statemate and edn. Let B denote the available benchmarks
for the observed core, i.e., B = {statemate,edn}. Let I denote
the set of interfering programs that the user has available to run

CPS-loT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

SSE-200 Observed Core Interf. Core
Subsystem -
statemate ifi
I'CMs CPUO - [bench a interf a
iSRAMO pp PP
(32KiB) .
CPUO CPUI
SRAM (Cortex M33] (Cortex M33]
. X X
(B2KE) 3 TCM CPUI
iSRAM2 || Icache Icache iSRAM3
(32KiB) || (2KiB) J | ckiB) J| 32xkiB)
AHBS5 Matrix
AHBS5 Mux

QSPI eSRAM Arm
Controller (2MiB) Musca-Al

Flash
(8MiB)

Figure 1: Musca-A1 memory hierarchy (adapted from [2]).

on the interfering core, i.e., I = {ifi,dai}. Depending on the r
€ R to interfere, a b € B must be selected to run on core 0 (b,)
and a i € I must be selected to run on core 1 (i,). For example,
if rmg1 = {flash, esram}, ie., code memories, a more branch-
intensive pair of applications should be selected; therefore, b, =
statemate A i, = ifi. On the other hand, if r;q1 = {isram},
i.e., data memory, a more memory-intensive pair of applications
should be selected; therefore, b, = edn A i, = dai. Later, we detail
each of these applications. We can now define an environment as
a setup of a b, and a i, each assigned to its respective core. The
performance of a b, in environment e is represented by perf(b,, e),
which represents the execution of b, on core 0 while e is running
on the other core. Let interf (b, i;) denote the interference value
associated with executing program b, in isolation on core 0 and
executing it in parallel with an instance of i, on core 1. Therefore,
we have the following equation (nop denotes the absence of an
interfering program):

perf(br, ir)

interf(by,i;) = —————
interf(br,ir) perf(by, nop)

1)

3.3 Evidence Results

Experimental Setup. We conducted several experiments on the
Musca-A1 platform using our framework to showcase the exis-
tence of multi-core contention issues on MCUs. We configure the
Data Watchpoint and Trace (DWT) cycle counter to obtain 1000
measurement samples in each test, providing the wall-clock exe-
cution time. The most suitable b, and i, were selected based on
the specific characteristics of the target r. The synthetic ifi and
dai interfering applications are designed to have a varying degree
of impact depending on the target r. The ifi application forces
the interfering core to bypass the cache, using a sequence of nop
instructions and branching between multiple blocks that fill up a
cache line. On the other hand, the dai application is optimized to
create interference through data-intensive operations by reading
and writing constantly to a buffer array. Moreover, we carefully
integrated a set of branch- and memory-intensive benchmarks from

CPS-loT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

Execution Time Performance Overhead
40004 204
] 1.67
3106 149
3000+ 2170 2572 1.5 . 138
2303 T -
] 2127 = °
5 2000+ 1862 3 107
1000 0.5+
0- T T T T 0.0 T T T T
NADI IR S N
ORISR SN S & &
NSHENSERSCARN A AN & N & &
QNN S
F PSS E <& & & &
DR RS & &
(a) Contended eSRAM.
Execution Time Performance Overhead
1600000 40
1385336 3237
30
1200000 204
2 800000 ,g")‘__
600001 51927 51982 4+
42122 42798 45018 34
40000+ 5
20000_]] s 12t 121
0= T T T T T 0 T T T T
VNN Q QA QA Q \ Q Q
S SN S
3 ’»\\ & & & o O o o
& ° \6{\ & & z,‘bk ?5:\\ & Q{Q} c\;‘b‘
(c) Contended iSRAM.

