
Impact of DM-LRU on WCET: a Static Analysis1

Approach2

Renato Mancuso3

Boston University, USA4

rmancuso@bu.edu5

Heechul Yun6

University of Kansas, USA7

heechul.yun@ku.edu8

Isabelle Puaut9

University of Rennes 1/IRISA, France10

isabelle.puaut@irisa.fr11

Abstract12

Cache memories in modern embedded processors are known to improve average memory access13

performance. Unfortunately, they are also known to represent a major source of unpredictability for14

hard real-time workload. One of the main limitations of typical caches is that content selection and15

replacement is entirely performed in hardware. As such, it is hard to control the cache behavior in16

software to favor caching of blocks that are known to have an impact on an application’s worst-case17

execution time (WCET).18

In this paper, we consider a cache replacement policy, namely DM-LRU, that allows system19

designers to prioritize caching of memory blocks that are known to have an important impact20

on an application’s WCET. Considering a single-core, single-level cache hierarchy, we describe an21

abstract interpretation-based timing analysis for DM-LRU. We implement the proposed analysis in22

a self-contained toolkit and study its qualitative properties on a set of representative benchmarks.23

Apart from being useful to compute the WCET when DM-LRU or similar policies are used, the24

proposed analysis can allow designers to perform WCET impact-aware selection of content to be25

retained in cache.26

2012 ACM Subject Classification Computer systems organization → Real-time systems; Theory of27

computation → Caching and paging algorithms28

Keywords and phrases real-time, static cache analysis, abstract interpretation, LRU, deterministic29

memory, static cache locking, dynamic cache locking, cache profiling, WCET analysis30

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.2031

1 Introduction32

Most modern embedded processors include cache(s) to improve average performance by33

reducing average memory access cost. However, a well-known downside of using caches is34

that it makes timing analysis difficult because software has little, if any, control over whether35

a certain memory block is in the cache or not, as it is determined by the hardware—the cache36

replacement policy and the state of the cache. This is problematic because analyzing precise37

and tight worst-case timing is necessary for real-time systems. While there are timing analysis38

techniques for well-known cache replacement policies [42], they cannot take advantage of39

programmer’s insights (e.g., important data used in time-critical loops), potentially resulting40

in pessimistic timing.41

On the other hand, a scratchpad memory is similar to a cache as it offers high-speed42

temporary storage for a processor, but the key difference is that it is entirely managed by43

software. For real-time systems, the fact that software, not hardware, has full control over44

its management is highly beneficial because accurate timing analysis is possible. However,45

the downside of scratchpad is that it is generally more difficult to use than cache due to46

its high programming complexity [3]. Alternatively, some cache designs support selective47

© Renato Mancuso, Heechul Yun and Isabelle Puaut;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 20; pp. 20:1–20:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rmancuso@bu.edu
mailto:heechul.yun@ku.edu
mailto:isabelle.puaut@irisa.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Impact of DM-LRU on WCET: a Static Analysis Approach

cache locking, which enables programmers to lock certain cache-lines in the cache at a48

fine-granularity (typically a cache line) [2, 7, 13]. A locked cache-line stays in the cache until49

it is explicitly unlocked by the programmer, which guarantees predictable timing. However,50

because the cache size is limited, the programmer must carefully select which cache-lines to be51

locked [5, 40]. Dynamic cache-locking techniques [39, 48] can help alleviate the size limitation52

problem of static cache-locking, but at the cost of increased complexity (for selecting locked53

cache lines) and overhead (to change cache contents dynamically).54

In this paper, we consider a new cache architecture, which can leverage programmers’ high-55

level insights on access frequency of memory blocks, and propose an abstract interpretation-56

based static analysis method to reason on the worst-case execution time (WCET) of applica-57

tions. Our approach is based on a new memory abstraction, called Deterministic Memory58

(DM). Deterministic Memory enables classification of a program’s address space into two59

distinct memory types—DM and non-DM [10], where the DM type indicates predictability is60

more important while the non-DM type indicates average performance is more important.61

The DM abstraction allows effective and extensible software/hardware co-designs, some of62

which are demonstrated in the context of providing efficient hardware isolation in multi-63

core [10]. In this work, we instead focus on a single-core with a private cache, and study how64

static guarantees on cache hits/misses can be derived for a DM-aware LRU cache replacement65

policy, which we call DM-LRU.66

We first describe the DM-LRU cache replacement algorithm, which is a single-core67

adaptation of the DM-aware cache initially proposed in [10]. Next, we generalize an abstract68

interpretation-based analysis for LRU caches to reason on the worst-case behavior of DM-69

LRU. We integrated DM-LRU support in Heptane [23], an academic static WCET analysis70

tool, in order to evaluate the effectiveness of DM-LRU in lowering tasks’ WCET. Our results71

show that with DM-LRU WCET improvements up to 23.7% can be achieved, compared to72

vanilla LRU. The WCET improvements are comparable to static and dynamic cache locking73

techniques while significantly lowering programming complexity. Our contributions are as74

follows:75

We extend LRU abstract interpretation-based analysis to perform static WCET timing76

analysis for DM-LRU.77

We implement DM-LRU support in the Heptane static WCET analysis tool.78

We provide experimental evaluation results showing the WCET benefits and complexity79

reduction of the DM-LRU based approach.80

We propose a WCET-driven heuristic approach to select content to be preferentially81

cached using DM-LRU.82

The remainder of the paper is organized as follows. Section 2 introduces necessary83

background on caches and the deterministic memory abstraction. Next, the DM-LRU policy84

is described in Section 3 and the proposed static timing analysis is described in Section 4.85

A comprehensive example on how to apply the proposed analysis is presented in Section 5.86

Comparison and differences with cache locking techniques are briefly highlighted in Section 6,87

while the WCET of a set of representative benchmarks is evaluated in Section 7. Section 888

discuss related work and we conclude in Section 9.89

2 Background90

In this section, we provide necessary background on memory abstractions, cache replacement91

algorithms, and cache timing analysis.92

R. Mancuso, H. Yun and I. Puaut 20:3

Deterministic
memory

Best-effort
memory

Figure 1 High-level application’s memory view, where DM and BE memory coexist.

2.1 Deterministic Memory Abstraction93

Traditionally, operating systems and hardware have provided a simple uniform memory94

abstraction to applications. While the simple abstraction is convenient for programmability,95

its downside is that programmer’s insights on memory characteristics (e.g., time-criticality of96

certain data structures) cannot be explicitly expressed to enable better resource management.97

Recently, a new memory abstraction, called Deterministic Memory abstraction, was98

proposed to explore the possibilities of more expressive memory abstractions [10]. In essence,99

the abstraction allows a programmer to associate (tag) a single bit of information to each100

memory block in the system, which classifies the memory block as either “deterministic101

memory” (DM) or “best-effort memory” (BE). Figure 1 shows an example address space102

of a task using both deterministic and best-effort memory. In [10], the memory tagging is103

implemented at the page granularity, although more fine-granularity tagging is also possible104

(e.g., [45]).105

Once a task’s memory blocks are tagged, the information can then be used by the operating106

system and the hardware to apply different resource management policies depending on the107

memory tag information. In [10], the DM abstraction is used to achieve hardware isolation108

among the cores in multicore, focusing on effective isolation of shared cache and DRAM.109

2.2 DM-LRU Cache Replacement Policy110

In this paper, we consider a deterministic memory-aware private cache design and show how111

such a design enables tighter static WCET cache timing analysis. We assume the cache112

controller has a mean to distinguish whether a certain cache-line corresponds to deterministic113

memory or best-effort one. This can be implemented as an additional bit in the auxiliary tag114

store of each cache-line, as in [10], or as a set of separately located architectural hardware115

range registers as in [27]. The cache implements an extended least recently used (LRU) cache116

replacement algorithm, which defines two eviction classes using the DM/BE abstractions117

and applies LRU-based replacement to DM lines and to BE lines separately. Allocation of a118

DM line can cause eviction of a BE line, but the opposite is not allowed. Note that prior119

work that implements a similar cache replacement policy exists [27]. In this paper, we call120

the extended LRU as Deterministic Memory-aware Least Recently Used, or DM-LRU for121

short. A more formal definition of DM-LRU is given in Section 3.122

Figure 2 illustrates the difference between traditional LRU, DM-LRU, and static locking.123

For simplicity, the example considers a single set of a 4-way set-associative cache. In the124

first step, only a and d are cached, and 0 lines are allocated for DM blocks under DM-LRU.125

Moreover, blocks b and e are set as DM blocks under DM-LRU, and pre-allocated in cache126

in case of static locking. The figure tracks the evolution of the cache state for the same127

access sequence b, c, d, a, e, b. A miss for a DM block triggers an increase of the number of128

ways allocated for the DM class. This is depicted in step 2 (miss on b) and 6 (miss on e).129

ECRTS 2019

20:4 Impact of DM-LRU on WCET: a Static Analysis Approach

Figure 2 Comparison between traditional LRU, DM-LRU, and a statically locked LRU cache
over the same access pattern b, c, d, a, e, b, where b and e are DM memory blocks, or statically locked.

