
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E 	 P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y S E P T E M B E R 2 0 1 6 � 69

RESEARCH FEATURE

A lthough multicore technol-
ogy has many benefits for
real-time systems—among
them, decreased weight

and power, fewer cooling requirements,
and increased CPU bandwidth per
processor—multicore chips pose prob-
lems that stem from the cores inter-
fering with one another when access-
ing shared resources. Interference is
compounded in real-time systems,
which are based on the assumption that worst-case exe-
cution time (WCET) is constant; that is, a software task’s
measured WCET must be the same whether that task exe-
cutes alone or with other tasks. This assumption holds for
single-core chips, but not for multicore chips unless they
have isolation mechanisms between cores. Measurements
we performed on a commercial multicore platform (Free
scale P4080) revealed that a task’s WCET can increase by as
much as 600 percent when a task on one core runs with log-
ically independent tasks in other cores.

Because of the potential for large and random delay
spikes, the US Federal Aviation Administration (FAA),
European Aviation Safety Agency (EASA), and Trans-
port Canada specify that only single-core chips can be
used unless intercore interference is specifically defined
and handled.1 Indeed, DO-178C: Software Considerations
in Airborne Systems and Equipment Certification, the pri-
mary document by which certification authorities such

as the FAA, the EASA, and Transport Canada approve
all commercial software–based aerospace systems, was
developed for the certification of software in single-core
computers.2 With a single-core chip, architects can
assume a constant WCET and can thus schedule tasks
and partition resources without unanticipated delays.
Hence, the ideal solution is to certifiably bound intercore
interference in a multicore chip such that each core can
be used as a single-core computer.

As part of studying the feasibility of such a solution,
we developed the Single-Core Equivalent (SCE) technol-
ogy package, which addresses interference problems that
arise when cores concurrently access DRAM, the mem-
ory bus, shared cache resources, I/O resources, and the
on-chip network. With SCE, each core can be used as if it
were a single-core chip, allowing the timing analysis and
certification of software in a core independently of soft-
ware in other cores. This has implications for avionics

Architects of multicore chips for avionics

must define and bound intercore interference,

which requires assuming a constant worst-

case execution time for tasks executing on

the chip. With the Single Core Equivalent

technology package, engineers can treat

each core as if it were a single-core chip.

Real-Time Computing
on Multicore Processors
Lui Sha, Marco Caccamo, Renato Mancuso, Jung-Eun Kim, and Man-Ki Yoon,
University of Illinois at Urbana–Champaign

Rodolfo Pellizzoni, University of Waterloo

Heechul Yun, University of Kansas

Russell B. Kegley and Dennis R. Perlman, Lockheed Martin

Greg Arundale and Richard Bradford, Rockwell Collins

RESEARCH FEATURE

70	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

certification, as the D9178/B/C certi-
fication process targets avionics soft-
ware in single-core computers.2 With
SCE, this process could work for multi-
core computers as well.

Our evaluations with the Frees-
cale P4080, an eight-core chip, show
that SCE successfully bounds intercore
interference and removes unpredict-
able delay spikes.

MEMORY-RELATED
INTERFERENCE
Memory-related interference is caused
by conflicts in accessing memory and
the memory bus. To resolve these
sources of interference we created
PALLOC, an OS-level memory allo-
cator, and MemGuard, an OS-level
memory-bandwidth manager, as part
of the SCE package. Together, they
increase performance isolation for
applications that share DRAM.

Memory-access conflicts
DRAM is organized into ranks, banks,
rows, and columns, with the great-
est interference at the bank level. Fig-
ure 1 shows the average memory-access
latency for a synthetic memory bench-
mark (linked-list traversal) when vary-
ing the number of interfering cores
running the same benchmark. In Same-
Bank, all cores access the same bank;
in DiffBank, each core accesses a differ-
ent private bank. In SameBank, memo-
ry-access latency increases as a function

of the number of concurrently access-
ing cores. However, in DiffBank, mem-
ory-access latency is not affected by
other cores’ activities. These graphs are
evidence that performance isolation
improves when each core has its own set
of dedicated DRAM banks.3