Cycles

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Execution Time Performance Overhead

3000007 204
256371 256538
1 1553 1554
154
200000
2
1 127200 é 10
100000
51994 54 315
1 30650 E 1.86
16512 =
0~ — T T T 1 0 T T T T
QRN QR QN QR Q Q Q
RS & &
WA S S A
FFLLLE S & &
(b) Contended Flash.
Execution Time Performance Overhead
200000 40 1396
148381
150000 127200 30
100000 20
3 63231 2
5 50000 i 10
20009 Z T 117
1000 1
0 T T T 0 T T
D DL D & .o
NP S RN
& S EET O & TR
N Y S N &
© > \ S
® & < &
& &8 & &

(d) Contended Bus (AHB5 Matrix and Mux).

Figure 2: Execution time and performance overhead of the benchmark for different interfering setups. The baseline selected
for the performance overhead ratio is always the solo experiment that achieves the lowest execution time. The ic[,] denotes if
the instruction cache (IC) is enabled on the experiment by core, i.e. if ic[1,0] the IC is enabled on core 0 and disabled on core 1.

the Embench suite [25]. The selected benchmarks are statemate
for stressing code memories and edn for stressing data memories.
Our investigation comprises four evaluation scenarios that were
designed to determine the impact of interference on the following
shared resources: the data and code memories (i.e., iSRAM, eSRAM,
and Flash) and a dedicated interconnect bus connecting both code
memories to the AHB5 Matrix, i.e., the AHB5 Mux (Figure 1). The
evaluation scenarios are organized as follows:
(a) Contended eSRAM: core 0 and core 1 fetch instructions from
the faster code memory, i.e., the on-chip eSRAM. Data is placed
in separate iSRAM banks.
Contended Flash: core 0 and core 1 fetch instructions from the
slower code memory, i.e., the off-chip QSPI Flash. Data is placed
in separate iSRAM banks.
Contended iSRAM: core 0 and core 1 issues data read/writes
from a single iSRAM bank (iSRAM1). Code is split between
eSRAM (core 0) and Flash (core 1) memories.
Contended Bus (AHB5 Mux): core 0 fetches instructions from
eSRAM and core 1 from Flash, and vice-versa. The expected con-
tention arises from the AHB5 Mux interconnect rather than the
memory controllers. Data is placed in separate iSRAM banks.

(b)

—
e
~

d

=

Contended eSRAM. The results of the experiments on the impact
of eSRAM contention are presented in Figure 2a. The evaluation

is based on the execution time and performance overhead. To be-
gin, the execution time of the statemate benchmark without con-
tention was measured (i.e., both solo tests). The experiments were
conducted in two scenarios, one with the core 0 instruction cache
(IC) enabled and the other with it disabled. The results show that,
despite the low 6% miss ratio of the statemate benchmark, the
IC has an unexpected negative impact on the performance, i.e., a
14.2% slowdown. We hypothesize that the extra cycles required to
perform a cache lookup followed by a memory fetch for the 6%
of the instructions that resulted in cache misses might induce a
higher overhead than directly accessing the SRAM memory. To
validate this hypothesis, we conducted an experiment in which we
measured the execution time of cache-friendly code, i.e., a segment
of code with 0% cache misses. The results demonstrated that the
eSRAM performs similarly to cache memory, with no discernible
difference in execution time regardless of cache enablement. We
then iteratively enable/disable the IC across the four experiments
to measure the slowdown due to contention. The results show that
disabling the ICs on both CPUs leads to a 67% increase in per-
formance (interf1). It is noteworthy that while the IC can have a
negative impact on single-core execution, it has a positive effect
on a contended eSRAM by reducing the contention cost by up to
35% (interf3). Furthermore, our experiments show that enabling the

Investigating and Mitigating Contention on Low-End Multi-Core Microcontrollers

ICs results in a variation in the execution time, thereby eliminating
the deterministic behavior observed in the solo run with the IC
disabled (solo1).

