
Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation

Abstract

The ever-increasing demand for high performance in the time-critical,
low-power embedded domain drives the adoption of powerful but unpre-
dictable, heterogeneous Systems-on-Chip. On these platforms, the main
source of unpredictability—the shared memory subsystem—has been
widely studied, and several approaches to mitigate undesired effects have
been proposed over the years. Among them, performance-counter-based
regulation methods have proved particularly successful. Unfortunately,
such regulation methods require precise knowledge of each task’s mem-
ory consumption and cannot be extended to isolate mixed-criticality
tasks running on the same core as the regulation budget is shared.
Moreover, the desirable combination of these methodologies with well-
known time-isolation techniques—such as server-based reservations—is
still an uncharted territory and lacks a precise characterization of possible
benefits and limitations. Recognizing the importance of such consoli-
dation for designing predictable real-time systems, we introduce MCTI
(Mixed-Criticality Task-based Isolation) as a first initial step in this
direction. MCTI is a hardware/software co-design architecture that aims
to improve both CPU and memory isolations among tasks with different
criticalities even when they share the same CPU. In order to ascertain
the correct behavior and distill the benefits of MCTI, we implemented
and tested the proposed prototype architecture on a widely available
off-the-shelf platform. The evaluation of our prototype shows that (1)
MCTI helps shield critical tasks from concurrent non-critical tasks shar-
ing the same memory budget, with only a limited increase in response
time being observed, and (2) critical tasks running under memory stress
exhibit an average response time close to that achieved when running
without memory stress.

1 Introduction

Time-critical embedded systems are at the center of a transformational
paradigm shift. Traditional embedded systems characterized by simple
microarchitectures with well-defined and predictable application workloads
are being phased out at an accelerating rate. Complex and architecturally
demanding applications are taking their place, supported by sophisticated
Multi-Processor System-on-Chip (MPSoC) with advanced microarchitectures,

1

Springer Nature 2021 LATEX template

2 MCTI: Mixed-Criticality Task-based Isolation

heterogeneous memory subsystems, and general- and special-purpose accelera-
tors. Notable examples of MPSoCs pushing the boundaries of horizontal scaling
to support high-performance embedded applications include the NVIDIA
Drive AGX Orin Anandtech (2019) and the Xilinx Versal Xilinx (2023). They
integrate up to 12 high-performance ARM cores, GPUs, accelerators, and a
large FPGA on a single low-power chip.

On these platforms, it is extremely challenging to ensure timing guaran-
tees, high utilization, and the absence of interference among safety-critical
workloads where applications have different levels of assurance. In fact, to
optimize size and power consumption on such platforms, the memory subsys-
tem (DRAM, memory controllers, and interconnect) is shared among cores
and accelerators, and while accessing memory, high-critical applications are
exposed to unpredictable interference from low-critical applications executing
on different cores.
Partitioning hypervisors in mixed-criticality systems. In the context
of mixed-critical systems, the need to integrate real-time workloads on a sin-
gle MPSoC, such as robotic applications with stringent real-time demands,
alongside best-effort applications like Linux-based logging or communication
systems, has prompted the adoption of hypervisors. Hypervisors have been
successfully used in industrial safety-critical contexts to isolate independent
workloads with different criticalities (e.g., SYSGO (2023)), as well as in the
research community due to their ability to enable heterogeneous Quality-of-
Service (QoS) and to seamlessly enforce common real-time policies across its
guest OSs (e.g., Martins et al (2020)).
Memory regulation via performance counters. Among these policies are
performance-counter-based memory regulation techniques (PMC-regulation),
which have been proposed over the last decade to control (or at least mitigate)
the degree of inter-core interference and shield high-critical applications (tasks)
from less critical ones. PMC-regulation implements core-level regulation and
limits the maximum bandwidth a CPU can request at a millisecond-scale gran-
ularity and up to a microsecond-scale (Zuepke et al (2023)). Memguard by Yun
et al (2016) has received considerable attention as it can be fully implemented
in software and only relies on widely available standard performance counters
(PMC) (e.g., Sohal et al (2020); Yun et al (2017); Modica et al (2018); Schwa-
ericke et al (2021); Zuepke et al (2023)). Hypervisor-based PMC-regulation
has been implemented at both research and industrial levels (Modica et al
(2018); Dagieu et al (2016); Green Hills Software (2023)) to extend hyper-
visors’ isolation capabilities to MPSoC’s memory subsystem. Implementing
PMC-regulation at the hypervisor level is a logical choice as it makes PMC-
regulation transparent to the OS level, allowing the use of potentially different
operating systems (e.g., general purpose and real-time) while ensuring proper
control of memory bandwidth.
Bandwidth-based CPU provisioning. At the same time, when consol-
idating complex applications with mixed-criticality requirements onto high-
performance MPSoCs with light Real-Time Operating Systems (RTOS) and

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 3

rich Operating Systems (OS)—such as Linux—CPU provisioning remains a
fundamental aspect. Here, server abstractions (e.g., the Constant Bandwidth
Server, or CBS for short) (Abeni and Buttazzo (1998)) are well-known and
widely used, with the SCHED DEADLINE (Lelli et al (2016)) policy being the
most popular example among researchers. Note that even if this work consid-
ers only CBS, thanks to the hypervisor, our architecture would allow different
OSs to use different types of CPU server regulation.
The challenge of joint CPU and memory budgeting. Combining OS-
transparent memory regulation with CBS-based task isolation is desirable.
Thus, we envision a mixed-criticality real-time system where server-based pro-
visioning is enacted at the OS level while PMC-regulation is employed to
mitigate main memory contention across multiple CPUs at the Hypervisor
level. However, the interplay between server-based CPU scheduling strategies
and PMC-regulation has received little attention. As we discovered, the lack
of coordination between the two mechanisms leads to poor handling of mem-
ory overload conditions. These conditions correspond to all scenarios where,
despite being eligible for scheduling at the OS level, high-criticality tasks are
blocked by the memory bandwidth regulation implemented in the hypervisor.

This article explores this issue in detail and presents a prototype archi-
tecture called “Mixed-Criticality Task-based Isolation” (MCTI) that aims to
address the research gap related to memory overload conditions. The archi-
tecture has been developed to leverage existing techniques and is specifically
designed to ensure the isolation of high-criticality tasks in mixed-criticality
soft real-time systems. In summary, our main contributions are:

• The characterization of the interplay between OS-level CPU regulation and
hypervisor-level PMC-regulation.

• The identification of problematic memory overload conditions that might
prevent critical tasks from being executed despite having a sufficient CPU
budget.

• The proposal of the MCTI protocol to overcome such scenarios and the
design of a practical architecture to evaluate the protocol’s behavior.

• The implementation of MCTI architecture on a commercial platform.
• An extensive evaluation of the proposed architecture with a detailed anal-
ysis of its pros and cons. Notably, the evaluation shows that the prototype
provides, on average, the same response time as if the task is running in
isolation.

• A detailed discussion on the difficulty of adequately configuring the pro-
totype. Using the existing tools available to the community, we outline its
current limitations.

In the remainder of the paper, Sec. 2 and Sec. 3 introduce the necessary back-
ground and propose a motivating example. Sec. 4 presents the system model.
Sec.5 presents MCTI architecture and discusses the challenges of the analysis.
Sec. 6 describes a concrete implementation of MCTI architecture, Sec. 7 and

Springer Nature 2021 LATEX template

4 MCTI: Mixed-Criticality Task-based Isolation

Sec. 8 evaluate the implementation and discuss benefits and trade-offs. Sec. 9
presents related works, while Sec. 10 concludes the paper.

2 Background

MCTI architecture leverages an integrated HW/SW design whose main
concepts are briefly presented below.

Server-based reservation Servers abstractions are well-studied reservation
mechanisms to ensure isolation among tasks with different criticalities in the
time domain. In this paper, we focus on the Constant Bandwidth Server
(CBS) as formulated by Abeni and Buttazzo (1998) and use its Linux Ker-
nel implementation by Lelli et al (2016) (SCHED DEADLINE policy). This policy
guarantees that the contribution of each server to the total utilization of the
system is constrained by the fraction of CPU time assigned to each server,
even under the presence of (time) overloads.

PMC-regulation Likewise, PMC-regulation ensures isolation among CPU
cores1 in the memory domain. We focus on software-based techniques origi-
nating from Memguard Yun et al (2016) that have been successfully evaluated
in previous studies by Yun et al (2017) and Kim and Rajkumar (2016). These
techniques rely on broadly available performance counters to regulate the
bandwidth generated by each CPU. MCTI leverages CPU-level PMC-based
isolation realized at the hypervisor level and implemented within Jailhouse.
Specifically, MCTI relies on a publicly available prototype implementation of
Jailhouse2 that integrates a Memguard-based regulation Yun et al (2016), and
that has been adopted in several previous works from Schwaericke et al (2021);
Sohal et al (2020); Tabish et al (2021).

Cache-Partitioning Isolation of workloads deployed on CPUs sharing a last-
level cache (LLC) can be achieved using cache-partitioning techniques. The
objective is to ensure that addresses of independent tasks (or CPUs) are
assigned to different cache sets and cannot interfere by evicting one another’s
cache lines. Cache-coloring is a well-studied software-based methodology that
realizes cache-partitioning at the operating system (OS) or hypervisor level
via manipulation of the virtual to physical address translation (e.g., Mancuso
et al (2013); Kim and Rajkumar (2016); Kloda et al (2019)). MCTI leverages
the cache-coloring implementation available in the prototype implementation
of Jailhouse used for PMC-regulation.

PS/PL Architectures The increasing commercial availability of het-
erogeneous MPSoCs (such as Xilinx’s UltraScale+ Xilinx (2022), Intel’s
Stratix Intel, Corp. (2016), Microsemi’s PolarFire Microsemi — Microchip
Technology Inc. (2020)) that tightly integrate traditional Processing Systems
(PS) with a Programmable FPGA-based Logic (PL) has led to novel paradigms
in the management of the interconnect between CPUs and main memory.
In the Programmable Logic in the Middle (PLIM) introduced by Roozkhosh

1In this article, we use the terms “CPU” and “CPU core” interchangeably.
2https://github.com/rntmancuso/jailhouse-rt

https://github.com/rntmancuso/jailhouse-rt

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 5

and Mancuso (2020), the PL-side is not simply used as a recipient for hard-
ware accelerators but as an intermediate step on the data path linking the
CPUs and DRAM, enabling fine-grained inspection and control on every sin-
gle memory transactions. Scheduler In the Middle (SchIM) by Hoornaert et al
(2021) follows a similar approach to re-order CPU-originated transactions and
enforce a given memory-transaction scheduling policy. As discussed in Sec. 5,
MCTI extends SchIM by enabling a criticality-triggered dynamic control of
the memory-transaction scheduling policies.

3 Interplay of CBS and PMC-regulation

Under PMC-regulation, each CPU is regulated by a server-like mechanism
and is assigned a maximum memory budget that is periodically replenished.
If the budget is exhausted, the CPU remains idle until the memory budget is
recharged. The budget value is determined using PMCs that monitor (directly
or indirectly) the memory transactions performed by the CPU. For example,
the number of last-level cache refills performed by the CPU is often used as a
proxy for the extracted main memory bandwidth.

Unfortunately, the desirable isolation properties of PMC-regulation can-
not be extended to applications with different criticalities running on the
same CPU since only one single bandwidth threshold can be defined for each
CPU. For PMC-regulation, this limitation is unavoidable and directly rooted
in the capability of current performance counters (PMCs). Worse, this limita-
tion adds to the technical difficulties of precisely characterizing the memory
behavior of complex (preemptive) tasks executing on RTOSs.

