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A lthough multicore technol-
ogy has many benefits for 
real-time systems—among 
them, decreased weight 

and power, fewer cooling requirements, 
and increased CPU bandwidth per 
processor—multicore chips pose prob-
lems that stem from the cores inter-
fering with one another when access-
ing shared resources. Interference is 
compounded in real-time systems, 
which are based on the assumption that worst-case exe-
cution time (WCET) is constant; that is, a software task’s 
measured WCET must be the same whether that task exe-
cutes alone or with other tasks. This assumption holds for 
single-core chips, but not for multicore chips unless they 
have isolation mechanisms between cores. Measurements 
we performed on a commercial multicore platform (Free
scale P4080) revealed that a task’s WCET can increase by as 
much as 600 percent when a task on one core runs with log-
ically independent tasks in other cores.

Because of the potential for large and random delay 
spikes, the US Federal Aviation Administration (FAA), 
European Aviation Safety Agency (EASA), and Trans-
port Canada specify that only single-core chips can be 
used unless intercore interference is specifically defined 
and handled.1 Indeed, DO-178C: Software Considerations 
in Airborne Systems and Equipment Certification, the pri-
mary document by which certification authorities such 

as the FAA, the EASA, and Transport Canada approve 
all commercial software–based aerospace systems, was 
developed for the certification of software in single-core 
computers.2 With a single-core chip, architects can 
assume a constant WCET and can thus schedule tasks 
and partition resources without unanticipated delays. 
Hence, the ideal solution is to certifiably bound intercore 
interference in a multicore chip such that each core can 
be used as a single-core computer. 

As part of studying the feasibility of such a solution, 
we developed the Single-Core Equivalent (SCE) technol-
ogy package, which addresses interference problems that 
arise when cores concurrently access DRAM, the mem-
ory bus, shared cache resources, I/O resources, and the 
on-chip network. With SCE, each core can be used as if it 
were a single-core chip, allowing the timing analysis and 
certification of software in a core independently of soft-
ware in other cores. This has implications for avionics 

Architects of multicore chips for avionics 

must define and bound intercore interference, 

which requires assuming a constant worst-

case execution time for tasks executing on 

the chip. With the Single Core Equivalent 

technology package, engineers can treat 

each core as if it were a single-core chip.
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certification, as the D9178/B/C certi-
fication process targets avionics soft-
ware in single-core computers.2 With 
SCE, this process could work for multi-
core computers as well.

Our evaluations with the Frees-
cale P4080, an eight-core chip, show 
that SCE successfully bounds intercore 
interference and removes unpredict-
able delay spikes. 

MEMORY-RELATED 
INTERFERENCE
Memory-related interference is caused 
by conflicts in accessing memory and 
the memory bus. To resolve these 
sources of interference we created 
PALLOC, an OS-level memory allo-
cator, and MemGuard, an OS-level 
memory-bandwidth manager, as part 
of the SCE package. Together, they 
increase performance isolation for 
applications that share DRAM.

Memory-access conflicts
DRAM is organized into ranks, banks, 
rows, and columns, with the great-
est interference at the bank level. Fig-
ure 1 shows the average memory-access 
latency for a synthetic memory bench-
mark (linked-list traversal) when vary-
ing the number of interfering cores 
running the same benchmark. In Same-
Bank, all cores access the same bank; 
in DiffBank, each core accesses a differ-
ent private bank. In SameBank, memo-
ry-access latency increases as a function 

of the number of concurrently access-
ing cores. However, in DiffBank, mem-
ory-access latency is not affected by 
other cores’ activities. These graphs are 
evidence that performance isolation 
improves when each core has its own set 
of dedicated DRAM banks.3

Current OSs do not control how 
memory pages are mapped onto DRAM 
banks, which leads to poor performance 
isolation and unpredictable memory 
performance. Given a sufficient num-
ber of DRAM banks, PALLOC allows 
applications in different cores to access 
disjoint sets of specific banks.3

Memory-bus bandwidth
The synthetic memory benchmark 
associated with Figure 1 does not satu-
rate the shared memory bus, so, when 
each contending core accesses a differ-
ent bank, benchmark latency is barely 
affected. In contrast, multiple cores 
accessing memory-bus bandwidth can 
create a considerable bottleneck and 
thus increase interference. Because 
low-level memory arbitration policies 
in commercial hardware platforms are 
not known, we created MemGuard to 
manage memory bandwidth through a 
per-core bandwidth regulator for hard 
real-time applications.4