Traditional LRU simply ignores the DM/BE tag of the considered memory blocks. First,130

note that DM-LRU results in fewer misses compared to LRU, as the DM marked memory131

block b was not evicted by the best-effort memory accesses. Also note that while realizing132

the same number of hits in the example compared to static locking, two important remarks133

are required. First, the figure does not include the time spent to prefetch and lock the b and134

e blocks. Second, static locking causes additional misses for non-locked blocks compared to135

DM-LRU. This exemplifies the on-demand nature of DM-LRU, which is able to retain in136

cache blocks as they become needed during a task’s execution. We discuss the analogies and137

differences between DM-LRU and static/dynamic locking more extensively in Section 6.138

Intuitively, it is thanks to the on-demand allocation and differential treatment of DM139

memory blocks that DM-LRU enables tighter worst-case cache timing analysis, as we show140

in the rest of the paper.141

2.3 Cache Analysis via Abstract Interpretation142

In this work, we extend abstract interpretation-based analysis to reason on the hit/miss143

classification of memory accesses when a DM-LRU cache controller is implemented in144

hardware. Analysis via abstract interpretation was originally proposed for LRU caches [11]145

and better formalized and extended to FIFO and Pseudo-LRU in [41, 14]. An excellent146

survey on the topic was proposed in [32]. We reuse the notation in [14, 32], while some details147

are omitted due to space constraints. Since this work focuses on a DM-aware extension of148

LRU, we introduce some of the background related to abstract interpretation-based LRU149

analysis.150

Imagine taking a snapshot of the cache state at a given point in time. In this case, one151

could highlight the state of the cache in terms of: (i) which blocks are currently in cache,152

and (ii) what is the age of each block. In LRU, the age of a block, say block a, captures153

the number of memory accesses (to other blocks than a) that were performed since the last154

access to a. For instance, in the six steps in Figure 2, the LRU age for a is in the following155

sequence: 0, 1, 2, 3, 0, 1, and 2. If a has an LRU age greater than or equal to the number of156

ways (4 in our example), then a is not cached.157

If the ages of all the cached blocks are known, the cache is in a concrete state. From a158

R. Mancuso, H. Yun and I. Puaut 20:5

concrete state, it is possible to produce a new concrete state that follows each new memory159

access (state update), as shown in Figure 2. In a typical program, however, execution may160

follow different paths. This means that at a given point in time, multiple concrete states are161

possible, depending on the execution path taken by the program in its control-flow graph162

(CFG).163

Instead of keeping track of all the possible concrete states at any point of the CFG,164

abstract interpretation keeps track of two main pieces of information: (i) the upper-bound165

and (ii) the lower-bound on the age of any memory block among all the possible con-166

crete states. Analysis on the age upper-bound and lower-bound is carried on separately.167

The former is referred to as must-analysis, while the latter goes under the name of may-168

analysis. A state that summarizes the upper-bound (resp., lower-bound) of each block169

in a set of possible concrete states is called an abstract state. For instance, consider a170

must-analysis abstract state of the form: q̄ = [{}, {a, b}, {}, {d, e}]. This corresponds to171

all the concrete states where blocks a, b have age at most 1, and d, e at most 3. The full172

concretization of q̄ is the set: {[a, b, d, e], [b, a, d, e], [a, b, e, d], [b, a, e, d]}. Similarly, consider173

the may-analysis abstract state q = [{}, {}, {a, b}, {}]. A concretization of q is the set174

{[⊥,⊥,⊥,⊥], [⊥,⊥, a,⊥], [⊥,⊥,⊥, a], [⊥,⊥, b,⊥], [⊥,⊥,⊥, b], [⊥,⊥, a, b], [⊥,⊥, b, a]}, where175

⊥ is a generic unknown block.176

Given a must-analysis abstract state, it is possible to determine —i.e., classify— a177

memory access as always-hit (H). These are accesses that result in hits regardless of the path178

taken in the CFG. Similarly, given a may-analysis abstract state, it is possible to perform179

classification of always-miss memory accesses. If neither classification applies, the block is180

simply non-classified (NC). NC, often indicated as >, represents the case in which some181

execution paths lead to a miss while others lead to a hit for the same memory access.182

Note that for architectures without timing anomalies [31, 20], must-analysis is sufficient183

to safely compute the WCET of an application. In fact in this case NC accesses can be184

simply treated as misses. We developed and implemented both must- and may-analysis for185

DM-LRU, but we hereby focus in greater detail on must-analysis. Additional details about186

may-analysis are provided in the appendix.187

3 Cache Model and Terminology188

In this section we discuss the cache model adopted to represent the behavior of DM-LRU, and189

we introduce key concepts required to follow the proposed abstract interpretation analysis.190

3.1 DM-LRU Model191

Algorithm 1 shows the full pseudo-code of the DM-LRU cache replacement algorithm. The192

algorithm is defined for a generic A-way set-associative cache with S sets. The index of a set193

is indicated with s ∈ {0, . . . , S − 1}. In the algorithm, DetMasks denotes the bitmask of the194

set s’s cache lines that contain deterministic memory. Consider a DM request (DM = 1) that195

resulted in a cache miss—see step 1 or 6 in Figure 2. The algorithm first tries to evict a BE196

cache line, if such a line exists (Line 3-4). This also causes an additional bit to be asserted197

in the DetMasks bitmap. If no BE can be evicted (i.e., all lines are deterministic ones), it198

chooses one of the deterministic lines (the older one in the LRU stack) as the victim (Line199

6). On the other hand, consider the case where a BE memory block is requested (DM 6= 1),200

resulting in a miss—steps 1 and 2 in Figure 2. DM-LRU evicts one of the best-effort cache201

lines, but not any of the deterministic cache lines (Line 9).202

We assume a single-core, single-level set-associative cache. We indicate with A the203

associativity of the cache. Since DM-LRU operates independently on each set, it is possible204

to describe our analysis on a single set without loss of generality. Hereafter, we consider205

ECRTS 2019

20:6 Impact of DM-LRU on WCET: a Static Analysis Approach

Input :DetMasks - deterministic ways of Set s
Input :A - cache associativity
Output : victim - the victim way to be replaced or NULL if no replacement possible

1 if DM == 1 then
2 if (¬DetMasks) 6= NULL then

// evict a best-effort line first
3 victim = LRU(¬DetMasks)
4 DetMasks |= 1� victim
5 else

// evict a deterministic line
6 victim = LRU(DetMasks)
7 end
8 else
9 if (¬DetMasks) 6= NULL then

// evict a best-effort line
10 victim = LRU(¬DetMask)
11 else

// no BE line can be allocated
12 victim = NULL
13 end
14 end
15 return victim

Algorithm 1: Deterministic memory-aware cache line replacement algorithm.

a single cache set. At any point in time, D is the number of cache lines allocated to DM206

memory blocks for the considered cache set. D is the number of bits set to “1” in the207

DetMasks for the set under analysis. We indicate with B the number of lines that have not208

been allocated for DM memory. It holds that D +B = A. Note that if D < A, and a DM209

line that is currently not cached as a DM line is accessed, then the new DM line is allocated210

and D is increased by one. This may trigger the eviction of the least recently used BE block,211

as per Algorithm 1.212

3.2 Terminology and notations213

We indicate with B the set of memory blocks that map to the cache set under analysis.214

A generic memory block bCL ∈ B is comprised of an address b and an eviction class215

CL = {DM,BE}. The set of all the possible concrete states of a DM-LRU cache is denoted216

as QDM−LRUA
, where each state q ∈ QDM−LRUA

is defined as follows:217

q := {D, [bDM0 , . . . , bDMD−1], [bCLD , . . . bCLA−1]}, (1)218

where D ∈ [0, A] and bCLi ∈ B. Note that the first D cache lines are allocated as DM219

cache lines, hence these are necessarily DM memory blocks. The remaining A−D blocks are220

currently allocated BE memory blocks. Throughout this paper we will use the shorthand221

notation bi ∈ B for blocks whose eviction class is obvious from context or unimportant. For222

blocks allocated as BE, we assume BE class unless specified otherwise.223

An important concept is the age of a memory block under DM-LRU, defined as follows.224

I Definition 1 (DM-LRU Age). The age of a DM memory block aDM is defined as the225

number of distinct DM blocks accessed since the last access to aDM ; the age of a BE memory226

block b is set to the current value of D whenever bBE is accessed. It is then defined as D+K,227

where K is the number of misses to DM blocks, or accesses to distinct BE blocks since the228

last access to bBE.229

Following Definition 1, the index of a given block bCLi ∈ q is also the age of the block230

in DM-LRU. The age of a block bDMi allocated as DM can increase if: (1) a new DM line231

is allocated (with age 0); or (2) a line bDMj already allocated as DM with age greater than232

bi is accessed. Conversely, the age of a BE block bBEi can increase if: (1) a new DM line is233

allocated (with age 0); (2) a new BE line is allocated (with age D); or (3) a line bBEj already234

in cache with age greater than bBEi is accessed.235

R. Mancuso, H. Yun and I. Puaut 20:7

Also note that Definition 1 remains consistent for the case in which a block bBE is236

accessed but cannot be allocated because all the sets have been reserved for DM lines. This237

phenomenon goes under the name of DM takeover, and can be resolved by imposing a hard238

cap on the maximum number of DM lines that can be allocated. The analysis for a DM-LRU239

with an allocation cap is almost identical to an unrestricted DM-LRU, and only introduces240

uninteresting subcases. For simplicity, we hereby focus on the analysis for unrestricted241

DM-LRU. We demonstrate that preventing DM takeover is indeed necessary and beneficial242

in Section 7.243

4 DM-LRU Analysis244

In this section we detail our abstract interpretation-based analysis [14, 32] for DM-LRU,245

i.e. when the cache controller implements the policy defined in Algorithm 1. We discuss246

must-analysis in detail. As previously mentioned, may-analysis is not strictly required for247

architectures without timing anomalies. As such we only provide the intuition behind it and248

defer the details to the appendix. We do not provide a persistence analysis for DM-LRU.249