To date, to cope with this limitation, architects of safety-critical systems
have adopted designs that statically isolate criticalities across CPUs. Although
beneficial from an analysis and certification point of view, these designs cannot
leverage the full potential of MPSoC platforms as they must strictly separate
high-critical and low-critical tasks. This makes partitioning and priority assign-
ment more difficult and amplifies memory bottleneck problems for low-critical
tasks forced to share the same CPUs.

Combining CBS-based CPU scheduling and PMC-regulation to achieve
isolation in both time and memory domains is a logical choice. Enacting the
former at the OS level and the latter at the hypervisor level aims to reap the
benefits of a multi-layered architecture3. However, this approach results in a
lack of coordination between the two mechanisms. This leaves the system
incapable of handling memory overload conditions where the early depletion
of CPU-bound memory budget prevents a (critical) task from completing its
execution despite still having CBS-computation budget (see Sec. 4).

To better understand the key issues that MCTI addresses, consider the
conditions depicted in Fig. 1. Task τ0 is a low-criticality task, while τ1 is a
high-criticality one. In the time domain, both tasks are scheduled using CBS

3see Section 1

Springer Nature 2021 LATEX template

6 MCTI: Mixed-Criticality Task-based Isolation

(a) Standard PMC-
regulation, normal case.

(b) Standard PMC-
regulation, memory
budget depletion.

(c) MCTI regulation,
with interconnect policy
switch.

Fig. 1: Example scenario of a PMC-regulated CPU, where an increased mem-
ory consumption causes τ1 to miss its deadline.

regulation that absorbs variations of the execution time of τ0 without impact-
ing τ1 (Abeni and Buttazzo (1998)). In the memory domain, the bandwidth
is regulated with PMC-regulation. Being a scarcer resource than CPU time,
memory budgets are assigned based on the standard memory behavior (e.g.,
obtained via profiling) of the tasks executing on a CPU to avoid under-utilizing
memory. Deviations from the normal behavior are accounted for using fixed
safety margins, which is a common practice in industrial applications.

Under normal conditions (Fig. 1a), τ0 completes its execution at t1, and τ1
receives sufficient memory budget in the interval [t1, t2] to meet its deadline at
t3. Instead, in Fig. 1b, in response to a change in the input type, τ0 consumes
more memory budget.4 Note that the deadline of τ0 is earlier than the one of
τ1, and τ1 starts executing at t′1. Although the time interval [t′1, t

′
3] would be

sufficient for τ1 to complete on time, at t′2 the memory budget of the CPU
is depleted, and τ1 must wait until t′4 to resume execution, thus missing its
deadline.

The key idea behind MCTI is to prevent τ1 from being suspended if it still
has sufficient time budget to complete its execution, even if the memory budget
of the CPU has already been depleted. Indeed, this condition corresponds to
a memory overload. As depicted in Fig. 1c, at time t′′2 , MCTI detects that a
high-criticality task is running and switches (at hardware level) the fairness-
based default memory policy of the interconnect to prioritize memory traffic
coming from the CPU where τ1 is running. Thus, τ1 can complete its execution
in [t′′2 , t

′′
3] and meet its deadline at t′′4 .

Although Fig. 1 represents a pathological case, due to the difficulties in
precisely estimating the time and memory behavior of applications, these con-
ditions can occur in practice for seemingly well-understood workloads. For
example, this is the case for vision-based algorithms (Venkata et al (2009))
operating on input vectors with identical sizes but different content seman-
tics. As shown in Fig. 8 and discussed in Sec. 7, selecting a single and safe
regulation bound is impossible without severely under-utilizing the system.

4To simplify the explanation, we ignore that τ0 might also take longer to complete its execution.

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 7

Table 1: Notation summary

Category Notation Description

Architecture m Amount of general purpose CPUs available
CPUk kth CPU of the system (k ∈ [1, ...,m])
lmax Highest level of criticality handled by the system

Task n Amount of sporadic mixed-criticality real-time tasks
Γ Set of sporadic mixed-criticality real-time tasks
τi ith task of the system’s task set Γ (τi ∈ Γ, i ∈ [1, ..., n])
Ci τi worst case execution time
Di τi relative deadline
Ti τi period
li τi criticality (li ∈ [1, . . . , lmax])

Server Si ith task CBS server (i ∈ [1, . . . , n])
Qci Si computation budget
Pi Si computation period
Ui Si utilization (Ui = Qci/Pi)

PMC-reg. Qmk CPUk memory budget (memory transactions; k ∈ [1, ...,m])
M Memory regulation period

Bk CPUk memory bandwidth (Bk =
Qmk
M

, k ∈ [1, ...,m])

Interconnect π Run-time configurable interconnect policy (π ∈ {Fair, FP})
Rk Bus priority of CPUk when π = FP

Interestingly, when considered alone, the individual regulation mechanisms
employed by MCTI are not sufficient to achieve the same degree of isolation
and flexibility. (1) Perhaps the most straightforward solution would be to over-
provision the per-CPU memory bandwidth. (2) On the other hand, statically
prioritizing CPUs when they access main memory (e.g., Hoornaert et al (2021))
might lead to starvation for the low-priority CPUs and prevent them from run-
ning non-critical, memory intensive tasks entirely. (3) Dynamically switching
the bus priority depending on the criticality level of the running tasks defeats
the isolation properties of PMC-regulation and might prevent low-critical tasks
from running when the system is not subject to memory overload.

4 System Model and Regulation Policy

Overall System. The system comprises m general-purpose CPUs. Each
CPUk (k ∈ {1, . . . ,m}) has a private L1 instruction and data cache and shares
a unified L2 cache (last-level cache—LLC) with all other CPUs. Cacheable
memory is managed by the LLC using a write-back, write-allocate policy,
and a pseudo-random replacement policy. The main memory features a single
DRAM controller with an interleaved multi-bank configuration. Any access
to the LLC resulting in a miss creates a read transaction toward the DRAM
controller and the attached DRAM.

Springer Nature 2021 LATEX template

8 MCTI: Mixed-Criticality Task-based Isolation

Tasks, Task set, and Partitions. We consider a set Γ of sporadic mixed-
criticality real-time tasks. Each task τi ∈ Γ, i ∈ {1, . . . , n} is defined by a tuple
⟨Ci, Di, Ti, li⟩, where Ci is the worst-case execution time, Ti is the minimum
inter-arrival time, Di is the (arbitrary) deadline, and li is the criticality level.
li conveys how critical a task is in terms of, for example, certification-related
assurance level (RTCA Inc. (2011)). We assume li ∈ {0, . . . , lmax}, where lmax

is the highest criticality level and 0 means the task is not critical. At any instant
t, the deadline of the task running on CPUk is given by the function Dk(t)
(Dk : R+

0 → R+
0), while the criticality of the task running on CPUk at time t

is given by the function Lk(t) (R+
0 → {0, . . . , lmax}). At time t, a critical task

τi has Lk(t) > 0. The tasks (Γ) are partitioned among CPUs in task sets noted
Γk, and their execution on each CPU is controlled by a CBS server. Each task
τi is associated with a server Si. Each server Si, i ∈ {1, . . . , n} is characterized
by a tuple ⟨Qci, Pi⟩, where Qci is the computation budget and Pi the period.
The CBS policy ensures that each server’s utilization (time bandwidth) Ui =
Qci/Pi remains constant over time. The function Gk(t) (R+

0 → {true, false})
indicates whether a CBS server on CPUk is eligible for execution at time t.

PMC-regulation. The system features a PMC-based regulator to monitor
and limit the memory bandwidth that a CPUk can consume. PMC-regulation
assigns each CPUk a memory bandwidth Bk, which is enforced by allowing at
most Qmk read transactions within a period M . The memory budget depletes
while CPUk performs memory transactions. The function Ak(t) (R+

0 → N0)
associates a CPUk with its instantaneous memory budget at time t. In this
paper, we assume that all CPUs have the same replenishment period M . In
other words, the CPUs’ replenishment periods are assumed (1) to have the
same duration and (2) to be synchronously aligned (as presented in the original
Memguard article by Yun et al (2013)). PMC regulators divide the system
life-cycle in two categories: regulated and stalled. When regulated, a CPUk

runs and consumes its memory budget (Ak(t) > 0). When Ak(t) = 0, CPUk is
stalled. Regardless of the CPUs’ phase, at the start of each regulation period
M all memory budgets are restored (∀p ∈ N0 : Ak(pM) = Qmk) and stalled
CPUs become again regulated.

Programmable Interconnect. The CPUs are connected to main memory
via a run-time configurable interconnect. The interconnect can discriminate
and arbitrate CPU’s memory transactions using a policy π, which can be either
Fair or Fixed Priority (FP). The Fair policy aims to balance each CPU’s
bandwidth, while the FP policy assigns each CPUk a unique bus priority Rk

(k ∈ {0, . . . ,m}) and schedules memory transactions accordingly. The function
MaxR(t) (MaxR(t) : R+

0 → {0, . . . ,m}) indicates the CPU with the high-
est bus priority at instant t, while MinR(t) (MinR(t) : R+

0 → {0, . . . ,m})
indicates the CPU with the lowest bus priority at instant t.

Memory overload. A memory overload identifies those situations where, due
to the depletion of the CPU memory budget, critical tasks are stalled despite
being still eligible for execution. We note that, although a CBS server is used in

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 9

this paper, the definition of a memory overload does not depend on a specific
choice of server regulation. Specifically:

Definition 1 For a critical τi (li > 0), a memory overload occurs at toverload if
Ak(t

overload) = 0 and Gk(t
overload) = true.

MCTI protocol. To enforce the regulation of the system, MCTI’s protocol
relies on the following rules:

1. The system’s life cycle is divided into a succession of memory regulation
periods M .

2. At the start of each M :

• each CPUk in the system has its memory budget replenished (∀k ∈
{0, . . . ,m},∀p ∈ N0 : Ak(pM) = Qmk) and

• the interconnect policy is set to Fair (π = Fair).

3. While Gk(t) ∧ Ak(t) > 0, CPUk runs regulated and consumes its memory
budget.

4. If Gk(t) ∧ Ak(t) = 0 ∧ Lk(t) = 0, CPUk is stalled until the start of the
next memory regulation period.

5. (Memory Overload) If Gk(t
overload) ∧ Ak(t

overload) = 0 ∧ Lk(t
overload) > 0,

the interconnect policy is set to fixed-priority (π = FP), Rk is set according
to the following property (Prop. 1), and CPUk can continue to execute the
task scheduled at time t with CBS regulation.

6. If ¬Gk(t), CPUk is idle.

Property 1 (Bus priority assignment). When any CPUk is in a memory
overload, bus priorities are assigned according to the criticality and deadline
of the critical tasks.

∀t ∈ {R+
0 | Gk(t) ∧Ak(t) = 0 ∧ Lk(t) > 0},∀k ∈ {0, . . . ,m},∀z ∈ {0, ...,m |
(Lz(t) > Lk(t)) ∨ ((Lz(t) = Lk(t)) ∧ (Dz(t) < Dk(t)))} : Rz > Rk

(1)

Note that rules 1 to 4 describe the budget accounting of a typical PMC
regulator such as Memguard. It is the introduction of rule 5 that enables the
handling of memory overload situations. Whenever Ak(t) > 0 (e.g., every M)
or Lk(t) = 0, CPUk is not in a memory overload situation anymore, and it
falls back to the usual PMC regulation mechanism (rules 1 to 4).

