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Abstract— Practitioners designing reinforcement learning
policies face a fundamental challenge: translating intended
behavioral objectives into representative reward functions. This
challenge stems from behavioral intent requiring simultane-
ous achievement of multiple competing objectives, typically
addressed through labor-intensive linear reward composition
that yields brittle results. Consider the ubiquitous robotics
scenario where performance maximization directly conflicts with
energy conservation. Such competitive dynamics are resistant to
simple linear reward combinations. In this paper, we present the
concept of objective fulfillment upon which we build Fulfillment
Priority Logic (FPL). FPL allows practitioners to define logical
formulae representing their intentions and priorities within multi-
objective reinforcement learning. Our novel Balanced Policy
Gradient algorithm leverages FPL specifications to achieve up
to 500% better sample efficiency compared to Soft Actor Critic.
Notably, this work constitutes the first implementation of a
non-linear utility scalarization design, intended explicitly for
continuous control problems.

I. INTRODUCTION

Reward design in reinforcement learning is a nuanced
and intricate process that presents the complex challenge
of aligning agent behavior with intended objectives [1].
Recent work by [2], supported by findings from [3], has
exposed significant limitations in current practices, revealing
that 92% of surveyed RL experts rely on trial-and-error
approaches, leading to overfitted and inadequate reward
functions. This issue fundamentally stems from the disconnect
between human reward conceptualization and RL optimization
mechanisms [2], creating what we term the intent-to-behavior
gap —the disparity between practitioners’ intended behavioral
objectives and the actual behaviors exhibited by policies after
optimization. We argue that traditional trial-and-error reward
weight tuning in response to observed policy behaviors [4],
[5] is inherently flawed and propose a systematic solution.

Researchers have approached this intent-to-behavior gap
from various perspectives. Formal methods researchers
adopted structured specifications such as temporal logic for
reward signals, providing a principled framework to express
temporal controller behavior precisely [6]. Others focused
on reward engineering, exploiting their domain knowledge
as demonstrated by [7] in their quadrupedal locomotion
work. They meticulously crafted a multi-component reward
function (combining linear velocity, angular velocity, base
motion stability, foot clearance, collision avoidance, trajectory
smoothness, and torque minimization) with carefully balanced
weights to achieve robust locomotion over challenging terrain.
Other methods avoid this troublesome process altogether
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through inverse RL [8], while more recent work delegates
the whole reward design problem to Large Language Models
[9], [10].

Recognizing scalar rewards’ inherent limitations for ex-
pressing multifaceted intentions, multi-objective reinforce-
ment learning (MORL) emerged to represent distinct objec-
tives through vector rewards [11], [12]. While there is support
for Sutton’s reward hypothesis, suggesting that maximization
of any goals can theoretically reduce to maximizing a scalar
signal [11], [13], [14], later contributions [15], [16] show
that there are cases where this does not hold. Indeed, MORL
research reveals that per-step scalarization is not expressive
enough to represent desired behaviors adequately. This
explains practitioners’ labor-intensive iterative reward tuning.
The challenge shifts to developing methodologies that avoid
multiple design-evaluate-adjust cycles. By maintaining vector
representation throughout learning, MORL enables separate
objective estimation before trade-offs. However, comparing
policies in multi-objective spaces introduces a partial ordering
problem where one policy may excel in certain objectives
while underperforming in others. This requires scalarization
utility functions (typically weighted sums) to establish total
ordering. Nonetheless, when conflicting objectives exist,
traditional linear utility functions often drive policies toward
suboptimal local minima [17].

In this paper, we introduce Fulfillment Priority Logic
(FPL): a logic transforming declarative policy behavior
descriptions into utility functions through principled algebraic
transformations, enabling practitioners to express objectives
semantically while maintaining mathematical rigor and provid-
ing formal guarantees on objective fulfillment. Our approach
directly addresses the “Unspecified and Multi-Objective Re-
ward Functions” challenge in real-world RL, where traditional
methods require complex, hand-crafted rewards [18]. FPL
replaces weight-based specifications with logical priorities
through three key innovations: (1) generalized mean oper-
ators for flexible objective composition, generalizing linear
utilities, (2) Q-value level scalarization preserving intended
relationships, and (3) principled normalization for stable
cross-objective learning. Implementing these advances in
our novel Balanced Policy Gradient (BPG) algorithm, we
demonstrate up to 500% improvement in sample efficiency
over Soft Actor Critic. Section [l goes through the related
works that tackled the intent-to-behavior gap. Section |l1I
provides theoretical foundations before introducing our core
contributions—the Fulfillment Priority Logic (Section [IV])
and BPG algorithm (Section [V). Empirical results follow in
Section [VI} Section [VII] concludes by offering limitations and
future directions.