Current OSs do not control how
memory pages are mapped onto DRAM
banks, which leads to poor performance
isolation and unpredictable memory
performance. Given a sufficient num-
ber of DRAM banks, PALLOC allows
applications in different cores to access
disjoint sets of specific banks.3

Memory-bus bandwidth
The synthetic memory benchmark
associated with Figure 1 does not satu-
rate the shared memory bus, so, when
each contending core accesses a differ-
ent bank, benchmark latency is barely
affected. In contrast, multiple cores
accessing memory-bus bandwidth can
create a considerable bottleneck and
thus increase interference. Because
low-level memory arbitration policies
in commercial hardware platforms are
not known, we created MemGuard to
manage memory bandwidth through a
per-core bandwidth regulator for hard
real-time applications.4

Per-core regulator. The per-core reg-
ulator monitors and enforces its cor-
responding allocation of core-memory
bandwidth. Each regulator has a

memory-access budget Qi for every reg-
ulation period P, which is global across
cores. In an M-core chip, the sum of M
memory-bandwidth reservations is
equal to the system’s sustainable mem-
ory bandwidth. When the given budget
is exhausted, the regulator calls the OS
scheduler to suspend computation on
that core. At the beginning of each P,
MemGuard replenishes the budget in
full and the OS resumes the suspended
tasks. P is a processor-wide parameter
and shorter than the minimal applica-
tion task period; currently, it is 1 ms. By
restricting each core’s maximum use of
memory bandwidth, MemGuard effec-
tively partitions memory bandwidth
between cores and ensures strong per-
formance isolation.

Global-bandwidth reclaiming. Band-
width reservation alone could signifi-
cantly waste available memory band-
width because the core might not use
all its reserved bandwidth and the res-
ervable bandwidth that MemGuard
can guarantee is much smaller than
the hardware’s peak bandwidth. To
improve bandwidth use, MemGuard
provides a bandwidth-reclaiming man-
ager for soft real-time applications. At
the beginning of the regulation period,
the reclaiming manager estimates the
cores’ potential surplus bandwidth
reservations and then redistributes on
demand to the cores that need more
bandwidth within the period. Available

300

260

280

220

240

180

200

160
0 1 2 3 4 5 6 7

No. of co-run cores(b)

Av
er

ag
e

la
te

nc
y

(n
s)

SameBank
DiffBank

250

200

150

100

50
0 1 2 3

No. of co-run cores(a)

Av
er

ag
e

la
te

nc
y

(n
s)

SameBank
DiffBank

FIGURE 1. Effect of DRAM contention with a synthetic memory benchmark running on (a) the Intel Xeon and (b) the Freescale P4080
multicore chips. In the SameBank case, all cores access the same bank; in DiffBank, each core accesses a different private bank. Both graphs
show that memory-access latency increases in the SameBank case as the number of cores running concurrently increases. The results
imply that partitioning DRAM banks can reduce contention.

	 S E P T E M B E R 2 0 1 6 � 71

bandwidth is greater than guaran-
teed bandwidth, so if the cores collec-
tively exhaust the guaranteed band-
width before the period ends, MemGuard
lets them use the additional available
bandwidth.4

Figure 2 shows an example of how
MemGuard impacts performance. In
this experiment, we measured the
performance of the 462.libquantum
SPEC2006 benchmark, first alone
(labeled run alone) and then with a
memory hog program (labeled co-run).
Without MemGuard, the benchmark’s
performance dropped more than 50
percent when the benchmark was
co-scheduled with memory hog. When
MemGuard reserved memory band-
width (1,000 MBps for libquantum and
200 MBps for the memory hog), per-
formance of the libquantum bench-
mark decreased but was not affected
by the memory hog. When MemGuard
enabled reclaiming and then shared
the reclaimed bandwidth among cores
that needed it, performance improved
in both the run-alone and co-run cases.

