
MEMSCOPE: Open-Source Kernel-Level Framework
for Heterogeneous Memory Characterization

Golsana Ghaemi
Boston University

Boston, Massachusetts, USA
golsana@bu.edu

Gabriel Franco
Boston University

Boston, Massachusetts, USA
gvfranco@bu.edu

Kazem Taram
Purdue University

West Lafayette, Indiana, USA
kazem@purdue.edu

Renato Mancuso
Boston University

Boston, Massachusetts, USA
rmancuso@bu.edu

Abstract—This paper presents an open-source kernel-level het-
erogeneous memory characterization framework (MEMSCOPE)
for embedded systems. MEMSCOPE enables precise characteriza-
tion of the temporal behavior of available memory modules under
configurable contention stress scenarios. MEMSCOPE leverages
kernel-level control over physical memory allocation, cache
maintenance, CPU state, interrupts, and I/O device activity to
accurately benchmark heterogeneous memory subsystems. This
gives us the privilege to directly map pieces of contiguous physical
memory and instantiate allocators, allowing us to finely control
cores to create and eliminate interference. Additionally, we can
minimize noise and interruptions, guaranteeing more consistent
and precise results compared to equivalent user-space solutions.
Running our Framework on a Xilinx Zynq UltraScale+ ZCU102
CPU-FPGA platform demonstrates its capability to precisely
benchmark bandwidth and latency across various memory types,
including PL-side DRAM and BRAM, in a multi-core system.

Index Terms—heterogeneous memory, benchmarking, resource
management, multi-core real-time systems.

I. INTRODUCTION

The ever-increasing demand for high-performance systems,
combined with the steady rise in data-intensive processing
workloads, has been a defining force for the modern landscape
of hardware platforms. The push for higher performance has
impacted general-purpose systems and embedded/real-time
systems. System heterogeneity has been pivotal in the last
decade of embedded systems evolution and the subject of a
plethora of studies [1]. Modern high-performance systems-on-
chip (SoCs) are characterized by high compute heterogeneity.
Indeed, they consist of a wide range of cross-vendor comput-
ing blocks ranging from general-purpose processors (CPUs) to
special-purpose accelerators and even FPGAs. Established OS-
level methodologies have emerged to benchmark and support
application development in heterogeneous systems. Notable
examples include the Linux Remote Processor Framework [2]
and the OpenMP Framework [3].

The heterogeneity in modern platforms is not limited to
computing resources. Memory heterogeneity has co-evolved
with compute heterogeneity. Different memory technologies
coexist, each with specific characteristics in terms of size,
cost, and temporal behavior. Not only do the baseline perfor-
mance (e.g., single-threaded accesses) of these memories range
widely, but so do their temporal behavior under stress (e.g.,
multi-threaded accesses). Notable examples of memory tech-
nologies with widely ranging characteristics include Double

Data Rate (DDR), Reduced-Latency DRAM (RL-DRAM) [4],
High-Bandwidth Memory (HBM) [5], Non-Volatile Random
Access Memory (NVRAM) [6], and on-chip Static Random
Access Memory (SRAM) [7], [8].
Challenges. We focus on memory heterogeneity. While het-
erogeneous memory subsystems present vast opportunities to
optimize memory allocation for real-time and embedded ap-
plications, their practical use presents several challenges. Said
challenges can be grouped into Characterization Challenges
and Usage Challenges. Characterization challenges hinder
the construction and deployment of precise, controlled, and
interference-free experiments to understand the temporal be-
havior of memory modules when relying on conventional user-
space toolkits. Usage challenges impede the efficient allocation
of heterogeneous memory to user-space applications.
MEMSCOPE as the Proposed Solution. In this paper, we
address characterization challenges. To do so, we design,
implement, and evaluate a novel open-source in-kernel hetero-
geneous memory characterization toolkit called MEMSCOPE.
MEMSCOPE is designed as a Linux kernel module, requiring
no kernel source modifications, to boost broad adoption.
It is designed to (1) automatically recognize heterogeneous
memory modules described via the kernel device tree; (2)
internally instantiate per-memory allocators under the direct
control of system evaluators; (3) provide an extensible library
of micro-benchmarking activities; (4) allow intuitive experi-
ment definition and results retrieval from user-space; and (5)
minimize experimental noise with direct control over CPU and
interrupt state during an active experiment.
Contribution. This paper makes the following contributions.
(1) We propose the first kernel-level heterogeneous memory
characterization framework, namely MEMSCOPE; (2) We pro-
vide a full open-source implementation of MEMSCOPE; (3)
We evaluate the capabilities of MEMSCOPE on a modern
embedded platform featuring a high degree of memory het-
erogeneity; (4) We demonstrate that MEMSCOPE allows ac-
curate characterization with valuable insights to drive memory
allocation in user-space applications.