II. RELATED WORKS
A. Reward Design

Reward design presents a fundamental challenge in re-
inforcement learning systems [1]. Traditional approaches
integrate reward shaping techniques to improve learning
efficiency [19], yet remain constrained by the quality of un-
derlying reward specifications. Research has progressed along
multiple trajectories: inverse reinforcement learning extracts
reward functions from demonstrations [8], while recent LLM-
based methods like Eureka [9] leverage natural language
for behavior specification, though limited by reasoning
capabilities and current reward engineering methods. Notably,
complex real-world applications demonstrate an emerging
pattern: practitioners inherently gravitate toward structured
compositional approaches, as evidenced in tokamak reactor
control [20] and various multi-objective domains [21]-[23].
This aligns with our earlier geometric reward composition
work [24], where we demonstrated that explicit attention to
competing objectives produces more consistent policies with
superior performance, even when evaluated against original
environment reward functions.

B. Multi-Objective RL

Multi-objective reinforcement learning (MORL) addresses
environments requiring simultaneous optimization of multiple
(possibly competing) objectives. MORL approaches divide
into a-priori methods (preferences specified before training,
yielding a single policy) and a-posteriori methods (generating
multiple Pareto-optimal policies for post-training selection).

Research has predominantly focused on a-posteriori ap-
proaches [25], [26], with advances including evolutionary
algorithms [27], hypernet-based Pareto front approxima-
tions [28], and GPI-PD’s [29] sample-efficient Convex Cov-
erage Sets. However, these methods typically rely on linear
scalarization, which becomes limiting when objectives exhibit
non-linear interactions [11]. While [12] introduced an actor-
critic method that leverages a non-linear utility function, their
approach assumes the utility exists and is confined to discrete
action spaces. In contrast, our work explicitly designs the
utility within a comprehensive framework, enabling its appli-
cation to continuous control tasks. Direct comparison between
a-priori and a-posteriori MORL methods is inappropriate due
to different objectives: a-posteriori methods generate multiple
policies optimizing Pareto front coverage, as can be measured
when using benchmarks such as MO-Gym [30]. Conversely, a-
priori approaches like ours produce a single policy satisfying
specified preferences.

Our work introduces logical operators for objective com-
position that better captures intended trade-offs non-linearly.
To our knowledge, this represents the first comprehensive a-
priori MORL framework specifically designed for continuous
robot control with non-linear utility functions.

C. Formal Methods

Temporal logic frameworks [31], [32] provide rigorous
approaches for specifying temporal robot behavior, with
extensions to learning-based control [33] and domain-specific

languages like SPECTRL [34]. A fundamental limitation in
applying formal methods to reinforcement learning is the
challenge of optimizing non-differentiable logical specifi-
cations using gradient-based methods. The complementary
nature of formal verification and priority-based optimization
(our work) suggests potential integration pathways: formal
methods could verify safety properties while priority-based
approaches handle objective trade-offs, potentially addressing
both correctness guarantees and optimization efficiency in
complex robotics tasks. Recent work [35] proposed weighted
STL, employing smooth min/max and arithmetic/geomet-
ric means to handle competing specifications in control
systems—all special cases of our power mean operators.
While the work focuses on temporal properties, FPL extends
these compositional principles to reinforcement learning
with normalized objectives and priority offsets, suggesting
promising integration pathways between formal methods and
multi-objective RL.

Similarly, fuzzy logic approaches [36], [37] have addressed
reward design through degrees of truth, creating intermediate
reward landscapes that enhance learning convergence. We
analyze the mathematical connections between our power
mean operators and fuzzy logic further in Definition

D. The Sample Efficiency Challenge

The iterative refinement of rewards depends on both algo-
rithmic sample efficiency and reward specification method-
ology. Improvements to either accelerate achieving desired
agent behavior, closing the intent-to-behavior gap with partic-
ular importance for sample-constrained robotic applications.
Recent works have addressed the sample efficiency issue
through various algorithmic and architectural strategies. While
several studies have focused on reducing estimation bias
and computational overhead via ensemble methods, target
network modifications, or distributional critics [38]-[40],
our approach takes a different path. By integrating logical
objective composition via FPL into Balanced Policy Gradient
(BPG), we directly encode intended priorities, resulting in
more efficient learning dynamics. This design enables us
to achieve superior sample efficiency compared to state-of-
the-art methods like CrossQ and TQC, without incurring
additional computational cost.