SHARED-CACHE
INTERFERENCE
Modern CPUs feature at least one cache
level organized as an associate set of a
particular cache way. An associative set
consists of cache lines with the same
index. Depending on the running pro-
cesses’ addressing patterns, the cache
controller loads data into the cache and
writes data back from it in cache-line
blocks. Each block can be loaded in any
way and is chosen at fetch time accord-
ing to the replacement policy. Once the
cache way has been selected, the exact
position inside the way depends on the
value of a subset of the bits that com-
pose the data address (index). Tag bits

are used to detect hits, while offset bits
are used to address a particular byte in
a cache block. SCE’s cache-management
approach avoids intercore interference
through offline profiling and online
allocation.5

Offline profiling
The memory-use profiler identifies the
most frequently accessed virtual mem-
ory pages for a given executable. For
each task, it produces a profile offline
that ranks memory pages by access fre-
quency. Because the address of a fre-
quently used page is independent of its
absolute virtual address, the profile is
created only once, and virtual addresses
are determined at runtime.

Online allocation
Online allocation consists of page col-
oring and lockdown of the last-level
cache. Colored lockdown, a process
that takes place after page coloring and
lockdown, is the result of modifying the
Linux kernel’s page-management algo-
rithm to make online allocation trans-
parent to the application.6

Page coloring. Multiple DRAM pages
mapped to the same set of shared cache
pages have the same color and can be
allocated across cache ways. Our OS
techniques can reposition task memory

pages within the available colors to
maximize allocation flexibility.

Lockdown. Because real-time appli-
cations are dominated by periodic exe-
cution flows with tight inner loops, it is
possible to optimize use of the last-level
cache by locking pages with the highest
hit score first. In avionics applications
that use the Integrated Modular Avion-
ics (IMA) architecture, such pages can
be preloaded in cache at the beginning
of each IMA partition. The default con-
figuration should evenly partition the
last-level cache across cores.

Colored lockdown. Page coloring
alone cannot guarantee that frequently
accessed pages reside in cache, and,
when lockdown is used alone, only a
subset of frequently accessed pages
can be allocated because, without col-
oring, there is no way to spread pages
across multiple sets. Colored lockdown
combines the two by first counting the
number of frequently accessed pages
with the same color. If, for a given color,
the number of pages exceeds the num-
ber of available ways, the colored lock-
down technique recolors extra pages
into available sets and performs a lock-
down on all the frequently accessed
pages, including the recolored ones.
With the combined approach, the total

No
rm

al
iz

ed
 p

er
fo

rm
an

ce

0

0.2

0.4

0.6

0.8

1.0

1.2

Run alone Co-run Run alone Co-run Run alone Co-run

Without MemGuard MemGuard
(reservation only)

MemGuard
(reclaiming and sharing)

Guaranteed
performance

FIGURE 2. Performance impact of MemGuard. The y-axis shows the average instructions
per cycle (IPC) for the 462.libquantum SPEC2006 benchmark when it runs alone (labeled
run alone) and with memory-intensive co-runner (labeled co-run) in three different config-
urations: without MemGuard, MemGuard with only 1.0-GBps reservation, and MemGuard
with both reservation and reclaiming.

72	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

number of pages that can be locked in
cache equals the size of the cache allo-
cated to a core.2

By exploiting per-task data acquired
through profiling, we fit a progressive
lockdown PL curve that models a task’s
WCET as a function of the number of
memory pages locked in the last-level
cache. Figure 3 shows a sample PL curve.

INTEGRATED
MODULAR AVIONICS
IMA is a common avionics architecture
that uses time-division multiplex access
(TDMA) to share a single-core comput-
er’s CPU cycles among applications, each
of which uses a set of IMA time slots
(partitions) in the IMA cycle.

SCE provides a solution to migrate
applications residing in IMA partitions
from single-core computers to fewer
multicore computers. In IMA, there is
one I/O partition for all application par-
titions’ I/O activities, and IMA cycles
in different single-core computers can
have different lengths. Simply port-
ing each IMA from a single-core com-
puter to a core in a multicore computer
is not the best approach because mul-
tiple I/O partitions in different cores
could become active simultaneously,
causing I/O conflicts in the shared I/O
channel.7 To avoid this problem, SCE
uses the I/O core—a dedicated core that

consolidates all I/O partitions. With
the I/O core, IMA partitions in differ-
ent cores can have different lengths for
their major cycles, which makes I/O
scheduling much easier. The I/O core
has precedence relationships among
physical and device I/O, shown in Fig-
ure 4.