Per-core regulator. The per-core reg-
ulator monitors and enforces its cor-
responding allocation of core-memory 
bandwidth. Each regulator has a 

memory-access budget Qi for every reg-
ulation period P, which is global across 
cores. In an M-core chip, the sum of M 
memory-bandwidth reservations is 
equal to the system’s sustainable mem-
ory bandwidth. When the given budget 
is exhausted, the regulator calls the OS 
scheduler to suspend computation on 
that core. At the beginning of each P, 
MemGuard replenishes the budget in 
full and the OS resumes the suspended 
tasks. P is a processor-wide parameter 
and shorter than the minimal applica-
tion task period; currently, it is 1 ms. By 
restricting each core’s maximum use of 
memory bandwidth, MemGuard effec-
tively partitions memory bandwidth 
between cores and ensures strong per-
formance isolation. 

Global-bandwidth reclaiming. Band-
width reservation alone could signifi-
cantly waste available memory band-
width because the core might not use 
all its reserved bandwidth and the res-
ervable bandwidth that MemGuard 
can guarantee is much smaller than 
the hardware’s peak bandwidth. To 
improve bandwidth use, MemGuard 
provides a bandwidth-reclaiming man-
ager for soft real-time applications. At 
the beginning of the regulation period, 
the reclaiming manager estimates the 
cores’ potential surplus bandwidth 
reservations and then redistributes on 
demand to the cores that need more 
bandwidth within the period. Available 
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FIGURE 1. Effect of DRAM contention with a synthetic memory benchmark running on (a) the Intel Xeon and (b) the Freescale P4080 
multicore chips. In the SameBank case, all cores access the same bank; in DiffBank, each core accesses a different private bank. Both graphs 
show that memory-access latency increases in the SameBank case as the number of cores running concurrently increases. The results 
imply that partitioning DRAM banks can reduce contention. 
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bandwidth is greater than guaran-
teed bandwidth, so if the cores collec-
tively exhaust the guaranteed band-
width before the period ends, MemGuard 
lets them use the additional available 
bandwidth.4

Figure 2 shows an example of how 
MemGuard impacts performance. In 
this experiment, we measured the 
performance of the 462.libquantum 
SPEC2006 benchmark, first alone 
(labeled  run alone) and then with a 
memory hog program (labeled co-run). 
Without MemGuard, the benchmark’s 
performance dropped more than 50 
percent when the benchmark was 
co-scheduled with memory hog. When 
MemGuard reserved memory band-
width (1,000 MBps for libquantum and 
200 MBps for the memory hog), per-
formance of the libquantum bench-
mark decreased but was not affected 
by the memory hog. When MemGuard 
enabled reclaiming and then shared 
the reclaimed bandwidth among cores 
that needed it, performance improved 
in both the run-alone and co-run cases. 

SHARED-CACHE 
INTERFERENCE
Modern CPUs feature at least one cache 
level organized as an associate set of a 
particular cache way. An associative set 
consists of cache lines with the same 
index. Depending on the running pro-
cesses’ addressing patterns, the cache 
controller loads data into the cache and 
writes data back from it in cache-line 
blocks. Each block can be loaded in any 
way and is chosen at fetch time accord-
ing to the replacement policy. Once the 
cache way has been selected, the exact 
position inside the way depends on the 
value of a subset of the bits that com-
pose the data address (index). Tag bits 

are used to detect hits, while offset bits 
are used to address a particular byte in 
a cache block. SCE’s cache-management 
approach avoids intercore interference 
through offline profiling and online 
allocation.5

Offline profiling
The memory-use profiler identifies the 
most frequently accessed virtual mem-
ory pages for a given executable. For 
each task, it produces a profile offline 
that ranks memory pages by access fre-
quency. Because the address of a fre-
quently used page is independent of its 
absolute virtual address, the profile is 
created only once, and virtual addresses 
are determined at runtime. 

Online allocation
Online allocation consists of page col-
oring and lockdown of the last-level 
cache. Colored lockdown, a process 
that takes place after page coloring and 
lockdown, is the result of modifying the 
Linux kernel’s page-management algo-
rithm to make online allocation trans-
parent to the application.6

Page coloring. Multiple DRAM pages 
mapped to the same set of shared cache 
pages have the same color and can be 
allocated across cache ways. Our OS 
techniques can reposition task memory 

pages within the available colors to 
maximize allocation flexibility.