III. DEFINITIONS

A. Multi-Objective Markov Decision Processes (MO-MDPs)

MO-MDPs extend standard MDPs with vector-valued
rewards. It is defined as a tuple (S,A,T, R, 'y) where:

: Set State space
: Set Action space
1S x A= A(S) Transition distribution

SXAXxS—>R"
- [0,1)

Vector-valued reward function
Discount factor
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For MO-MDPs, given a policy , the C) vector is defined as:

S0 = S,a0 = a,
at ~ m(st),

Q" (s,a) =Ex | > v'R(ss,at,5041) 0]
st41 ~ T(st,a¢)

t=0




B. Fulfillment

A fulfillment is any variable f € [0, 1] that represents how
much an objective is being fulfilled, where 0 means complete
failure to fulfill and 1 is completely fulfilled. Intermediate
values represent partial fulfillment.

C. Multi-Fulfillment MDPs (MF-MDPs)

We introduce MF-MDPs, which modify MO-MDPs by

expressing each objective as a fulfillment. We constrain the
reward function such that R.: S x A x S — [0,1]". where
each R; € R expresses the fulfillment of the i'" objective.
This formulation offers several key benefits:
Comparable Objectives: All objectives operate on the [0,1]
scale, making their relative fulfillment directly comparable.
Intuitive Composition: fulfillment values can be composed
using operations that preserve their semantic meaning (e.g.,
AND, OR operations), producing a new fulfillment value that
captures their composite meaning.

D. Fulfillment Q-values (FQ-values)

In MF-MDPs, we can normalize Q-values to construct
Fulfillment Q-values (FQ-values) due to the fact that the
discounted sum in Eq. [I|is bounded from above by 1/(1—+).

FQ"(s,a) = (1-v)Q"(s,a) € [0,1]" Vse S,a€ A (2)

These FQ-values indicate how well a policy 7 expects to
fulfill an objective over its trajectories in the MDP. Practition-
ers must design these FQ-values to faithfully represent their
intended fulfillment—this correspondence is fundamental,
as improper distributions will inevitably distort objective
prioritization and undermine the optimization process.

IV. FULFILLMENT PRIORITY LOGIC

In multi-objective optimization, complex relationships
between objectives remain underspecified when they are
composed using weighted sums because concepts such as
lexicographic ordering for objective importance cannot be
captured. We thus introduce Fulfillment Priority Logic (FPL),
a domain-specific logic that uses power means to construct
a larger class of these logical relationships. Power means
differentiably interpolate between the minimum and the
maximum, allowing the choice of p to specify how much
highly fulfilled values can be traded for lower fulfilled ones.

A. Power Mean Foundations

The power mean i, unifies minimum and maximum

through a continuous family of operators defined as:
1

)= <i2x>

Depending on the value of the p parameter, the power mean
touches many well-known operations:

ﬁp(i) = ﬁp((wlv < T

p — —oo : Minimum p = 1 : Arithmetic mean

p = —1 : Harmonic mean p = 2 : Root mean square

p = 0 : Geometric mean p — oo : Maximum

Setting p allows the specifier to transition between composi-
tion strategies smoothly, generalizing linear utilities (1t;).