As Figure 4 implies, I/O and process-
ing partitions in the I/O core cannot
overlap, but physical I/O transactions
for different devices can be performed
in parallel. To assign I/O and processing
partitions, we developed the hierarchi-
cally ordered scheduling (HOS) heuris-
tic algorithm.7 HOS starts by randomly
but partially assigning the offsets of all
physical I/Os and processing partitions
and then finds a complete solution by
determining the offsets of all device I/O
partitions. Once the physical I/O and
processing partition offsets are fixed,
the search space for the device I/O parti-
tion offsets can be represented as a set of
periodic intervals, which reduces prob-
lem size considerably. The HOS algo-
rithm quickly finds a solution on aver-
age and scales well with problem size.7

SCE APPLICATION
The SCE application has two main
stages. The first is to partition globally
shared resources to create cores that
are the equivalent of single cores. The

second is to estimate each task’s WCET.
Once WCET is obtained, each parti-
tioned task’s schedulability analysis is
the same as for a single-core chip.8

Create single-core equivalence
Creating cores with single-core equiva-
lence has five steps:

1.	 Select the hardware. The selected
multicore chip must provide
primitives that support last-level
cache locking and the perfor-
mance counters that MemGuard
requires. For our experiments,
we selected the P4080 chip.

2.	 Ensure that each core has equal
resources. Each core should have
private banks (PALLOC), an equal
fraction of the memory band-
width (MemGuard), and an equal
amount of the last-level cache.

3.	 Partition to allocate cores. The allo-
cation heuristics are well estab-
lished for moving from slower
single chips to a smaller number
of faster single-core chips. We
assume that the same heuris-
tics apply in creating single-core
equivalence.

4.	 Allocate IMA partitions to cores.
Using the HOS heuristic, check
if I/O channels can be parti-
tioned temporally and meet all
the precedence and capacity
constraints. If not, return to the
previous step. If there is no I/O
solution, more or faster chips
are needed. If there is an I/O
solution, these four steps should
yield a tentative set of virtual
single-core chips.

5.	 Optimize last-level cache parti-
tioning and schedulability ana
lysis. Use colored lockdown to

360 18

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 1 2 3 4 5
No. of pages locked in cache

137

Execution time

1

W
CE

T
tim

e
un

its

FIGURE 3. A lockdown curve of execution time when cache allocation is even, all but one core
is idle, cores access private DRAM banks with PALLOC, and there is no MemGuard regulation.
The task under analysis (τ1) can use up to peak memory bandwidth to retrieve data. When
three pages are locked, worst-case execution time (WCET) drops from 13 to 7 time units.

	 S E P T E M B E R 2 0 1 6 � 73

optimize the use of last-level
cache partitions. For an M-core
chip, in which m ≤ M cores will
be used, estimate the WCET(m)
of each task and check the
schedulability of partitions and
I/O transactions. If the schedula-
bility check fails, go to step 3. If
there is no solution, more and/or
faster chips are needed.

Estimate worst-case
execution times
WCET is the foundation for schedulabil-
ity analysis, which has been the focus of
many analytic and experimental meth-
ods.9 SCE can reuse the WCET estimation
methods developed for single-core chips
and use the estimate to equally partition
shared resources. Thus, if only one of
eight cores is used, the core will have all
the shared resources, and WCET(1) will
have the smallest WCET value. If appli-
cations never use more than two of the
eight cores, it is possible to disable the
remaining six cores and divide the total
shared resources in half. For the same
task, the shared resources then dimin-
ish with respect to the number of cores
used, and WCET increases accordingly:
WCET(1) < WCET(2) … < WCET(8).

However, in a multicore chip, shared
resources must be partitioned or this
monotonic relationship might not hold
because random intercore interference

can result in a WCET(8) that is less
than a WCET(7). This random interfer-
ence makes it impossible to estimate
WCET(8) with any certainty and com-
plicates certification. Without first par-
titioning shared resources and then
isolating the partitions, software run-
ning on one core could interfere with
another core’s software timing behav-
iors, making modular core-by-core cer-
tification impossible.