Lockdown. Because real-time appli-
cations are dominated by periodic exe-
cution flows with tight inner loops, it is 
possible to optimize use of the last-level 
cache by locking pages with the highest 
hit score first. In avionics applications 
that use the Integrated Modular Avion-
ics (IMA) architecture, such pages can 
be preloaded in cache at the beginning 
of each IMA partition. The default con-
figuration should evenly partition the 
last-level cache across cores.

Colored lockdown. Page coloring 
alone cannot guarantee that frequently 
accessed pages reside in cache, and, 
when lockdown is used alone, only a 
subset of frequently accessed pages 
can be allocated because, without col-
oring, there is no way to spread pages 
across multiple sets. Colored lockdown 
combines the two by first counting the 
number of frequently accessed pages 
with the same color. If, for a given color, 
the number of pages exceeds the num-
ber of available ways, the colored lock-
down technique recolors extra pages 
into available sets and performs a lock-
down on all the frequently accessed 
pages, including the recolored ones. 
With the combined approach, the total 

No
rm

al
iz

ed
 p

er
fo

rm
an

ce

0

0.2

0.4

0.6

0.8

1.0

1.2

Run alone Co-run Run alone Co-run Run alone Co-run

Without MemGuard MemGuard
(reservation only)

MemGuard
(reclaiming and sharing)

Guaranteed
performance

FIGURE 2. Performance impact of MemGuard. The y-axis shows the average instructions 
per cycle (IPC) for the 462.libquantum SPEC2006 benchmark when it runs alone (labeled 
run alone) and with memory-intensive co-runner (labeled co-run) in three different config-
urations: without MemGuard, MemGuard with only 1.0-GBps reservation, and MemGuard 
with both reservation and reclaiming.



72	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

number of pages that can be locked in 
cache equals the size of the cache allo-
cated to a core.2

By exploiting per-task data acquired 
through profiling, we fit a progressive 
lockdown PL curve that models a task’s 
WCET as a function of the number of 
memory pages locked in the last-level 
cache. Figure 3 shows a sample PL curve.

INTEGRATED  
MODULAR AVIONICS
IMA is a common avionics architecture 
that uses time-division multiplex access 
(TDMA) to share a single-core comput-
er’s CPU cycles among applications, each 
of which uses a set of IMA time slots 
(partitions) in the IMA cycle. 

SCE provides a solution to migrate 
applications residing in IMA partitions 
from single-core computers to fewer 
multicore computers. In IMA, there is 
one I/O partition for all application par-
titions’ I/O activities, and IMA cycles 
in different single-core computers can 
have different lengths. Simply port-
ing each IMA from a single-core com-
puter to a core in a multicore computer 
is not the best approach because mul-
tiple I/O partitions in different cores 
could become active simultaneously, 
causing I/O conflicts in the shared I/O 
channel.7 To avoid this problem, SCE 
uses the I/O core—a dedicated core that 

consolidates all I/O partitions. With 
the I/O core, IMA partitions in differ-
ent cores can have different lengths for 
their major cycles, which makes I/O 
scheduling much easier. The I/O core 
has precedence relationships among 
physical and device I/O, shown in Fig-
ure 4.

As Figure 4 implies, I/O and process-
ing partitions in the I/O core cannot 
overlap, but physical I/O transactions 
for different devices can be performed 
in parallel. To assign I/O and processing 
partitions, we developed the hierarchi-
cally ordered scheduling (HOS) heuris-
tic algorithm.7 HOS starts by randomly 
but partially assigning the offsets of all 
physical I/Os and processing partitions 
and then finds a complete solution by 
determining the offsets of all device I/O 
partitions. Once the physical I/O and 
processing partition offsets are fixed, 
the search space for the device I/O parti-
tion offsets can be represented as a set of 
periodic intervals, which reduces prob-
lem size considerably. The HOS algo-
rithm quickly finds a solution on aver-
age and scales well with problem size.7

SCE APPLICATION
The SCE application has two main 
stages. The first is to partition globally 
shared resources to create cores that 
are the equivalent of single cores. The 

second is to estimate each task’s WCET. 
Once WCET is obtained, each parti-
tioned task’s schedulability analysis is 
the same as for a single-core chip.8

Create single-core equivalence
Creating cores with single-core equiva-
lence has five steps:

1.	 Select the hardware. The selected 
multicore chip must provide 
primitives that support last-level 
cache locking and the perfor-
mance counters that MemGuard 
requires. For our experiments, 
we selected the P4080 chip.