For any non-negative X, i.e. such that x; > 0, the power
mean has the following properties [41]:

Range Preservation: 7i,(X) € [min(X), max(x)]
Commutativity: 7,(X) = 1, (permutation(x))
Monotonicity: y <z = 7,((X,v)) <7,((X, 2))

Monotonicity in p: p1 <p2 = [, (X) < i, (X)

These properties allow for intuitive composition. First,
commutativity ensures the order of objectives doesn’t matter.
Second, monotonicity guarantees that improving any objective
only improves overall fulfillment. Crucially, monotonicity in
p allows the power mean to smoothly interpolate between
minimum and maximum, providing a continuous spectrum
from pessimistic to optimistic composition. These properties
allow deriving FPL’s guarantees in Definition

B. Logical Language

By building atop the power mean properties and formal
guarantees in Definition we introduce FPL. FPL is
the first logic to formally express priority-aware objective
composition specifications. When a specification is provided
in FPL, the result is a formula u : FPL — [0, 1] that captures
the desired compositional semantics as a utility function.
(1) FPL Syntax: We define the syntax of FPL formulas
using the following grammar:

¢ u= floAN GOV |0 |[d]s

where:

o f €[0,1] denotes a base fulfillment value;

e p <0 in both AP and V? operators;

o — denotes logical negation;

o [¢]s offsets the priority of ¢ by § € [—1,1].
(2) Semantics: The semantics of FPL define how each
operator transforms fulfillment values:

u(f):=f for f€1[0,1]  (3)

u(p1 AP @) = T, (u(d1),u(p2))  for ¢1,¢2 : FPL (4)
u(=p) =1 —u(e) for ¢ : FPL (5)

u(pr VP ¢2) = u(=(=¢1 AP =2)) for ¢1,42 : FPL (6)
([ ]6) — M for ¢ - FPL @)

1+6

These semantics preserve logical relationships between
objectives. The conjunction AP combines objectives that
must be fulfilled together, with p < 0 controlling strictness
(formalized in Definition [V-G). The disjunction V7, defined
via De Morgan’s laws, allows focusing on the objective with
the highest marginal benefit. The offset [¢]s creates priority by
raising the baseline fulfillment of ¢, implementing a form of
lexicographic ordering where objectives with lower offsets are
prioritized. By making fulfillment composition explicit, FPL
allows practitioners to separate concerns and reason about
the trade-offs between objectives in a principled way. We
expect practitioners to first define fulfillment values for their



objectives, testing whether their intention for the fulfillment
of objectives maps well to [0,1] and then use FPL to compose
them in a way that remains consistent with their priorities.

C. Relation to Fuzzy Logic

FPL, similar to fuzzy logic, generalizes Boolean operations
to the continuous domain [0, 1]. Thus, at the limits {0, 1}, it is
equivalent to Boolean logic. Choosing p = 0, our conjunction
operator becomes the geometric mean (VY ,c[0,1], T Ny =
\/Z - y) resembling the product t-norm [42] (V. ,c[0,1], TAY =
z - y) commonly used in fuzzy logic. Also, when p — —o0,
AP becomes the minimum operator, which is equivalent to
the fuzzy logic’s minimum t-norm.

Contrary to fuzzy logic, which provides a notion of
uncertainty, we emphasize fulfillment (Definition [III-B).
An illustrative example of the difference occurs when we
compose a fuzzy variable with itself AP z. In a product
t-norm, this would evaluate to 22, while in our framework,
it evaluates to = (idempotence). Interpreted as fulfillment, x>
would be considered less fulfilled, contradicting our intuitive
expectations. Furthermore, 7, is not a t-norm, as it is not
associative for every p, i.e.:

3377%27277 ﬁp(ﬁp(x7 y)a Z) 7£ ﬁp(xa ﬁp(y7 Z))
D. Relation to the Hypervolume

One of the most used multi-objective optimization metrics
in the literature [27] is the hypervolume indicator. It is defined
as the union of the volumes of the region dominated by the
set of solutions. In the special case with one combination, the
hypervolume is the product of the objectives being maximized,
which is equivalent to maximizing [z, (geometric mean).

E. Toy Example

To study how FPL operators behave, we present a system
with two fulfillment values and f,. These values com-
pete for resources—improving one may impact the other—
illustrating how our operators handle fundamental trade-offs.
1) Multi-Objective Competitiveness: We derive competing
fulfillment values f; from a base fulfillment value b; € [0, 1].
Competition is modeled as a multiplicative trade-off:

= bo(l — abl) (8)
f1="01(1 - aby), &)

where « € [0, 1] controls competition strength. This creates
natural tension—increasing either base value reduces the
other’s final fulfillment. We display the evolution of this
optimization next to the operators.
2) FPL Operator Effects: Using these competing fulfillment
values, we examine how each operator resolves trade-offs:
CONJUNCTION (/o AP f1) ——: In FPL, the intention to
equally satisfy the two objectives can be expressed with the
statement [, AP [i. They converge to a compromise due to
AP assigning more importance to less-fulfilled objectives.
DISJUNCTION (/o VP f1) = : When either value suffices,
disjunction imposes that more fulfilled values are more
important. The system rapidly maximizes [,—initialized
slightly higher—at the cost of f.

