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Abstract—With the increasing adoption of PS-PL (Proces-
sor System-Programmable Logic) platforms, also known as
CPU+FPGA systems, there arises a need for efficient resource
management strategies. This work explores memory bandwidth
regulation in such systems, leveraging the capabilities of tightly
coupled FPGAs to offer elegant, low-overhead solutions with
highly flexible regulation policies. We introduce MemCoRe, a
novel approach that exploits the FPGA’s interaction with cache
coherence interfaces and cross-trigger signals to achieve fine-
grained spatiotemporal awareness of processor activity and
software-free control. By comparing MemCoRe with state-of-the-
art software-based approaches, namely MemGuard and MemPol,
we demonstrate significant improvements in regulation precision
and overhead reduction. Key contributions include nanosecond-
scale memory bandwidth regulation, off-core memory bandwidth
accounting, address-aware regulation, low-overhead token-bucket
regulation, and asymmetric on-off core throttling. Our evaluation
on a Xilinx Zynq UltraScale+ ZCU102 CPU+FPGA platform
showcases MemCoRe’s capability to regulate memory bandwidth
with nanosecond-scale precision. Overall, MemCoRe presents a
promising avenue for efficient memory bandwidth regulation in
PS-PL platforms, with strong applicability to real-time systems.

Index Terms—bandwidth regulation, coherence, cache

I. INTRODUCTION

The proliferation of PS-PL (Processor System-
Programmable Logic) platforms, also known as CPU+FPGA
systems, is rapidly expanding across both the embedded
and general-purpose markets. Notably, the landscape has
witnessed the emergence of new contenders, such as the AMD
Embedded+ platforms and the recently announced AMD
Versal 2 platforms. These advancements mark a significant
stride, pushing beyond conventional boundaries into the realm
of many-core systems coupled with FPGA integration.

The rise in popularity of PS-PL platforms offers a unique
opportunity to rethink traditional approaches to system re-
source management. Following the state of the art, memory
bandwidth regulation is a topic that has been extensively
explored with the proposal of software-based techniques [1],
[2] and dedicated hardware units [3], [4]. Acknowledging the
importance of configurable bandwidth distribution in multicore
heterogeneous system-on-a-chip (SoC), vendors have also pro-
posed architectural solutions such as Intel RDT [5], [6], Arm
QoS [7], [8], and Arm MPAM [9], which are still making
their way into commercially available platforms. Nonetheless,
these approaches come with various shortcomings, from the
need to modify key layers in the system software to the need
for custom hardware redesign/integration. Even solutions like

RDT, QoS, and MPAM have limited programmability because
they cannot enact different regulation policies depending on
the exact downstream resource from which bandwidth is being
consumed.

In this paper, we demonstrate that if a tightly coupled FPGA
is available in an SoC, memory bandwidth regulation can
be done elegantly, with minimal overheads, while offering
the ability to produce highly flexible regulation policies. In
particular, this paper showcases the use of two key enabling
features of tightly coupled FPGAs, namely the ability of the
FPGA to interact with (1) cache coherence interfaces and
(2) cross-trigger signals. Importantly, the combination of these
mechanisms allows fine-grained spatiotemporal awareness of
the activity of the processors under regulation and software-
free control of said processors.

We call the presented approach MemCoRe to stress its
ability to perform Memory management via Coherence-aided
Regulation. MemCoRe improves on the two state-of-the-
art software-based memory bandwidth regulation approaches,
MemGuard [1] and MemPol [10] as follows. First, by enacting
regulation from outside the cores, MemCoRe overcomes the
intrinsic implementation overheads of MemGuard for fine-
grained regulation. Second, by optimizing the critical path in
bandwidth regulation, MemCoRe improves performance by an
order of magnitude and overcomes the problems of setpoint
overshooting observed in MemPol. Compared to solutions like
Intel RDT, Arm QoS, and Arm MPAM, MemCoRe sets itself
apart for its ability to enact regulation policies on a per-
memory-region basis while being immediately applicable in
SoCs with cache-coherent programmable-logic.

We compare MemCoRe with MemPol using its original soft-
ware implementation (MemPol-SW). For fairer comparison,
we also implemented a custom MemPol implementation in
FPGA (MemPol-HW). This allows us to discuss and evaluate
design trade-offs and optimizations to achieve the presented
nanosecond-scale bandwidth regulation. All the systems we
contrast, i.e., MemCoRe, MemPol-SW, and MemPol-HW, were
fully implemented and evaluated on a Xilinx Zynq UltraScale+
ZCU102 [11] CPU+FPGA platform where they are used to
regulate the memory bandwidth of the platform’s four Arm
Cortex-A53 cores.

We make the following key contributions in this work:
• Nanosecond-scale memory bandwidth regulation of ap-

plications cores from the FPGA component of a com-
mercially available PS-PL platform.
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• Off-core memory bandwidth accounting based on moni-
toring the core’s coherency traffic instead of using per-
formance counters (PMCs).

• Address aware accounting of memory traffic that enables
fine-grained tuning of the regulation for different memory
regions.

• Memory bandwidth regulation based on token-bucket reg-
ulation with low implementation overhead in hardware.

• An asymmetric on-off core throttling approach that op-
timizes for fast halting of cores to overcome setpoint
overshooting of the regulation setpoint.

• A substantial design space exploration of alternative
approaches for implementing key modules in a PL-side
memory bandwidth regulator.

The rest of this paper is structured as follows. Sec. II
presents the background on memory bandwidth regulation.
Sec. III reviews challenges and discusses opportunities for
improvements in PS-PL platforms. Sec. IV details MemCoRe’s
design and Sec. V its implementation. We evaluate the pro-
posed approach in Sec. VI, with a discussion of key limitations
and possible avenues for future work in Sec. VII. Sec. VIII
discusses closely related work, and Sec. IX concludes the
paper.

II. BACKGROUND

A. Memory & Cache Model

Modern computer systems employ a hierarchical memory
architecture to bridge the performance gap between fast on-
chip processing elements (PEs) and the slower off-chip main
memory. The hierarchy consists of multiple levels of caches
and the main memory. The cache levels closer to the PE, such
as the L1 cache, are typically private to each PE. The last-
level cache (LLC) is generally shared among multiple PEs and
directly interfaces with the memory controller. The memory
controller is responsible for the data movement between the
on-chip logic and the off-chip main memory (e.g., DRAM).

Memory bandwidth is the rate at which cache lines are
transferred between the LLC and the main memory. Two
architectural events contribute to the memory activity: cache
refills and write-backs. Upon a refill, a cache line is fetched
from lower to higher levels of the hierarchy. During a write-
back, a dirty line being evicted from higher levels is written
back to lower levels, eventually reaching the main memory.
The combined rate of refills and write-backs between the LLC
and the memory controller constitutes the overall memory
bandwidth.