SCE addresses this problem by par-
titioning shared resources according to
the cores being used. It first makes all
but one core idle and estimates a task’s
WCET(1) using traditional methods for
a single-core chip. WCET(1) is then used
to calculate WCET(m), where m rep-
resents the number of cores being used.

WCET(m) and schedulability. WCET(M)
represents the maximum intercore
interference when all cores are used
in an M-core chip. The more cores in
use, the smaller the share of parti-
tioned resources for each core, and the
greater the overhead from partition-
management software, which lowers
schedulability for each core. If only m <
M cores are needed for the application
now and in the foreseeable future, the
remaining (M – m) cores can be disabled
and the shared resources partitioned
into m chunks.

For that reason, SCE computes

WCET(m) instead of WCET(M). How-
ever, if an additional core is needed
later on, SCE replaces WCET(m) with
WCET(m+1) in each core’s schedulabil-
ity analysis.

Because WCET(m+1) is bigger than
WCET(m), some applications in a core
could become unschedulable and trig-
ger the reallocation of applications to
cores. In this case, recertification will
likely be required, which is expensive.
Hence, system engineers must care-
fully consider the ramifications of dis-
abling cores in a multicore chip.

Estimating WCET(m). The first step
in estimating WCET(m) is to look for
last-level cache misses, which gener-
ate DRAM transactions. Let Sline be the
cache-line size, which is measured as
the number of bytes transferred during
each transaction. Sline is architecture-
specific and is provided in the chip spec-
ifications. Let Lmax be the maximum
delay on a DRAM transaction for the
core under analysis. In analyzing worst-
case delay, Lmax is a key parameter and
can be derived either experimentally or
through DRAM analysis techniques.9

Experimentally, DRAM transfer band-
width BWmin can be measured when two
conditions hold: each memory transac-
tion has a data dependency with the pre-
vious one and subsequent requests access
different DRAM rows. Hence, Lmax can be

Period

…

…

…Physical
input

Physical
output

Deadline

Processing
partition

Device
input

Device
output

Physical
input

FIGURE 4. Partitions in the I/O core. The I/O core consolidates all I/O partitions by establishing precedence relationships among physical
and device I/O. Each transaction is divided into physical and device I/O. Here, a camera taking pictures is the physical input. A device input
transfers the buffered images to main memory, where an application within a core processes them. The device output—the processing
result—is buffered in main memory and transferred to a physical output device; in this case, a monitor.

74	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

derived from5

BW
min

=
S
line

L
max

.� (1)

We use Stall to designate the task
delay induced by MemGuard regulation
and compute it as5

Stall =
mµS

line

BW
min

,� (2)

where m is the number of active cores
and µ is the maximum number of resid-
ual cache misses obtained from the PL
curve. Each task’s WCET(m) includes
the effect of bandwidth partitioning
and is computed as Stall + C, where C is
a task’s WCET(1), for the desired amount
of allocated cache.

Equation 2 also provides useful
insights into how DRAM bandwidth
allocation impacts a task’s memory
latency. BWmin is clearly proportional
to m and µ as well as to Sline. Addition-
ally, stall time is inversely proportional
to BWmin. We performed a series of
experiments that confirm Equation 2
provides a conservative estimate of a
task’s WCET(m).2

An experimental way to estimate

the WCET(m) of a task in a particular
core is to run tasks with worst-case
interference in a nonstop loop in all
cores.10 We recommend using both
methods and checking if the exper-
imental measure is always smaller
than the theoretical estimation, which
makes pessimistic assumptions to
ensure it will be a valid bound.

PERFORMANCE EXAMPLES
We ran SCE technology in several
experiments to validate its perfor-
mance in bounding intercore inter-
ference. Figure 5 shows the reduction
in delays of the same task running on
P4080 with and without SCE.

When P4080 is used without SCE
to control intercore interference, and
seven of the eight cores were used,
core 0 task’s worst-case finishing
time (WCFT) increased 600 percent
relative to its WCFT when only one
core was used. In addition, random
interference caused WCFT to peak
when seven of the eight cores were
used, not when all eight were used.
This counterintuitive pattern makes
it hard to determine the worst-case
scenario needed to compute WCET(m)
and complete certification.