II. MOTIVATION AND GOAL

Attention to memory management in heterogeneous systems
has received substantial interest from the general-purpose
and high-performance systems computing community, as we



Fig. 1. The problem of heterogeneous memory management consists in performing memory allocation given proper characterization of the temporal behavior
of memory modules due to technological heterogeneity (right-hand side), and the expected impact of a given memory page on the temporal behavior of
applications due to usage heterogeneity (left-hand side).

review in Section V. Nonetheless, no de facto turnkey solution
exists to perform heterogeneous memory characterization ef-
ficiently. MEMSCOPE aims to fill this gap, primarily targeting
Linux-based high-performance real-time embedded systems.

A. Sources of Memory Heterogeneity

Heterogeneous memory subsystems amplify the complexity
of proper management for time-sensitive applications due to
the interplay of two effects, namely technological heterogene-
ity as shown in Figure 1 inset (3) and usage heterogeneity, as
depicted in Figure 1 inset (2).
Technological Heterogeneity. As briefly mentioned in Sec-
tion I, memory modules differ in size, cost, and inherent tem-
poral characteristics, such as read/write latency and bandwidth.
Several hardware-level characteristics contribute to the exhib-
ited temporal characteristics, such as (1) the type of memory
cells they comprise (SDRAM, SRAM, or NVRAM) which
impacts their performance, power, and persistence character-
istics; (2) their architectural organization—e.g., SDRAM cells
can be flatly arranged to in traditional DRAM systems, or 3D-
stacked in High-bandwidth Memory (HBM) modules; SRAM
cells can be used to define architectural caches, scratchpads, or
in FPGAs as Block RAM (BRAM) and ultraBRAM modules.

Moreover, different memory types exhibit varying perfor-
mance characteristics under contention, owing to their intrinsic
memory-level parallelism (MLP). As such, bandwidth and
latency can be impacted by interference from concurrent tasks
or competing memory requests from multiple cores, leading to
nonlinear performance degradation. As depicted on the right-
hand side of Figure 1, memory modules in a heterogeneous
memory subsystem are characterized by performance curves
parametrized by the type of accesses and the degree of
contention. For instance, traditional CPU-side DRAM might
exhibit worse single-threaded latencies than an FPGA-side
scratchpad (BRAM) but sustain better multi-threaded band-
width as concurrent accesses increase.
Usage Heterogeneity. Memory resources are often the per-
formance bottleneck in data-heavy workloads. Depending on
the application, low-latency access to some memory pages
might largely impact the execution time. Conversely, placing
other pages in slow memory might have a negligible impact.
Fortunately, the need to profile the demand of applications
for memory resources is well understood [9]–[11]. Borrowing

and annotating a figure from [11], the left-hand side of
Figure 1 depicts the per-page runtime reduction percentage
when individual heap pages are allocated in cache.