In hard real-time systems, memory budgets are dimensioned
using the maximum sustainable bandwidth—the highest band-
width a memory controller can sustain under worst-case work-
loads (e.g., row misses in the same bank). As documented
in [8], this can be much lower than the peak achievable
bandwidth. This conservative metric serves as the baseline for
memory regulation. Determining the sustainable bandwidth re-
quires platform-specific knowledge and experimentation [12],
[13].

B. PMC-based Memory Bandwidth Regulation

Modern platforms typically contain performance monitoring
counters (PMCs) to count the occurrence of various architec-
tural events. Techniques such as MemGuard and MemPol use
PMCs to monitor the number of LLC refills and write-backs in
a given time window to estimate the main memory bandwidth
usage at runtime. If the estimated bandwidth exceeds the user-
set threshold, a regulation action is taken to throttle bandwidth
usage. Regulation actions could be scheduling a CPU-intensive
high-priority task or stalling the core exceeding the threshold.

MemGuard relies on the Performance Monitoring Unit’s
(PMU) ability to interrupt a PE when its PMC exceeds a
configured threshold. Thus, MemGuard periodically resets the
PMC to replenish a PE’s budget. Due to the interrupt overhead
for periodic replenishment, MemGuard regulates at millisec-
ond granularity [1], [14]. Conversely, MemPol periodically
polls the PMCs of all the monitored PEs from an auxiliary PE
and regulates the bandwidth by halting/resuming a specific PE
via on-chip debug signals. This allows MemPol to regulate at
microsecond granularity [10].

C. PS-PL Platforms

PS-PL platforms represent highly heterogeneous System-
on-Chip architectures characterized by the combination of
“traditional” PEs (the Processing System or PS) and a re-
programmable fabric (the Programmable Logic or PL). In
high-performance embedded PS-PL platforms, the PS typi-
cally features several CPU cores clustered together with an
LLC and connected to a DRAM controller through a Cache
Coherent Interconnect (CCI). Such platforms may also include
multiple real-time PEs to handle low-latency tasks. The PL-
side comprises a Field Programmable Gate Arrays (FPGA)
and is tightly connected to the PS-side via many memory and
I/O interfaces to enable a high degree of PS-PL cooperation.
Unidirectional high-speed bus interfaces. Several unidirec-
tional ports allow communication (1) from PS to PL and (2)
from PL to PS. Each PS-to-PL port is associated with a unique
SoC-wide physical address range so that any PE-originated
transaction can be non-ambiguously routed to the PL. Like-
wise, PL-to-PS ports allow the PL to access any memory
target using their SoC-wide addresses. This includes access to
on-chip memories and the main memory. In most embedded
platforms, these ports utilize the AXI-Full protocol [15].
Two-way coherent memory accesses. The PL is not confined
to host peripheral modules and non-coherent accelerators and
can be elevated to become a member of the SoC cache
coherence domain. This enables the PL to receive snoops from
the CCI, effectively exporting information about the memory-
related activity occurring in the PS to the PL. Previous
research [16] demonstrates the level of detail that can be
extracted and exploited this way.
Interrupts and cross-triggers. In addition, the PL can both
send/receive interrupts to/from the PS. In Arm-based plat-
forms, this can be done either via a FIQ (Fast Interrupt
Request) or IRQ (Interrupt Request). Moreover, PS and PL are
inter-connected via direct cross-trigger interface (CTI) lines
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to/from the CoreSight infrastructure, which, when adequately
controlled, can command the PEs to halt/resume their execu-
tion in an invisible way to the software layers.

D. Cache Coherence

Fig. 1: SoC cache coherency architecture. The colored components
are in the same coherence domain. When an LLC miss occurs, CCI
will broadcast a snoop to the protocol compliant IP.

A cache coherence protocol facilitates the distribution of
cached data across the SoC while providing a consistent view
of the data items to all PEs adhering to the protocol. If the
caches of several PEs are kept coherent, they are said to be in
the same coherence domain. For example, on PS-PL platforms,
the PL can be configured to be in the same domain as the PS
using the ACE [15] protocol as depicted in Figure 1.

As is the case for ACE, cache coherence is often imple-
mented using a snoop-based cache coherence protocol [17].
In this case, whenever a coherent PE requests access to a
cache line (e.g., upon a refill), the coherency fabric broadcasts
a snoop request to all PEs of the coherency domain. These PEs
must reply to indicate whether they have a local copy of the
requested cache line. If so, they must perform adequate actions
to maintain cache coherence, e.g., updating the coherence state
of the cache line or providing the most up-to-date content of
the line. Likewise, PEs can use snoop requests to announce
state changes of cache lines, e.g. when a cache line needs
to be modified. Importantly, snoop requests carry meta-data
identifying the requested line, such as its physical address.

III. EXPLORING REGULATION IN PS-PL PLATFORMS

The feature-rich nature of PS-PL platforms opens a range
of opportunities to rethink memory bandwidth regulation to
overcome traditional challenges of state-of-the-art PMC-based
techniques such as MemGuard and MemPol. Without loss of
generality, all memory bandwidth regulators can be decom-
posed into three individual modules:

1) An accounting module whose objective is to obtain and/or
estimate the PEs’ memory activity metrics (e.g., refills,
write-backs).

2) A decision module whose objective is to decide on what
actions to undertake (i.e., halt, resume, no-action), based
on the current and past memory activity.

3) An enacting module whose objective is to conduct the
action dictated by decision module.

Realizing each of these modules on an off-the-shelf platform at
the software level comes with technical challenges that hinder
the regulation’s quality. Let us closely examine the models and
limitations of both regulators.

A. MemGuard Model

In a MemGuard-like regulator, as mentioned in Sec. II-B,
the PMC is used as a countdown counter. When its value
reaches zero, an interrupt is issued1 immediately to execute
the decision module. Hence, the delay between the moment
throttling is required and its enacting is short, meaning that
MemGuard does not suffer from budget overshooting. A
second periodic interrupt is required to replenish the budget
and enforce a given memory bandwidth value over time. Un-
fortunately, when higher enforcement granularity is requested,
the reliance on two interrupt handlers becomes problematic.
Achieving finer granularity with the same target bandwidth
implies that both the per-period budget and the replenishment
period must be smaller. Consequently, a ten-fold granularity
increase can lead to a twenty-fold increase in the delivered
interrupt rate. Due to this limitation, MemGuard typically op-
erates at millisecond-granularity. At microsecond-granularity,
it incurs prohibitive overhead [10]. In short, MemGuard is
good at preventing overshooting, but realistically, it can only
operate at millisecond-scale granularity.