Persistence analysis is useful to determine if memory accesses inside loops can result in hits250

after the first iteration. Instead, for our evaluations, we unroll the first iteration of each loop,251

i.e., we perform virtual unrolling, virtual inlining (VIVU) [34, 32].252

4.1 Must-analysis253

Must-analysis is performed considering abstract cache states. In this case, must-analysis254

keeps track of the upper bound on the number of allocated DM blocks indicated with255

D ∈ {0, . . . , A}, and the upper-bound on the DM-LRU age of each addressable memory block256

b ∈ B. The abstract domain DMLruvA is defined as:257

DMLruv
A := {0, . . . , A} × B → {0, . . . , A− 1,∞}. (2)258

Intuitively, the domain associates a current eviction class (DM or BE) and an age upper259

bound (0, . . . , A or ∞) to a memory block b ∈ B mapping to the set under analysis. We use260

the notation q̄(b) to indicate the upper-bound on the age of b in q̄. To represent a generic261

abstract state q̄ ∈ DMLruvA we use a compact notation that highlights the distinction262

between DM and BE allocations. For instance, the notation263

q̄ = [{}, {a, b}], [{c}, {d}] ∈ DMLruv
A (3)264

denotes an abstract state q̄ where D ≤ 2, B ≥ 2, A = 4. Hence, blocks a and b have265

upper-bound q̄(a) = q̄(b) = 1 on their DM-LRU age. Similarly, c, d are BE blocks with266

q̄(c) = 2 and q̄(d) = 3, respectively.267

Given an abstract state q̄ ∈ DMLruvA, the Boolean operator DMv(q̄, b) returns true268

only if the block b ∈ B must exist as a DM-allocated block in q̄. Formally269

DMv(q̄, bCL) :=
{

true if CL = DM ∧ q̄(b) <∞
false otherwise.

(4)270

271

272

For instance, considering q̄ defined as in Equation 3, we obtain DMv(q̄, a) = true,273

DMv(q̄, d) = false, and so on. We use the simpler notation DMv(b) when the state is274

implicit. The operator BEv(q̄, b) is simply defined as BEv(q̄, b) := ¬DMv(q̄, b). To prevent275

additional clutter in our notation, DMv(q̄, bDM) evaluates to true if and only if the DM276

block bDM must be allocated in cache in q̄. As such, if the generic DM block bDM has an277

upper-bound on its DM-LRU age greater than A− 1, then BEv(q̄, bDM) = true.278

An abstract state transformer for the DMLruvA domain is an operator that takes in input279

an abstract state q̄ ∈ DMLruvA and any number of additional parameters, and returns in280

ECRTS 2019

20:8 Impact of DM-LRU on WCET: a Static Analysis Approach

output a transformed state q̄′ ∈ DMLruvA. We consider and define two abstract transformers281

for DMLruvA: an update transformer Uv(q̄, a), and a join transformer Jv(q̄, p̄). We use the282

operator λb. to represent an age update operation carried on each b ∈ B when considering a283

transformation from state q̄ to q̄′. This operator can be formally defined as:284

λb. f(q̄(b)) := ∀b ∈ B, q̄′(b)← f(q̄(b)) (5)285

Must-analysis Update286

The update abstract transformer for the must-analysis Uv(q̄, a) is used to go from an initial287

abstract state, to a new abstract state after a new memory access has been performed.288

Uv(q̄, a) takes in input an initial abstract state q̄ and a memory block a ∈ B, and returns289

the abstract state that results from accessing a. For ease of notation, we split the definition290

of Uv in two parts: the logic that corresponds to the update operation when a DM block291

aDM is accessed, indicated with UvD ; and the update transformation when a BE block aBE292

is accessed, namely UvB . UvD is defined in Equation 6.293

Uv
D (q̄, aDM) :=294

D′ ←
{
D + 1 if D < A ∧BEv(a) (a.1)
D if D = A ∨DMv(a) (a.2)

295

λb.

0 if b = a (b)

q̄(b) if b 6= a ∧

∣∣∣∣∣∣
∣∣∣∣∣∣
BEv(b) ∧DMv(a) (c.1)
DMv(b) ∧ q̄(a) ≤ q̄(b) (c.2)
BEv(b) ∧BEv(a) ∧ q̄(a) ≤ q̄(b) (c.3)

q̄(b) + 1 if b 6= a ∧ q̄(a) > q̄(b)∧∣∣∣∣∣∣∣∣DMv(b) ∧ q̄(b) < D′ − 1 (d.1)
BEv(b) ∧BEv(a) ∧ q̄(b) < A− 1 (d.2)

∞ if b 6= a ∧ q̄(a) > q̄(b)∧∣∣∣∣∣∣∣∣DMv(b) ∧ q̄(b) ≥ D′ − 1 (e.1)
BEv(b) ∧BEv(a) ∧ q̄(b) ≥ A− 1 (e.2)

(6)296

297
298

Here, D′ (B′, resp.) is the new value of D (B, resp.) after the update. The conditions299

following the || operator are to be considered in logical “or” with each other.300

The update abstract transformer UvB for a best-effort memory access a can be defined as301

follows:302

Uv
B (q̄, aBE) :=303

λb.

D if b = a ∧D < A (a)

q̄(b) if b 6= a ∧
∣∣∣∣∣∣∣∣DMv(b)
BEv(b) ∧ q̄(a) ≤ q̄(b)

(b)

q̄(b) + 1 if b 6= a ∧BEv(b) ∧ q̄(a) > q̄(b) ∧ q̄(b) < A− 1 (c)

∞ if
∣∣∣∣∣∣∣∣ b = a ∧D ≥ A
b 6= a ∧BEv(b) ∧ q̄(a) > q̄(b) ∧ q̄(b) ≥ A− 1 (d)

(7)304

305
306

To clarify the update operation, consider the abstract state q̄ = [{}, {b, f}], [{c}, {d}],307

where D = 2. Assume that deterministic block aDM is accessed, which has age upper-308

bound ∞ in q̄, to obtain q̄′ = Uv(q̄, a) = UvD (q̄, a). First, the value of D′ is computed as309

R. Mancuso, H. Yun and I. Puaut 20:9

D′ = D+ 1 = 3 (a.1); next, b, f both satisfy the condition q̄(a) > q̄(b) = q̄(f) = 1. Moreover,310

we have that DMv(b) = DMv(f) = true, and that q̄(b) = q̄(f) = 1 < D′ − 1 = 2. This311

corresponds to condition (d.1) in Equation 6. Hence, the age of b, f in the resulting state is312

q̄′(b) = q̄′(f) = 2. Similarly, block c and d satisfy condition (d.2) and (e.2), respectively. The313

resulting updated abstract state is: q̄′ = [{a}, {}, {b, f}], [{c}].314

An example for the abstract transformer UvB defined in Equation 7 is provided in Section 5.315

I Theorem 2 (Correctness of must-analysis update). Consider a generic abstract state316

p̄ = Uv(q̄, aCL) obtained from the must-analysis update state transformer when accessing317

a generic block aCL from an initial abstract state q̄. Then for any block b ∈ B, p̄(b) is an318

upper-bound on the DM-LRU age of b.319

Proof Sketch. A proof can be constructed by considering two main sub-cases: (1) when320

CL = DM for the block being accessed; and (2) the case when CL = BE. Due to space321

constraints, we provide an intuition for the former case, as the latter follows from the same322

reasoning. When considering CL = DM , the new state p̄ is obtained as p̄ = UvD (q̄, aDM), as323

per Equation 6.324

First let us consider the rule on the update of D. If q̄(a) =∞ then a is not necessarily325

in cache and accessing a increases the upper-bound on the number of allocated DM blocks,326

as long as the associativity A has not been exceeded, i.e. D < A. In this case, note that327

BEv(q̄, a) = true and condition Equation 6 (a.1) applies. D does not change in any other328

case (a.2). After the update, block a will have age upper-bound equal to 0 (b).329

Next, consider all the blocks b 6= a that had age upper-bound of infinity in q̄ — i.e.330

q̄(b) = ∞, and BEv(q̄, b) = true. When a is accessed, their age upper-bound should not331

change. If q̄(a) =∞ then condition (c.3) applies. If q̄(a) 6=∞ then DMv(q̄, a) = true and332

condition (c.1) applies.333

Furthermore, consider all the blocks bDM , b 6= a that must be allocated as DM blocks in334

q̄, i.e. such that DMv(q̄, b) = true. If q̄(a) = ∞, the upper-bound on their DM-LRU age335

will have to increase by 1 (d.1). If however the value of q̄(b) + 1 exceeds the updated value of336

D, namely D′, then the block may be evicted and the new upper-bound on its DM-LRU age337

p̄(b) =∞ (e.1). The same cases apply when q̄(a) <∞ and q̄(a) > q̄(b).338

On the other hand, if a has an age upper-bound that is same as or lower than b’s, i.e.339

q̄(a) ≤ q̄(b), then a concrete state where DM-LRU age of a is strictly larger than that of b340

cannot exist. As such, the upper-bound on the DM-LRU age of b will not change, as per341

condition (c.2).342

Lastly, consider all the blocks bBE , b 6= a that must be allocated as BE blocks in q̄, i.e.343

such that BEv(q̄, b) = true and q̄(b) <∞. The only case in which q̄(a) > q̄(b) is if q̄(a) =∞.344

When a is accessed, the upper-bound on the age of b will have to increase by 1 (d.2), unless345

by doing so the associativity A is exceeded. In the latter case, p̄(b) =∞ (e.2). J346

Must-analysis Join347

The join abstract transformer Jv(q̄, p̄) is used to compute a new abstract state at the merging348

point of two or more execution paths. There are strong similarities between the transformer349

defined hereby and what used in traditional LRU must-analysis [14]. At a high level, the350

joined state will consider as must-cached only those blocks in the intersection of the joining351

states, each with the maximum age in any of the two states. For the new state, D is taken352

as the maximum between the value of D in the joining states. Equation 8 formalizes the353

Jv(q̄, p̄) abstract transformer:354

Jv(q̄, p̄) := D ← max{Dq̄, Dp̄}, λb.max{q̄(b), p̄(b)} (8)355

If we were to join q̄ = [{}, {b, f}], [{c}, {d}] with q̄′ = [{a}, {}, {b, f}], [{c}], the resulting356

state would be q̄′′ = Jv(q̄, q̄′) = [{}, {}, {b, f}], [{c}].357

ECRTS 2019

20:10 Impact of DM-LRU on WCET: a Static Analysis Approach

Figure 3 Fragment of process CFG. At the end of the fragment, all the cache blocks in the figure
may be cached.