In the example illustrated by Fig. 1c, rules 1 to 4 are being used to regu-
late the system’s memory bandwidth from t′′0 to t′′2 . Because of τ0’s increased
memory consumption, a memory overload occurs at t′′2 . Henceforth, rule 5 is
applied until the start of the subsequent memory regulation period at t′′6 (rule
2).

Springer Nature 2021 LATEX template

10 MCTI: Mixed-Criticality Task-based Isolation

Fig. 2: Layered architecture of MCTI.

5 Architecture

As depicted in Fig. 2, MCTI adopts a layered architecture with five layers rang-
ing from application software level to hardware control of the main memory.
The CPU regulation is completely implemented in software at the OS level,
while memory regulation implementation is distributed across the hypervisor
level and the hardware-based control of the data link to the main memory. Fur-
thermore, lightweight communication between layers is required to propagate,
for example, information on the criticality of the currently executing tasks.

5.1 CPU Regulation

Real-time tasks execute at the application level on top of an OS with real-time
capabilities. The OS supports a server-based scheduling policy (e.g., Buttazzo
(2011)) that provides isolation among the tasks. We use Linux as OS to pro-
totype our architecture as it has been successfully employed in many soft
real-time contexts (e.g., Cinque et al (2022)) and constitutes a solid prototyp-
ing platform due to its widespread adoption. In Linux, the SCHED DEADLINE

scheduling policy realizes a CBS regulation that fulfills the requirements of our
architecture. We associate each task τi to a server Si and define its maximum
utilization Ui. Each Si is statically assigned to a CPUk.

5.2 Memory Regulation

Memory regulation is the most complex part of our architecture and consists
of two layers, one implemented at the hypervisor level and one implemented
at the hardware level (Fig. 2).

5.2.1 PMC-regulation and Memory Overload Detection

The hypervisor implements a PMC-regulation mechanism that limits the max-
imum number of memory transactions that the CPUs can issue to the main
memory. The choice of a hypervisor to realize PMC-regulation is natural
given the widespread adoption of hypervisors in safety-critical contexts to
isolate independent workloads with different criticalities. Implementing PMC-
regulation at the hypervisor level makes the PMC-regulation transparent to the

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 11

Fig. 3: Overload-aware Memguard Finite State Machine of CPUk running τi.
Additions to the standard Memguard FSM are drawn with dashed contours.

OS level, and it allows using different OSs while ensuring memory bandwidth
control. Furthermore, even if this work considers only CBS, our architecture
would allow different OSs to use different types of CPU server regulation.
Hence, separating the PMC-regulation level from the CPU regulation level is
a clean architectural choice.

We consider Memguard by Yun et al (2016) as PMC-regulation to enforce a
target maximum bandwidth Bk. The latter controls the amount of transactions
(up to a maximum Qmk) emitted by a CPUk within a time frame M . The
bandwidth Bk is enforced by stalling CPUk until the next M whenever Qmk

is depleted. Figure 3 illustrates the default state (Running) of the Memguard
state machine and the transition to Stop when the memory budget Qmk is
depleted.

MCTI’s rules (see Sec. 4) are accommodated into Memguard’s finite state
machine by adding a new state (Overload) that captures memory-overloads
situations. CPUk enters the Overload state if its budget is depleted (Qmk = 0)
and its currently running task is critical (li > 0). Otherwise, it enters the Stop
state. When one of the CPU enters the Overload state, the shared interconnect
policy is switched to fixed-priority (π = FP). The bus priority of each CPU is
determined based on the criticality of its running task: the higher the Lk(t),
the higher the Rk. If multiple CPUs run a task with the same criticality level,
higher Rk is given to the CPUk whose critical task has a closer deadline
(Prop. 1). This strategy facilitates the completion of the most urgent and
critical tasks, potentially penalizing other critical tasks running in parallel. We
note that without intervention, critical tasks will miss their deadlines when a
memory overload occurs. When the (synchronous) replenishment period (M)
is reached, budget Qmk is replenished, and CPUs return to Running state. If
the Running state is re-entered from the Overload state upon replenishment,
π is switched back to Fair. Note that switching the policy to fixed priority
does not cause other CPUs to transition to an Overload state, meaning that
Memguard rules still apply for such CPUs.

Springer Nature 2021 LATEX template

12 MCTI: Mixed-Criticality Task-based Isolation

Fig. 4: Abstract overview
of the SchIM design

Fig. 5: MCTI with memory overload

The Reset state in Fig. 3 does not belong to the regulation and is entered
asynchronously when the system is subject to a reboot to restore standard
unregulated parameters.

5.2.2 Dynamic FP/Fair Interconnect Policy

The lowest part of the memory regulation realized by MCTI is implemented
in hardware leveraging the architecture of SchIM Hoornaert et al (2021).

As in the original article, the SchIM module is implemented on the PL side
and acts as an intermediate step on the data path between CPUs and DRAM.
As shown in Figure 4, each CPU is associated with a queue storing the memory
transactions directed to DRAM. Under heavy traffic, the queues are being
progressively filled, creating contention within the module and allowing SchIM
to schedule the transactions as desired by the system. Scheduling is enacted
by deciding which queue’s content is forwarded to the target memory and is
orchestrated by the hardware transaction schedulers (depicted as FP & Aging
Sched. and multiplexer modules in Fig. 4). The scheduler module defines a set
of hardware schedulers (e.g., Fixed-Priority, TDMA) implemented at design
time and statically available on the PL at system boot.

This work extends the original SchIM by enabling the dynamic choice of
a specific scheduler at run-time and by adding the Fair scheduling policy.
Specifically, a scheduler can be selected by operating on a set of registers
accessible by the whole system through a memory-mapped configuration port
(Configuration Port in Fig. 4). In addition to this configuration link, our SchIM
implementation features two input links for CPU-originated transactions (each
one being shared by two CPUs) and one output link to the DRAM.

It should be noted that to-date SchIM-like approaches are the only viable
way to enable fine granular scheduling of memory transactions on a COTS
platform. In fact, it’s unclear whether even advanced—and not yet fully
available—QoS solutions such as MPAM ARM (2022) will be able to provide
the same granularity and configurability levels.

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 13

5.3 Open Challenges

Schedulability analysis of the presented architecture with respect to its sys-
tem model (Sec. 4) poses significant challenges. Given the desired (by design)
independence of OS, hypervisor, and interconnect layers, an overhead-aware
schedulability analysis that considers the combined effects of all three layers
is challenging. In particular, to the best of our knowledge, the following three
main sources of overhead cannot be easily factored in existing overhead-aware
schedulability analysis.
Hypervisor-based PMC-regulation overheads. At the OS level, standard
techniques (Brandenburg (2011); Buttazzo and Bini (2006)) can be adopted to
account for OS, caches, and interrupt overheads in CBS-schedulability anal-
ysis. Unfortunately, these techniques cannot be easily extended to consider
the impact of PMC-regulation overheads generated at the hypervisor level.
Hypervisor-based PMC-regulation is by design, transparent to the OS lay-
ers. An analysis of PMC-regulation overheads must therefore be conducted at
both hypervisor and OS level and must consider the combined impact of both
CPU-based and task-based overheads. We are unaware of an overhead-based
schedulability analysis that could be directly applied to our MCTI architecture.
Interconnect-based overheads. When a critical task enters a memory over-
load, MCTI updates the priority of the interconnect to privileged memory
transactions issued by the “most critical” CPU (Prop. 1). While the inter-
connect operates with π = FP , the tasks executing on the CPUs inevitably
experience slowdowns that depend on the assigned interconnect priorities and
their memory consumption. Integrating such overheads is challenging even for
a non-tight analysis where all {CPUk ∀k ∈ {0, . . . ,m}} \ {CPUMaxR(t)} are
assumed to be as penalized as CPUMinR(t).

Techniques such as Yun et al (2015) do not consider priority-aware inter-
connects but could nonetheless be used as a starting point for the analysis
of MCTI. Similarly to hypervisor-level PMC-regulation overheads, integrating
interconnect-based overheads into a schedulability analysis will be part of our
future work.
Criticality-inversion. In addition to interconnect- and hypervisor-PMC-
overheads, our MCTI architecture includes another source of pessimism rooted
in the lack of fast communication between OS and hypervisor levels. In fact,
MCTI does not have an expensive OS-to-hypervisor communication channel
(e.g., hypercalls, Siemens AG (2023); Martins et al (2020)) to signal the com-
pletion of critical tasks that entered a memory overload. This choice helps
reduce the high cost of hypercalls and improves the (common) case where
memory overloads occur close to a memory replenishment period.

Note that this source of pessimism is an artifact specific to MCTI’s archi-
tecture. The implementation-agnostic rules listed in Section 4 do not lead to
this condition.

Nonetheless, when considering worst-case schedulability analysis, the effect
of criticality inversion at the interconnect must be accounted for the complete

Springer Nature 2021 LATEX template

14 MCTI: Mixed-Criticality Task-based Isolation

duration of a replenishment period M , and their impact cannot be tightly lim-
ited to the duration of a memory overload. We refer to this indirectly-induced
overhead as criticality-inversion, since, after a memory overload occurs, the
actual interconnect priorities and policy can only be restored at the next
replenishment period.

6 Implementation

Given the architecture requirements (see Sec. 5), the target platform of this
work is a System-on-Chip featuring a tightly integrated FPGA. The selected
platform instance is Xilinx’s UltraScale+ ZCU102 Xilinx (2022) that features
four ARM Cortex-A53 CPUs with a shared 1 MB last-level cache, 4 GB
DRAM, and a tightly coupled FPGA. The operating system that realizes the
CPU regulation mechanism is a Linux system with a modified kernel.5 We
extend the Jailhouse hypervisor6 to integrate Memguard with our memory
overload logic and to interact with our dynamic hardware memory scheduler.
The overview of the detailed architecture of MCTI is presented in Fig. 5. This
section presents 1) the software and hardware modifications required to enforce
the regulation on the system, 2) the memory organization and layout, and 3)
the benchmark framework used for the evaluations.

6.1 CPU and Memory Regulation

Because the regulation is enforced at three distinct levels, appropriate com-
munication mechanisms have been defined to exchange the states controlling
the regulation. Specifically, the Memguard logic (at the hypervisor level) plays
a central role: it monitors the memory budgets of the CPUs, detects possi-
ble memory overloads, reads from the OS the criticality and deadline of the
currently running task, and drives the bus policy via SchIM when required.

6.1.1 SCHED DEADLINE

As mentioned in Sec. 5, we associate each task τi to a CBS server and define
its maximum utilization via the runtime (Qci) and period (Pi) parameters.
The implementation of CBS in Linux makes tasks not eligible for execution as
soon as their budget has depleted, even when the CPU would otherwise be idle.
This behavior has practical implications since assigning a large server period Pi

would cause τi to be suspended for a long time. We selected Pi = 1 ms, which
provides a good compromise between the granularity of the regulation and
blocking time (the workload under analysis—Sec. 7—has runtime in the range
of seconds) and matches the period value of Memguard (see Section 6.1.2). The
implementation of CBS being flexible w.r.t. the period, we set this value as it
is reasonable for both the CBS with the PMC regulation (see Section 6.1.2).
We extended the structure sched attr to accommodate the criticality li of

5Version 5.4, from https://github.com/Xilinx/linux-xlnx.git
6Omitted for review

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 15

the task (implicitly 0, i.e., non-critical) and disabled the “rt throttling” to
statically pin tasks to CPUs.