B. MemPol Model

Recognizing the overhead problem, MemPol proposes to
use other auxiliary on-chip PE(s) to execute the regulation
logic. Now that the PMC(s) can be sampled from an external
PE and since the regulator also resides outside the core(s)
under regulation, the bandwidth estimation must be done
following a new approach. MemPol periodically polls the
value of the relevant PMCs associated with each regulated
core. It does so by accessing the PMCs via memory-mapped
(AXI) transactions to the PE’s CoreSight registers and using
the difference between two consecutively sampled values to
estimate the current bandwidth. To halt/resume the activity of
the cores, MemPol also accesses debug control registers via
memory-mapped transactions. The immediate benefit of using
said approaches for the accounting and enacting modules is
that MemPol no longer injects interrupts in the control flow of
the regulated PEs. With less overhead, MemPol can operate in
microsecond-scale granularity. However, the periodic sampling
nature makes it prone to overshooting problems. Indeed, regu-
lation can only react as fast as the maximum achievable polling
frequency. If a burst of memory transactions occurs, MemPol
cannot respond until the newest PMC reading is polled. In
short, MemPol can operate on microsecond-granularity due to
low overhead but is prone to overshooting problems.

1More precisely, the interrupt is issued when the counter overflows, so the
budget is encoded as the value representing the maximum precision of the
PMC minus the budget value to be tracked.
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C. New Opportunities on PS-PL Platforms

Despite the improvement brought by MemPol at the cost
of dedicating a (low-power) PE, overcoming the challenges
described above requires shortening the accounting and enact-
ing stages, which is rendered difficult by the unsuitability of a
typical system’s architecture. For instance, in the accounting
stage, the impossibility for MemGuard and MemPol to swiftly
access or act on the PMCs’ content constitutes a major hurdle
against regulation granularity. Both architectures also suffer
from the inability to distinguish accesses to different memory
regions. They must, for instance, assume that all the accesses
target the same DRAM bank. Software-driven PMC-based
regulation on off-the-shelf platforms has hit a limit.

To overcome these architectural limitations, we propose
Memory management via Coherence-aided Regulation (Mem-
CoRe). MemCoRe is a hardware module designed for off-the-
shelf PS-PL platforms. It addresses the aforementioned chal-
lenges by elevating the role of the PL to achieve fine-grained
bandwidth regulation of high-performance PEs. MemCoRe is
designed from its inception with three core concepts:
Accounting-regulation locality. We identify that one of the
primary sources of regulation latency—i.e., the time between
budget exhaustion and halting of the target PE—originates
from inadequate interfacing between the PMCs and the PE
driving the regulation. We argue that co-locating the account-
ing and the decision units is fundamental to reducing the
regulation latency and taming the overshooting.
On-time throttling. Another important intuition to tame bud-
get overshooting is allowing the decision unit to be informed of
budget overruns as soon as they occur. This way, it is possible
to immediately activate the enacting unit.
Discerned regulation. One common drawback of existing
PMC-based regulation mechanisms is their one-size-fits-all ap-
proach to throttling. Traditionally, any memory access gener-
ated by the PE under analysis counts against the assigned quota
of sustainable bandwidth. Modern systems, however, often
feature heterogeneous memory sub-systems—e.g., comprised
of multiple DRAM controllers, scratchpad memories, and non-
volatile memory. Thus, the budget consumed from different
memory targets should be appropriately differentiated.

Instead of fixing a single bandwidth target per PE, with
all tasks running on that PE sharing the same quota, we
postulate that bandwidth targets should be associated with
memory regions to allow for greater flexibility and reduced
pessimism when assigning bandwidth targets.

To do so, we propose elevating the PL’s role to that of
a (passive) coherent actor in the coherence domain. From
this position, the PL-located MemCoRe can collect virtually
all coherent bus activity information. This capability to ob-
serve the SoC memory activity is leveraged to implement
PMC-like counters within MemCoRe, effectively enabling the
accounting-regulation co-location we seek. It also enables
on-time throttling as the PMC-like registers can inform the
decision logic of bandwidth budget overruns with a delay of a
single clock cycle. Finally, thanks to the dedicated PL-to-PS

Fig. 2: MemCoRe block diagram. At each clock cycle, both threads
of hardware logic will be performed.

cross-trigger lines, halt and resume commands can be swiftly
sent to the PS-side PEs.

IV. DESIGN

This section describes the key design choices of MemCoRe.
To better leverage the flexibility offered by PS-PL platforms,
MemCoRe is designed with modularity in mind. Thus, Mem-
CoRe offers multiple alternative approaches to implement
the accounting, decision, and enacting modules. Figure 2
shows the logic organization of the most optimized version
of MemCoRe. The remainder of this section will explain each
component in detail.

A. System Requirements

In this work, we assume a PS-PL platform complying with
the description in Sec. II-C. In particular, we assume a cache
coherent interconnect linking one or more computing clusters
comprising one or more PEs (PS) and the programmable
logic (PL), with the ability to logically include the PL in
the same coherency domain as the cluster(s) to monitor cache
coherence messages. We further assume that a snoop-based
cache coherence protocol is used. For regulation, the PL must
efficiently halt and resume specific PEs. We assume that this
can be done in two ways: (1) by sending per-core interrupts
or (2) by using the debug infrastructure of the platform.

B. Accounting of Cache-Coherent Memory Transactions

In Sec. III, we identified that reading PMCs via their
memory-mapped CoreSight interface is a limiting factor as
the access delay scales linearly with the number of cores.
Moreover, read requests in the form of AXI transactions may
traverse bus segments shared with the route taken by the PE-
originated memory requests.

While MemCoRe can be configured to sample the PMCs in
this way, the full potential of MemCoRe is unlocked by allow-
ing the PL to observe the coherency traffic (cache snooping)
generated by the PEs, similar to the approach in [16]. For each
cache line refill operation that cannot be satisfied by the LLC,
the coherency fabric queries the other cache-coherent agents
in the system. This is done to access the latest version of
the cache line from other coherent caches in the system. Said
snoop requests identify the cache lines by physical address.
This allows the PL (1) to identify the source PE based on the
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cluster ID and the cache line address, (2) to count all cache
coherent refill transactions for bandwidth regulation, and (3) to
apply different cost factors for accesses to different memory
regions associated to corresponding physical address ranges.

Unfortunately, the PL cannot immediately distinguish the
source PE in these transactions. Therefore, the PL must also
use the line address to differentiate between PEs. This is
usually not a problem when using partitioning hypervisors,
which typically allocate and assign memory to VMs statically
(memory range based) or when cache coloring is used (color
based), e.g., as described in [18], [19]. Also, the PL cannot ob-
serve the PEs’ write-back transactions, as voluntary write-back
transactions—write-backs of dirty cache lines evicted from
the LLC—do not need to be broadcasted on the coherence
interconnect.