I Theorem 3 (Correctness of must-analysis join). Consider an abstract state s̄ = Jv(q̄, p̄)358

obtained from the must-analysis join state transformer from two initial abstract states q̄ and359

p̄. Then for any block b ∈ B, s̄(b) is an upper-bound on the DM-LRU age of b.360

Proof Sketch. A proof can simply follow from the definition of the Jv operator in Equation 8.361

By hypothesis q̄ and p̄ carry the upper-bound on the age of a generic block b along two disjoint362

execution sub-paths. After the two sub-paths join, the maximum between q̄(b) and p̄(b) is a363

safe upper-bound on the DM-LRU age of b in the resulting abstract state s̄. Moreover, an364

upper-bound on the number of allocated DM blocks in s̄ is the maximum between Dq̄ and365

Dp̄. J366

Must-analysis Classification367

Every time an access is performed, it is possible to classify a memory access using a368

classification function that will either return M for cache miss, H for cache hit, or > in case369

neither M nor H classification can be made given the current abstract state. In order to370

classify memory accesses, for a given q̄ abstract state we define two helper sets D̄ and B̄371

representing the deterministic and best-effort memory blocks that have finite upper bound372

on their DM-LRU age:373

D̄ := {bCL ∈ B | CL = DM ∧ q̄(b) <∞}374

B̄ := {bCL ∈ B | CL = BE ∧ q̄(b) <∞} (9)375376

The classification function of the must analysis is defined as:377

C
v(q̄, aCL) :=

H if q̄(a) <∞ (a)

M if
∣∣∣∣∣∣CL = DM ∧ a 6∈ D̄ ∧ |D̄|= D

CL = BE ∧ a 6∈ B̄ ∧ |B̄|= B
(b)

> otherwise (c)

(10)378

379

We provide a complete step-by-step example on how must-analysis can be applied to an380

application’s CFG in Section 5.381

4.2 May-analysis382

The complete may-analysis is provided in the appendix (Section 10). We hereby provide a383

sketch of the approach followed in the analysis.384

The goal of may-analysis is to track the lower-bound on the age of memory blocks. Given385

a may-analysis abstract state it is possible to classify a memory access as always leading to a386

miss. Let us consider the example in Figure 3 and reason on the lower bound on the age of387

R. Mancuso, H. Yun and I. Puaut 20:11

each block for a 4-way fully associative cache. For block aDM , the best case is represented by388

the execution pattern 1-5-4. In this case, the block has DM-LRU age 0. A similar situation389

occurs for block bDM and path 1-3-4. For blocks f and g, the best-case is represented by the390

paths 2-6-8, and 2-7-8, respectively. This leads the two blocks to have a lower-bound of 2 on391

their DM-LRU age. Similarly, blocks c, d, and g have lower-bound 0, 1, and 3, respectively.392

We can represent the resulting may-analysis state obtained following the derivation above393

as: [{a, b}], [{c}, {d}, {f, e}, {g}]. What happens if another access to a occurs after path 4394

and 8 join? Then the best-case for block b is still 1-3-4, but its age lower-bound will be 1.395

At the same time, because at least one DM block was allocated regardless of the taken path,396

the minimum lower-bound on the age of any BE block has to be 1. Also note that regardless397

of the execution path taken, block g will be evicted. The result is the following may-analysis398

abstract state: [{a}, {b}], [{}, {c}, {d}, {f, e}].399

5 Analysis Example400

In this section we provide a description of how DM-LRU must-analysis can be applied to a401

CFG once the target of each memory access is known. The original CFG of the considered C402

program code generated by the Heptane tool is shown in Figure 4. The program consists of403

a single loop with four iterations, where the first iteration has been unrolled. The program404

accesses 7 memory locations. These are B = {a, b, c, d, e, f, g} and are visible in the various405

basic blocks as operands of load/store instructions.406

Figure 5 shows the same CFG as in Figure 4, but where only basic blocks in which407

memory accesses are being performed are kept. Moreover, basic blocks with multiple memory408

accesses are depicted as sequences of blocks, each with a single memory access. The nodes409

are annotated with their corresponding abstract states. We apply must-analysis starting410

from the entry node a. We compare the behavior of traditional LRU analysis and DM-LRU411

when blocks a and f have been declared as DM. We consider a fully-associative cache with412

4 ways. For DM-LRU analysis, the cache state before the first access q̄0 = [], [{}, {}, {}, {}]413

(D0 = 0); for LRU analysis it is [{}, {}, {}, {}]. Under DM-LRU, when block aDM is accessed,414

the performed operation is q̄1 = Uv(q̄0, aDM) = UvD (q̄0, a). Following Equation 6, we have415

D1 = D0 + 1, then condition (a) is satisfied by a, all the other blocks b ∈ B satisfy condition416

(d.2). As such, we have q̄1 = [{a}], [{}, {}, {}], as reported in the figure.417

Let us now follow the upper branch with access sequence d → e → g (all of them are418

best-effort memory accesses). For each memory access, we apply Equation 7 to obtain a new419

abstract state. After accessing e, the resulting abstract state is: q̄2 = [{a}][{e}, {d}, {}]. Let420

us now show more clearly how we obtain q̄3 = Uv(q̄2, g
BE) = UvB (q̄2, g), when we next access421

g. Considering all blocks in B and using Equation 7 we know: block a satisfies condition (b.1)422

and its age remains the same; b and c satisfy (d.2) and their age remains ∞; block e satisfies423

(c) and its age increases by 1, from 1 to 2; the age of block d increases from 2 to 3; and424

finally, block g (being accessed) satisfies condition (a) and its age is set to D2 = 1. The final425

state is q̄3 = [{a}], [{g}, {e}, {d}], as shown in the figure above node g. The same procedure426

applies to the lower branch of the CFG, and we obtain the state q̄4 = [{a}], [{c}, {b}, {}],427

after we access c.428

Before accessing f , we need to join states q̄3 and q̄4 derived above. In this case, we apply429

Equation 8 to obtain q̄5 = Jv(q̄3, q̄4). It follows that D5 = 1. Moreover, the only block430

present in both states q̄3 and q̄4 is a. All other blocks in B will have age ∞ in q̄5. As such we431

have q̄5 = [{a}], [{}, {}, {}]. Next, accessing fDM yields q̄6 = UvD (q̄5, f) = [{f}, {a}], [{}, {}],432

as shown in the figure. This is because D6 = D5 + 1, and because a satisfies condition (c.1)433

in Equation 6. The same reasoning can be applied to obtain the remaining states depicted in434

the figure.435

Consider now the state q̄6 and apply the must-analysis classifier before accessing aDM ,436

ECRTS 2019

20:12 Impact of DM-LRU on WCET: a Static Analysis Approach

main

loop [3]

@0x8150 (BB)

@0x80e8 (BB)
LOAD a (DM)@0x815c (BB)

@0x8138 (BB)
LOAD f (DM)

@0x80f8 (BB)
LOAD b
LOAD c

@0x8120 (BB)
LOAD d
LOAD e
LOAD g

@0x80d8 (BB)

@0x8150 (BB)

@0x80e8 (BB)
LOAD a (DM)

@0x8138 (BB)
LOAD f (DM)

@0x80f8 (BB)
LOAD b
LOAD c

@0x8120 (BB)
LOAD d
LOAD e
LOAD g

Figure 4 Original CFG of considered example as rendered by the Heptane tool, with annotated
memory accesses (LOAD). Note that VIVU has been performed on the loop.