B. Key Challenges
Inspired by the famous quote “You can’t manage what you

don’t measure,” often attributed to Peter Drucker, we aim
to systematically analyze the temporal characteristics of het-
erogeneous memory subsystems in embedded systems, gather
deeper insights into performance variations and optimize mem-
ory usage. To this end, we propose an extensible and easy-to-
use kernel-based benchmarking infrastructure addressing the
key challenges (C1–C5) reviewed below.
C1: Imprecise Physical Memory Allocation. In user-space,
memory allocation is mediated by the virtual memory layer.
Thus, limited control can be exerted over physical memory
allocation. This shortcoming poses a fundamental challenge
when characterizing heterogeneous memory.
C2: Imprecise Compute Engine Activity. To evaluate mem-
ory performance under isolated conditions, one must control
the execution context of the benchmarking activities. In user-
space, it is challenging to prevent system daemons, kernel
threads, and background processes from interfering.
C3: Imprecise Interrupt Activity. In user-space, applica-
tions cannot disable or redirect interrupts, nor can they prevent
the kernel or other subsystems from servicing them on the
core of interest. This leads to two major sources of noise: (1)
interrupts can preempt benchmarking tasks, and (2) servicing
interrupts may generate additional memory traffic.
C4: Restricted Cache Maintenance. Caches often act as an
opaque layer that masks the true behavior of the underlying
memory. Thus, controlling cache states is key to accurately
assessing memory performance. User-space applications, how-
ever, are restricted in their access to cache maintenance
instructions or cache-control interfaces.
C5: Restricted Access to Performance Counters. Hardware
performance counters offer fine-grained visibility into metrics
that are invaluable when dissecting the behavior of complex
memory systems. Unfortunately, user-space access to perfor-
mance counters is often limited or highly abstracted.

C. The MEMSCOPE Approach
To attain full control over allocation strategies, access pat-

terns, cache invalidation, access to performance monitors, and



Workload Library

INIT
TEST 

BENCH

WL1

INIT
TEST 

BENCH

WL2

INIT
TEST 

BENCH

WLm

C
us

to
m

 A
llo

ca
to

r 
P
la

tf
or

m
 (

m
em

lo
ca

to
r)

DTB
Pool Manager

Pool 
#1

Pool 
#2

Pool 
#k

Mem HW

M1

M2

Mk

User Interface

experimnet

pool

cmd

perfcount

results

Core Coordinator

Ex
pe

rim
en

t 
C
on
fig

ur
at

io
n Exp. Validator

Exp. Instantiator

Core 1 Core 2 
(obs) Core P…

… … …
Result Collector

Exp. CleanerC
ol

le
ct

ed
 R

es
ul

ts

Multi Core Sync.

dealloc

alloc
dealloc

alloc

dealloc

alloc

de/alloc

de/alloc

de/alloc

Activity Activity Activity…

upool 
#1

upool 
#2

upool 
#k

mempools

Fig. 2. High-level structure of MEMSCOPE highlighting its main components and their interplay.

CPU states, we implement our benchmarking infrastructure at
the kernel level. A similar motivation fueled the seminal work
on NanoBench [12], the only kernel-level toolkit for single-
core CPU benchmarking. MEMSCOPE is the first kernel-
level toolkit for the characterization of heterogeneous memory
subsystems in multicore systems.

III. MEMSCOPE DESIGN

In this section, we describe the primary design elements of
MEMSCOPE. The overall system design, depicted in Figure 2,
comprises four main components. First, we cover the structure
of each benchmarking experiment in MEMSCOPE—see Sec-
tion III-A. Next, we discuss the various sub-modules depicted
in Figure 2 that are crucial for the following functionalities:
(1) memory target selection via a Memory Pool Manager
(Section III-B); (2) access pattern selection via the Workload
Library (Section III-C); (3) multi-CPU orchestration via the
Core Coordinator (Section III-D); (4) user interaction for
experiment control and result retrieval (Section III-E). The
full code and implementation details are available in our
repository1.

On top of what was mentioned above, due to the widely
varying temporal characteristics of different memories, gaining
insight into these variations allows us to understand how
application runtimes are impacted by allocation decisions,
especially crucial for safety-critical real-time embedded sys-
tems. Certain pages will experience more or less interference
depending on allocation strategies, affecting overall perfor-
mance. By analyzing these behaviors, we can make informed
decisions about memory allocation to mitigate contention
and optimize execution. Our work opens the door for future
integration into memory allocation, utilizing heterogeneous
memories. In Section III, we will outline the blueprint of our
approach, explain the design challenges, and how we tackle
these challenges.