Relying on coherence traffic scales better than using PMCs,
and it frees PMCs for software use. It also removes the
dependency on the CoreSight infrastructure that is otherwise
needed to access the per-core PMCs from outside the PEs.
Furthermore, the accounting stage no longer requires strict
serialization between the cores for reading the PMCs as in
MemPol. This allows a decision stage to run independently
for each core and in lock-step with the accounting module.
The new limiting factor becomes the sustainable throughput
of the cache coherent interconnect between the agents [16].

C. Per-Core Token Bucket Regulation

MemPol uses a sliding window method for regulation [10].
The sliding window effectively guarantees a minimum band-
width over time and allows PEs to spare bandwidth during
the window for short memory burst phases. We observe a
similarity between the sliding window method and the token
bucket regulation often used in networking. In a token bucket
regulation, a token dispenser constantly refills a proverbial
bucket with fresh tokens (replenishment) until the bucket is
full (available budget). A consumer can take tokens as long
as the bucket has tokens (burst). In our case, the tokens are
the cache lines contributing to memory bandwidth, and we use
the condition that the bucket is empty to halt a core. Unlike
in networking, where token bucket regulations are often used
as admission protocols, e.g., before sending data to a network,
MemCoRe cannot delay an ongoing memory transaction at the
source, and therefore must cope with overshooting. Hence, our
bucket level can become negative. In this case, we keep a core
halted until its available budget reaches the zero level again.

With this, a regulation of PE i at each replenishment period
of length ∆t comprises: (1) a configurable replenishment rate
Ri—number of cache lines per replenishment period ∆t,
(2) a configurable budget limit Bi—bucket size expressed
in number of cache lines, and (3) the currently available
budget Ai(t)—bucket level expressed in number of cache
lines, with Ai(t) ≤ Bi. We denote Ci(t) the number of cache
lines consumed by PE i, defined as the number of observed
cache refills during the time interval [(t−∆t), t] when using
a regulation period of length ∆t.

Under synchronous available budget tracking, we adjust the
available budget every ∆t (period) time units so that

Ai(t) = min(Ai(t−∆t) +Ri − Ci(t), Bi), (1)

i.e., we both replenish and consume in one step and do not let
the bucket overflow. MemCoRe throttles a core if Ai(t) < 0,
effectively halting it on the first instant at which the condition

Ai(t−∆t) ≥ 0 ∧Ai(t) < 0 (2)

holds; MemCoRe releases the core again as soon as

Ai(t−∆t) < 0 ∧Ai(t) ≥ 0 (3)

holds. In the model described above, the halt decision is
synchronous or “periodic” in the sense that the halt decisions
can only be made at the end of each replenishment period. We
will refer to this variant as MemCoRe-periodic.

Alternatively, the halt decision can be decoupled from the
replenishment strategy and be made asynchronous. As the
accounting module on the PL-side operates at each clock cycle,
the token accounting is continuously updated, and a halt deci-
sion can be fired whenever the tokens are depleted. The best-
performing version of MemCoRe employs said “asynchronous-
halt” approach. This model is described in Figure 2, and we
quantify the performance gain achieved through asynchronous-
halt in our evaluation in Sec. VI.

D. Core Throttling using CTI Triggers

MemPol uses the PEs’ debug interfaces to halt and resume
cores. In particular, MemPol triggers specific halt and resume
signals of the PEs exposed via memory-mapped CTI trigger
registers on the CoreSight interface that let PEs enter or leave
the debug halt state. As noted in Sec. III, and similar to the
accounting stage, accesses to the memory-mapped CoreSight
registers require serialization to guarantee bounded access
times and bounded reaction times. However, promptly halting
the PEs is more critical to reduce regulation overshooting than
resuming them.

With this insight, a deeper platform analysis has shown that
an alternative mechanism exists to trigger CTI signals from the
PL. Indeed, the PL can directly trigger up to four debug signals
that can either halt or resume PEs, or even listen to CTI signals
from the cores. Therefore, we wire the PEs’ halt signals to the
PL and allow it to halt the PEs directly. This eliminates any
dependency on CoreSight transactions to halt a PE and further
allows the enacting module to be activated in lock-step with
both accounting and decision modules, independently for each
PE.

To resume any PE, the enacting module uses serialized
AXI transactions as in MemPol. This effectively introduces
a release delay D for a previously halted PE that depends
on the number of pending AXI transactions on the CoreSight
interface. On the other hand, the delay allows the PEs to accu-
mulate some budget, preventing them from being immediately
throttled after release. However, the bucket should not fully
fill up during the delay, so D ≤ Bi

Ri
∆t. This effectively puts

a lower limit on bandwidth settings.

5



E. Core Throttling using Interrupts

As an alternative to CTI-based core throttling, e.g., on plat-
forms where the PL has no access to the PE debug infrastruc-
ture, we can also consider an interrupt-based regulation. Here,
the PL raises an interrupt to halt a PE, and the PE’s interrupt
handler keeps the core in a busy waiting state as long as the
PE is halted. However, the interrupt handler’s code and data
footprint contribute to unavoidable overshooting. Therefore,
the code path to throttle the PE in the interrupt handler must
be as short as possible. But we also have to consider that
the regulation interrupts compete with other interrupt activity
in the system. The Arm Generic Interrupt Controller (GIC)
architecture supports interrupt prioritization. This could reduce
the competition to, at most, one currently ongoing interrupt. To
further reduce interference, the Arm architecture defines two
interrupt groups (FIQ and IRQ) with independent handlers,
where FIQs take precedence over IRQs [20]. However, FIQs
are often used for firmware purposes and require a handler
at the firmware level. Besides testing the general feasibility
of interrupt-based regulation, we refrained from extensively
modifying the Arm Trusted Firmware (ATF). We, therefore,
focus on CTI-based throttling in the rest of this paper. Note
that all interrupt-based regulation mechanisms share these
problems, including MemGuard.

F. Address Awareness

As mentioned in Sec. IV-B, the address awareness of
the proposed regulation approach allows using different cost
factors for accesses to different memory regions. This becomes
handy for several reasons. For instance, (1) when accessing
read-only memory, e.g., code segments or video data from an
incoming camera stream, the cache lines can never become
dirty and thus need never to be written back. This enables
reducing the pessimism for access to these memory regions, as
mentioned in Sec. IV-C. (2) DRAM-like memories of different
types, such as external byte-addressable non-volatile memory,
chip-internal scratchpad memory, or GPU-local memory, can
be characterized by different speed grades and bandwidth
limitations. Even within a single DRAM controller, one could
separately track the bandwidth extracted from each bank,
lowering the pessimism in the considered saturation thresh-
olds. Using per-region cost factors allows combining different
memory accesses into a single regulation scheme. Moreover,
address awareness allows one to use independent regulation
schemes and bandwidth budget settings for each memory
type, similar to the read and write bandwidth regulation for
MemGuard in [14].