R. Mancuso, H. Yun and I. Puaut 20:13

Figure 5 An example of must analysis under DM-LRU (orange states), compared to traditional
LRU (blue states). If a and f are marked as DM, their accesses inside the loop can be classified as
always hits.

i.e. compute Cv(q̄6, a) as in Equation 10. First, the sets D̄6 and B̄6 can be computed using437

Equation 9 as D̄6 = {a, f}, and B̄6 = {}. Hence condition (a) is satisfied and access to a is438

classified as H (hit). Conversely, no access can be classified as hit under LRU.439

6 Analogies and Differences with Cache Locking440

Cache locking refers to a technique where cache blocks that are deemed important for441

an application’s timing are pinned (locked) in cache. Similar to DM-LRU, cache locking442

represents a way to partially override the best-effort replacement strategy offered by the443

hardware. And like DM-LRU, specialized hardware support is required to perform locking.444

With respect to WCET analysis, the big advantage provided by cache locking is that all those445

accesses for locked cache blocks can be immediately classified as hits. While cache locking446

was commonly supported in previous-generation embedded systems, the current trend in447

embedded SoCs is toward cache controllers that offer little or no management primitives.448

Despite the strong similarities, some profound differences exist between cache locking449

and DM-LRU. Leveraging cache locking implies injection of additional logic —in either the450

application, the compiler, and/or the OS— to perform a series of prefetch&lock operations.451

On the contrary, a system featuring a DM-LRU cache only requires that memory blocks are452

tagged appropriately at task load time.453

In case of static locking, prefetch&lock can be performed at initialization time. As such,454

the extra logic required to perform locking does not impact the task’s WCET. Conversely,455

with dynamic cache locking, the locked cache content is modified at runtime. Depending on456

the available hardware support, this operation may not be directly possible in user-space,457

requiring instead a costly switch to kernel-space. Regardless, an online prefetch&lock routine458

can pollute the rest of the cache, resulting in overheads that may largely offset any benefit.459

In other words, additional system-level assumptions are required to make a meaningful460

comparison with dynamic locking. For this reason, we do not compare DM-LRU against461

dynamic locking.462

Interestingly enough, however, the proposed DM-LRU analysis can be re-used to analyze463

dynamic locking schemes if additional system parameters are available. In a nutshell, consider464

a 4-way fully associative cache. Next, assume that the locked content is switched whenever465

a given branch in the CFG is taken. Then, consider the case where the new content to466

be locked is comprised of blocks a, b, c. A special node on the branch can be added with467

associated a modified update abstract transformer Lockv. This is such that the resulting468

must-analysis abstract state q̄ after the update is: q̄ = Lockv({a, b, c}) = [{a}, {b}, {c}][{}].469

ECRTS 2019

20:14 Impact of DM-LRU on WCET: a Static Analysis Approach

7 Evaluation470

The DM-LRU analysis presented in the previous sections provides a way to understand how471

the WCET of applications varies as memory blocks addressed in applications are declared472

as DM. We now apply DM-LRU analysis to a set of realistic embedded benchmarks. In473

this section, we first briefly describe our implementation. Next, we investigate three main474

aspects: (1) what is the degree of WCET improvement that can be achieved via DM-LRU475

when compared to LRU? (2) Is there an advantage in imposing a limit to the number of DM476

lines that can be simultaneously allocated, i.e. in preventing DM takeover? (3) how does477

DM-LRU compares to static cache locking?478

In our evaluation we focus on the degree of WCET improvement that DM-LRU can479

provide compared to LRU. However, because supporting DM-LRU implies changes to the480

hardware cache memory and controller, it is also important to determine if a DM-LRU481

implementation can be efficiently carried out. In short, only one additional bit to distinguish482

between DM and BE lines is required per cache line. Additionally, compact changes1 are483

required to the cache controller to restrict victim selection based on the classification (DM484

or BE) of a new line being allocated. No additional logic is required to appropriately set the485

DM bits at line fetch. Additional considerations on the incurred hardware costs to support486

DM memory are also provided in [10].487

7.1 Implementation488

We have implemented support for DM-LRU inside a state of the art static WCET analysis tool,489

namely Heptane [23]. Heptane implements Implicit Path Enumeration Technique (IPET) [29]490

and performs analysis for many cache architectures: e.g., LRU, FIFO, Pseudo-LRU, multi-491

level non-inclusive caches, and shared caches. In our setup, we consider a single-level of492

cache, divided into an instruction (I) cache, and a data (D) cache. For simplicity, we assume493

in all our experiments that both caches are selected to have the same number of sets and494

ways. Heptane supports two architectures: ARMv7 and MIPS. The ARMv7 target was used495

for this paper.496

We have modified the Heptane tool to support two variants of DM-LRU, as well as497

static locking. Most importantly, we have extended the support for abstract interpretation-498

based cache analysis to implement the must- and may-analysis presented in the previous499

sections. The performed changes allow backward compatibility with the original set of500

policies supported by the tool. Next, we have integrated the logic to differentiate between BE501

memory and DM memory. For this purpose, we have added a table of DM addresses—the502

DM Table—that can be specified by an external tool, mimicking the selection of DM blocks503

by the OS at binary load time. Furthermore, we have added appropriate logic in Heptane504

to output per-memory-block statistics in terms of references, hits, and misses, as computed505

during WCET analysis. These statistics are then used to build a DM-block selection heuristic.506

Finally, we have modified Heptane’s CFG extraction routines to perform VIVU—i.e., to507

recursively peel the first iteration of every loop.508

We have developed and employed a simple heuristic to determine which memory block-509

s/addresses should be marked as DM and inserted into the DM Table. The heuristic initially510

performs WCET analysis without selecting any DM line. Next, it analyzes the per-memory-511

block statistics and selects as DM the block with the largest number of misses. At this point,512

WCET analysis is performed again with the new DM Table containing a single entry. Using513

1 Whenever a line eviction has to occur, the DM/BE bits of all the lines in the considered set form a
bitmask. Victim selection for a BE access is then performed by excluding all those lines that have a bit
set to 1 in the DM bitmask.

R. Mancuso, H. Yun and I. Puaut 20:15

the per-memory-block statistics of the latest run, a new DM block is selected in addition to514

the previously selected block. The same steps are performed until no more addresses can be515

selected as DM. Note that when no lines are selected as DM, the behavior of the cache is516

indistinguishable from vanilla LRU. Similarly, when the entire memory of an applications is517

selected as DM, no differences exist with LRU. In practice, however, we saw no differences518

between DM-LRU and LRU when more than 3× S ×A lines are selected as DM, where S519

and A is the number of sets and ways of the cache, respectively. In our experiments, we520

acquired analytical results for a number of DM lines in the range [1, 3× S ×A].521

7.2 Setup522

We compare two variants of DM-LRU and static cache locking against LRU. A description523

of the three scenarios follows.524

1. Unrestricted DM-LRU ("DM-nolim"): in this variant, no restriction is imposed on525

the maximum number of cache sets that can be reserved for DM lines. It follows that526

the only constraint for the allocation of DM lines is the cache associativity itself. The527

analysis for unrestricted DM-LRU is the one presented in the previous sections.528

2. Limited DM-LRU ("DM-cap"): in this variant, a hard cap in the maximum number529

of ways is imposed on the expansion of DM lines. This represents a solution to the530

aforementioned problem of DM takeover. Imposing a cap of 0 makes DM-cap to be531

identical to vanilla LRU. Similarly, imposing a cap of A makes DM-cap to be identical532

to DM-nolim. In our experiments, we explore all the possible values of cap in the range533

[1, A].534

3. Static locking ("Static"): this case is used to draw a comparison between the considered535

DM-LRU variants and static locking. In case of static locking, selection of lines to statically536

allocate is performed following the same heuristic used for DM lines selection. Similar to537

DM-cap, we impose how many ways can be dedicated to statically locked content (locked538

ways). The maximum number of allocated line is then S × locked. Note that the main539

performance difference between DM-cap and Static lies in the additional flexibility that540

DM-cap provides. In DM-cap, in fact, more lines than S × cap can be selected, while it is541

not allowed in static locking.542

For all the considered variants, we explore a number of cache configurations. Specifically,543

we vary the associativity A of the I/D caches in the set {2, 4, 8, 16}. We vary the number544

of cache sets S such that S ∈ {2, 4, 8, 16, 32}. As previously mentioned, for DM-nolim and545

DM-cap, we progressively select up to 3× S ×A DM lines following the heuristic described546

above. In each system instance, we perform WCET analysis using the modified Heptane547

tool. Then, we keep track of which configuration—S, A, DM-lim cap, locked ways, number548

of DM lines—for each of the three scenarios leads to the best reduction in WCET compared549

to the vanilla LRU case.550

For our benchmarks, we use a subset of realistic benchmarks from the Mälardalen suite [19].551

Unfortunately, vanilla HEPTANE is not able to perform WCET analysis for some of the552

benchmarks in the suite. As such, our evaluation only includes those benchmarks that553

are correctly handled by HEPTANE. Notably, the aforementioned changes to implement554

DM-LRU analysis did not impact the set of benchmarks that can be correctly analyzed by555

the tool.556

7.3 Results557

Figure 6 provides an overview of the obtained results. A cluster of bars is provided for each of558

the considered benchmarks. Reading the plot from top to bottom, the first bar corresponds559

to the WCET under LRU. All the results in the figure are normalized to the LRU case. The560

ECRTS 2019

20:16 Impact of DM-LRU on WCET: a Static Analysis Approach

Normalized WCETs

0.0 0.5 1.0

bs

crc

fibcall
lcdnum

minver

0.0 0.5 1.0
prime

sqrt
bsort100

expint
ludcmp

0.0 0.5 1.0
qurt

statemate
insertso

rt
matmult

ns

0.0 0.5 1.0
select

ud
jfdctin

t
minmax

fft

LRU DM-nolim DM-cap Static

Figure 6 Computed WCETs for vanilla LRU (LRU), unrestricted DM (DM-nolim), DM limited
to a subset of ways (DM-cap), and static locking (Static).

second bar represents the best WCET improvement that was observed under DM-nolim. The561

WCET improvement is calculated as: WCETDM-nolim
WCETLRU

, where the WCETs under DM-nolim562

and under LRU are obtained in the same system configuration. A similar calculation was563

performed to derive the remaining two bars, i.e. for the DM-lim and Static cases.564