A. Experiment Structure in MEMSCOPE

The goal of a MEMSCOPE experiment is to evaluate the
temporal characteristics of a target memory module under a
varying degree of contention generated by the other online
CPUs. As such, each experiment in MEMSCOPE consists of a
sequence of scenarios. Each scenario is comprised of a set of
monitored activities across all online CPUs. All experiments
follow a common structure:

1https://github.com/rntmancuso/black-box-profiler/tree/MemScope-release

1) Memory targets and access pattern parameters for the core
under observation and stressor cores are runtime configurable.
2) The temporal behavior of the observed core is measured
following a sequence of increasingly high-stress scenarios.
3) Scenario-specific workloads are assigned to both the core
under observation and all the interfering cores. The workload
assigned to the core under analysis can differ from the one
executed by a stressor core.
4) Micro-architectural events are collected for all CPUs.
5) Results include the total bytes read/written from/to the tar-
get memory, the execution time for the core under observation,
and the sampled architectural events across all cores.
6) At the end of each scenario, and also upon the completion
of the entire experiment, MEMSCOPE performs per-core data
structure management and deallocates all allocated buffers to
ensure a clean state for subsequent experiments.
Scenarios, ranging from the best to worst case, are executed
in an automated sequence. In the best scenario, the core
under observation runs the selected workload while all other
cores remain memory-idle by executing a CPU-intensive, non-
memory workload. Once this scenario completes and the
results are collected, the second scenario begins: one additional
core starts executing the stress workload while the rest remain
memory-idle. In the following scenario, MEMSCOPE increases
the number of stress cores by one. This process continues
until the worst-stress scenario: all available cores are actively
stressing the selected target memory.

B. Memory Pool Manager

A benchmarking infrastructure for heterogeneous memory
subsystems requires designing mechanisms to precisely select
the target memory pools. To this end, MEMSCOPE leverages
the same mechanisms that the OS uses to describe hardware
resources, i.e., device trees, to auto-detect an arbitrary number
of available memory areas.

MEMSCOPE creates a set of memory pools, each cor-
responding to a detected memory module. This one-to-one
mapping enables memory targets to be selected through pool
identifiers (pool ID), as illustrated in Figure 2. The example
presented in Figure 2 depicts the memory pool manager
and the creation of pools with IDs #1 to #k from available
underlying memory modules M1, M2, . . . , Mk.

The pool manager eliminates the need for manual detection
and configuration of memory pools parameters, enhancing
flexibility. This design also allows for the seamless integration

https://github.com/rntmancuso/black-box-profiler/tree/MemScope-release


of additional memory technologies, e.g., Non-Volatile Memory
(NVM) and disaggregated remote memory.

The instantiated memory pools are primarily used internally
to conduct memory performance experiments. In addition,
MEMSCOPE also exports these pools for memory allocation
in user space (upools).

C. Workload Library

Apart from selecting the memory to benchmark, MEM-
SCOPE also allows one to select the performance metric to be
measured for the chosen memory target. The specific choice
depends on the particular features of the memory subsystem
one wish to analyze, as well as the stress/memory contention
scenarios for which insights are desired. It is important to note
that depending on the experiment parameters, MEMSCOPE
allows to benchmark not only the target memory module, but
also its interplay with CPU caches and bus architecture, as
demonstrated in our evaluations—see Section IV.

To this end, the workload library offers a suite of config-
urable micro-benchmarking workloads, each designed to shed
light on a set of specific performance parameters. As such,
the included test benches are registered in the library based
on the access patterns they implement. This modular approach
ensures flexibility and ease of maintenance when expanding
or modifying the workload library.
Configurable Buffer Initialization. MEMSCOPE allows the
definition of a per-workload buffer initialization routine. This
is invoked before activating the corresponding workload to
initialize the target memory buffer as needed.
Access Strategies. Our library currently focuses on band-
width and latency measurements of memories under various
access strategies, including (1) normal read, (2) normal write,
(3) non-cacheable read, (4) non-cacheable write, (5) non-
cacheable write streaming, and (6) read/write with non-
temporal load/store instructions. Non-cacheable operations re-
fer to access strategies that bypass the CPU caches, ensuring
that read/write operations directly interact with the target
memory. These allow measuring the performance of memory
modules (e.g., scratchpad) that are smaller than the last-level
cache. Finally, non-temporal access patterns are implemented
through architectural features that allow specific load/store
operations to bypass caches.
Bandwidth Measurement Workloads. The goal of the
bandwidth micro-benchmarks included in MEMSCOPE is to
estimate the throughput that a target memory module is
capable of sustaining at steady state. They generate high-rate
memory transactions through sequential accesses at cache-line
granularity.
Latency Measurement Workloads. The goal of these work-
loads is to compute the average round-trip time for a generic
memory request. To ensure precise measurements, these work-
loads must ensure that only one outstanding memory operation
at a time is emitted by the core under analysis. By enforcing
data dependencies, each access depends on the completion of
the previous one, preventing prefetching while ensuring full
coverage of the target buffer.