PRIORITY OFFSET ([/y]s AP f1) ,: The offset gives

precedence to f; until it reaches the threshold established
by 6, at which point becomes important as well. This
priority-based curriculum preserves the Markov assumption,
as opposed to methods that change the reward function.
3) Linear Utility (7, (/, /1)) —_: Notice that the behavior
of the linear utility is very similar to the disjunction with
p = 1; this is in stark contrast with the notion of convex com-
bination that is usually associated with linearity. Specifically,
under competitive dynamics, it no longer acts as a convex
combination, but rather as a disjunction.

F. FQ-value Composition

In RL, we apply FPL operators to FQ-values (Definition |[II
D) rather than immediate rewards. This allows reasoning
about long-term trade-offs: an action might temporarily
reduce one objective’s fulfillment to achieve better overall
fulfillment later. The [0, 1] bounds of FQ-values maintain
our logical interpretation: if an objective has zero fulfillment,
any conjunction involving it must also have zero fulfillment.
These composed FQ-values then guide policy optimization
while preserving the specified priorities between objectives.

G. Guarantees in FPL

In the context of FPL, the power mean enjoys another
important property we term the minimum fulfillment bound.

Theorem IV.1 (Minimum Fulfillment Bound).

Ve gepapsmin(®) > 3/n((@,E) — 1) + 1.

This bound guarantees that when a power mean outputs
value vy, every input component must have at least
fulfillment \/n(y? — 1) + 1.

Proof. Lety = ﬁp(F). By Lemma , there exists a v <

-, —

min(f) such that 7z,((1,,1,v)) = y. Then by Lemma
we know v = y/n(y? — 1) + 1. O
This bound is crucial for practitioners providing concrete
guarantees about objective fulfillment. For example, with
two objectives (n = 2) and p = —2, achieving an output
of 0.9 guarantees each individual objective has at least 0.38
fulfillment. This minimum fulfillment is particularly important
in safety-critical applications where we need to ensure no
objective is severely underperforming. The parameter p allows
practitioners to trade off between stronger guarantees (more
negative p) and easier optimization (less negative p), as stricter
bounds require more precise balancing of objectives.

Theorem IV.2 (Power Mean Conservation).

Vz,5,i,5 360, ip(X) = i, (X + 01; — 0'1;)

where 1; denotes a vector of zeros with a 1 in position 1.
This states that for any change 6 to component i, there
exists a change &' to component j that maintains the
same power mean.




Proof. By commutativity of zz for convenience and without
loss of generality, we choose ¢ = 0 and j = 1:

I, (X) = I, (X + 01g — 0'14)
o+ 21 + Ypso oy = (20 +0)7 + (21 = )7 + 34 7y
(x1 — 8P = ab + 2f — (o + 5)?
8 =z — (xh + 28 — (zo + 5)”)%
This proves the existential by constructing &’ explicitly. [

Lemma IV.3 (Worst Case Configuration).

vfe[o,l]"HUER :ﬁp((fn_l,v)) = ﬁp(f) and v < min(f)

For any vector £, there exists a vector with n — 1 ones and
a value v that has the same power mean but with v being
bounded from above by the minimum of f.

-,

Proof. Let m = argmin(f) be the index of the minimum
component. By repeatedly invoking Theorem for each
i €{1,...,n}\ {m}, we can increase the i-th component
to 1 while decreasing the m-th component to maintain the
same power mean. Since we always decrease the minimum
component or keep it the same, the final value v of component
m must be less than min(f). O
Lemma IV.4 (Explicit Minimum Solution). For a vector with
n — 1 ones and one value f, {fﬁp((In_l, 1)) =y then:

f= Y=+ 1

Proof. Let X be such a vector. Then:

1

1 »
- (1%7)
(=117 )
ny” = (n—1)+ f*
fP=nyP 1) +1
f=Vnr-1)+1 O
V. BALANCED POLICY GRADIENT (BPG)