What emerges from the plot is that in 16 out of 20 cases, DM-nolim is able to achieve565

WCET reductions compared to vanilla LRU. Notably, in case of bsort100 and prime, it is566

possible to achieve a WCET reduction of around 23.73% and 23.47%, respectively. It can567

also be noted that DM-cap outperforms DM-nolim. Moreover, DM-cap performs generally568

better than static locking. For instance, the best WCET reduction achieved via static locking569

for the jfdctint benchmark is 26.09% under DM-cap (with a S = 4, A = 8, 19 DM lines,570

cap = 1). But the best WCET reduction under static locking is only 14.64%, which is571

achieved for a cache with parameters S = 2, A = 16 and 15 ways occupied by statically572

locked lines. Similar results can be observed for the benchmarks matmult and fft.573

The reason for the performance improvement that can be obtained with DM-cap is574

twofold. On the one hand, the problem of DM takeover is solved. This prevents the case that575

all the accesses to BE lines result in misses. On the other hand, for applications that exhibit576

changes in working sets, static locking can be sub-optimal. Conversely, under DM-cap, is is577

possible to mark lines belonging to different working sets as DM. In this case, at working578

set changes over time, those DM lines belonging to a previous working set will be naturally579

evicted, without suffering pollution from BE lines.580

A more detailed overview of the obtained experimental results is provided in Table 1. In581

the table, the first column reports the name of the benchmark under analysis. If multiple582

configurations are of interest, multiple rows are shown for a given benchmark. The second583

column reports the cache configuration in terms of sets S and ways W for the results on584

each row. Next, the WCET obtained with LRU is reported in the following column, followed585

by the best WCET obtained for the same configuration under DM-nolim and the relative586

improvement (due to the space limitation, the number of DM lines that were selected has587

been omitted in the table.) Similarly, the best result obtained under DM-cap is reported588

next, and the value of cap under which the result was achieved is reported in the adjacent589

column. Finally, the last two columns report the WCET (and the relative improvement) for590

static locking with the given cache configuration and number of locked ways reported in the591

last column.592

8 Related Work593

Memory Tagging and Hardware Support. In this work, we assume that hardware594

R. Mancuso, H. Yun and I. Puaut 20:17

Benchmark S×A LRU DM-nolim DM-cap cap Static locked

bs 2×2 6613 5513 (-16.63%) 5513 (-16.63%) 2 5513 (-16.63%) 2
crc 4×2 2492320 2425920 (-2.66%) 2330620 (-6.49%) 1 2330620 (-6.49%) 1
fibcall 2×2 14191 14191 (-0.00%) 14191 (-0.00%) 1 14191 (-0.00%) 1

lcdnum 4×2 16291 14791 (-9.21%) 14791 (-9.21%) 2 14791 (-9.21%) 2
2×4 16191 16191 (-0.00%) 14391 (-11.12%) 2 15291 (-5.56%) 2

minver 4×2 126558 115758 (-8.53%) 109958 (-13.12%) 1 109958 (-13.12%) 1
prime 2×4 611425 467925 (-23.47%) 467925 (-23.47%) 3 467925 (-23.47%) 3

sqrt 2×4 54983 47552 (-13.52%) 47252 (-14.06%) 3 52552 (-4.42%) 2
2×4 54983 47552 (-13.52%) 47252 (-14.06%) 3 47583 (-13.30%) 6

bsort100 2×2 12434700 9484580 (-23.72%) 9484580 (-23.72%) 1 9484580 (-23.72%) 1
expint 2×4 759551 709651 (-6.57%) 709651 (-6.57%) 4 709651 (-6.57%) 4
ludcmp 16×2 638233 564633 (-11.53%) 564633 (-11.53%) 2 564633 (-11.53%) 2

qurt 2×8 217555 212160 (-2.48%) 173755 (-20.13%) 6 173755 (-20.13%) 6
4×4 217555 220355 (–1.29%) 171155 (-21.33%) 3 171155 (-21.33%) 3

statemate 2×2 616218 612918 (-0.54%) 576718 (-6.41%) 1 576718 (-6.41%) 1
8×8 383718 382818 (-0.23%) 359118 (-6.41%) 6 359118 (-6.41%) 6

insertsort 2×2 80126 70126 (-12.48%) 70126 (-12.48%) 1 70126 (-12.48%) 1
matmult 2×2 7191620 6568220 (-8.67%) 5555520 (-22.75%) 1 6391620 (-11.12%) 1

ns 4×2 193481 193481 (-0.00%) 193481 (-0.00%) 1 193481 (-0.00%) 1
2×2 530781 534781 (–0.75%) 406681 (-23.38%) 1 406681 (-23.38%) 1

select 4×2 170766 162266 (-4.98%) 157966 (-7.50%) 1 157966 (-7.50%) 1
2×4 170766 162866 (-4.63%) 150966 (-11.59%) 3 150966 (-11.59%) 3

ud 4×2 226843 223243 (-1.59%) 223243 (-1.59%) 2 225243 (-0.71%) 2
2×2 302443 354143 (–17.09%) 283843 (-6.15%) 1 283843 (-6.15%) 1

jfdctint
2×16 150234 128734 (-14.31%) 111034 (-26.09%) 2 128234 (-14.64%) 15
4×8 150234 130334 (-13.25%) 111134 (-26.03%) 1 147134 (-2.06%) 1
4×8 150234 130334 (-13.25%) 111134 (-26.03%) 1 130334 (-13.25%) 7

minmax 2×2 4034 4034 (-0.00%) 4034 (-0.00%) 1 4034 (-0.00%) 1
2×4 4034 4034 (-0.00%) 3934 (-2.48%) 1 4034 (-0.00%) 1

fft
32×2 1683830 1623930 (-3.56%) 1623430 (-3.59%) 1 1623430 (-3.59%) 1
4×4 2488230 2494360 (–0.25%) 2140830 (-13.96%) 1 2443230 (-1.81%) 1
4×4 2488230 2494360 (–0.25%) 2140830 (-13.96%) 1 1716630 (-4.62%) 2

Table 1 Summary of notable experimental results under four strategies: (1) vanilla LRU
("LRU"); (2) unrestricted DM-LRU ("DM-nolim"); (3) restricted DM-LRU ("DM-cap"); and (4)
static locking ("Static").

allows us to encode (tag) extra information (e.g., importance) on memory locations at a fine-595

granularity. The basic idea of memory tagging has first explored in the security community, to596

prevent memory corruption (e.g., buffer overflow) [6, 38] and to enforce data flow integrity [45]597

and capability protection [51]. Efficient hardware designs for word-granularity single-bit and598

multi-bit memory tagging have been investigated [24] and several real SoC prototypes have599

been built [45, 4], demonstrating the feasibility. In the real-time systems community, several600

works explored the use physical memory address based differentiated hardware designs (mostly601

cache) in a more coarse-grained manner (i.e., memory segments, page, and task granularity).602

Kumar et al, proposed a criticality-aware cache design, called Least Critical (LC), which603

includes a memory criticality-aware extension to LRU replacement policy [27]. The LC604

cache’s replacement policy is similar to the replacement policy we assumed in this work605

(Algorithm 1), while its memory tagging mechanism, which uses a fixed number of specialized606

range registers, does not allow flexible and fine-grained memory tagging. Therefore, our607

static analysis method can be directly applicable to analyze the LC cache. PRETI [28] also608

proposes a criticality-aware cache design but it focuses on shared cache for SMT hardware,609

while we focus on private caches. More recently, OS-level page-granularity memory tagging610

and supporting multicore architecture designs (including a new cache design) have been611

explored to provide efficient hardware isolation (incl. cache isolation) in multicore [10].612

ECRTS 2019

20:18 Impact of DM-LRU on WCET: a Static Analysis Approach

Static Cache Analysis. There exists a broad literature on static cache analysis [32, 50].613

With respect to existing literature, this work is closely related to approaches that propose614

abstract interpretation-based cache analysis. This approach was initially proposed in [1, 12].615

These works illustrate LRU analysis and hit/miss classification using may- and must-analysis.616

The work in [12] also proposes a persistence analysis based on abstract states, which was found617

to be unsafe and for which a fix was proposed in [8, 25]. We base our DM-LRU extension on618

the may- and must-analysis proposed in [12], but use the improved formalization in [14]. In619

order to perform access classification in case of loops we use an approach similar to virtual620

inlining & virtual unrolling (VIVU) originally proposed in [34]. A large body of works has621

considered cache replacement policies other than LRU. These include FIFO [14, 15, 18],622

MRU [17], Pseudo-LRU [16]. Comparatively less work has been produced to analyze non-623

inclusive [36, 21] as well as inclusive [22] multi-level caches. With respect to these works,624

the proposed methodology set itself apart because it focuses on the impact on the WCET625

of designer-driven selection of frequently accessed memory blocks. In this sense, proposed626

approach can be used to analyze caches that support the definition of touch-and-lock cache627

lines, under the assumption that no more than A blocks are simultaneously locked on any628

set, where A is the associativity of the cache.629

Cache Locking and Scratchpad Memory. Some COTS cache designs [2, 7, 13]630

support selective cache locking, which prevents evictions for certain programmer selected631

cache-lines. Exploting the feature, various static and dynamic cache locking schemes for both632

instruction and data caches have been investigated [5, 40, 39, 48, 35]. In [47, 48], for instance,633

cache locking statements are inserted in the task’s execution flow at compilation time, when634

the uncertainty about the memory locations being accessed negatively impacts the static635