Contended Flash. Figure 2b depicts the assessed results when in-
terference is created on the Flash memory. As expected, in this case,
enabling the IC largely improves performance by almost an order
of magnitude (7X) compared to the solo1 scenario. Upon examin-
ing the results of the interfI and interf2 experiments, we observe
a similar performance overhead ratio that can reach up to 15x.
Moreover, both the interfl and interf2 experiments show similar
execution times as the ifi interfering application forces core 1 to
evict cache lines, causing corel to fetch instructions from Flash.
Regarding the counter-intuitive results observed in interf4—where
a 1.7x degradation is seen compared to interf3—we attribute this
to the Flash controller’s poor handling of non-sequential blocks
of code. This is likely due to the controller’s constant buffering
of new pages from Flash memory in response to requests from
core 1 at each cache miss. Additionally, we confirm this hypothe-
sis by comparing the performance between running a sequential
number of nop instructions from a single Flash page and running
the same number of instructions from multiple Flash pages in a
non-sequential manner. The results show that the latter scenario
incurs a higher performance cost, around 41.8%.

Contended iSRAM. The impact of iSRAM contention on perfor-
mance is presented in Figure 2c. The results show that the execu-
tion time of the solo experiments are similar with or without the
IC enabled, as the edn benchmark is highly memory-intensive and
exhibits good spatial locality, with a 1% cache miss ratio. The in-
terf1 experiment highlights an unexpected measurement compared
to the remaining interfering tests (core 0 is starving). This severe
performance degradation can be attributed to an undocumented
behavior of the Musca-A1 system. By observing Figure 1, we no-
ticed that core 0 and core 1 access the eSRAM and Flash memories
through the AHB5 Mux, which acts as an arbiter for their access.
Therefore, the starvation of core 0 in the interfI experiment sug-
gests that core 1’s stream of Flash instructions may be prioritized
over core 0’s stream of eSRAM instructions, leading to a slowdown
of approximately 32x. The same behavior is not observed in other
interfering setups (i.e., interf2, interf3 and interf4) since the access
to the memories is less concurrent, given the good spatial locality
of the workloads, resulting in a smaller impact on performance. We
further investigate this hypothesis by designing the next experi-
ment, which applies a hybrid memory layout that uses eSRAM and
Flash memories but avoids data contention.

Contended Bus (AHB5 Mux). In the fourth evaluation scenario,
we investigate the contention over the AHB5 Mux interconnect.
Both cores fetch instructions from eSRAM and Flash memories,
respectively. First, we performed the solo experiments for each
memory element, i.e., solol (eSRAM) and solo2 (Flash). Then, we
induce interference on the AHB5 Mux by having each core fetch
instructions from different memories, i.e., if core 0 executes from
eSRAM, core 1 executes from Flash, and vice-versa. Figure 2¢c shows
the results of the experiments with the IC always disabled through-
out the experiments, allowing a clearer understanding of the results.
The results show that, despite eSRAM being a fast memory, when

CPS-loT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

e
ofe STA Interf | <
PM[PR| | APP |

[Timer]| [[Power]| -

:

interconnect g

S

=

 Stared Resource

Figure 3: System overview of the proposed architecture.

core 1 executes from Flash (interfl), there is a significant 34x in-
crease in performance observed in core 0. This result is similar
to what was observed in the previous evaluation scenario, where
core 1 once again starves core 0. However, when the cores switch
between memory blocks (interf2), the level of contention observed
is significantly less severe (1.2x). We conclude that the interconnect
prioritizes transactions to/from Flash over eSRAM; however, the
Musca-A1 manual does not corroborate this hypothesis. Neverthe-
less, these results emphasize the need for careful memory layout
configuration in multi-core applications.

4 PROPOSED MITIGATION SYSTEM

Figure 3 presents the foreseen architecture for a system that en-
ables MCU-based applications to restore their timing behavior in
the presence of contention delays induced by hostile environments.
The solution is composed of two subsystems: (i) the design-time
Milestone Identification and Profiling (MIP) tool, a framework to
automate the instrumentation of an application with significant
milestones to be monitored by (ii) the run-time Performance Moni-
tor and Regulator (PMR) mechanism that evaluates the application’s
timely progress, ensuring that end-to-end timeliness is preserved.