The communication with the hypervisor level is realized via a cached,
per-CPU shared memory page written by SCHED DEADLINE and read by
the hypervisor. When a SCHED DEADLINE task is selected (de-selected) for
scheduling, its criticality and current deadline are stored (cleared) in the page.

6.1.2 Overload-aware PMC Regulation

The PMC Regulation (Memguard) implementation in Jailhouse has been
extended with the memory overload logic presented in Sec. 5.

Specifically, when the memory budget of a CPU is depleted and the CPU
should be stalled, the overload-aware logic reads the criticality and deadline of
the current task on the CPU as propagated by Linux. If the task is critical, the
Overload state (see Fig.3) is entered, and a change in the bus policy is com-
municated to SchIM. The priorities on each CPU are determined by checking
(for all CPUs) the criticality of each running task and breaking same-criticality
chains using the deadlines of the tasks. Upon reception of the synchronous
replenishment PMC-regulation interrupt, the memory budget of each CPU is
restored, and the bus policy is switched back to Fair. The implementation
overhead w.r.t. the standard Memguard implementation is minimal, and it only
consists of reading m criticality and deadline values. In particular, by using
a synchronous replenishment period, no additional interrupts or hypercalls
are required. Previous studies have shown that selecting very short replenish-
ment periods might cause excessive overheads (e.g., Schwaericke et al (2021);
Zuepke et al (2023)). Other studies by Saeed et al (2022) and Yun et al (2013)
have used a regulation period of 1 ms. Hence, we used a regulation period
M = Pi = 1 ms.

6.1.3 SchIM

The SchIM design from Hoornaert et al (2021) has been extended to add the
features discussed in Sec. 5 and to achieve better raw performance. Specifi-
cally: (1) the frequency has been set to 300 MHz; (2) the amount of pipeline
stages in the architecture has been reduced; and (3) the supported memory
scheduling policies have been extended with the Aging policy that realizes our
Fair default scheduling policy.

The Aging policy schedules transactions in a fair way by giving priority
to the longest stalled transaction while under contention. The scheduler keeps
track of the age of the queues’ head and considers the oldest head for schedul-
ing. The age of a queue’s head is maintained by a counter increasing for each
clock cycle where a transaction stored in the queue’s head is stalled (i.e., larger
counter values mean older transactions). The counter is reset to zero when the
queue’s head transaction is scheduled or if the queue is empty.

Switching the bus policy for already set priorities is a fast activity that
requires around 40 clock cycles. The bus policy switch is triggered by writing

Springer Nature 2021 LATEX template

16 MCTI: Mixed-Criticality Task-based Isolation

(a) Input def1 (b) Input deg1 (c) Input nor1 (d) Input nor2

Fig. 6: Examples of input used for the SD-VBS suite

the desired scheduling policy and priorities (if required) on the mapped regis-
ters exposed by SchIM. As in Hoornaert et al (2021), only one bus policy can
be set at a time. In particular, a combination of Fair and FP for different
groups of CPUs is not supported.

6.2 Memory Organization and Layout

MCTI targets systems that isolate memory regions accessed by tasks of differ-
ent criticalities and avoid sharing memory between such tasks. Ensuring such
desirable isolation properties throughout the MCTI stack is not trivial as it
involves (1) per CPU memory range allocation, (2) address coloring, and (3)
DRAM partitioning. These properties are enforced and required by different
layers of the stack. For instance, within SchIM, transactions belonging to a
specific CPU are logically identified using the physical address of the memory
region that they target. Therefore, a precise mappings of critical tasks to spe-
cific memory address ranges has to be enforced to ensure that they will target
the appropriate memory regions. Appendix B describes the implementation
details of the mechanisms and provides an exhaustive technical description of
the several mappings and address translations.

6.3 Benchmarks

The natural targets for the proposed framework are memory-intensive tasks.
Hence, in all the experiments displayed in Section 7, memory-intensive bench-
marks from the San-Diego Vision Benchmark Suite (SD-VBS) Venkata et al
(2009) are used. Specifically, the RT-Bench (Nicolella et al (2022)) adapted
version of SD-VBS has been used to simplify the acquisition of performance
metrics.

As previously discussed, MCTI is helpful in scenarios where selecting spe-
cific memory-regulation levels can lead to real-time constraint violations or to
excessive under-utilization of the system. In order to generate such scenarios,
we consider multiple different inputs (def1, deg1, deg2, nor1, and nor2) for
the algorithms of the SD-VBS. Fig. 6 showcases a subset of the inputs con-
sidered. The key intuition is that when provided with different –but equally
sized– inputs, vision algorithms behave differently and can generate different

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 17

d
e
f1

d
e
g
1

d
e
g
2

n
o
r1

n
o
r2

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

o
rm

a
liz

e
d
 L

2
-r

e
fi
ls

/i
n
st

ru
ct

io
n
s

ra
ti

o disparity

d
e
f1

d
e
f2

d
e
f3

d
e
g
1

d
e
g
2

n
o
r1

n
o
r2

mser

d
e
f1

d
e
g
1

n
o
r1

n
o
r2

stitch

d
e
f1

d
e
g
1

d
e
g
2

in
v
1

ro
t1

ro
t2

ro
t3

texture
synthesis

d
e
f1

d
e
g
1

d
e
g
2

n
o
r1

n
o
r2

tracking

Fig. 7: Measured Bandwidth (L2-refills over instructions retired) for each
benchmark using various inputs. Each bar is normalized over the def1 input.

amounts of memory transactions. All experiments presented in Section 7 have
been carried out using this framework.

7 Evaluation

The evaluation of the MCTI architecture presented in Sections 5 and 6 is
divided into three phases. In the first phase (Sec. 7.1), we use the PMCs to
produce performance profiles of SD-VBS benchmarks under various inputs
and highlight their behavioral variations. In the second phase (Sec. 7.2), using
the insights gathered in the first phase, we identify benefits, limitations, and
trade-offs of the architecture in simplified scenarios where tasks contend for a
shared memory budget. Finally, in the third phase (Sec. 7.2.2), the proposed
architecture is further tested in high contention scenarios.

7.1 Benchmark Profiling

When dealing with systems using PMC-based memory regulation, system
designers must understand the exact memory requirements of each task in
order to assign an adequate memory budget. In this section, to facilitate the
analysis and profiling of each benchmark “in isolation”, we do not enforce any
PMC-regulation for the task under analysis (TUA). Moreover, we do not re-
route the memory accesses through SchIM. Nonetheless, each TUA runs in
isolation on a dedicated CPU and targets its pre-defined memory partition.

7.1.1 Behavioral variations

As previously discussed, we argue that the execution and the main-memory
bandwidth requirements of a benchmark vary depending on the input density.
To support this intuition, we run a set of experiments that measure the amount
of L2 refills and instructions retired for several benchmark-input pairs. These
PMC values respectively relate to the memory bandwidth and to the execution
time of a task.

Fig. 7 displays the ratio of variations in the amount of L2 refills, and
instructions retired that a given benchmark experiences. The results show the

Springer Nature 2021 LATEX template

18 MCTI: Mixed-Criticality Task-based Isolation

normalized ratio for different benchmarks w.r.t. the def1 input (leftmost, red-
bar). In the plots, each inset presents a benchmark, and the available inputs
are indicated on the x-axis.

Observation 1. For the selected set of benchmarks, variations in the input-
density have a direct and difficult-to-predict impact on the memory activity
and CPU activity.

In mser, both the instructions retired and the L2 refills vary considerably
for different inputs. This is especially the case for the deg1 input, where the
amount of L2 refills triples while the instructions retired increases by only a
marginal extent, resulting in a significant increase in the ratio. Conversely,
tracking experiences small L2 refill variations for different inputs but a high
variation of instructions executed, leading to lower ratios as represented by
deg2. Finally, benchmarks such as disparity and texture synthesis show
little-to-no variation.

7.1.2 Run-time memory requirements

Unless a task is known to have a constant memory utilization, calculating
its memory budget based on e.g., the total amount of L2 refills is bound to
incur over- or under-estimations. Thus, a careful investigation of the memory
accesses at run time is required to gain a better understanding. In the exper-
iments reported in this section, we measure the number of L2 refills within a
period of 10 ms throughout the execution of the TUA.

The outcome of this set of experiments for disparity, mser, and tracking

are displayed in Fig. 8a, Fig. 8b, and Fig. 8c, respectively. For each of these
figures, we report on the y-axis the amount of L2 refills measured every 10 ms
during the execution of the TUA (x-axis). The process is repeated for all inputs
available for the benchmark under test (mser has two additional inputs: def2
and def3).

Observation 2. The benchmarks do not display a linear temporal memory
access pattern (or constant memory consumption), making the problem of
assigning a tight and sufficient memory bandwidth difficult.

As already suggested by the experiments discussed in Sec. 7.1.1, the three
benchmarks display considerably different memory access patterns. On the
one hand, disparity has a relatively constant memory consumption despite
frequent oscillations. On the other hand, tracking and mser display higher
variations. This is especially the case for mser, which features three distinct
phases. A short but intense memory phase from 0 ms to 20 ms, followed by
a quieter phase until 200 ms, and finally, a new memory-intensive phase until
task completion. In addition, under certain inputs such as deg1, deg2, and
nor1, the duration and intensity of the phases drastically change. Likewise,

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 19

0 200 400 600 800 1000 1200 1400 1600
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

L2
 R

e
fi
lls

1e5

def1
deg1
deg2
nor1
nor2

(a) disparity

0 100 200 300 400 500 600 700 800
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L2
 R

e
fi
lls

1e5

def1
def2
def3
deg1
deg2
nor1
nor2

(b) mser

0 200 400 600 800 1000 1200
Time (ms)

0

1

2

3

4

5

6

7

8

9

L2
 R

e
fi
lls

1e4

def1
deg1
deg2
nor1
nor2

(c) tracking

Fig. 8: Progression of the memory consumption of disparity, mser, and
tracking for various inputs.

tracking behaves differently depending on the input, with shifted phases and
considerably different memory consumption (e.g., deg2).

Observation 3. The hard-to-predict impact of input density on bench-
marks complicates the assignment of bandwidth, leading to over- or under-
provisioning.

Fig. 8b showcases the challenges of setting a (single) static memory budget.
For example, a conservative budget of 100, 000 transactions per 10 ms would

Springer Nature 2021 LATEX template

20 MCTI: Mixed-Criticality Task-based Isolation

Table 2: Summary of the scenarios considered for the evaluation.

Abbrev. Scenario TUA TUA criticality Other cores

ScSt Single-core Single-task Runs alone Not critical
ScStC Single-core Single-task Critical Runs alone Critical
ScMt Single-core Multi-task W/ co-runner Not critical
ScMtC Single-core Multi-task Critical W/ co-runner Critical
McSt Multi-core Single-task Runs alone Not critical Run non-critical memory bombs
McStC Multi-core Single-task Critical Runs alone Critical Run non-critical memory bombs
McMt Multi-core Multi-task W/ co-runner Not critical Run non-critical memory bombs
McMtC Multi-core Multi-task Critical W/ co-runner Critical Run non-critical memory bombs

not prevent regulation during intense memory phases while still causing over-
provisioning for more than half of the execution time. The situation is even
worse if we consider the special case of deg2, as defining a proper regulation
for this input would lead to over-provisioning in most cases. Such challenges
present system designers with a hard choice between over-provisioning at
the expense of reduced bandwidth for the other CPUs or risking delays and
possibly deadline misses in the case of memory overloads.