Results from sample scenario
Figure 6 shows the system-wide sched-
uling solution from one of our more
comprehensive experiments involving
four tasks and three cores. WCET(3)
denotes the use of only three cores,
core 0 represents the I/O core, and
cores 1 and 2 are the application cores.
Following our SCE methodology, we
first applied PALLOC to ensure that
each core had a private set of DRAM
banks. We then allocated portions of
the last-level shared cache evenly for
each core, partitioned memory-bus
bandwidth evenly using MemGuard,
and applied the HOS heuristic to find
an I/O scheduling solution.

Figure 6 shows how different SCE
techniques integrate. Colored lock-
down is performed at the beginning
of each partition instance. MemGuard
and PALLOC are statically configured
to evenly partition DRAM resources
among cores. Finally, I/O operations
are globally serialized over the I/O
core. Each physical input precedes the
corresponding I/O core input oper-
ation, and each physical output fol-
lows the corresponding I/O core out-
put operation. Similarly, each I/O core
input operation precedes the parti-
tion instance that consumes the cor-
responding data, and each I/O core
output operation precedes the parti-
tion instance that produces the corre-
sponding data.

For example, in core 1, IMA parti-
tion 1 has a period of 18 and a reserva-
tion of 6 time units, while IMA partition
2 has a period of 36 and a reservation of
12 time units. After colored lockdown,
inside partition 1, task 3 has period 18
and WCET(3) 3; task 4 has period 36 and
WCET(3) 3. Similarly, tasks 1 and 2 are
running inside partition 2 with periods

8

6

4

2

0
0 1 2 3 4 5 6 7

No. of interfering cores

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

Uncontrolled interference
With SCE

FIGURE 5. Effects of intercore interference for a single task running on the Freescale
P4080 eight-core chip. The green bars are the worst-case finishing times (WCFTs) of a
core 0 task when one to eight cores are used and intercore interference is uncontrolled. The
red bars are the WCFTs of the same core 0 task when one to eight cores are used with the
Single Core Equivalent (SCE) and a cache lockdown at 255 pages. WCFTs with SCE increase
only slightly when more cores are used, because of increased isolation overhead and
smaller size of shared resource partition. But the increase is much less dramatic, because
random intercore interference through shared resources is removed. Data is from Lockheed
Martin’s space systems testbed when porting single-core computers’ software to an eight-
core Freescale P4080 computer.

	 S E P T E M B E R 2 0 1 6 � 75

36 and 72, respectively, and a WCET(3)
of 8 and 3.

Making real-time computing ef
ficient and predictable on mul-
ticore computers can greatly

benefit many real-time applications,
such as avionics, automotive, and med-
ical-device control. It also enables avion-
ics certification that has been problem-
atic except when only using one core in
a multicore chip. SCE provides a way to
use established single-core estimation
techniques to handle difficult schedula-
bility analyses with multiple cores. We
have already identified many areas for
future work, including the certification
of SCE itself.11 An integrated solution
to address memory consistency mod-
els, real synchronization protocols, and
cache coherence protocols would ben-
efit applications that must use multiple

cores in parallel. Other topics for addi-
tional research are how to incorporate
fault-tolerance mechanisms and address
backward compatibility with existing
software applications.

ACKNOWLEDGMENTS
The Single-Core Equivalent (SCE) technol-
ogy was the result of a team effort. Sha led
the architectural development and system
integration. Pellizzoni and Zheng Pei Wu
led the development of memory configu-
ration and schedulability analysis. Cac-
camo and Mancuso led the development
of last-level cache partitioning and hot
code−segment lockdown. Yun and Gang
Yao led the development of the mechanism
to reserve memory bandwidth. Kim and
Yoon led the development of the Integrated
Modular Avionics (IMA) partition sched-
uling with conflict-free I/O for multicore
systems. Kegley and Perlman guided the

development and transition from the per-
spective of Lockheed Martin, and Arun-
dale and Bradford provided guidance from
the perspective of Rockwell Collins.