G. Global Regulation to Distribute Unused Bandwidth

MemPol provides a global regulation mechanism that dis-
tributes the PEs’ unused bandwidth among PEs that are
currently short of bandwidth. The same technique can be used
for MemCoRe with adaptions.

The global regulation accumulates the sum of the consumed
bandwidth of all PEs Ag(t) =

∑
∀i Ai(t). The budget is set to

the sum of the all per-core budgets Bg =
∑

∀i Bi if the global

Fig. 3: Integration of MemCoRe into the SoC’s cache coherency
architecture. The blue arrow indicates the snoop direction. The
red arrows indicate the directions of the enacting signals. The red
components are from CoreSight.

regulation is enabled, or to Bg = 0 otherwise. The global
regulation overrides the decision of the per-core regulation to
halt a core if the global budget is underutilized. A core i is
then throttled if

Ai(t) < 0 ∧Ag(t) < 0. (4)

In the case of helping a halted core out, MemPol’s global
regulation additionally needs to adjust the point of reference
of the sliding window regulation of the core to prevent the
core’s over-utilization of bandwidth from becoming a penalty.
We overwrite and reset the core’s available budget to zero in
an analogous step in MemCoRe, i.e. Ai(t) = 0.

V. IMPLEMENTATION

To discuss our MemCoRe implementation, we consider
the features available in the most widely used family of
commercially available PS-PL platforms, namely the Xilinx
Zynq UltraScale+ SoCs [11]. These platforms include multiple
application processor units (APU) and a sizeable onboard
programmable fabric (PL). The APU cores feature private L1
caches and a shared L2 cache (LLC). Importantly, the PL-side
is also attached to the system’s CCI via an ACE port. Thus,
the PL-side can be placed in the same coherence domain as the
LLC. The PL-side also features two high-performance (HPM)
PS-to-PL ports for memory-mapped access. An instance of
a standard ARM CCI-400 component is used as the system
CCI [21].

CoreSight is Arm’s solution for hardware debugging [22],
which defines registers of memory-mapped debug devices
accessible through a debug access port (DAP). The target
family of PS-PL platforms includes a typical CoreSight infras-
tructure. A CoreSight component, the Cross-Trigger Interface
(CTI), is generally used by external hardware debuggers to
halt/resume cores. The PS-PL SoCs of reference include CTI
lines on the PL-side, allowing the latter to act as an external
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debugger. A Cross-Trigger Matrix (CTM) [11] is responsible
for propagating signals among CTIs. Fig. 3 illustrates the
hardware components employed and signal paths. Further
details are provided in the subsequent sections.

A. Accounting Module Implementation

To accurately monitor memory bandwidth in different re-
gions of physical memory, MemCoRe is interfaced with the
coherence interconnect through the ACE port. This configura-
tion enables passive monitoring of coherence traffic.

To systematically measure memory bandwidth utilizing co-
herence in the PL, the following steps are needed:

• Integration of the PL into the coherence domain is
done by modifying the Arm Trusted Firmware (ATF) to
enable the PL-facing ACE port, which allows the PL to
participate in the coherence protocol.

• Once integrated, the PL receives traffic via the CCI. This
traffic is similar to that on the AXI interface and consists
of requests that the PL can either respond to or simply ob-
serve. Some requests, such as Distributed Virtual Memory
(DVM) operations and synchronization packets, require
proper handling in terms of timely responses. Neglecting
these requests will lead to system-wide freezes, as the
coherence protocol mandates responses to such requests
from all participants. For our purpose of passive obser-
vation, the PL issues simple acknowledgments to remain
compliant.

• Only snoop requests are relevant for accounting purposes.
When an LLC miss occurs, a snoop is broadcast by
the CCI to query all coherence domain participants.
The snoop contains the corresponding physical memory
address of the cache line. The PL does not need to send
a reply unless it intends to actively participate in the co-
herence protocol [16]. In our implementation, MemCoRe
records the physical address associated with the snoop
request. This address is checked against the configured
address ranges under monitoring, and a counter for the
matching address range is incremented accordingly.

B. Decision Logic with Asynchronous-halt

The token bucket model described in Sec. IV-C is imple-
mented on the PL. When a snoop request is received, the
decision module decrements the associated bucket value and
checks whether the value is negative. If so, a halt decision
is made immediately, and the decision module signals the
enacting module to execute it. The replenishment logic runs
independently. Every ∆t cycles, the replenishment value is
added to the bucket. If this results in a negative bucket
becoming positive, then a resume decision is made, with the
decision module signaling the enacting module to execute it.

C. Enacting via PL-side CTI Signaling

Zuepke et al. [10] describe in detail how to utilize the CTI
via memory-mapped accesses to instruct a core to enter/leave
debug state in software. In summary, to enter/leave, a write

transaction to the corresponding CTI is necessary. Addition-
ally, another write transaction to the CTI to acknowledge a
previous debug request before leaving the debug state is also
required. The regulation action can be done faster due to the
existence of PL-side CTI. Indeed, the PL-side CTI contains
lines that can propagate direct signals to the CTIs of other
clusters on the platform (see Figure 3).

To fully appreciate the advantage of utilizing the PL-side
CTI, it is beneficial to explain the semantics of the afore-
mentioned “write to CTI” step. A CTI consists of eight 1-bit
input triggers and eight 1-bit output triggers. The connectivity
between the triggers and the outside components is typically
hardwired. To propagate signals among CTIs, a total of four
shared channels are present and exposed to each CTI on the
platform. Inside a CTI, the connectivity between the channels
and triggers is programmable. If an input trigger connects
to a channel, an outside event driving the trigger high will
drive the channel high. If a channel connects to an output
trigger, when the channel is driven high, the output trigger will
also be driven high. By programming the connectivity in each
CTI, a signal can be propagated to other CTIs via the shared
channel2. Additionally, a channel can also be driven high
for the duration of one cycle with a write to the APPPULSE

register. Thus, the aforementioned “write” is a software write
to APPPULSE setting the appropriate bit corresponding to a
specific channel. The channel is, in turn, connected to output
triggers that command a CPU to enter/leave the debug halt
state. The software write is an AXI transaction.

By directly leveraging the PL-side CTI, MemCoRe can be
designed to have pins connected to the input triggers. Thus,
instead of an AXI transaction, the regulator can simply drive
the corresponding trigger pin high to deliver a signal for en-
tering/leaving the debug state. Note that the acknowledgment
still needs to be done through an AXI transaction. Directly
driving a pin high is significantly faster than issuing an AXI
transaction. Our measurements show that the time it takes
for an AXI transaction originating from the PL to complete
entering/leaving/acknowledging actions is 420 ns. Directly
driving a pin high for entering/leaving the debug state takes
around 100 ns. Our observed worst-case was 350 ns.