2.	 Ensure that each core has equal 
resources. Each core should have 
private banks (PALLOC), an equal 
fraction of the memory band-
width (MemGuard), and an equal 
amount of the last-level cache. 

3.	 Partition to allocate cores. The allo-
cation heuristics are well estab-
lished for moving from slower 
single chips to a smaller number 
of faster single-core chips. We 
assume that the same heuris-
tics apply in creating single-core 
equivalence.

4.	 Allocate IMA partitions to cores. 
Using the HOS heuristic, check 
if I/O channels can be parti-
tioned temporally and meet all 
the precedence and capacity 
constraints. If not, return to the 
previous step. If there is no I/O 
solution, more or faster chips 
are needed. If there is an I/O 
solution, these four steps should 
yield a tentative set of virtual 
single-core chips.  

5.	 Optimize last-level cache parti-
tioning and schedulability ana
lysis. Use colored lockdown to 
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optimize the use of last-level 
cache partitions. For an M-core 
chip, in which m ≤ M cores will 
be used, estimate the WCET(m) 
of each task and check the 
schedulability of partitions and 
I/O transactions. If the schedula-
bility check fails, go to step 3. If 
there is no solution, more and/or 
faster chips are needed.

Estimate worst-case 
execution times
WCET is the foundation for schedulabil-
ity analysis, which has been the focus of 
many analytic and experimental meth-
ods.9 SCE can reuse the WCET estimation 
methods developed for single-core chips 
and use the estimate to equally partition 
shared resources. Thus, if only one of 
eight cores is used, the core will have all 
the shared resources, and WCET(1) will 
have the smallest WCET value. If appli-
cations never use more than two of the 
eight cores, it is possible to disable the 
remaining six cores and divide the total 
shared resources in half. For the same 
task, the shared resources then dimin-
ish with respect to the number of cores 
used, and WCET increases accordingly: 
WCET(1) < WCET(2) … < WCET(8).

However, in a multicore chip, shared 
resources must be partitioned or this 
monotonic relationship might not hold 
because random intercore interference 

can result in a WCET(8) that is less 
than a WCET(7). This random interfer-
ence makes it impossible to estimate 
WCET(8) with any certainty and com-
plicates certification. Without first par-
titioning shared resources and then 
isolating the partitions, software run-
ning on one core could interfere with 
another core’s software timing behav-
iors, making modular core-by-core cer-
tification impossible.

SCE addresses this problem by par-
titioning shared resources according to 
the cores being used. It first makes all 
but one core idle and estimates a task’s 
WCET(1) using traditional methods for 
a single-core chip. WCET(1) is then used 
to calculate WCET(m), where m rep-
resents the number of cores being used. 

WCET(m) and schedulability. WCET(M) 
represents the maximum intercore 
interference when all cores are used 
in an M-core chip. The more cores in 
use, the smaller the share of parti-
tioned resources for each core, and the 
greater the overhead from partition-
management software, which lowers 
schedulability for each core. If only m < 
M cores are needed for the application 
now and in the foreseeable future, the 
remaining (M – m) cores can be disabled 
and the shared resources partitioned 
into m chunks.

For that reason, SCE computes 

WCET(m) instead of WCET(M). How-
ever, if an additional core is needed 
later on, SCE replaces WCET(m) with 
WCET(m+1) in each core’s schedulabil-
ity analysis. 

Because WCET(m+1) is bigger than 
WCET(m), some applications in a core 
could become unschedulable and trig-
ger the reallocation of applications to 
cores. In this case, recertification will 
likely be required, which is expensive. 
Hence, system engineers must care-
fully consider the ramifications of dis-
abling cores in a multicore chip.

Estimating WCET(m). The first step 
in estimating WCET(m) is to look for 
last-level cache misses, which gener-
ate DRAM transactions. Let Sline be the 
cache-line size, which is measured as 
the number of bytes transferred during 
each transaction. Sline is architecture-
specific and is provided in the chip spec-
ifications. Let Lmax be the maximum 
delay on a DRAM transaction for the 
core under analysis. In analyzing worst-
case delay, Lmax is a key parameter and 
can be derived either experimentally or 
through DRAM analysis techniques.9

Experimentally, DRAM transfer band-
width BWmin can be measured when two 
conditions hold: each memory transac-
tion has a data dependency with the pre-
vious one and subsequent requests access 
different DRAM rows. Hence, Lmax can be 
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FIGURE 4. Partitions in the I/O core. The I/O core consolidates all I/O partitions by establishing precedence relationships among physical 
and device I/O. Each transaction is divided into physical and device I/O. Here, a camera taking pictures is the physical input. A device input 
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derived from5

BW
min

=
S
line

L
max

.� (1)

We use Stall to designate the task 
delay induced by MemGuard regulation 
and compute it as5

Stall =
mµS

line

BW
min

,� (2) 

where m is the number of active cores 
and µ is the maximum number of resid-
ual cache misses  obtained from the PL 
curve. Each task’s WCET(m) includes 
the effect of bandwidth partitioning 
and is computed as Stall + C, where C is 
a task’s WCET(1), for the desired amount 
of allocated cache.