Balanced Policy Gradient (BPG) extends Deep Determin-
istic Policy Gradient (DDPGQG) to efficiently optimize policies
for MF-MDPs (Definition [[TI-C) using FPL specifications. We
highlight in blue our additions to DDPG. The key innovation
in BPG is its ability to directly accept and optimize for
specifications written in FPL, bridging the gap between
human-intuitive objective descriptions and reinforcement
learning optimization. Unlike standard DDPG, which operates
on scalar Q-values, BPG works with Fulfillment Q-values
(FQ-values) (Definition that represent the degree to
which each objective is fulfilled across time. These FQ-
values are then composed using the power mean operators
as specified by the FPL formula, preserving the logical
relationships between objectives during policy updates. This
approach enables the algorithm to make decisions that respect
the intended priority and composition of objectives while
maintaining the sample efficiency benefits of actor-critic
methods.

<
Y
Il

Algorithm 1 Balanced Policy Gradient (BPG)

Initialize networks and targets m, 7% and FQ, FQ™®
Initialize replay buffer B
repeat
Receive initial state s;
for each timestep ¢ in episode do
0™ + N(6™,JP) J/ performance-based noise
a < 7(s¢)
Execute a; and Store (T, s¢,ay, S¢+1) in B
end for
Compute and Store FV°® for each step in B
for each training iteration do
(5,0, T, Spext, FV°™) ~ B // sample from the buffer
}—;TD — (1 _ 7)F+ v Ferg(Snexta 7T.targ(snem))
L™ « i,(5— FQ(s, a))
L™ [i,(FV®™ — FQ(s, a))
Update critic using —Vgra (L™ + apy LFY)
J = Hio (urpL(FQ(si, 7(s))))
Update actor using policy gradient Vg~ J
end for
Update target networks
until convergence

A. Mitigating Overestimation Bias

Overestimation bias is a significant challenge in Q-learning-
based algorithms. Existing works tackling sample efficiency
such as REDQ [38] and TQC [39] address it with multi-critic
approaches. However, CrossQ [40] shows that overestimation
bias does not affect sample efficiency, and indeed, our
experiments support the claims of CrossQ being more
sample efficient. In BPG, however, this issue is particularly
critical—inaccurate FQ-value estimates present FPL with
incorrect fulfillment values, leading to incorrect prioritization
between objectives. Since FPL makes decisions based on the
relative fulfillment levels of different objectives, even minor
estimation errors can significantly alter the learned behavior.

Our approach addresses this challenge through the addition
of an observed discounted returns regularization. For each
rollout of length n, we compute observed fulfillment values:

n—1 n
(1—7) Z +'F, + TRUNCATED - (1 — 7)E), —

t=0 1=~
where FV° is the observed fulfillment values, T; are the
normalized rewards at timestep t, 7 is the discount factor,
and TRUNCATED indicates episode truncation. This provides
a conservative estimate of fulfillment value, which we store
alongside transition tuples in the replay buffer. Since FV°*
represents returns from a previous policy with exploration
noise, it serves as an effective underestimate that helps
counteract overestimation without requiring additional critics.

Algorithm [I] illustrates how these components work to-
gether. After collecting experience, we compute and store
observed fulfillment values (FV°®) for each state-action
pair. During training, we combine a standard temporal
difference loss (L™) with a supervised loss against these
observed values (LFV). The power mean operators are applied

FVobs _




during policy updates, where uppr,(FQ(s;,a)) scalarizes the
vector-valued FQ-value according to the priority relationships
specified in FPL. By working directly with fulfillment values
in the [0,1] range, BPG ensures that the logical semantics of
FPL operators are preserved throughout the learning process.

VI. EXPERIMENTS

We conducted a comprehensive empirical evaluation of
BPG across multiple continuous control environments from
the Gymnasium benchmark suite [43]. Our experimental
framework assesses two primary aspects: (1) sample efficiency,
measured by the number of environment interactions required
to reach predefined reward thresholds, and (2) the algorithm’s
robustness to overestimation bias through our normalization
of value functions into FQ-values. We compared BPG against
its baseline (DDPG [44]) and state-of-the-art reinforcement
learning algorithms designed for sample efficiency, including
SAC [45], TQC [39], and CrossQ [40], to establish its relative
performance characteristics. Importantly, while BPG is trained
using our FPL framework—which structures rewards into
prioritized objectives—we evaluate its performance using the
original scalar rewards of the benchmark environments. This
choice ensures our evaluation directly compares BPG against
baselines on standard metrics while demonstrating that our
objective decomposition approach generalizes effectively to
conventional performance measures.