Design-time MIP tool. The control flow graph (CFG) of an appli-
cation is a directed graph C = {N, E}. A node n € N represents a
contiguous instruction block ending with a branch instruction, and
an edge (np, ns) € & indicates the ending branch instruction in n,,
is capable of transferring program counter (PC) to ns. Several tools
are capable of generating a CFG from an application [1] . In Figure
3, the MIP subsystem first reads the CFG of the target application.
Then, the Observation Points Generator (OPG) uses the CFG to
decide the milestones - nodes - to be monitored during run-time.
These milestones represent instrumentation points that trigger the
PMR monitoring logic. Therefore, when PC reaches a milestone,
an overhead would incur; thus, the OPG has to strategically place
milestones in order to balance monitoring granularity and overhead.
Next, the Application Timing Profiler (ATP) profiles the application.
For each milestone, the ATP associates an expected execution time,
or nominal time. Finally, the Code Generator (CG) uses the timing
information to instrument the application’s source code with Pro-
gram Monitor (PM) calls placed at each milestone. These allow the
application to remain aware of its timeliness. Thus, we refer to an
instrumented application as a Self-aware Timed Application (STA).

CPS-loT Week Workshops 23, May 9-12, 2023, San Antonio, TX, USA

Run-time PMR mechanism. During run-time, an STA is capable
of self-monitoring its timely progress at each milestone by invok-
ing the PM. The PM checks the current slack—i.e., the difference
between the target completion time (or deadline) and the expected
execution time based on current progress information. The Progress
Regulator (PR) is triggered if the slack is insufficient to regulate
contention over shared resources. One commonly used technique is
to stall interfering cores (and/or DMA-capable devices). The stalled
cores are resumed when/if sufficient slack is restored at a future
milestone. Another approach involves reconfiguring the bus mas-
ters’ priority on the bus. When the slack is insufficient, the priority
of interfering cores can be reduced to decrease their usage of the
shared resource, allowing STA to have a higher priority on the bus.

5 CONCLUSION

In this paper, we address the issue of contention-induced tempo-
ral interference on low-end MCU devices. We presented an open-
source testing framework to analyze the impact of interference and
provide undeniable evidence of significant slowdowns in common
application setups. We also unveil a proposal for a novel mitigation
system that allows applications to monitor their timing progress
slackness and mitigate interference over shared resources, a key
requirement to ensure predictability on modern multi-core MCUs.

ACKNOWLEDGMENTS

This work was supported by the Fundagéo para a Ciéncia e Tec-
nologia (FCT) within the Research and Development Units under
Grant UIDB/00319/2020, and the Ph.D. Scholarship under Grant
2020.04585.BD. The material presented in this paper is based upon
work supported by the National Science Foundation (NSF) under
grant number CCF-2008799. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] angr. 2023. CFG Documentation. https://docs.angr.io/built-in-analyses/cfg

[2] Arm. 2018. Arm® Musca-A. Technical Report. Arm Ltd.

[3] Michael G. Bechtel and Heechul Yun. 2019. Denial-of-Service Attacks on Shared
Cache in Multicore: Analysis and Prevention. ArXiv CoRR (2019).

[4] Diogo Costa Costa, Luca Cuomo, Daniel Oliveira, Ida Savino, Bruno Morelli, Jose
Martins, Fabrizio Tronci, Alessandro Biasci, and Sandro Pinto. 2023. IRQ Coloring:
Mitigating Interrupt-generated Interference on ARM Multicore Platforms. In
Proc. NG-RES.

[5] Alfons Crespo, Patricia Balbastre, José Simo, Javier Coronel, Daniel Gracia Pérez,
and Philippe Bonnot. 2018. Hypervisor-Based Multicore Feedback Control of
Mixed-Criticality Systems. IEEE Access (2018).

[6] Rolf Ernst and Marco Di Natale. 2016. Mixed Criticality Systems—A History of
Misconceptions? IEEE Design & Test (2016).

[7] Farzad Farshchi, Qijing Huang, and Heechul Yun. 2020. BRU: Bandwidth Regula-
tion Unit for Real-Time Multicore Processors. Proc. IEEE RTAS (2020).