7.2 MCTI Assessment

For the evaluation of MCTI, we use the prototype implementation described
in Sections 5 and 6. Specifically, memory transactions from the TUA are re-
routed through the PL side, and we enforce memory regulation via our modified
Memguard and CPU domain isolation via CBS. As previously mentioned, both
the Memguard regulation period and the CBS period are set to 1 ms. In
addition to the benchmarks (TUA), we also consider a co-runner stress task,
which generates pressure on the memory sub-system by purposely creating
LLC cache-line misses. The TUA and its co-runner run on the same CPU,
thus sharing a common memory budget but targeting different (isolated) cache
partitions.

In this Section, experiments will either focus on Single- or Multi-core sce-
narios listed in Table 2. In total, we consider up to eight different scenarios
whose traits are displayed in Table 3.

The SVM benchmark is particularly time-expensive and has been excluded
from the evaluation presented in this section. Furthermore, other benchmarks
(sift and multi ncut) either cause runtime errors or do not apply to different
inputs and have similarly been excluded from the results presented in this
section. We used the data from the experiments presented in Sec. 7.1.2 to guide
the selection of Memguard budgets and evaluate different CBS budgets (as %
of available CPU) to assign to the TUA.

In this section, we present the most interesting trends of the evaluation.
Thus, for disparity, mser, and tracking benchmarks, we focus on two Mem-
guard budgets (Table 4) that intercept: 1) the average memory consumption
of the benchmark (Intermediate) and 2) an average with a safety-margin cor-
responding to (max − average)/2 extra memory transactions (Full). We will

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 21

Table 3: Description of the experimental setups used in Section 7.2.

CPU0 CPU1 CPU2 CPU3
S
cS

t

Task τ0 × × × ×
Criticality l0 = 0 × × × ×
CBS Per. 1 ms × × × ×
CBS Util. U0 × × × ×

S
cS

tC

Task τ0 × × × ×
Criticality l0 = 1 × × × ×
CBS Per. 1 ms × × × ×
CBS Util. U0 × × × ×

S
cM

t Task τ0 τ1 × × ×
Criticality l0 = 0 l1 = 0 × × ×
CBS Per. 1 ms 1 ms × × ×
CBS Util. U0 1− U0 × × ×

S
cM

tC

Task τ0 τ1 × × ×
Criticality l0 = 1 l1 = 0 × × ×
CBS Per. 1 ms 1 ms × × ×
CBS Util. U0 1− U0 × × ×

M
cS

t

Task τ0 × τ2 τ3 τ4
Criticality l0 = 0 × l2 = 0 l3 = 0 l3 = 0
CBS Per. 1 ms × 1 ms 1 ms 1 ms
CBS Util. U0 × U2 U3 U4

M
cS

tC

Task τ0 × τ2 τ3 τ4
Criticality l0 = 1 × l2 = 0 l3 = 0 l3 = 0
CBS Per. 1 ms × 1 ms 1 ms 1 ms
CBS Util. U0 × U2 U3 U4

M
cM

t Task τ0 τ1 τ2 τ3 τ4
Criticality l0 = 0 l1 = 0 l2 = 0 l3 = 0 l3 = 0
CBS Per. 1 ms 1 ms 1 ms 1 ms 1 ms
CBS Util. U0 1− U0 U2 U3 U4

M
cM

tC

Task τ0 τ1 τ2 τ3 τ4
Criticality l0 = 1 l1 = 0 l2 = 0 l3 = 0 l3 = 0
CBS Per. 1 ms 1 ms 1 ms 1 ms 1 ms
CBS Util. U0 1− U0 U2 U3 U4

P
M
C PMC Per. 1 ms 1 ms 1 ms 1 ms 1 ms

PMC Bud. See Table 4 1.500.000

Table 4: Summary of the benchmarks’ bandwidths.

Benchmark disparity mser tracking

Full (Qmk) 9900 7250 3775
Intermediate 7800 4500 2250

Springer Nature 2021 LATEX template

22 MCTI: Mixed-Criticality Task-based Isolation

20.0 10.0 5.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(a) disparity-9900

20.0 10.0 5.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(b) tracking-3775

20.0 10.0 5.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(c) mser-7250

20.0 10.0 5.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(d) disparity-7800

20.0 10.0 5.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(e) tracking-2550

20.0 10.0 5.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(f) mser-4500

Fig. 9: Response time distribution for multiple scenarios with def1 input.

refer to the association of a benchmark and a PMC budget as benchmark-
budget. For instance, tracking with an associated memory budget of 2550
transactions is referred to as tracking-2550. In the multi-core category, the
co-running CPUs have been assigned a large Memguard budget to ensure that
they are able to pressure the bus as much as possible without being regulated.
For each benchmark, we attribute a CPU budget of either 20%, 10%, or 5% to
the TUA in Single-core scenarios and CPU budget of either 90%, 70%, 50%,
30% 20%, or 10% in Multi-core. In all Multi-task scenarios (i.e., ScMt , ScMtC ,
McMt , and McMtC), the co-runner is assigned the remaining CPU budget
(i.e., the total budget of the two equals 100%) as shown in Table 3.

We focus the discussion on the most representative subsets of the
benchmark-input-budget configurations. Such configurations have been
selected among the full list of performed experiments (see Appendix A).

7.2.1 Impact on response time in single-core scenario

In this section, we study the impact of the proposed memory overload handling
mechanism on the response time of the TUA. The set of experiments presented
uses the setup and rules used in the previous section. For the sake of clarity,
the benchmarks considered here only focus on the def1 input.

The measured response times of the TUA under the experimented con-
figurations and scenarios are displayed in Fig. 9. The figure is divided into
six sub-figures, each focusing on a benchmark-PMC-budget combination. The
average response times measured for the selected scenarios are grouped in bar
clusters. Each figure has three of them; one for each TUA’s CBS utilization

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 23

considered (x-axis). Within each cluster, the reported average response times
are normalized over the ScSt scenario to ease comparison.

Observation 4. For all tested configurations and regardless of the benchmark
under analysis, the ScStC scenario displays the lowest average response time
(Fig. 9).

In the ScStC scenario, the TUA is the only task running and, hence, it is the
only task that can deplete the memory budget. The TUA being critical, when-
ever a memory budget depletion occurs, an overload situation also occurs, and
our overload handling mechanism is triggered. Because triggering the overload
handling mechanism means that the regulation rules are bypassed, in ScStC ,
the TUA always bypasses the regulation, resulting in response times shorter
than the regulated baseline.

Observation 5. Under competition for memory budget, MCTI successfully
shields the TUA from the co-runners. On average, ScMtC response times are
equivalent to the TUA running in isolation. The extent of improvements varies
according to the benchmark (Fig. 9).

Fig. 9 shows that, in the majority of the ScMtC cases, the response times
are, on average, equivalent to ScSt , our baseline. tracking-3775, tracking-
2550, mser-7250, and mser-4500 are exceptions to this trend and show marginal
increases in average response times. Such trends occur in constrained scenarios
where the CBS utilization is set to 5%. Finally, we note that ScMtC is the only
scenario incurring fluctuations as shown by the standard deviations in Fig. 9.
We suspect that the cause of such fluctuations is the lack of high-precision
synchronization between the start of memory-regulation and CPU-regulation
periods between hypervisor and OS layers. Depending on the workload, the
misalignment between memory and CPU regulation can cause fluctuations in
the budget-depletion instants for both CPU or memory. In turn, this can result
in faster (slower) response times depending on the periodicity and memory
requirements of the workloads. We discuss possible tradeoffs and solutions in
Section 8.

7.2.2 Impact on the response time in multi-core scenario

This section assesses the response time under multi-core workload scenarios.
The setup for this evaluation is identical to the one used previously, except
that the other CPUs are active. In order to put pressure on the memory
subsystem, these co-running CPUs emit large read memory request sequences
in the direction of the PL side and, indirectly, towards the main memory.
These memory bombs are marked as non-critical and hence, should obtain a
low priority on the shared interconnect when memory overload occurs.

Springer Nature 2021 LATEX template

24 MCTI: Mixed-Criticality Task-based Isolation

Observation 6. In multi-core scenarios and well-provisioned memory bud-
get configurations, MCTI isolates the TUA from co-runners’ disturbances
(Fig. 10).

For the Full memory configurations (upper row in Fig. 10), we observe that
the measured response times for the McMtC scenario are equivalent to McSt ,
our baseline. There are only two exceptions: (1) an outlier in tracking-3775
with a CBS utilization of 50% and (2) a larger standard deviation in mser-4500
with a CBS utilization of 50%. We can even observe that for disparity-9900
and high CBS utilizations for tracking-3775 and mser-4500, the reported
average response times are equivalent to McStC .

Observation 7. In multi-core scenarios with constrained memory budget
configurations, the average response times measured vary (Fig. 10).

For constrained memory budget configurations (lower row in Fig. 10), a
majority of CBS utilizations yield average response times contained between
McSt (our target) and McStC (the best case scenario). On the other hand, for
low CBS utilizations, the average response times recorded forMcMtC increase.
For tracking-2550, McMtC ’s response times remain underneath McSt levels
(our target) but reach or slightly exceed for 30% and 10% CBS utilizations.
Likewise, mser-4500 has a McMtC response time in par with McStC (the
best case scenario) for a CBS utilization of 90% before equaling McSt (our
target) for 70% CBS utilization and, finally, reaching the levels of McMt (the
worst-case scenario) for the lower CBS utilizations.

Observation 8. In scenarios with constrained memory budgets, it is difficult
to predict the impact of MCTI on the response time, since it depends on the
benchmark and the CBS utilization.

Under multi-core scenarios, as emphasized by Observations 6 and 8, pre-
dicting the exact response times of the TUA is challenging due to three
influencing factors: the memory budget, the CBS utilization, and the bench-
mark’s nature (w.r.t. the memory load). Observation 8 suggests that a system
with a constrained memory budget is more sensitive to the settings of other
configuration parameters. Due to the unexpected influence of input density
on memory requirements, constrained memory budget configurations are not
unlikely, mandating a careful profiling and characterization of benchmarks
and applications behavior for multiple parameters. Moreover, in conjunction
with the constrained memory budget, the configuration of the CBS utilization
also affects the response times in McMtC scenarios in a non-linear manner.
The inflection point where the McMtC response time exceeds the target for a
given CBS utilization depends on the benchmark being considered. As a result,
determining the appropriate CBS utilization requires profiling and analysis of
the benchmark’s behavior.

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 25

90.0 70.0 50.0 30.0 20.0 10.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(a) disparity-9900

90.0 70.0 50.0 30.0 20.0 10.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(b) tracking-3775

90.0 70.0 50.0 30.0 20.0 10.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(c) mser-7250

90.0 70.0 50.0 30.0 20.0 10.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(d) disparity-7800

90.0 70.0 50.0 30.0 20.0 10.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(e) tracking-2550

90.0 70.0 50.0 30.0 20.0 10.0
CBS Budget (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 R

e
sp

.
T
im

e

(f) mser-4500

Fig. 10: Normalized response time for multiple scenarios using the def1 input.

8 Discussion

Memory and runtime behavior may considerably change depending on the
type of inputs that applications are processing (Sections 7.1.1, 7.1.2). The
mismatches between the desired flexibility in CPU scheduling, isolation of
mixed-criticality workloads, and inflexibility in the per-CPU memory manage-
ment may result in memory overloads that prevent high-criticality tasks from
running in their allocated CPU reservations. The architecture of MCTI targets
all such dimensions by integrating CBS-reservations atop a partitioning hyper-
visor and by relaxing the inflexibility of the per-CPU memory management
with a more flexible interconnect policy.