A. Performance on Benchmarks

1) Sample Efficiency: Our results on several benchmarks
demonstrate significant improvements in sample efficiency
compared to baselines and the state-of-the-art. The top row
in Fig. [I] summarizes these findings, showing substantial
reductions in the samples required to reach target performance
thresholds. Notice that the benefits of FPL are greater in
environments with more complex objectives, explained by
greater loss of expressivity induced by linear composition.

Our findings reveal substantial sample efficiency improve-
ments across environments:

LunarLanderContinuous-v2: BPG reaches 200 rewards in
20,000 timesteps—84% faster than DDPG (128,000) and 44%
faster than the state-of-the-art CrossQ (36,000).

Hopper-v4: BPG requires only 27,400 timesteps to reach the
2000 reward threshold, compared to 66,600 for CrossQ (59%
reduction) and 154,400 for DDPG (82% reduction).
Pendulum-v1 and Reacher-v4: BPG similarly outperforms
other algorithms, with improvements of 51% over CrossQ in
Pendulum-v1 and outperforms all algorithms in Reacher-v4.

2) Progress Plots: Fig. [I] presents learning trajectories
across environments, revealing two key advantages of BPG.
First, BPG demonstrates significantly steeper learning curves,
particularly in Pendulum-v1 and LunarLanderContinuous-v2,
enabling rapid policy acquisition with minimal environment
interactions. Second, BPG’s learning curves show remarkable
consistency, achieving near-monotonic improvement with
rapidly increasing fulfillment. This suggests that FPL enables
more coherent credit assignment during critical early learning
stages, contributing to both accelerated initial learning and
optimization stability throughout the training process.

B. Overestimation Bias

In multi-objective settings, accurate Q-value estimation is
crucial for proper objective prioritization. To evaluate BPG’s
resilience to overestimation bias, we conducted controlled
experiments on the Hopper-v4 environment with deliberately
reduced Polyak averaging.

Without our Q-value normalization mechanism FV°%, the
average Q-value error for Fulfillment Q-values (Definition [ITT}
D) reached 0.627 after 38k steps. Adding underestimating loss
with learning rate apy=0.75 reduced error by 77% to 0.146,
while apy=2.0 achieved similar results (0.138). This confirms
that LFV mitigates overestimation bias without requiring
additional critics or complex ensemble methods.

C. Reward Engineering Comparison

We compare our approach to traditional reward engineering
methods, demonstrating how FPL simplifies the reward speci-
fication process while maintaining or improving performance.
For each environment, we show the original reward function
and our FPL specification, highlighting how the latter more
clearly expresses the intended behavioral priorities. Note that
we use J\ f to denote a vector of fulfillment values f being
composed with the NP operator.

1) Pendulum-vi: On the left of the following table, we
show the reward of Pendulum-v1, which is a weighted sum
of angle and actuation terms with fine-tuned coefficients

Pendulum-vl Reward Function FPL Specification: ¢pendutum

—62 — 0.162 — 0.001 torque? F2

angle AP Facluation

On the right, we show our FPL specification. Here Fiyge is the
fulfillment value for angle alignment, and Fcqation represents
minimizing actuation fulfillment. The squared angle term
emphasizes the primary task of angle alignment.

2) Reacher-v4: The reward is described by a fine-tuned
weighted sum of distance and the norm of torque terms

Reacher-v4 Reward Function FPL Specification: ¢cacher

—distance — 0.l||torque| |2 Fd2islance NP (/\p f‘lorque)

Our FPL specification represents reaching the target with
Flistance, squared for emphasis, and minimizing the torque
fulfillments with A’ Fiorque.