[8] Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo
Pellizzoni, and Marco Caccamo. 2019. Designing Mixed Criticality Applications
on Modern Heterogeneous MPSoC Platforms. In Proc. ECRTS.

[9] Mohamed Hassan and Rodolfo Pellizzoni. 2020. Analysis of Memory-Contention
in Heterogeneous COTS MPSoCs. In Proc. ECRTS.

[10] Gideon Intrater. 2019. Execute in place (XiP): An external flash architecture ideal for
the code and performance requirements of Edge Iot and ai. https://embeddedcomp
uting.com/technology/storage/execute-in-place-xip-an-external-flash-archit
ecture-ideal-for-the-code-and-performance-requirements-of -edge-iot-and-ai

[11] Dan Iorga, Tyler Sorensen, John Wickerson, and Alastair F. Donaldson. 2020.
Slow and Steady: Measuring and Tuning Multicore Interference. In Proc. RTAS.

[12] Tomasz Kloda, Marco Solieri, Renato Mancuso, Nicola Capodieci, Paolo Valente,

and Marko Bertogna. 2019. Deterministic Memory Hierarchy and Virtualization

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

for Modern Multi-Core Embedded Si/stems. Proc. IEEE RTAS (2019).
Angeliki Kritikakou, Claire Pagetti, Olivier Baldellon, Matthieu Roy, and Christine

Rochange. 2014. Run-Time Control to Increase Task Parallelism In Mixed-Critical

Systems. Proc. ECRTS.

Angeliki Kritikakou, Christine Rochange, Madeleine Faugere, Claire Pagetti,

Matthieu Roy, Sylvain Girbal, and Daniel Gracia Perez. 2014. Distributed Run-

Time WCET Controller for Concurrent Critical Tasks in Mixed-Critical Systems.

In Proc. RTNS.

Claire Maiza, Hamza Rihani, Juan M. Rivas, Joél Goossens, Sebastian Altmeyer,

and Robert I. Davis. 2019. A Survey of Timing Verification Techniques for Multi-

Core Real-Time Systems. ACM Comput. Surv. (2019).

Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo,

and Rodolfo Pellizzoni. 2013. Real-time cache management framework for multi-

core architectures. In Proc. IEEE RTAS.

José Martins and Sandro Pinto. 2023. Shedding Light on Static Partitioning

Hypervisors for Arm-based Mixed-Criticality Systems. In Proc. IEEE RTAS.

José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and Sandro Pinto.

2020. Bao: A Lightweight Static Partitioning Hypervisor for Modern Multi-Core

Embedded Systems. In Proc. NG-RES.

Paolo Walter Modica, Alessandro Biondi, Giorgio C. Buttazzo, and Anup Patel.

2018. Supporting temporal and spatial isolation in a hypervisor for ARM multicore

platforms. IEEE International Conference on Industrial Technology.

Mattia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Re-

nato Mancuso. 2022. RT-Bench: An Extensible Benchmark Framework for the

Analysis and Management of Real-Time Applications. In Proc. RTNS.

Jan Nowotsch and Michael Paulitsch. 2012. Leveraging Multi-core Computing

Architectures in Avionics. Proc. EDCC.

NXP. 2022. i.MX RT. https://www.nxp.com/products/processors-and-microcon

trollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES

Daniel Oliveira, Miguel Costa, Sandro Pinto, and Tiago Gomes. 2020. The Future

of Low-End Motes in the IoT: A Prospective Paper. Electronics (2020).

Runyu Pan, Gregor Peach, Yuxin Ren, and Gabriel Parmer. 2018. Predictable

Virtualization on Memory Protection Unit-Based Microcontrollers. In Proc. IEEE

RTAS.

David Patterson, Jeremy Bennett, Palmer Dabbelt, Cesare Garlati, G. S. Madhusu-

dan, and Trevor Mudge. 2020. Embench. www.embench.org/.

Sandro Pinto, Hugo Araujo, Daniel Oliveira, José Martins, and Adriano Tavares.