Memory-Idle Workload. In addition to all the mentioned
memory-bound workloads, MEMSCOPE includes a CPU-
bound ”busy loop” benchmark to characterize memory-idle
conditions by keeping the core inactive in memory.

D. Core Coordinator

When an experiment is launched, the core coordinator is
responsible for (1) validating the experiment configuration,
(2) deploying all the workloads, (3) managing the synchro-
nization between the cores, and (4) aggregating the final
results. Thus, MEMSCOPE’s core coordinator includes two
primary components, namely the Experiment Instantiator and
the Multi-core Synchronizer.
Experiment Instantiator. Once the experiment configura-
tion has been received, the instantiator is invoked to sanity-
check the configuration and initiate the experiment. The sanity
checks concern the configuration parameters in relation to
the status of the involved allocation pools. To prevent sys-
tem crashes and/or experiment failures, MEMSCOPE checks:
(1) the validity of requested pool IDs; (2) that the pools have
been fully initialized; (3) that any pending deallocations from
previous experiments have been completed; (4) that the size
of the requested buffers, considering all the active CPUs, does
not exceed the size of available per-pool memory; If validation
passes, the instantiator spawns the scenario-specific workloads
on the online cores. These are referred to as activities while
they are dispatched on the cores.

MEMSCOPE manages three types of activities: the Main Ac-
tivity on the target core, a selectable Stress Activity on stressor
cores, and an Idle Activity on cores that remain memory-idle
using the busy-loop workload. It also handles performance
counter sampling and coordinates their configuration per core.
Finally, the core coordinator ensures proper synchronization
between cores during activity execution which is taken care
of by the next submodule.
Multi-Core Synchronization. With p online CPUs, MEM-
SCOPE measures the temporal behavior of the target memory
under selected stress workloads across p scenarios. It ensures
that all stressor and idle cores have started their activities
before measurements begin on the observed core, preventing
overlap that could compromise accuracy and repeatability.
Stopping activities also requires synchronization. The core
coordinator ensures all cores have fully ceased execution
before proceeding, preventing overlap between scenarios and
preserving measurement validity.

To ensure accuracy and repeatability, we enforce the follow-
ing constraints: (1) Measurement on the observed core begins
only after all stressor/idle cores have started activity execution;
(2) The experimental scenario remains stable throughout the
measurement period; (3) Measurement on the observed core
stops before any stop command is issued for the other cores;
and (4) The next scenario does not begin until all stressor/idle
cores have fully completed execution of the previous run.
These constraints are strictly enforced by leveraging kernel-
level synchronization mechanisms.



E. User-Space Interface

The user-space interface module serves as the primary entry
point for interaction with MEMSCOPE to configure, launch
experiments, and retrieve results. For this purpose, it exposes
a number of entries briefly reviewed below.
Experiment Configuration Entry. Each experiment is con-
figured via a string specifying key parameters: (1) memory
mapping type—e.g., normal cacheable; (2) memory access
pattern—e.g., sequential for read/write bandwidth measure-
ment; (3) buffer size and (4) target memory pool. Separate
parameter sets are provided for the observed core and the
stressor cores.
Performance Counter Selection. MEMSCOPE is designed
to use all available performance counters, allowing two sets
of events to be monitored: one on the observation core and
another on the idle or stressor cores.
Pools Status. It provides the list of memory pools detected
by MEMSCOPE at load time, including each pool’s ID, size,
base physical address, and number of allocatable pages.
Results. This entry provides access to collected results in
a user-readable format, including temporal measurements,
memory read/write amounts, performance counter values, and
the configuration used for the experiment.
Experiment Command. This entry manages experiments,
allowing a configured experiment to be started, validated
without execution, or erased to release its resources.