D. Implementation Variations

The modular implementation allows different choices for
each of the three modules. The accounting module can rely
on either polling the PMCs or listening to the snoops. For
the decision module, the halt decision can be made either
periodic or asynchronous. The decision to resume a halted
core is made periodically at the end of each replenishment
period. The enacting module involves signaling the halt/re-
sume (either through AXI or CTI trigger) and acknowledg-
ment (through AXI only). This again offers four options.
In total, this provides 16 combinations. From our experi-
ments, we find that the best performance is provided by the

2The gate register GATE of a CTI can be programmed so that the CTI will
keep the channel state local, thus not propagating signals to other CTIs/CTMs.
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configuration where (1) snoops are used in the accounting
module, (2) asynchronous-halt for the decision module, and
(3) halt/resume via PL-side CTI trigger was employed in the
enacting module. From now on, MemCoRe refers to this spe-
cific configuration. We will also evaluate other representative
implementations in Sec. VI.

VI. EVALUATION

This evaluation aims to study and ensure the capabilities of
MemCoRe and its key variants against MemPol. To this end, we
deploy MemPol and each variant of MemCoRe on the Xilinx
Zynq UltraScale+ ZCU102 SoC [11]. The ZCU102 is a high-
performance embedded PS-PL platform with one Application
Processing Unit (APU), one Real-time Processing Unit, and
one tightly integrated FPGA (PL). The application processing
unit is composed of four ARM Cortex-A53 cores operating
at 1.2 GHz and clustered together with a 1 MB LLC. In all
our experiments, we chose the APU’s cores as the PEs to be
regulated. The Real-time Processing Unit is a smaller cluster
of two ARM Cortex-R5F cores operating at 500 MHz. For
the purpose of our evaluation, these PEs are only used when
regulating with MemPol. The PL hosting MemCoRe and its
variants is clocked at 100 MHz and is included in the same
coherence domain as the APU as described in Sec. V.

For benchmarking purposes, the APU runs a full-fledged
Linux kernel v6.1. We employ a set of memory-intensive
benchmarks issued from the San-Diego Vision Benchmark
Suite [23] (SD-VBS)3 and the Isolbench’s Bandwidth bench-
mark [24]. In particular, we use the RT-Bench [25] compatible
version of these benchmarks.

To satisfy MemCoRe’s requirement for physically contigu-
ous address chunks to distinguish between different cores and
the way Linux dynamically allocates memory, we employ a
tailor-made kernel module. This module holds several pointers
to distinct and physically contiguous memory regions. When
used in conjunction with RT-Bench’s malloc wrapping feature,
it allows the processes’ heap to be seamlessly located in one
of the regions. This means that all snoops can be immedi-
ately associated with the corresponding Linux process under
regulation at runtime and during the offline analysis.

Finally, to analyze and conclude on the regulator’s behavior,
we deploy an ACE bus tracer on the PL-side to obtain clock-
cycle-accurate insight into the bus activity. This module is
inspired by the silent-spy presented in [16] and is attached to
the ACE bus, linking the CCI to MemCoRe in a non-invasive
way. It can be configured to monitor specific address ranges,
such that when a snoop carrying this address is observed,
a tracing packet containing a timestamp and the address is
created. These packets are then sent and stored in the PL-side
DRAM, where they can be recovered for later offline analysis.

TABLE I: Total memory usage (unit: MB).

Actual-usage PMU-global PMU-targeted Co-global Co-targeted

Bandwidth 1024.0 1051.34 1026.91 1051.34 1022.08
Disparity N/A 257.81 233.49 257.81 225.83
MSER N/A 24.01 6.83 24.01 2.56
Sift N/A 67.09 46.57 67.09 41.20
Stitch N/A 29.39 10.39 29.39 6.79
Tracking N/A 30.91 12.71 30.91 8.39
Local. N/A 22.19 4.91 22.19 0.14

A. Accounting Equivalence

This experiment aims to evaluate the precision with which
MemCoRe can monitor the system memory traffic. We com-
pare the number of transactions recorded by MemCoRe and
the PMCs when benchmarks from RT-Bench are executed.

We consider four different ways, as shown in Table I, to
count the number of LLC cache refills occurring in the system:
(1) PMU-global uses the PMU for all cores; (2) PMU-targeted
uses the PMU for the core under analysis; (3) Co-global uses
MemCoRe for all cores; and (4) Co-targeted uses MemCoRe
for the core under analysis. When derivable, Actual-usage
reports on the ground-truth value.

As reported in Table I, the experiment’s results show that
the activity recorded by MemCoRe is in line with what the
PMU reports. When system-wide activity is monitored, Co-
global reports exactly the same amount of transactions (here
expressed in MB) as PMU-global. However, discrepancies can
be observed between the recording of PMU-targeted and Co-
targeted, with the latter always reporting higher activity than
the former. These discrepancies stem from a difference in the
monitoring capabilities of MemCoRe and the PMUs. In fact,
since the PMUs monitor all refill events occurring on the CPU
core, it also accounts for other processes’ activity. On the
other hand, MemCoRe account refill events for and only for
the address range(s) of interest. When looking at the results
for Bandwidth, Co-targeted is just 1.92 MB away from the
Actual-usage whereas PMU-targeted is 27.34 MB away. This
indicates that the accounting via coherence is accurate.

B. Phase-aware Throttling

The following experiment demonstrates that MemCoRe can
effectively apply differential throttling even within a task
during different execution phases. For evaluation purposes,
we designed a template application in which two phases
(Pcritical and Pnon-critical) execute alternatively in a loop. Pcritical
is assumed to be a mission-critical section whose QoS has to
be guaranteed, while Pnon-critical can be executed following a
best-effort approach. By instructing MemCoRe to only throttle
the memory bandwidth occurring within the address range
of Pcritical, the differential regulation can be achieved. The
trace of this experiment is shown in Figure 4. In general,
MemCoRe supports the definition of arbitrarily many regions,
each regulated at a configurable bandwidth setpoint.

3For all SD-VBS benchmarks, we use the qcif input size due to the tracer
buffer size, except for Figure 7 in which vga is used to be consistent with
MemPol’s evaluation [10].
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Fig. 4: Bandwidth trace of an application under regulation. There are
two sections: one is critical, which is not regulated, and a regulated
one with a setpoint BW at 165 MB/s.

C. Taming Overshooting: Synthetic Benchmark

One key objective of MemCoRe is to tame overshooting.
As discussed in Sec. IV, this is achieved by shortening the
regulation period and allowing for asynchronous PE halting.

To compare our regulators, we devised a simple experiment
where a core runs IsolBench’s bandwidth as a read-only
memory bomb while being regulated. The set of regulators
includes MemPol, MemCoRe, and MemCoRe-periodic. Mem-
CoRe-periodic refers to the variant that uses (i) coherence
accounting, (ii) periodic halting decision, and (iii) halt/resume
via CTI trigger. The experiments conducted are (1) Mem-
Pol with a 6.25 µs polling period; (2) MemCoRe-periodic
with 6.25 µs for both halting decision and replenishment
period; (3) MemCoRe-periodic with 2.2 µs; (4) MemCoRe
with 6.25 µs replenishment period and asynchronous halting;
and (5) MemCoRe with 1 µs. For all regulators, the target
bandwidth is set to 120 MB/s. During the runs, the tracer is
tasked to collect the regulated bus activity.