MCTI can successfully protect the critical TUA from external disturbances
coming from the concurrent non-critical co-runners (Sections 7.2.1, 7.2.2). In
both single- and multi-core scenarios, the average response time of the criti-
cal TUA is lower than the worst-case scenario (i.e., ScMt) and, on average,
equal to the ideal isolated scenario (i.e., McSt). Nonetheless, in all scenar-
ios where the TUA is critical (i.e., ScMtC and McMtC), it can be observed
that variations in the response time are present; hence, the exact shielding
effect of MCTI’s regulation on the bandwidth varies as a function of the CBS
utilization and the benchmarks themselves. However, such deviations are con-
tained and—as verified from the raw measurements—no TUA’s response time
exceeds the worst-case scenario (i.e., ScMt or McMt). This indicates that even
in the unlikely worst-case scenario, MCTI never exceeds the worst response
time while providing, in most cases, response times similar to the ideal isolated

Springer Nature 2021 LATEX template

26 MCTI: Mixed-Criticality Task-based Isolation

target. Considering these results, we believe MCTI is an attractive choice for
mixed-criticality soft real-time systems.

The reported fluctuations are a direct indication of the difficulty of con-
figuring systems using budget-based regulation. Although MCTI helps isolate
critical tasks, it does not exempt from a careful profiling of the tasks consid-
ered. Specifically, both CBS utilization, input density, and the memory-access
patterns of benchmarks affect the behavior of tasks regulated by MCTI.

One of the most complex configuration aspects of MCTI is the lack of
low-overhead synchronization between the hypervisor and the OS layers (e.g.,
to ensure aligned memory and CBS periods). Synchronization hypercalls are
expensive, and sharing read and write memory between the hypervisor and
the OS violates the separation of different privilege levels. On the other
hand, directly realizing memory regulation within the OS lacks the isolation
properties provided by e.g., partitioning hypervisors.

Even by sacrificing the isolation capabilities of a hypervisor, the interface
offered by the hardware to control memory is far from flexible and from provid-
ing low overheads. In fact, despite logically belonging to the hardware, PMC
regulators must be periodically replenished by the software. In addition, one
must consider the large constraints imposed by e.g., SchIM as the conjunction
of the FPGA routing and the back-pressure mechanism feedback considerably
adds to the complexity of implementation.

9 Related Work

Memory bandwidth partitioning has found wide adoption for the consolidation
of real-time applications on multicore platforms. In particular, budget-based
bandwidth regulation initially proposed in Yun et al (2016) has received
significant attention owing to its practicality. Several works have proposed
schedulability results for systems under static Yun et al (2016); Awan et al
(2018b); Mancuso et al (2017) and dynamic Awan et al (2018a); Agrawal et al
(2017, 2018) bandwidth regulation. In a way that is closely related to this
paper, the interplay between CPU-level scheduling and budget-based memory
bandwidth regulation has been explored in the case of fixed-priority Yun et al
(2016); Mancuso et al (2017); Agrawal et al (2018), mixed-criticality Awan et al
(2018a), and multi-frame task models Awan et al (2019). In the derivation of
the aforementioned results, the lack of coordination between the CPU sched-
uler and bandwidth regulators is either prevented—i.e., task context-switches
can only occur at the boundary of regulation periods—or accounted for in
the analysis. Furthermore, these works consider applications whose worst-case
memory bandwidth demand can be either statically derived or experimentally
bounded. The proposed MCTI differentiates itself from these works because
1) it considers a realistic implementation of CPU-level scheduling and mem-
ory bandwidth regulation enacted at two different layers of the software stack;
2) postulates that applications with input-dependent memory access patterns
require a reactive approach for joint CPU and memory management; and 3)

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 27

describes a possible hardware/software co-design to add runtime elasticity to
bandwidth regulation.

In light of the limitations and additional analysis complexity caused by
budget-based bandwidth regulation, a number of researchers have investigated
variations and alternative approaches to enact inter-core bandwidth partition-
ing. First, implementation at the hypervisor level was proposed in Modica
et al (2018); Dagieu et al (2016); Martins et al (2020) as a way to significantly
lower the regulation overhead and to make it transparent w.r.t. CPU schedul-
ing. Similarly, we adapted support for PMC-based regulation implemented in
the Jailhouse hypervisor. A second line of work has attacked the problem of
implementing bandwidth partitioning directly in hardware. The first work in
this direction was by Zhou and Wentzlaff (2016), while a generalization of the
regulation strategy that could be applied at multiple levels of the memory hier-
archy was studied in Farshchi et al (2020). In the same spirit, other works have
investigated the use of bandwidth regulation primitives already available in
commercial platforms Sohal et al (2020); Serrano-Cases et al (2021); Houdek
et al (2017). Compared to these works, our MCTI is substantially different in
scope because its goal is to augment budget-based regulation—regardless of
its implementation—with the ability to handle transient overload conditions.

The fundamental problem of unarbitrated memory bandwidth contention
has also been attacked by devising adaptations at the level of the main mem-
ory interconnect and controller. In particular, the works in Mirosanlou et al
(2020); Hassan et al (2017); Valsan and Yun (2015); Jalle et al (2014) focus on
modifications to the DRAM controller logic to drastically reduce the worst-
case latency of main memory requests in the presence of multicore contention.
On a parallel track, enforcing Time Division Multiplexing (TDM) at the level
of interconnect has been explored in Hebbache et al (2018); Jun et al (2007);
Li et al (2016); Kostrzewa et al (2016). For instance, the work in Kostrzewa
et al (2016) proposes a slack-based bus arbitration scheme where the per-
transaction slack is static and computed offline for all the critical tasks, while
the authors in Hebbache et al (2018) propose a strategy to compute a safe
lower-bound on the slack of memory requests at runtime. Although research
on predictable memory interconnects and controllers have achieved important
milestones, the inability to efficiently carry out system-level implementation
and evaluation has traditionally hindered their practicality. The work proposed
in Hoornaert et al (2021), which represents one of the building blocks of MCTI,
demonstrated that implementing transaction-level memory scheduling is pos-
sible in multicore systems with on-chip programmable logic. In the context
of the literature surveyed above, MCTI is the first work to propose the inte-
gration of task- and transaction-level memory scheduling strategies to handle
unpredictable overload conditions while delivering a full-stack implementation
on a commercial system.

Springer Nature 2021 LATEX template

28 MCTI: Mixed-Criticality Task-based Isolation

10 Conclusion

In this paper, we discussed the difficulties of appropriately setting CPU and
memory budgets for real-time tasks with memory needs dependent on input
density (e.g., vision or AI-based applications). Furthermore, we have shown
how—in the worst-case—such misconfigurations might lead to memory over-
loads where critical tasks are not eligible for scheduling due to a premature
depletion of the memory budget.

In order to solve these issues while preserving isolation among mixed-
criticality taks, we proposed MCTI, a layered architecture integrating OS-
based CBS-regulation and hypervisor-based memory management with a
flexible management of hardware interconnect priorities. To the best of
our knowledge, MCTI is the first architecture that attempts to holistically
address the needs of a) CPU- and memory isolation, and b) strong isolation
of mixed-criticality workloads, in the face of inflexible management of the
interconnect.

The prototype builds on established systems such as the Linux kernel, CBS,
and Memguard. We have proposed, described, implemented, and assessed a
full-stack architecture capable of handling and taming the effects of memory
overloads in most cases. The implementation is evaluated on a widely available
out-of-the-shelf platform.

Our results indicate that MCTI is effective in protecting critical tasks from
external interference and avoiding memory-overload issues. Nonetheless, the
results also indicate that achieving CPU isolation and flexible memory man-
agement while preserving strong partitioning of mixed-criticality workloads is
a non-trivial task, and several improvements at both software and hardware
levels are needed. We intend to progressively devise such improvements in
future works.

Appendix A List of experiments

For all experiments, we run the benchmark using multiple benchmark-input
configurations. Each table is populated using the following code:

✓ indicates that the benchmark-input has been run and is shown
∼ indicates that the benchmark-input has been run but is not shown
× indicates that the benchmark-input has not been run
− indicates that the benchmark-input pair does not exist.

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 29

Benchmark-input pairs run for experiments carried in Section 7.1.1.

Benchmark def1 def2 def3 deg1 deg2 nor1 nor2 inv1 rot1 rot2 rot3

disparity ✓ − − ✓ ✓ ✓ ✓ − − − −
mser ✓ ✓ ✓ ✓ ✓ ✓ ✓ − − − −
stitch ✓ − − ✓ − ✓ ✓ − − − −
texture. ✓ − − ✓ ✓ − − ✓ ✓ ✓ ✓
tracking ✓ − − ✓ ✓ ✓ ✓ − − − −
stitch ∼ − − ∼ − ∼ ∼ − − − −
localization ∼ − − − − − − − − − −

Benchmark-input pairs run for experiments carried in Section 7.1.2.

Benchmark def1 def2 def3 deg1 deg2 nor1 nor2 inv1 rot1 rot2 rot3

disparity ✓ − − ✓ ✓ ✓ ✓ − − − −
mser ✓ ✓ ✓ ✓ ✓ ✓ ✓ − − − −
stitch ∼ − − ∼ − ∼ ∼ − − − −
texture. ∼ − − ∼ ∼ − − ∼ ∼ ∼ ∼
tracking ✓ − − ✓ ✓ ✓ ✓ − − − −
stitch ∼ − − ∼ − ∼ ∼ − − − −
localization ∼ − − − − − − − − − −

Benchmark-input pairs run for experiments carried in Sections 7.2.1 and 7.2.2.

Benchmark def1 def2 def3 deg1 deg2 nor1 nor2 inv1 rot1 rot2 rot3

disparity ✓ − − × × × × − − − −
mser ✓ × × × × × × − − − −
stitch × − − × − × × − − − −
texture. × − − × × − − × × × ×
tracking ✓ − − × × × × − − − −
stitch × − − × − × × − − − −
localization × − − − − − − − − − −

Appendix B Memory organization and Layout

The MCTI architecture stack relies on multiple levels of address mappings
and translations. Each of these levels have their own requirements and the
mappings presented this section are directly linked to the modules used.

B.1 VA to IPA Translation

Our MCTI architecture (see Fig. 5) uses two levels of address translations: at
the OS level, virtual addresses (VA) are translated to intermediate physical
addresses (IPA), and at the hypervisor level, IPAs are translated to physical
addresses (PA).

The standard user-level allocators in Linux (i.e., those used to serve e.g.,
malloc() requests) do not allow precise control of which IPAs will be used to
back the memory request. To overcome this limitation, we extended an existing
profiling tool-chain by Ghaemi et al (2021) to ensure that allocations of mem-
ory pages in the OS for selected tasks will always be served from predefined
memory regions with well-known contiguous IPAs.

Springer Nature 2021 LATEX template

30 MCTI: Mixed-Criticality Task-based Isolation

Our modifications allow augmenting the ELF of the binary target pro-
grams (corresponding to our compiled target tasks) with additional metadata.
We modified the ELF-loader in the Linux kernel to tag the process descriptors
accordingly when these metadata are detected at binary load time. In particu-
lar, the metadata encodes a CPU ID that helps identify which of the predefined
memory regions/partitions should be used to serve the tasks’ memory alloca-
tion. The CPU ID (from 0 to m − 1) is read by the loader when the ELF is
parsed and added to the mm struct of the corresponding process. Addition-
ally, an identifier (VM ALLOC PVT CORE) is added to the Virtual Memory Area
(VMA) flags (vm flag) in all the VMA descriptors (vm area struct) of the
process. For a tagged process, we also ensured that any new VMA created at
runtime (e.g., via mmap or sbrk) inherits the VM ALLOC PVT CORE identifier.