Equation 2 also provides useful 
insights into how DRAM bandwidth 
allocation impacts a task’s memory 
latency. BWmin is clearly proportional 
to m and µ as well as to Sline. Addition-
ally, stall time is inversely proportional 
to BWmin. We performed a series of 
experiments that confirm Equation 2 
provides a conservative estimate of a 
task’s WCET(m).2

An experimental way to estimate 

the WCET(m) of a task in a particular 
core is to run tasks with worst-case 
interference in a nonstop loop in all 
cores.10 We recommend using both 
methods and checking if the exper-
imental measure is always smaller 
than the theoretical estimation, which 
makes pessimistic assumptions to 
ensure it will be a valid bound.  

PERFORMANCE EXAMPLES
We ran SCE technology in several 
experiments to validate its perfor-
mance in bounding intercore inter-
ference. Figure 5 shows the reduction 
in delays of the same task running on 
P4080 with and without SCE.

When P4080 is used without SCE 
to control intercore interference, and 
seven of the eight cores were used, 
core 0 task’s worst-case finishing 
time (WCFT) increased 600 percent 
relative to its WCFT when only one 
core was used. In addition, random 
interference caused WCFT to peak 
when seven of the eight cores were 
used, not when all eight were used. 
This counterintuitive pattern makes 
it hard to determine the worst-case 
scenario needed to compute WCET(m) 
and complete certification.  

Results from sample scenario
Figure 6 shows the system-wide sched-
uling solution from one of our more 
comprehensive experiments involving 
four tasks and three cores. WCET(3) 
denotes the use of only three cores, 
core 0 represents the I/O core, and 
cores 1 and 2 are the application cores. 
Following our SCE methodology, we 
first applied PALLOC to ensure that 
each core had a private set of DRAM 
banks. We then allocated portions of 
the last-level shared cache evenly for 
each core, partitioned memory-bus 
bandwidth evenly using MemGuard, 
and applied the HOS heuristic to find 
an I/O scheduling solution. 

Figure 6 shows how different SCE 
techniques integrate. Colored lock-
down is performed at the beginning 
of each partition instance. MemGuard 
and PALLOC are statically configured 
to evenly partition DRAM resources 
among cores. Finally, I/O operations 
are globally serialized over the I/O 
core. Each physical input precedes the 
corresponding I/O core input oper-
ation, and each physical output fol-
lows the corresponding I/O core out-
put operation. Similarly, each I/O core 
input operation precedes the parti-
tion instance that consumes the cor-
responding data, and each I/O core 
output operation precedes the parti-
tion instance that produces the corre-
sponding data.

For example, in core 1, IMA parti-
tion 1 has a period of 18 and a reserva-
tion of 6 time units, while IMA partition 
2 has a period of 36 and a reservation of 
12 time units. After colored lockdown, 
inside partition 1, task 3 has period 18 
and WCET(3) 3; task 4 has period 36 and 
WCET(3) 3. Similarly, tasks 1 and 2 are 
running inside partition 2 with periods 
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36 and 72, respectively, and a WCET(3) 
of 8 and 3. 

Making real-time computing ef
ficient and predictable on mul-
ticore computers can greatly 

benefit many real-time applications, 
such as avionics, automotive, and med-
ical-device control. It also enables avion-
ics certification that has been problem-
atic except when only using one core in 
a multicore chip. SCE provides a way to 
use established single-core estimation 
techniques to handle difficult schedula-
bility analyses with multiple cores. We 
have already identified many areas for 
future work, including the certification 
of SCE itself.11 An integrated solution 
to address memory consistency mod-
els, real synchronization protocols, and 
cache coherence protocols would ben-
efit applications that must use multiple 

cores in parallel. Other topics for addi-
tional research are how to incorporate 
fault-tolerance mechanisms and address 
backward compatibility with existing 
software applications. 
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FIGURE 6. SCE solution for a three-core system running four tasks in which all SCE components are integrated.
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