WCET analysis. Some recent works combined cache locking with cache partitioning to636

improve task WCET in multicore [30, 43, 33]. As an alternative to cache, scratchpad memory637

has received significant attention in the real-time systems community for its predictability638

benefits [46, 9, 49, 44]. More recently, a technique called invalidation-driven allocation639

(IDA) [26] was proposed to achieve the same level of determinism of a locked cache in640

spite of lack of hardware-assisted locking primitives. IDA can be used as long as precise641

invariants on the size of an application’s working set hold. To overcome its high programming642

complexity, however, many researchers proposed various compiler-based techniques. In [44],643

for instance, a sophisticated compiler-based technique is proposed to break each task into644

intervals and at the beginning of each interval, the required memory blocks of the interval645

are prefetched onto a scratchpad memory via a DMA controller without blocking the task646

execution. Dividing a task into a sequence of well-defined memory and computation phases647

was originally proposed in [37, 52]. In both cache locking and scratchpad memory based648

techniques, a common limitation is the overhead of explicitly executing additional instructions649

(prefetch, lock/unlock, or data movement to/from scratchpad). Furthermore, these additional650

instructions are context sensitive in the sense that they must be executed before actual accesses651

occur, and if they are executed too early, they can negatively impact both performance and652

WCET. In contrast, our approach is context insensitive in the sense that, once DM blocks653

are flagged, actual allocation and replacement are automatically performed by the hardware654

(cache controller) without additional instruction execution overhead.655

9 Conclusion656

In this paper, we presented the DM-LRU cache replacement policy and proposed an abstract657

interpretation-based analysis for DM-LRU. We implemented the proposed analysis and DM-658

LRU support in the Heptane static WCET analysis tool. Using the Heptane, we evaluated659

the WCET impacts of our DM-LRU based approach on a number of benchmarks. The results660

show that our DM-LRU approach can provide lower task WCETs with less performance661

R. Mancuso, H. Yun and I. Puaut 20:19

Figure 7 Fragment of process CFG that leads to abstract DM-LRU state q =
[{a, b}], [{c}, {d}, {e, f}, {g}].

overhead and programming complexity, compared to the standard LRU and cache locking662

based approaches.663

Acknowledgements664

We are especially grateful to Daniel Grund for making his research thesis [14] promptly665

available to us. This research is supported in part by NSF CNS 1718880. Any opinions,666

findings, and conclusions or recommendations expressed in this publication are those of the667

authors and do not necessarily reflect the views of the NSF.668

10 Appendix: May Analysis669

In the DM-LRU analysis framework, may-analysis is once again performed by considering670

abstract cache states. Recall that may-analysis keeps track of the lower-bound on the age671

of each addressable memory block. There are a number of differences compared to the672

analytical tools used for must analysis. In may-analysis it is necessary to keep track of both673

D ∈ {0, . . . , A} and B ∈ {0, . . . , A}. Here, the meaning of D and B changes. In this case,674

D represents the maximum lower-bound of any possibly cached DM block. Conversely, B675

captures the minimum lower-bound on the DM-LRU age of any BE block. It may be the case676

that B +D > A in order to correctly abstract the age lower-bound resulting from multiple677

execution paths. It must hold however that A ≤ D +B ≤ 2A. It follows that the abstract678

domain for may-analysis DMLruwA is defined as:679

DMLru
w
A

:= {0, . . . , A} × {0, . . . , A} × B → {0, . . . , A− 1, A}. (11)680

An abstract state q ∈ DMLruwA is then represented as two sets of memory blocks, for instance:681

q = [{a, b}], [{c}, {d}, {e, f}, {g}] ∈ DMLruwA. In this example, we have D = 1, B = 4, A = 4.682

It follows that the upper-bound on the number of DM memory blocks is 1, and that blocks a683

and b have at least DM-LRU age 0, and may be marked as deterministic blocks. On the684

other hand, c is a best-effort memory block with DM-LRU age at least 0. It should not come685

as a surprise that in some states D +B > A. Consider the execution depicted in Figure 7686

that produces q. When execution reaches the end of the figure, there could be 0 or 1 DM687

blocks allocated in cache. Hence the upper-bound on the number of DM blocks has to be688

D = 1. On the other hand, the upper bound on the number of BE blocks is B = 4.689

The operator DMw(q, a) takes an abstract state q and a block a, and returns true if a690

may be allocated as a DM block in q. For ease of notation, we simply use DMw(a) when691

the considered abstract state is obvious. We define the operator DMw(q, a) as follows:692

DMw(q, bCL) :=
{

true if CL = DM ∧ q(b) < A

false otherwise.
(12)693

694

The update abstract transformer UwD for a DM memory access a can be defined as follows:695

U
w
D

(q, a) :=696

ECRTS 2019

20:20 Impact of DM-LRU on WCET: a Static Analysis Approach

D
′ ←

{
D + 1 if D < A ∧ BEw(a)
D + 1 if D < A ∧ ∃xDM 6= a : q(x) = q(a) = D − 1
D otherwise

, (13)697

B
′ ←
{
B − 1 if B > 0 ∧ q(a) ≥ A− B
B if B = 0 ∨ q(a) < A− B , (14)698

λb.

0 if b = a (a)

q(b) if b 6= a∧∣∣∣∣∣∣∣∣DMw(b) ∧ q(a) < q(b)
BEw(b) ∧ q(a) < A− B

(b)

q(b) + 1 if b 6= a∧∣∣∣∣∣∣∣∣DMw(b) ∧ q(a) ≥ q(b) ∧ q(b) < D′ − 1
BEw(b) ∧ q(a) ≥ A− B ∧ q(b) < A− 1

(c)

A if b 6= a∧∣∣∣∣∣∣∣∣DMw(b) ∧ q(a) ≥ q(b) ∧ q(b) ≥ D′ − 1
BEw(b) ∧ q(a) ≥ A− B ∧ q(b) ≥ A− 1

(d)

(15)699

700
701

Where D′ (B′, resp.) is the new value of D (B, resp.) after the update. Similarly, the702

update abstract transformer UwB for a best-effort memory access a can be defined as follows:703

U
w
B

(q, a) := (16)704

λb.

A− B if b = a (a)

q(b) if b 6= a ∧
∣∣∣∣∣∣DMw(b)
BEw(b) ∧ q(a) < q(b)

(b)

q(b) + 1 if b 6= a ∧ BEw(b) ∧ q(a) ≥ q(b) ∧ q(b) < A− 1 (c)
A if b 6= a ∧ BEw(b) ∧ q(a) ≥ q(b) ∧ q(b) ≥ A− 1 (d)

(17)705

706
707

To clarify how the Uw operation transforms a given state , consider the abstract state708

q = [{a, b}], [{c}, {d}, {e, f}, {g}], where D = 1, B = 4. Assume that DM block h is accessed,709

whose DM-LRU age is currently A or higher. First, the value of D′ (B′, resp.) is computed710

as D′ = D + 1 (B′ = B − 1, resp.); next, {a, b} both satisfy the fourth condition in UwD711

—Equation 15, first case of (c); block c, d, e and f satisfy the fifth condition; g the seventh.712

The resulting updated abstract state is: q′ = [{h}, {a, b}], [{}, {c}, {d}, {e, f}]. Note that in713

the resulting state B = 3, hence the least lower-bound on any BE block is A−B = 1.714

May-analysis Join: The join abstract transformer for DM-LRU may-analysis is sym-715

metric to the join abstract transformer used for DM-LRU must-analysis. The joined state716

will contain all the blocks in the union of the joining states, each with the minimum age717

in any of the two states. Furthermore, D is taken as the maximum between the value of718

D in the joining states. Similarly, B is taken as the maximum between the value of B in719

the joining states. As such, after a join, it always holds that D + B ≤ 2A. Equation 18720

formalizes the Jw(q̄, p̄) abstract transformer:721

J
w(q̄, p̄) := D ← max{Dq̄, Dp̄}, B ← max{Bq̄, Bp̄}, λb.min{q̄(b), p̄(b)}. (18)722

To clarify the join operation, consider the state q = [{a, b}], [{c}, {d}, {e, f}, {g}] obtained723

in Figure 7, and the state q′ = [{h}, {a, b}], [{}, {c}, {d}, {e, f}] obtained as q′ = Uw(q, hDM)724

(i.e. by accessing the DM block h). If we were to join q with q′, the resulting state would be725

q′′ = [{a, b, h}, {}], [{c}, {d}, {e, f}, {g}].726

May-analysis Classification: It is possible to classify a memory access using a classi-727

fication function that will either return M for cache miss, or > in case access to a memory728

block cannot be guaranteed to be a miss given the current abstract state. The classification729

function of the may analysis is defined as:730

C
w(q, aCL) :=

{
M if q(a) = A

> otherwise.
(19)731

732

R. Mancuso, H. Yun and I. Puaut 20:21

References733

1 M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior prediction by abstract734

interpretation. In Proceedings of the Third International Symposium on Static Analysis, SAS735

’96, pages 52–66, Berlin, Heidelberg, 1996. Springer-Verlag.736

2 ARM. PL310 Cache Controller Technical Reference Manual, Rev: r0p0, 2007.737

3 R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad memory: design738

alternative for cache on-chip memory in embedded systems. In Int. Symp. Hardware/Software739

Codesign (CODES+ISSS), pages 73–78. ACM, 2002.740

4 A. Bradbury, G. Ferris, and R. Mullins. Tagged memory and minion cores in the lowrisc soc.741

Memo, University of Cambridge, 2014.742

5 M. Campoy, A. P. Ivars, and J. Busquets-Mataix. Static use of locking caches in multitask743

preemptive real-time systems. In Real-Time Embedded Systems Workshop (Satellite of the744