Fig. 5 illustrates the bus activity as recorded by the tracer
under the different regulators. In each inset, the y-axis shows
the bandwidth achieved for each bin size of 1 µs. The target
bandwidth is shown by the dashed red line, while the smoothed
measured bandwidth is drawn in blue (moving average over
50 µs).

The first observation is that MemPol and MemCoRe-periodic
6.25 µs behave similarly. More precisely, both regulators
display large bandwidth fluctuations ranging from 0 MB/s to
±200 MB/s. This is expected as MemCoRe-periodic 6.25 µs
is functionally equivalent to MemPol but implemented on the
PL-side. The second observation is that running MemCoRe-
periodic with a shorter period (here 2.2 µs) reduces the
fluctuations to ±85 MB/s to ±150 MB/s. The third observation
is that even for a large period (6.25 µs), enabling asynchronous
halting is effective in reducing fluctuations. Finally, reducing
the replenishment period to 1 µs and enabling asynchronous
halting provide the tightest regulation.

The results indicate that MemCoRe successfully tames the

overshooting normally observable with MemPol.

D. Taming Overshooting: Pragmatic Benchmarks

In addition to showing the MemCoRe behavior under a
predictable synthetic scenario (see Sec. VI-C), we evalu-
ate MemCoRe when regulating memory-intensive pragmatic
benchmarks. The SD-VBS benchmarks are run with the qcif
input size4 and are (1) regulated by MemPol with a polling
period of 6.25 µs; (2) regulated by MemCoRe with a polling
period of 1.5 µs and asynchronous halting; and (3) unregu-
lated. As in Sec. VI-C, the tracer is configured to record the
full bus activity.

Overall, the traces displayed in Figure 6 confirm the conclu-
sion of the previous experiment: MemCoRe is more capable
of taming overshooting than the coarser-grained MemPol.
For instance, due to its similar memory access pattern to
IsolBench’s bandwidth, disparity’s traces resemble those
shown in Figure 5. However, unlike the previous benchmark,
these pragmatic benchmarks reveal the capability of MemCoRe
to handle sudden request spikes. The sift benchmark is a
prime example. As shown in its unregulated trace (top-most),
the first half of its execution is characterized by six brief
transaction bursts. The same bursts can still be observed in
the MemPol regulated trace (middle inset) and the MemCoRe
regulated trace (bottom-most). However, in the latter’s case,
the burst is mostly contained below the target bandwidth.

E. Regulators Overhead

Inherently, PMC-based bandwidth regulators are likely to
inflate the execution time of the tasks they regulate due to the
overheads they introduce. This experiment aims to quantify
the effect of MemCoRe operations on the execution of tasks
compared to MemPol.

To this end, we express the execution time inflation as
a slowdown compared to when running unregulated (i.e.,
the ratio between the execution time under regulation and
without regulation). In particular, we are interested in the
slowdown of the benchmarks when regulated by MemPol and
MemCoRe with the same bandwidth target. In this experiment,
all SD-VBS benchmarks use a vga input size and a target
bandwidth of 150 MB/s and 300 MB/s. For completeness,
we conduct and present our experiment considering all the
available benchmarks. Nonetheless, it can be observed that
some of these are not memory-bound and, therefore, only
exhibit negligible slowdown when running under regulation.
This is the case for sift, stitch, localization, and
texture synthesis.

The results in Figure 7 show that the largest gains were
obtained when running disparity and tracking. In the
case of disparity, a sizeable slowdown reduction can be
observed for the lowest bandwidth target. The same effect
is also visible, albeit harder to quantify, by looking at the
length of the traces in Figure 6. All other benchmarks achieve

4The size was selected to prevent the tracer’s buffer from overflowing.
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Fig. 5: Bandwidth traces of different regulators. The horizontal red line is the setpoint, the vertical blue lines are the 50µs moving average
of the memory bandwidth, and the vertical gray lines are individual cache line transactions. From left to right, the performance shows the
gradual improvement in setpoint maintenance from MemPol-SW to MemCoRe. The first major improvement is due to the higher regulation
frequency enabled by MemCoRe-periodic (form 6.25µs to 2.2µs) achieved by using coherence to monitor BW instead of PMC. The second
major improvement is achieved by leveraging the asynchronous halt capabilities of MemCoRe.

comparable performance under the operation of the two regu-
lators. All in all, these results highlight that MemCoRe always
behaves identically or better than MemPol.

F. PL-side Resource Utilization

TABLE II: Resource utilization of the PL-side to implement Mem-
CoRe (Sec. VI-D version) on the ZCU102’s PL-side for a target
frequency of 100 MHz.

LUT FF BRAM DSP
Total % Total % Total % Total %

MemCoRe w/ Tracer 17747 6.48 23116 4.22 25.5 2.8 3 0.12
MemCoRe 1545 0.56 1364 0.25 0 0 0 0
Memory Controller 15400 5.62 20917 3.81 25.5 2.8 3 0.12
Tracer Logic 802 0.29 835 0.15 0 0 0 0

MemCoRe uses a marginal amount of resources on the
PL-side. In fact, once the tracer and the PL-side memory
controller are removed5, only 0.56% of the available look-
up tables (LUT) are used. This negligible footprint means that
MemCoRe can be added to any existing PL-side design with
virtually no impact. A breakdown of the PL-side’s resource
utilization for MemCoRe that includes the tracer used in
Sec. VI-D is reported in Table II. Likewise, the ACE port does
not have to be exclusively allocated to MemCoRe. The latter
is a passive observer and, hence, can be attached as a probe
to an actively coherent hardware module. However, MemCoRe
needs two AXI ports for its configuration port and to access
the CoreSight registers located on the PS-side. These two
ports do not need to be exclusively allocated for MemCoRe.
Interconnects can be used to multiplex the MemCoRe’s AXI
ports with other PL-side components.

VII. DISCUSSION

The evaluation showcases many of MemCoRe’s advantages
over MemPol. Our approach is particularly effective in reduc-
ing the amplitude of overshooting. However, MemCoRe cannot
completely eliminate them. The traces’ raw data reveals that
small overshooting still occurs at a scale that cannot easily

5Their presence is only necessary for the purpose of our evaluation.

be visualized. This might be due to a small delay between an
LLC miss occurring and MemCoRe receiving the snoop.