3) Hopper-v4: The reward is described by a fine-tuned
weighted sum of velocity and the norm of action terms

Hopper-v4 Reward Function FPL Specification: ¢nopper

(/\p ﬁspeed) AP (/\p F‘aclion)

Here /\p f‘speed represents the fulfillments for the velocity
of each limb in the Hopper, and /\p facﬁon represents the
fulfillments of the minimizing the three joint torques.
4) LunarLanderContinuous-v2: The original reward in
LunarLander is particularly complex, defined as:
distance_reward + velocity_reward + angle_reward

1+ 92 —0.001 - [|action||3

+ 10 - legs_contact — 0.3 - |main_engine|
—0.03 - |side_engines| + terminal_reward
where the distance, velocity, and angle rewards increase as
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Fig. 1: The top figures show violin plots indicating the distribution of timesteps required to reach performance thresholds
across 10 random seeds. The red horizontal line separates seeds failing to reach the threshold. In the bottom figures, we show

a smoothed training progress of rewards versus environment

steps for each algorithm. Shaded regions represent standard

deviation across seeds, and the dashed lines indicate the placement of reward thresholds for each environment.

the lander gets closer to the landing pad, moves slower, and
stays more horizontal. The terminal reward is +100 for safe
landing or -100 for crashing.

Our FPL specification ¢janger uses a hierarchical structure:
p

/\ (Fneara [Fverymear]o.la [Fiegs]o.la [F‘landed}(),la [Ffuel]0.5)

Here the offsets create a natural curriculum during train-
ing: the agent first focuses on basic proximity Fje,, then
simultaneously addresses precise positioning, leg contact,
and landing ([Fyery near]0.1> [Flegs]0.1> [Flanded]o.1), and finally
optimizes fuel efficiency [Fiuel]o.5 once the primary landing
objectives are reasonably satisfied. The conjunction ensures all
objectives must ultimately be satisfied for successful landing.

D. Behavioral Analysis

Standard reward functions often embody fundamental
limitations that FPL effectively addresses. In LunarLander,
the non-Markovian reward aggregates multiple state-history
components, complicating Q-value estimation and impeding
learning efficiency. Hopper-v4 exemplifies semantic ambi-
guity, where identical reward values (~1000) can represent
qualitatively distinct behaviors—either sustained upright pos-
ture without progression or significant forward motion lacking
stability—conflating disparate policy qualities. In contrast,
the learned behavior specified by FPL distinguishes between
these behaviors, as numerically evaluated in Definition [VI-E]

A note on parameter selection in FPL: FPL is robust to
reasonable variations in power mean parameters and offsets,
we choose p as either 0 or —1, which primarily serve to op-
timize sample efficiency rather than fundamentally changing
the desired behavior. For example, not squaring the angle
term in Pendulum would still result in an upright pendulum,
but with slower convergence due to more conservative actions.
This behavioral consistency persists across training runs,
unlike linear weighted reward functions that often converge
to different local optima depending on initialization.

E. Ablation Study: Impact of FPL on Behavior

Metric With FPL  Without FPL
FPL:bnopper 0.625 0.194
Hopper-v4 Reward 2288.80 750.35

In the table above, we describe BPG’s performance in
Hopper-v4 on 10 seeds after 48k steps of training. Beyond per-
formance gains with FPL, we observed a critical qualitative
difference: without FPL, agents frequently achieved rewards
of approximately 1000 by simply standing still—a reward
hacking scenario where linear rewards where fulfilled in the
original reward function but failed to achieve the intended
behavior. Our FPL specification assigned near-zero fulfill-
ments (3.8 x 1075) to such behaviors, correctly classifying
them as failing to satisfy the intended objectives as the agent
must move all (/\p f‘speed) the limbs forward to be considered
fulfilled. Our FPL specification generalized effectively across
multiple MuJoCo locomotion environments (HalfCheetah-
v4, Walker2d-v4, Ant-v4), consistently producing forward
progression in preliminary tests.

VII. LIMITATIONS AND FUTURE WORK

This paper introduced Fulfillment Priority Logic (FPL),
bridging the intent-to-behavior gap in multi-objective rein-
forcement learning through power-mean operators over nor-
malized objectives. Our Balanced Policy Gradient algorithm
achieves state-of-the-art sample efficiency while preserving
intended behavioral priorities. Despite these advances, BPG
shows lower asymptotic performance, and FPL exhibits
sensitivity to overestimation bias that our FQ-value estimation
addresses but requires an additional hyperparameter.

Future work should analyze gradient propagation through
FPL operators, address replay buffer implementation complex-
ities, and integrate FPL with more sophisticated algorithms
to combine sample efficiency with improved convergence
properties. Extensions to handle dynamic objectives would



further enhance FPL’s applicability to long-horizon problems
with changing constraints.
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