Upon (intermediate) physical page allocation as a result of demand paging,
the Linux kernel uses the Buddy System to allocate a new page from the global
free list. We modified the allocation path to redirect allocation towards our per-
core predefined memory regions whenever the VM ALLOC PVT CORE is detected
in the descriptor of the VMA where the allocation is being performed. The
predefined memory regions are reserved at boot time using the kernel Device
Tree Blob (see the full list in Table B1). The regions are marked as “reserved”
and are thus excluded by the default Linux kernel allocator. Instead, our mod-
ified allocator remaps the reserved areas and creates new allocator pools, one
per CPU and corresponding to the reserved regions, to serve allocation and de-
allocation requests. The changes in the page allocation path and ELF loader
amount to approximately 350 lines of code.

B.2 IPA to PA Translation and PL-Routing

After ensuring at the OS level that memory allocations of target tasks are
served from pre-configured memory partitions, the hypervisor (see Fig. 5)
is responsible for translating IPAs into appropriate physical addresses. This
translation step also takes care of additional requirements of the MCTI
architecture.

Under MCTI, accesses to the pre-configured memory partitions must be
re-routed through SchIM (on the PL-side), while standard Linux accesses con-
tinue to directly target the main memory (without PL-side indirection). Such
re-routing is configured during the IPA to PA translation (see Table B1), thus
creating two separate routes to the main memory.

Additionally, the IPA to PA translation also prevents last-level cache inter-
ference among logically independent partitions. By using cache-coloring (Kloda
et al (2019)) , contiguous IPAs are translated into colored PAs within the con-
figured partition pools. Note that this step de facto reduces the maximum size
of a contiguous IPA range by a factor that depends on the number of inde-
pendent colors (in our case four, one per CPU partition). Within the SchIM
module, the memory transactions targeting the colored physical addresses are
converted back to contiguous ranges following a process similar to Roozkhosh
and Mancuso (2020).

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 31

Table B1: Summary of the different address spaces

Colored Cached IPA PA SchIM

Partition 0 Yes (0xF000) Yes 0x00 1000 0000 0x10 4000 0000 0x00 1000 0000

Partition 1 Yes (0x0F00) Yes 0x00 2000 0000 0x10 8000 0000 0x00 2000 0000

Partition 2 Yes (0x00F0) Yes 0x00 3000 0000 0x48 C000 0000 0x00 3000 0000

Partition 3 Yes (0x000F) Yes 0x00 4000 0000 0x49 0000 0000 0x00 4000 0000

Linux No Yes 0x08 0000 0000 0x08 0000 0000 —
SchIM conf. No No 0x00 8000 0000 0x00 8000 0000 —
Shared Mem. No Yes 0x00 FFFC 0000 0x00 FFFC 0000 —

Finally, since SchIM has full control of each memory transaction, the
bank interleaving configuration (i.e., row-bank-column) has been disabled (i.e.,
changed into bank-row-column), thus enabling a simpler bank partitioning for
the regions of interest.

References

Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-
time systems. In: Proceedings 19th IEEE Real-Time Systems Symposium
(Cat. No.98CB36279), pp 4–13, https://doi.org/10.1109/REAL.1998.739726

Agrawal A, Fohler G, Freitag J, et al (2017) Contention-Aware Dynamic
Memory Bandwidth Isolation with Predictability in COTS Multicores: An
Avionics Case Study. In: Bertogna M (ed) 29th Euromicro Conference on
Real-Time Systems (ECRTS 2017), Leibniz International Proceedings in
Informatics (LIPIcs), vol 76. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, pp 2:1–2:22, https://doi.org/10.4230/LIPIcs.
ECRTS.2017.2, URL http://drops.dagstuhl.de/opus/volltexte/2017/7174

Agrawal A, Mancuso R, Pellizzoni R, et al (2018) Analysis of dynamic memory
bandwidth regulation in multi-core real-time systems. In: 2018 IEEE Real-
Time Systems Symposium (RTSS), pp 230–241, https://doi.org/10.1109/
RTSS.2018.00040

Anandtech (2019) NVIDIA Drive AGX Orin.
https://www.anandtech.com/show/15245/nvidia-details-drive-agx-orin-a-
herculean-arm-automotive-soc-for-2022, accessed: 2021-10-13.

ARM (2022) Arm Architecture Reference Manual Supplement. Memory
System Resource Partitioning and Monitoring (MPAM) for Armv8-A.
https://developer.arm.com/docs/ddi0598/latest Accessed: 2021-02-08

Awan MA, Bletsas K, Souto PF, et al (2018a) Mixed-criticality scheduling
with dynamic memory bandwidth regulation. In: 2018 IEEE 24th Interna-
tional Conference on Embedded and Real-Time Computing Systems and

https://doi.org/10.1109/REAL.1998.739726
https://doi.org/10.4230/LIPIcs.ECRTS.2017.2
https://doi.org/10.4230/LIPIcs.ECRTS.2017.2
http://drops.dagstuhl.de/opus/volltexte/2017/7174
https://doi.org/10.1109/RTSS.2018.00040
https://doi.org/10.1109/RTSS.2018.00040

Springer Nature 2021 LATEX template

32 MCTI: Mixed-Criticality Task-based Isolation

Applications (RTCSA), pp 111–117, https://doi.org/10.1109/RTCSA.2018.
00022

Awan MA, Souto PF, Bletsas K, et al (2018b) Worst-case Stall Analy-
sis for Multicore Architectures with Two Memory Controllers. In: Alt-
meyer S (ed) 30th Euromicro Conference on Real-Time Systems (ECRTS
2018), Leibniz International Proceedings in Informatics (LIPIcs), vol 106.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
pp 2:1–2:22, https://doi.org/10.4230/LIPIcs.ECRTS.2018.2, URL http://
drops.dagstuhl.de/opus/volltexte/2018/9002

Awan MA, Souto PF, Bletsas K, et al (2019) Memory bandwidth regulation
for multiframe task sets. In: 2019 IEEE 25th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA),
pp 1–11, https://doi.org/10.1109/RTCSA.2019.8864563

Brandenburg BB (2011) Scheduling and locking in multiprocessor real-time
operating systems. PhD thesis, The University of North Carolina at Chapel
Hill

Buttazzo G, Bini E (2006) Optimal dimensioning of a constant bandwidth
server. In: 2006 27th IEEE International Real-Time Systems Symposium
(RTSS’06), pp 169–177, https://doi.org/10.1109/RTSS.2006.31

Buttazzo GC (2011) Hard Real-time Computing Systems: Predictable Schedul-
ing Algorithms And Applications (Real-Time Systems Series). Springer-
Verlag

Cinque M, De Tommasi G, Dubbioso S, et al (2022) Rpuguard: Real-time
processing unit virtualization for mixed-criticality applications. In: 2022
18th European Dependable Computing Conference (EDCC), pp 97–104,
https://doi.org/10.1109/EDCC57035.2022.00025

Dagieu N, Spyridakis A, Raho D (2016) Memguard: A memory bandwith man-
agement in mixed criticality virtualized systems memguard kvm scheduling.
In: 10th Int. Conf. on Mobile Ubiquitous Comput., Syst., Services and
Technologies (UBICOMM)

Farshchi F, Huang Q, Yun H (2020) Bru: Bandwidth regulation unit for
real-time multicore processors. In: 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp 364–375, https://doi.
org/10.1109/RTAS48715.2020.00011

Ghaemi G, Tarapore D, Mancuso R (2021) Governing with Insights: Towards
Profile-Driven Cache Management of Black-Box Applications. In: Branden-
burg BB (ed) 33rd Euromicro Conference on Real-Time Systems (ECRTS
2021), Leibniz International Proceedings in Informatics (LIPIcs), vol 196.

https://doi.org/10.1109/RTCSA.2018.00022
https://doi.org/10.1109/RTCSA.2018.00022
https://doi.org/10.4230/LIPIcs.ECRTS.2018.2
http://drops.dagstuhl.de/opus/volltexte/2018/9002
http://drops.dagstuhl.de/opus/volltexte/2018/9002
https://doi.org/10.1109/RTCSA.2019.8864563
https://doi.org/10.1109/RTSS.2006.31
https://doi.org/10.1109/EDCC57035.2022.00025
https://doi.org/10.1109/RTAS48715.2020.00011
https://doi.org/10.1109/RTAS48715.2020.00011

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 33

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
pp 4:1–4:25, https://doi.org/10.4230/LIPIcs.ECRTS.2021.4, URL https://
drops.dagstuhl.de/opus/volltexte/2021/13935

Green Hills Software (2023) GHS Integrity.
https://www.ghs.com/products/rtos/integrity virtualization.html

Hassan M, Patel H, Pellizzoni R (2017) Pmc: A requirement-aware dram con-
troller for multicore mixed criticality systems. ACM Trans Embed Comput
Syst 16(4). https://doi.org/10.1145/3019611, URL https://doi.org/10.1145/
3019611

Hebbache F, Jan M, Brandner F, et al (2018) Shedding the shackles of
time-division multiplexing. In: 2018 IEEE Real-Time Systems Symposium
(RTSS), pp 456–468, https://doi.org/10.1109/RTSS.2018.00059

Hoornaert D, Roozkhosh S, Mancuso R (2021) A Memory Scheduling Infras-
tructure for Multi-Core Systems with Re-Programmable Logic. In: Branden-
burg BB (ed) 33rd Euromicro Conference on Real-Time Systems (ECRTS
2021), Leibniz International Proceedings in Informatics (LIPIcs), vol 196.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
pp 2:1–2:22, https://doi.org/10.4230/LIPIcs.ECRTS.2021.2, URL https://
drops.dagstuhl.de/opus/volltexte/2021/13933

Houdek P, Sojka M, Hanzálek Z (2017) Towards predictable execution model
on arm-based heterogeneous platforms. In: 2017 IEEE 26th International
Symposium on Industrial Electronics (ISIE), pp 1297–1302, https://doi.org/
10.1109/ISIE.2017.8001432

Intel, Corp. (2016) Intel’s Stratix 10 FPGA: Supporting the smart
and connected revolution. URL https://newsroom.intel.com/editorials/
intels-stratix-10-fpga-supporting-smart-connected-revolution/, accessed on
2022-01-19

Jalle J, Quiñones E, Abella J, et al (2014) A dual-criticality memory con-
troller (dcmc): Proposal and evaluation of a space case study. In: 2014
IEEE Real-Time Systems Symposium, pp 207–217, https://doi.org/10.
1109/RTSS.2014.23

Jun M, Bang K, Lee HJ, et al (2007) Slack-based bus arbitration scheme
for soft real-time constrained embedded systems. In: 2007 Asia and South
Pacific Design Automation Conference, pp 159–164, https://doi.org/10.
1109/ASPDAC.2007.357979