Despite the positive results presented in Section VI, Mem-
CoRe lacks some of MemPol’s and MemGuard’s function-
alities. For instance, unlike MemPol, MemCoRe cannot im-
mediately take LLC cache write-backs into account for its
regulation as write-back events are not broadcasted to the
members of the coherence domain. On the one hand, this
limitation can be partially overcome by monitoring the PMCs
counting only write operations from MemCoRe, thus operating
MemCoRe in a mixed mode—refills counted via coherence
traffic and write-backs counted via PMCs. On the other hand,
it might be possible to manipulate snoop requests to inform
the PL of write-back events. The feasibility of this approach,
however, requires additional research. We leave this extension
of MemCoRe as future work.

Moreover, the utilization of interrupts (à-la MemGuard)
instead of CTI trigger lines might be necessary to regulate the
activity of all the application cores in future platforms with an
ever-increasing number of PEs.

In particular, the number of debug triggers limits the ap-
proach’s scalability to only a few cores and a few signals.
With that regard, using interrupts to throttle the (additional)
cores may be the way forward. In this case, CTI-based
regulation can be applied to the cores hosting applications that
exhibit significant bandwidth peaks, allowing MemCoRe ’s
rapid response time to be optimally utilized for overshoot
prevention. Meanwhile, the remaining cores can be regulated
using FIQs/IRQs.

Furthermore, the idea of adopting interrupts-based throt-
tling is reinforced by the absence of a mechanism for the
software to mask debug halt/resume signals during specific
execution phases (e.g., critical sections). However, in light of
MemCoRe’s reduced regulation period (and lack of visible
overshooting), the need for a masking mechanism is not a
pressing concern. Evaluating the cost trade-off of utilizing
interrupts for many-core architectures is left as future work.
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Fig. 6: Bandwidth traces of SD-VBS. The red line indicates the setpoint and the blue line is the 50 µs moving average of the memory
bandwidth. Both regulations have the same bandwidth setpoint. The top row shows the memory bandwidth activity when no regulation is
present, the middle when MemPol regulates, and the bottom when MemCoRe regulates.

disparity
150 MB/s

0
1
2
3
4
5

disparity
300 MB/s

mser
150 MB/s

mser
300 MB/s

sift
150 MB/s

sift
300 MB/s

0
1
2
3
4
5

Sl
ow

do
wn

stitch
150 MB/s

stitch
300 MB/s

tracking
150 MB/s

tracking
300 MB/s

localization
150 MB/s

0
1
2
3
4
5

localization
300 MB/s

texture.
150 MB/s

texture.
300 MB/s

MemPol     6.25 µs
MemCoRe  6.25 µs
MemCoRe    1.5 µs

Fig. 7: Relative slowdown by regulation. Each benchmark is evaluated
under two bandwidth targets (150 MB/s, 300 MB/s). The regulation
period of MemPol is 6.25 µs. Due to MemCoRe employing async-
halting, the period for MemCoRe is for resumption (6.25 µs, 1.5 µs).
The y-axis represents the slowdown (×) factor where 1× means the
application has the same runtime as in the unregulated run.

VIII. RELATED WORKS

Memory inference regulation techniques for MPSoC plat-
forms can be classified into software and hardware approaches.
Software techniques offer greater flexibility and wider ap-
plicability across commercial off-the-shelf (COTS) platforms,
whereas hardware approaches enable finer monitoring granu-
larity.

MemGuard [1], a PMC-based regulation, is the first software
approach, which has sparked numerous subsequent investi-
gations [18], [19], [26], including the implementations of
MemGuard at the hypervisor level without modifying the host
OS. The support for the separate regulation on each core for
reading or writing memory traffic is extended by the work [14].
The work [27] also adds support for the protection against
Cache Bank-Aware Denial-of-Service Attacks.

While the memory bandwidth derived from PMCs serves
as a proxy for the effective workload on the interconnect
and DRAM memory controller, leveraging the dedicated per-
formance counters exposed by the memory controller itself
enables more precise measurement of memory utilization [28],
[29]. However, hardware vendors seldom expose the internals
of memory controllers, and only a limited number of MPSoC
platforms (primarily from NXP e.g., [30], [31]) provide access
to a subset of memory controller-specific performance coun-
ters. The aforementioned works typically use PMCs as count-
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down counters that generate interrupts upon depletion to enact
regulation actions. Instead, methods that periodically sample
the PMCs’ values [29] enable broader regulation strategies,
such as building distribution-driven memory regulation [32].
Another sampling-based method, MemPol, not only takes con-
sideration of the global memory bandwidth while distributing
the bandwidth to each core, but it also moves the controlling
logic to other processing elements on the SoC to reduce the
overhead [10].

Modern MPSoCs offer QoS enforcement mechanisms such
as the one from Arm [7], [33]. Works exist that utilize those
offered primitives to implement bandwidth regulators [13],
[28], [34]–[36]. However, since these primitives still monitor
bandwidth consumption at the platform interconnect level, they
cannot be immediately used to monitor/regulate the traffic of
a specific core.

From the hardware side, the work [4] develops a custom
drop-in hardware module to regulate the bandwidth directly
at the hardware level to achieve finer monitoring granularity.
The work [37] proposes an FPGA module that can monitor
and regulate different types of requests and is deployed on a
prototype RISC-V design [38]. Conversely, our work requires
no architectural modifications to commercially available PS-
PL platforms.

To reduce the worst-case latency of memory transactions
facing multi-core contention, various adaptations for the mem-
ory controller are proposed [39]–[43]. To improve the timely
predictability at the memory interconnect level, Time Division
Multiplexing hardware is also proposed [44]–[47].

On PS-PL platforms, the design principle of cache coher-
ence backstabbing inspires our work. SchIM [48] can schedule
individual memory transactions by redirecting CPU memory
transactions through the FPGA. The work [49] proposes an
FPGA-based closed-loop controller. In this case, the authors
propose attaching an external FPGA to the debug-trace port of
the multi-core system to be regulated. As such, MemCoRe is
the first work that leverages the passive analysis of coherence
traffic and direct halt/resume signaling to push the envelope
of memory bandwidth regulation in tightly coupled PS-PL
platforms.

IX. CONCLUSION

MemCoRe is a novel hardware-assisted memory bandwidth
regulation technique that leverages the PL on modern SoCs to
monitor cache coherence traffic and throttle cores accordingly.
By observing coherence snoops directly in hardware, Mem-
CoRe avoids the bottleneck of serially reading performance
counters faced by prior software approaches.

MemCoRe improves over state-of-the-art memory band-
width regulators that can be instantiated in commercially
available PS-PL platforms, pushing the regulation granularity
to nanosecond-scale, solving the overshooting problem, and
enabling address-aware bandwidth throttling strategies. Over-
all, MemCoRe makes a compelling case for the potential of
leveraging the PL in modern SoCs to enable fine-grained,
precise, and flexible memory bandwidth regulation.
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