IEEE Real-Time Systems Symposium), pages 1–6, 2001.745

6 S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. Defeating memory corruption746

attacks via pointer taintedness detection. In Dependable Systems and Networks (DSN), pages747

378–387. IEEE, 2005.748

7 N. Corp. Variable SMP – A Multi-Core CPU Architecture for Low Power and High Performance.749

Technical report, Nvidia, 2011.750

8 C. Cullmann. Cache persistence analysis: Theory and practice. ACM Trans. Embed. Comput.751

Syst., 12(1s):40:1–40:25, Mar. 2013.752

9 J.-F. Deverge and I. Puaut. WCET-directed dynamic scratchpad memory allocation of data.753

In Euromicro Conference on Real-Time Systems (ECRTS), pages 179–190. IEEE, 2007.754

10 F. Farshchi, P. K. Valsan, R. Mancuso, and H. Yun. Deterministic memory abstraction and755

supporting multicore system architecture. In Euromicro Conf. Real-Time Syst. (ECRTS).756

IEEE, 2018.757

11 C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior prediction by abstract758

interpretation. Sci. Comput. Program., 35(2-3):163–189, Nov. 1999.759

12 C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior prediction for real-760

timesystems. Real-Time Syst., 17(2-3):131–181, Dec. 1999.761

13 Freescale. e500mc Core Reference Manual, 2012.762

14 D. Grund. Static Cache Analysis for Real-Time Systems: LRU, FIFO, PLRU. epubli, 2012.763

15 D. Grund and J. Reineke. Precise and Efficient FIFO-Replacement Analysis Based on Static764

Phase Detection. In Euromicro Conference on Real-Time Systems (ECRTS), pages 155–164,765

July 2010.766

16 D. Grund and J. Reineke. Toward precise PLRU cache analysis. In International Workshop767

on Worst-Case Execution Time Analysis (WCET), pages 23–35, 2010.768

17 N. Guan, M. Lv, W. Yi, and G. Yu. WCET Analysis with MRU Caches: Challenging LRU for769

Predictability. In Real Time and Embedded Technology and Applications Symposium (RTAS),770

pages 55–64, April 2012.771

18 N. Guan, X. Yang, M. Lv, and W. Yi. FIFO Cache Analysis for WCET Estimation: A772

Quantitative Approach. In Design, Automation and Test in Europe (DATE), pages 296–301,773

San Jose, CA, USA, 2013. EDA Consortium.774

19 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET benchmarks –775

past, present and future. In B. Lisper, editor, Procedings of the 10th International Workshop776

on Worst-Case Execution Time Analysis (WCET’2010), pages 137–147, Brussels, Belgium,777

July 2010. OCG.778

20 S. Hahn and J. Reineke. Design and analysis of sic: A provably timing-predictable pipelined779

processor core. In Real-Time Systems Symposium (RTSS), pages 469–481. IEEE, 2018.780

21 D. Hardy and I. Puaut. WCET Analysis of Multi-level Non-inclusive Set-Associative Instruction781

Caches. In Real-Time Systems Symposium (RTSS), pages 456–466, Nov 2008.782

22 D. Hardy and I. Puaut. Wcet analysis of instruction cache hierarchies. J. Syst. Archit.,783

57(7):677–694, Aug. 2011.784

ECRTS 2019

20:22 Impact of DM-LRU on WCET: a Static Analysis Approach

23 D. Hardy, B. Rouxel, and I. Puaut. The Heptane Static Worst-Case Execution Time Estimation785

Tool. In 17th International Workshop on Worst-Case Execution Time Analysis (WCET786

2017), volume 8 of International Workshop on Worst-Case Execution Time Analysis, page 12,787

Dubrovnik, Croatia, June 2017.788

24 A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia, R. N. Watson,789

D. Chisnall, M. Roe, B. Davis, et al. Efficient tagged memory. In International Conference on790

Computer Design (ICCD), pages 641–648. IEEE, 2017.791

25 L. Ju, S. Chakraborty, and A. Roychoudhury. Accounting for cache-related preemption delay in792

dynamic priority schedulability analysis. In Design, Automation and Test in Europe (DATE),793

pages 1623–1628, San Jose, CA, USA, 2007. EDA Consortium.794

26 T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic795

memory hierarchy and virtualization for modern multi-core embedded systems. In 2019 IEEE796

Real-Time and Embedded Technology and Applications Symposium (RTAS), Montreal, Canada,797

April 2019.798

27 N. C. Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J. Zambreno, and P. H. Jones. Cache design799

for mixed criticality real-time systems. In Computer Design (ICCD), pages 513–516. IEEE,800

2014.801

28 B. Lesage, I. Puaut, and A. Seznec. Preti: Partitioned real-time shared cache for mixed-802

criticality real-time systems. In Real-Time and Network Systems (RTNS), pages 171–180.803

ACM, 2012.804

29 Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path805

enumeration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and806

Systems, 16(12):1477–1487, Dec 1997.807

30 T. Liu, Y. Zhao, M. Li, and C. J. Xue. Task assignment with cache partitioning and locking808

for wcet minimization on mpsoc. In 2010 39th Int. Conf. Parallel Processing, pages 573–582,809

Sept 2010.810

31 T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled microprocessors. In811

Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS ’99, pages 12–, Washington,812

DC, USA, 1999. IEEE Computer Society.813

32 M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi. A survey on static cache analysis for814

real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05–1, 2016.815

33 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time cache816

management framework for multi-core architectures. In Real-Time and Embedded Technology817

and Applicat. Symp. (RTAS). IEEE, 2013.818

34 F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis of loops. In International Conference819

on Compiler Construction (CC), pages 80–94, London, UK, UK, 1998. Springer-Verlag.820

35 S. Mittal. A survey of techniques for cache locking. Transactions on Design Automation of821

Electronic Systems (TODAES), 21(3):49:1–49:24, May 2016.822

36 F. Mueller. Timing predictions for multi-level caches. In In ACM SIGPLAN Workshop on823

Language, Compiler, and Tool Support for Real-Time Systems, pages 29–36, 1997.824

37 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A predictable825

execution model for COTS-based embedded systems. In Real-Time and Embedded Technology826

and Applicat. Symp. (RTAS), pages 269–279. IEEE, 2011.827

38 K. Piromsopa and R. J. Enbody. Secure bit: Transparent, hardware buffer-overflow protection.828

Transactions on Dependable and Secure Computing, 3(4):365–376, 2006.829

39 I. Puaut. Wcet-centric software-controlled instruction caches for hard real-time systems. In830

Euromicro Conference on Real-Time Systems (ECRTS), pages 10–pp. IEEE, 2006.831

40 I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking in multitasking832

hard real-time systems. In Real-Time Systems Symposium (RTSS), pages 114–123. IEEE,833

2002.834

41 J. Reineke. Caches in WCET analysis: predictability, competitiveness, sensitivity. epubli,835

2008.836

42 J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache replacement837

policies. Real-Time Syst., 37(2):99–122, November 2007.838

R. Mancuso, H. Yun and I. Puaut 20:23

43 A. Sarkar, F. Mueller, and H. Ramaprasad. Static task partitioning for locked caches in839

multicore real-time systems. ACM Trans. Embed. Comput. Syst., 14(1):4:1–4:30, Jan. 2015.840

44 M. R. Soliman and R. Pellizzoni. WCET-Driven dynamic data scratchpad management with841

compiler-directed prefetching. In Euromicro Conference on Real-Time Systems (ECRTS),842

volume 76, pages 24:1–24:23, 2017.843

45 C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek. HDFI: hardware-844

assisted data-flow isolation. In Symposium on Security and Privacy (SP), pages 1–17. IEEE,845

2016.846

46 V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET centric data allocation to847

scratchpad memory. In Real-Time Systems Symposium (RTSS), pages 10–pp. IEEE, 2005.848

47 X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program predictability. SIG-849

METRICS Perform. Eval. Rev., 31(1):272–282, June 2003.850

48 X. Vera, B. Lisper, and J. Xue. Data cache locking for tight timing calculations. ACM Trans.851

Embed. Comput. Syst., 7(1):4:1–4:38, Dec. 2007.852

49 J. Whitham and N. Audsley. Studying the applicability of the scratchpad memory management853

unit. In Real-Time and Embedded Technology and Applications Symposium (RTAS), pages854

205–214. IEEE, 2010.855

50 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Fer-856

dinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and857

P. Stenström. The worst-case execution-time problem - overview of methods and survey of858

tools. ACM Trans. Embedded Comput. Syst. (TECS), 7(3), 2008.859

51 J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Laurie, P. G.860

Neumann, R. Norton, and M. Roe. The cheri capability model: Revisiting risc in an age of861

risk. In International Symposium on Computer Architecture (ISCA), 2014.862

52 G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-centric scheduling for863

multicore hard real-time systems. Real-Time Syst., 48(6):681–715, 2012.864

ECRTS 2019

	Introduction
	Background
	Deterministic Memory Abstraction
	DM-LRU Cache Replacement Policy
	Cache Analysis via Abstract Interpretation

	Cache Model and Terminology
	DM-LRU Model
	Terminology and notations

	DM-LRU Analysis
	Must-analysis
	May-analysis

	Analysis Example
	Analogies and Differences with Cache Locking
	Evaluation
	Implementation
	Setup
	Results

	Related Work
	Conclusion
	Appendix: May Analysis