Kim H, Rajkumar RR (2016) Real-Time Cache Management for Multi-Core
Virtualization. In: Proceedings of the 13th International Conference on
Embedded Software. Association for Computing Machinery, New York, NY,

https://doi.org/10.4230/LIPIcs.ECRTS.2021.4
https://drops.dagstuhl.de/opus/volltexte/2021/13935
https://drops.dagstuhl.de/opus/volltexte/2021/13935
https://doi.org/10.1145/3019611
https://doi.org/10.1145/3019611
https://doi.org/10.1145/3019611
https://doi.org/10.1109/RTSS.2018.00059
https://doi.org/10.4230/LIPIcs.ECRTS.2021.2
https://drops.dagstuhl.de/opus/volltexte/2021/13933
https://drops.dagstuhl.de/opus/volltexte/2021/13933
https://doi.org/10.1109/ISIE.2017.8001432
https://doi.org/10.1109/ISIE.2017.8001432
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution/
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution/
https://doi.org/10.1109/RTSS.2014.23
https://doi.org/10.1109/RTSS.2014.23
https://doi.org/10.1109/ASPDAC.2007.357979
https://doi.org/10.1109/ASPDAC.2007.357979

Springer Nature 2021 LATEX template

34 MCTI: Mixed-Criticality Task-based Isolation

USA, EMSOFT ’16

Kloda T, Solieri M, Mancuso R, et al (2019) Deterministic Memory Hierar-
chy and Virtualization for Modern Multi-Core Embedded Systems. In: 2019
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), p 1–14

Kostrzewa A, Saidi S, Ernst R (2016) Slack-based resource arbitration for
real-time networks-on-chip. In: 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), pp 1012–1017

Lelli J, Scordino C, Abeni L, et al (2016) Deadline scheduling in the Linux
kernel. Software: Practice and Experience 46(6):821–839

Li Y, Akesson K, Goossens K (2016) Architecture and analysis of a
dynamically-scheduled real-time memory controller. Real-Time Systems
52(5):675–729. https://doi.org/10.1007/s11241-015-9235-y

Mancuso R, Dudko R, Betti E, et al (2013) Real-time cache management
framework for multi-core architectures. In: 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), p 45–54

Mancuso R, Pellizzoni R, Tokcan N, et al (2017) WCET Derivation under
Single Core Equivalence with Explicit Memory Budget Assignment. In:
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), Leibniz
International Proceedings in Informatics (LIPIcs), vol 76. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 3:1–3:23, https:
//doi.org/10.4230/LIPIcs.ECRTS.2017.3, URL http://drops.dagstuhl.de/
opus/volltexte/2017/7168

Martins J, Tavares A, Solieri M, et al (2020) Bao: A lightweight static
partitioning hypervisor for modern multi-core embedded systems. In: Work-
shop on Next Generation Real-Time Embedded Systems (NG-RES 2020),
OpenAccess Series in Informatics (OASIcs), vol 77. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 3:1–3:14, https://
doi.org/10.4230/OASIcs.NG-RES.2020.3, URL https://drops.dagstuhl.de/
opus/volltexte/2020/11779

Microsemi — Microchip Technology Inc. (2020) PolarFire SoC - Lowest
Power, Multi-Core RISC-V SoC FPGA. URL https://www.microsemi.
com/product-directory/soc-fpgas/5498-polarfire-soc-fpga, accessed on
09.01.2020

Mirosanlou R, Hassan M, Pellizzoni R (2020) Drambulism: Balancing perfor-
mance and predictability through dynamic pipelining. In: 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS), pp
82–94, https://doi.org/10.1109/RTAS48715.2020.00-15

https://doi.org/10.1007/s11241-015-9235-y
https://doi.org/10.4230/LIPIcs.ECRTS.2017.3
https://doi.org/10.4230/LIPIcs.ECRTS.2017.3
http://drops.dagstuhl.de/opus/volltexte/2017/7168
http://drops.dagstuhl.de/opus/volltexte/2017/7168
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://drops.dagstuhl.de/opus/volltexte/2020/11779
https://drops.dagstuhl.de/opus/volltexte/2020/11779
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://doi.org/10.1109/RTAS48715.2020.00-15

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 35

Modica P, Biondi A, Buttazzo G, et al (2018) Supporting temporal and spa-
tial isolation in a hypervisor for arm multicore platforms. In: 2018 IEEE
International Conference on Industrial Technology (ICIT), pp 1651–1657,
https://doi.org/10.1109/ICIT.2018.8352429

Nicolella M, Roozkhosh S, Hoornaert D, et al (2022) Rt-bench: An exten-
sible benchmark framework for the analysis and management of real-time
applications. In: Proceedings of the 30th International Conference on Real-
Time Networks and Systems. Association for Computing Machinery, New
York, NY, USA, RTNS 2022, p 184–195, https://doi.org/10.1145/3534879.
3534888, URL https://doi.org/10.1145/3534879.3534888

Roozkhosh S, Mancuso R (2020) The potential of programmable logic in the
middle: Cache bleaching. In: 2020 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), pp 296–309, https://doi.org/10.
1109/RTAS48715.2020.00006

RTCA Inc. (2011) RTCA/DO-178C Software Consideration in Airborne
Systems and Equipment Certification

Saeed A, Dasari D, Ziegenbein D, et al (2022) Memory Utilization-Based
Dynamic Bandwidth Regulation for Temporal Isolation in Multi-Cores .
In: 2022 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), p 133–145

Schwaericke G, Tabish R, Pellizzoni R, et al (2021) A Real-Time virtio-
based Framework for Predictable Inter-VM Communication. In: 2021 IEEE
International Real-Time Systems Symposium (RTSS)

Serrano-Cases A, Reina JM, Abella J, et al (2021) Leveraging Hardware
QoS to Control Contention in the Xilinx Zynq UltraScale+ MPSoC. In:
Brandenburg BB (ed) 33rd Euromicro Conference on Real-Time Systems
(ECRTS 2021), Leibniz International Proceedings in Informatics (LIPIcs),
vol 196. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, pp 3:1–3:26, https://doi.org/10.4230/LIPIcs.ECRTS.2021.3, URL
https://drops.dagstuhl.de/opus/volltexte/2021/13934

Siemens AG (2023) Jailhouse hypervisor.
https://github.com/siemens/jailhouse, accessed: 2023-06-06.

Sohal P, Tabish R, Drepper U, et al (2020) E-WarP: A System-wide Framework
for Memory Bandwidth Profiling and Management. In: 2020 IEEE Real-
Time Systems Symposium (RTSS)

SYSGO G (2023) PikeOS Hypervisor. https://www.sysgo.com

https://doi.org/10.1109/ICIT.2018.8352429
https://doi.org/10.1145/3534879.3534888
https://doi.org/10.1145/3534879.3534888
https://doi.org/10.1145/3534879.3534888
https://doi.org/10.1109/RTAS48715.2020.00006
https://doi.org/10.1109/RTAS48715.2020.00006
https://doi.org/10.4230/LIPIcs.ECRTS.2021.3
https://drops.dagstuhl.de/opus/volltexte/2021/13934

Springer Nature 2021 LATEX template

36 MCTI: Mixed-Criticality Task-based Isolation

Tabish R, Wen J, Pellizzoni R, et al (2021) An analyzable inter-core communi-
cation framework for high-performance multicore embedded systems. Jour-
nal of Systems Architecture p 102178. https://doi.org/https://doi.org/10.
1016/j.sysarc.2021.102178, URL https://www.sciencedirect.com/science/
article/pii/S1383762121001284

Valsan PK, Yun H (2015) Medusa: A predictable and high-performance dram
controller for multicore based embedded systems. In: 2015 IEEE 3rd Interna-
tional Conference on Cyber-Physical Systems, Networks, and Applications,
pp 86–93, https://doi.org/10.1109/CPSNA.2015.24

Venkata SK, Ahn I, Jeon D, et al (2009) Sd-vbs: The san diego vision bench-
mark suite. In: IISWC. IEEE Computer Society, pp 55–64, URL http:
//dblp.uni-trier.de/db/conf/iiswc/iiswc2009.html#VenkataAJGLGBT09

Xilinx (2022) ZCU 102 MPSoC TRM. https://docs.xilinx.com/r/en-
US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-
Reference-Manual, accessed: 2022-11-08

Xilinx (2023) Xilinx Versal. https://www.xilinx.com/products/silicon-
devices/acap/versal.html, accessed: 2021-10-13.

Yun H, Yao G, Pellizzoni R, et al (2013) Memguard: Memory bandwidth reser-
vation system for efficient performance isolation in multi-core platforms.
In: 2013 IEEE 19th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), pp 55–64, https://doi.org/10.1109/RTAS.2013.
6531079

Yun H, Pellizzoni R, Valsan PK (2015) Parallelism-aware memory interference
delay analysis for cots multicore systems. In: 2015 27th Euromicro Confer-
ence on Real-Time Systems, pp 184–195, https://doi.org/10.1109/ECRTS.
2015.24

Yun H, Yao G, Pellizzoni R, et al (2016) Memory Bandwidth Management for
Efficient Performance Isolation in Multi-Core Platforms. IEEE Transactions
on Computers 65(2):562–576

Yun H, Ali W, Gondi S, et al (2017) BWLOCK: A Dynamic Memory Access
Control Framework for Soft Real-Time Applications on Multicore Platforms.
IEEE Transactions on Computers 66(7):1247–1252

Zhou Y, Wentzlaff D (2016) Mitts: Memory inter-arrival time traffic shaping.
In: Proceedings of the 43rd International Symposium on Computer Archi-
tecture. IEEE Press, ISCA ’16, p 532–544, https://doi.org/10.1109/ISCA.
2016.53, URL https://doi.org/10.1109/ISCA.2016.53

https://doi.org/https://doi.org/10.1016/j.sysarc.2021.102178
https://doi.org/https://doi.org/10.1016/j.sysarc.2021.102178
https://www.sciencedirect.com/science/article/pii/S1383762121001284
https://www.sciencedirect.com/science/article/pii/S1383762121001284
https://doi.org/10.1109/CPSNA.2015.24
http://dblp.uni-trier.de/db/conf/iiswc/iiswc2009.html#VenkataAJGLGBT09
http://dblp.uni-trier.de/db/conf/iiswc/iiswc2009.html#VenkataAJGLGBT09
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1109/ECRTS.2015.24
https://doi.org/10.1109/ECRTS.2015.24
https://doi.org/10.1109/ISCA.2016.53
https://doi.org/10.1109/ISCA.2016.53
https://doi.org/10.1109/ISCA.2016.53

Springer Nature 2021 LATEX template

MCTI: Mixed-Criticality Task-based Isolation 37

Zuepke A, Bastoni A, Chen W, et al (2023) Mempol: Policing core memory
bandwidth from outside of the cores. In: 2023 IEEE 29th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp 235–248,
https://doi.org/10.1109/RTAS58335.2023.00026

https://doi.org/10.1109/RTAS58335.2023.00026

	Introduction
	Background
	Interplay of CBS and PMC-regulation
	System Model and Regulation Policy
	Architecture
	CPU Regulation
	Memory Regulation
	PMC-regulation and Memory Overload Detection
	Dynamic FP/Fair Interconnect Policy

	Open Challenges

	Implementation
	CPU and Memory Regulation
	SCHED_DEADLINE
	Overload-aware PMC Regulation
	SchIM

	Memory Organization and Layout
	Benchmarks

	Evaluation
	Benchmark Profiling
	Behavioral variations
	Run-time memory requirements

	MCTI Assessment
	Impact on response time in single-core scenario
	Impact on the response time in multi-core scenario

	Discussion
	Related Work
	Conclusion
	List of experiments
	Memory organization and Layout
	VA to IPA Translation
	IPA to PA Translation and PL-Routing