This work was sponsored in part by
National Science Foundation grants CNS
13-02563 and CNS 12-19064, by Natural
Sciences and Engineering Research Coun-
cil Discovery Grant 402369-2011, by Office
of Naval Research grant ONR N00014-12-
1-0046, by Lockheed Martin grant 2009-
00524, and by Rockwell Collins’s grant RPS
645038. Finally, we thank Nancy Talbert for
her great assistance in the revision of this
article. Any opinions, findings, and con-
clusions or recommendations expressed
in this publication are those of the authors.

REFERENCES
1.	 Certification Authorities Software

Team, “Position Paper CAST-32, Multi
core Processors,” rev. 0, 2014; www
.faa.gov/aircraft/air_cert/design

0

0 12 18 24 36

126 186 12 18

CPU 1

3 (3,18)

4 (3,36)

1 (8,36)

2 (3,72)

Partition 1 (6,18)

Partition 2 (12,36)

Partition 3 (4,12)

Partition 4 (8,36)


Colored
lockdown

36

0 00

I

00 00 0 0

00 0
Physical

I/O

I/O
core

CPU 2

CPU 1

0

0

IIIIIII

I I I I I I

2

1

4

3

FIGURE 6. SCE solution for a three-core system running four tasks in which all SCE components are integrated.

76	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

_approvals/air_software/cast/cast
_papers/media/cast-32.pdf.

2.	 L. Sha et al., Single-Core Equivalent
Virtual Machines for Hard Real-Time
Computing on Multicore Processors,
tech. report, CS Dept., Univ. of Illi-
nois at Urbana−Champaign, 2014;
www.ideals.illinois.edu/handle
/2142/55672.

3.	 H. Yun et al., “PALLOC: DRAM
Bank-Aware Memory Allocator for
Performance Isolation on Multicore
Platform,” Proc. IEEE 19th Real-Time
Technology and Applications Symp.
(RTAS 14), 2014, pp. 155−166.

4.	 H. Yun et al., “MemGuard: Memory
Bandwidth Reservation System for
Efficient Performance Isolation in
Multicore Platforms,” Proc. IEEE 18th
Real-Time Technology and Applications
Symp. (RTAS 13), 2013, pp. 55−64.

5.	 R. Mancuso et al., “WCET(m) Esti-
mation in Multicore Systems Using
Single Core Equivalence,” Proc. 27th
Euromicro Conf. Real-Time Systems
(ECRTS 15), 2015, pp. 174−183.

6.	 R. Mancuso et al., “Real-Time Cache
Management Framework for Multi-
core Architectures,” Proc. IEEE 18th
Real-Time Technology and Applications
Symp. (RTAS 13), 2013, pp. 45−54.

7.	 J.-E. Kim et al., “Integrated Modular
Avionics (IMA) Partition Scheduling
with Conflict-Free I/O for Multicore
Avionics Systems,” Proc. IEEE 38th
Computer Software and Applications
Conf. (COMPSAC 14), 2014, pp. 321−331.

8.	 L. Sha, “Real-Time Virtual Machines
for Avionics Software Porting and
Development,” Real-Time and Embed-
ded Computing Systems and Applica-
tions, LNCS 2968, J. Chen and S. Hong,

eds., Springer, 2004, pp. 123−135.
9.	 H. Kim et al., “Bounding Memory

Interference Delay in COTS-Based
Multicore Systems,” Proc. IEEE 19th
Real-Time Technology and Applications
Symp. (RTAS 14), 2014, pp. 145−154.

10.	 R. Wilhelm et al., “The Worst-Case
Execution Time Problem—Overview
of Methods and Survey of Tools,” ACM
Trans. Programming Languages and Sys-
tems, vol. 7, no. 3, 2008, article no. 36.

11.	 L. Sha et al., “Position Paper on Mini-
mal Multicore Avionics Certification
Guidance,” 4 Jun. 2016; https://1drv
.ms/b/s!AqCnfGZqrIHshuIGAczwiy
EUa5ZjTQ.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

Silver
Bullet
Security
Podcast

www.computer.org/security/podcasts
*Also available at iTunes

In-depth interviews
with security gurus.

Hosted by Gary McGraw.