F. Portability of MEMSCOPE

MEMSCOPE is designed for broad portability. It can run
on any platform that: (1) supports Linux with kernel module
insertion, (2) allows reserving memory at boot (e.g., via
DTBs on ARM or memmap on other architectures), and (3)
implements virtual memory via an MMU.

Most of the codebase relies on Linux kernel APIs, making
it largely architecture-agnostic. Platform-dependent code is
limited to: (1) synthetic testbenches and (2) performance
counter interfaces. Testbenches are easily portable across
RISC architectures due to ISA similarities, while on CISC
systems (e.g., x86) one can leverage known user-space stress
techniques such as [13] within MEMSCOPE.

IV. EVALUATION

In this section, we present our evaluation of MEMSCOPE,
starting with our methodology and platform setup. The rest
of the section presents four classes of experiments: (1) Char-
acterization of DRAM variants and their performance under
contended access. (2) Benchmarking of on-chip scratchpad
memories to assess their temporal behavior. (3) Analysis of
cache microarchitectural behavior and the impact of cache
partitioning. (4) Studying the impact of heterogeneous memory
management on real-world applications.

A. Experimental Methodology

MEMSCOPE was implemented and tested on Linux kernel
v5.4 and evaluated on a Xilinx-ZCU102 development plat-
form featuring a Zynq UltraScale+ XCZU9EG MPSoC [14],

Application Processing Unit (APU)

Core 0 Core 1 Core 1 Core 2

L1 
Cache

L1 
Cache

L1 
Cache

L1 
Cache

Last-Level Cache (LLC)

O
n-

C
hi

p 
M

em
or

y 
(O

C
M

)

PS-DRAM (DRAM) PL-DRAM

Block RAM 
(BRAM)

Cache Coherent Interconnect (CCI)

FDP Main Switch

Main Memory Controller (DDR4)

FPGA

PL-DRAM 
Controller (MIG)

BRAM Controller

pvtpool

Fig. 3. Overview of evaluation SoC including heterogeneous memory pools.

depicted in Figure 3. The main processor is a 64-bit quad-
core ARM Cortex-A53 [15] which uses ARMv8-A [16] ISA
and operates at 1.5 GHz. L1 cache comprises 32KB/64KB
instruction/data cache with 2-way/4-way set-associativity. The
last level cache (L2) is a unified 16-way set associative cache
with size of 1MB. The LLC is shared among all cores. The
cache line size is 64 bytes for both cache levels.

As shown in Figure 3, our platform features 4 types of mem-
ories: (1) the DRAM module that is directly connected to the
CPU cluster (PS-DRAM), which we refer to as DRAM; (2) the
DRAM module that is connected to the programmable logic
(PL-DRAM) (3) on-chip scratchpad memory (OCM) and, (4)
the FPGA-side block random access memory (BRAM). In our
platform’s Device Tree Blob (DTB), we expose the following
memory regions for MemScope’s allocator: 128 KB of OCM,
1 MB OF BRAM, 256 MB of DRAM and PL-DRAM. These
sizes represent the slices we carve out for benchmarking; the
underlying hardware supports larger capacities.

For the experiments in Section IV-D, we use cache parti-
tioning via page coloring through the Minerva Jailhouse [17].
Cache partitioning allows us to isolate the effects of conflicts
on cache sets from the effects of contention on downstream
memory modules and shared bus segments. This configuration
defines two contiguous intermediate physical address (IPA)
ranges. The first IPA range includes all normal memory used
by Linux and is mapped by Jailhouse to 12 out of 16 (i.e.,
3/4) of the available colors. The second range is mapped to
pages using the remaining 4 out of 16 (i.e., 1/4) colors. This
range is then exported to MEMSCOPE as a memory pool. As
such, only benchmarks with pages allocated from this pool
will be able to use the private 25% portion of the L2 cache
(256 KB). We refer to this pool as the private cache pool,
namely pvtpool in our experiments. From MEMSCOPE’s point
of view, this is a distinct heterogeneous memory module.