2019. Virtualization on TrustZone-Enabled MCUs? Voila!. In Proc. IEEE RTAS.

Petar Radojkovic, Sylvain Girbal, Arnaud Grasset, Eduardo Quifiones, Sami Yehia,

and Francisco. J. Cazorla. 2012. On the evaluation of the impact of shared

resources in multithreaded COTS processors in time-critical environments. ACM

Trans. Archit. Code Optim. (2012).

Manuele Rusci, Marco Fariselli, Martin Croome, Francesco Paci, and Eric Flamand.

2022. Accelerating RNN-based Speech Enhancement on a Multi-Core MCU with

Mixed FP16-INT8 Post-Training Quantization. arXiv cs.SD (2022).

[29] Ahsan Saeed, Dakshina Dasari, Dirk Ziegenbein, Varun Rajasekaran, Falk Rehm,

Michael Pressler, Arne Hamann, Daniel M.-Gritschneder, Andreas Gerstlauer,

and Ulf Schlichtmann. 2022. Memory Utilization-Based Dynamic Bandwidth

Regulation for Temporal Isolation in Multi-Cores. In Proc. IEEE RTAS.

Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and

Francisco J. Cazorla. 2021. Leveraging Hardware QoS to Control Contention in

the Xilinx Zynq UltraScale+ MPSoC. In Proc. ECRTS.

Ashley Stevens. 2014. Quality of Service (QoS) in ARM Systems: An Overview.

Technical Report. Arm Ltd.

[32] STMicroelectronics. 2020. STM32H72. https://blog.st.com/stm32h723-stm32h733-
stm32h725-stm32h735-stm32h730/

[33] Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S. Phatak,
Rodolfo Pellizzoni, and Marco Caccamo. 2016. A Real-Time Scratchpad-Centric
OS for Multi-Core Embedded Systems. In IEEE RTAS.

[34] Ioan Ungurean. 2020. Timing Comparison of the Real-Time Operating Systems
for Small Microcontrollers. Symmetry (2020).

[35] Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and Ning Zhang. 2022. RT-TEE:

Real-time System Availability for Cyber-physical Systems using ARM TrustZone.

In Proc. IEEE S&P Symp.

Heechul Yun, Renato Mancuso, Zheng Pei Wu, and Rodolfo Pellizzoni. 2014.

PALLOC: DRAM bank-aware memory allocator for performance isolation on

multicore platforms. Proc. IEEE RTAS.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2013.

MemGuard: Memory bandwidth reservation system for efficient performance

isolation in multi-core platforms. In Proc. IEEE RTAS.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Raymond

Sha. 2013. MemGuard: Memory bandwidth reservation system for efficient

performance isolation in multi-core platforms. Proc. IEEE RTAS (2013).

[13

[14

[15

[16

[17

(18

[19

[20

[21

[22

~
=

[24

[25

[26

[27

S
&

@
=

@
=

'S
o

[37

[38

Received 15 February 2023; revised 12 March 2009; accepted 5 June 2009

https://docs.angr.io/built-in-analyses/cfg
https://embeddedcomputing.com/technology/storage/execute-in-place-xip-an-external-flash-architecture-ideal-for-the-code-and-performance-requirements-of-edge-iot-and-ai
https://embeddedcomputing.com/technology/storage/execute-in-place-xip-an-external-flash-architecture-ideal-for-the-code-and-performance-requirements-of-edge-iot-and-ai
https://embeddedcomputing.com/technology/storage/execute-in-place-xip-an-external-flash-architecture-ideal-for-the-code-and-performance-requirements-of-edge-iot-and-ai
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://blog.st.com/stm32h723-stm32h733-stm32h725-stm32h735-stm32h730/
https://blog.st.com/stm32h723-stm32h733-stm32h725-stm32h735-stm32h730/

	Abstract
	1 Introduction
	2 Related Work
	3 Interference in Low-end MCUs
	3.1 Highlighting the Problem
	3.2 Framework Methodology
	3.3 Evidence Results

	4 Proposed Mitigation System
	5 Conclusion
	Acknowledgments
	References