Sponsored by

	 S E P T E M B E R 2 0 1 6 � 77

ABOUT THE AUTHORS
LUI SHA is the Donald B. Gillies Chair professor of computer
science at the University of Illinois at Urbana–Champaign
(UIUC). His research interests include software certifiability
for real-time systems, medical best-practice guidance sys-
tems, and aeronautic technology for space programs such
as the Mars Pathfinder and International Space Station. Sha
received a PhD in computer science from Carnegie Mellon
University. He is a Fellow of IEEE and ACM, a member of
the NASA Advisory Council’s Aeronautics Committee, and a
co-recipient of the 2016 IEEE Simon Ramo Medal. Contact
him at lrs@illinois.edu.

MARCO CACCAMO is a professor in the Department of Com-
puter Science at UIUC. His research interests include real-time
OSs, real-time scheduling and resource management, wire-
less real-time networks, and quality-of-service control in next-
generation digital infrastructures. Caccamo received a PhD in
computer engineering from Scuola Superiore Sant’Anna. He is a
Senior Member of IEEE. Contact him at caccamom@gmail.com.

RENATO MANCUSO is a doctoral student in computer science
at UIUC’s Real-Time and Embedded Systems Laboratory. His
research interests include OS-level techniques for embedded
systems to enhance predictability, real-time−oriented devel-
opment of heterogeneous platforms, and the deployment of
unmanned aerial vehicles. Mancuso received an MS in com-
puter engineering from the University of Rome Tor Vergata. He
is a member of IEEE. Contact him at rntmancuso@gmail.com.

JUNG-EUN KIM is a doctoral student in computer science
at UIUC. Her research interests include real-time sched-
uling; safety-critical, real-time multicore architecture; and
cyber-physical systems. Kim received an MS in computer sci-
ence and engineering from Seoul National University. Contact
her at jekim314@illinois.edu.

MAN-KI YOON is a doctoral student in computer science
at UIUC. His research interests include secure embedded
systems, multicore architecture, real-time scheduling, and
machine learning. Yoon received a BS in computer science
and engineering from Seoul National University. Contact him
at mkyoon@illinois.edu.

RODOLFO PELLIZZONI is an assistant professor in the Depart-
ment of Electrical and Computer Engineering at the University
of Waterloo. His research interests include embedded archi-
tectures, real-time OSs, and timing analysis. Pellizzoni received
a PhD in computer science from UIUC. He is a member of IEEE.
Contact him at rpellizz@uwaterloo.ca.

HEECHUL YUN is an assistant professor in the Department of
Electrical Engineering and Computer Science at the University
of Kansas. His research interests include embedded real-time
systems, OSs, and computer architecture. Yun received a PhD
in computer science from UIUC. He is a member of IEEE. Con-
tact him at heechul.yun@ku.edu.

RUSSELL B. KEGLEY is a Lockheed Martin Fellow at Lockheed
Martin’s Aeronautics Company. His research interests include
schedulability analysis, advanced design techniques, middle-
ware architecture, multiprocessor use in avionic systems, and
cache-contention modeling and remediation for fighter aircraft
programs. Kegley received an MS in computer science from
Mississippi State University. He is a member of IEEE and ACM.
Contact him at russell.b.kegley@lmco.com.

DENNIS R. PERLMAN is a senior research engineer at Lockheed
Martin’s Space Systems Company. His research interests include
the design, development, and implementation of hardware-in-
the-loop simulation testbeds for spacecraft programs. Perlman
received an MS in applied mathematics from the University of
Colorado. Contact him at dennis.r.perlman@lmco.com.

GREG ARUNDALE is a principal systems engineer at Rock-
well Collins’s Advanced Technology Center. His research inter-
ests include next-generation avionics architectures. Arundale
received a BS in computer engineering from UIUC. Contact him
at greg.arundale@rockwellcollins.com.

RICHARD BRADFORD is a principal systems engineer at Rock-
well Collins’s Commercial Systems division. His research inter-
ests include real-time scheduling, network modeling and sim-
ulation, optimization, and engineering economics. Bradford
received a PhD in operations research from Stanford Univer-
sity. Contact him at richard.bradford@rockwellcollins.com.