MEMSCOPE supports configurable iteration counts for
workload execution to ensure the statistical stability of the
measured performance metrics. In all experiments discussed
in this section, we configured this iteration count to 500.

In our results, we use different access strategies. The full
list of supported strategies is provided in Table I. We use
tuples of the form (a,b), where a indicates the access
strategy employed by the core under observation while b
that of a stressor core. For instance, with (r,w), the core



TABLE I
AVAILABLE ACCESS STRATEGIES IN MEMSCOPE.

Access Pattern Description

r sequential reads to benchmark memory read bandwidth
w sequential writes to benchmark memory write bandwidth
l data-dependent random reads (pointer chasing) to benchmark latency
s non-cachable version of the r benchmark
x non-cachable version of the w benchmark
m non-cachable version of the l benchmark
y non-cacheable write-streaming to the memory (no write-allocate)

(r,-) (w,-)
0

1

2

Ba
nd

wi
dt

h 
(G

B/
s)

Interf. Cores = 0

Memory Targets: Obs + Int: DRAM Obs + Int: PL-DRAM
(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 1

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 2

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 3

Fig. 4. Homogeneous bandwidth results for DRAM and PL-DRAM under
four stress scenarios with buffer size of 4 MB.

under observation performs sequential reads while stressor
cores execute sequential writes.

B. Analysis of DRAM Modules

In this subsection, we describe the results of MEMSCOPE’s
characterization of the two DRAM memory types in our
platform (DRAM and PL-DRAM), in terms of bandwidth,
latency, and memory-level parallelism under various scenarios.

We use MEMSCOPE to understand how DRAM and PL-
DRAM behavior changes in isolation as operations vary and
how they react under different levels of stress. To this end, we
test two homogeneous setups and two heterogenous setups.
In the homogeneous setups—Subsections IV-B(1), IV-B(2),
and IV-B(3)—we observe the behavior of the DRAM (resp.,
PL-DRAM) while the stressors also target the DRAM
(resp., PL-DRAM) module. Conversely, in the heterogeneous
setups—Section IV-B(4)—we observe the behavior of the
DRAM (resp., PL-DRAM) while the stressors target the PL-
DRAM (resp., DRAM) module. In these experiments, the
buffer size is 4 MB unless otherwise specified.

1) Homogeneous Bandwidth Analysis: Figure 4 shows the
bandwidth extracted by the observed core from the two DRAM
memory types. As expected, it decreases as the number of
interfering cores increases. However, this drop is more notice-
able in DRAM than in PL-DRAM. The DRAM bandwidth
drop becomes noticeable with more than one interfering core
in the (r,r) case; it is substantial in the (r,w) case, even
with only one stressor core. This is expected, as the cache
system follows the write-allocate/write-back (WAWB) policy,
meaning that every store resulting in a write miss causes both
a memory read and a write-back of some dirty line being
evicted. This implicit read in case of write miss can further
exacerbate contention effects. Additionally, read operations on
the core under observation are synchronous (due to its in-order
nature). Thus, pending loads cause pipeline stalls that directly
affect the end-to-end execution time and that are amplified if
the stressors produce read+write traffic caused by store-heavy
access. Conversely, for the DRAM under (w,r) operations,
the bandwidth remains relatively stable due to the opposite

(l,-)
0

250

500

750

1000

1250

La
te

nc
y 

(n
s)

Interf. Cores = 0

Memory Targets: Obs + Int: DRAM Obs + Int: PL-DRAM
(l,r) (l,w)

Interf. Cores = 1

(l,r) (l,w)

Interf. Cores = 2

(l,r) (l,w)

Interf. Cores = 3

32 64 12
8
25

6
51

2
10

24
15

36
20

48
25

60
40

96
16

38
4

Buffer Size Obs. (KB)

0
250
500
750

1000
1250

La
te

nc
y 

(n
s)

DRAM

0, (l,w)
3, (l,w)

0, (l,r)
3, (l,r)

32 64 12
8
25

6
51

2
10

24
15

36
20

48
25

60
40

96
16

38
4

Buffer Size Obs. (KB)

PL-DRAM

Fig. 5. Homogeneous latency results for DRAM and PL-DRAM under four
stress scenarios with buffer size of 4 MB.

effect of the logic discussed. PL-DRAM follows a similar
trend, albeit remaining consistently at a lower performance
level and with proportionally lower performance degradation.
The trend similarity, moreover, highlights how the behavior
is characteristic of DRAM technology in spite of substantial
differences in clocking, capacity, and manufacturers.

MEMSCOPE allows us to make the following observations:
(1) the bandwidth of PL-DRAM is lower than DRAM,
as expected, due to its greater distance from the cores and
lower clock domain (PL), (2) scenarios exist where a stressed
DRAM—e.g., in the (r,w) case—exhibits a bandwidth
comparable to that of a non-stressed PL-DRAM, and (3) the
stress-induced bandwidth degradation for the DRAM module
is proportionally more pronounced compared to PL-DRAM.
A heterogeneous memory allocator can leverage these insights.

2) Homogeneous Latency Analysis: Figure 5 shows the
results of latency analysis using MEMSCOPE using access
strategies (l,r) and (l,w)—see Table I. With increasing
stress, the latency gap between best- and worst-case scenar-
ios grows. Interestingly, DRAM and PL-DRAM both start
from almost the same latency. However, this gap widens as
contention worsens. The change in latency for both read and
write stress in DRAM remains relatively stable. In contrast,
PL-DRAM reacts significantly to the increase in stressors.

The line plots at the bottom of Figure 5 show the measured
latency in scenarios with 0 and 3 stressor cores for increasing
buffer sizes. In the 0-stressors case, caching effects disappear
for buffer sizes above 1 MB; in the 3-stressors case, they
disappear for sizes above 256 KB. For DRAM, the latency
variation from the best- to the worst-case remains stable
at around of 0.3 ns, whereas for PL-DRAM, the latency
fluctuates between 1.3 and 1.4 ns.



(r,-) (w,-)
0

1

2
Ba

nd
wi

dt
h 

(G
B/

s)

Interf. Cores = 0

Memory Targets: Obs: DRAM, Int: PL-DRAM Obs: PL-DRAM, Int: DRAM
(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 1

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 2

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 3

Fig. 6. Heterogeneous bandwidth results for DRAM and PL-DRAM under
four stress scenarios with buffer size of 4 MB.

TABLE II
MLP CALCULATION FOR DRAM AND PL-DRAM

Lat. Operation BW Operation Lat.(ns/Tx) BW(Tx/ns) MLP

DRAM (l,r) (r,r) 161.89 0.03 4.85
(l,w) (r,w) 318.56 0.014 4.45

PL-
DRAM

(l,r) (r,r) 399.49 0.01 3.99
(l,w) (r,w) 1386.80 0.003 4.16

3) MLP Derivation: Table II displays the measured
Memory-Level Parallelism (MLP) for DRAM and PL-
DRAM. MLP is calculated for both memory types using
Little’s Law, stating that for a system at steady state, the aver-
age MLP can be estimated as: Avg. MLP = Avg. Latency ×
Avg. Bandwidth. For this analysis, we use the results cap-
tured in the worst-case scenarios, where all the interfering
cores are executing memory-intensive read/write operations.
For bandwidth measurements, we select cases that maximize
the throughput, We evaluate the MLP perceived by the core
under analysis (access strategy l), in the case when the other
cores perform sequential reads (r) or writes (w). Thus, we
pair latency experiments (l,r) with bandwidth experiments
(r,r) and (l,w) with (r,w).

We observe comparable values of MLP between the two
memory modules in spite of the substantially higher laten-
cies observed under stress for PL-DRAM. This potentially
highlights that the bottleneck on the number of outstanding
memory transactions lies in the bus infrastructure (CCI, see
Figure 3) that is common for transactions targeting either
module. However, because PL-DRAM transactions have sig-
nificantly higher latency, outstanding transactions generally
occupy bus-level queue entries for longer. This can reduce
the opportunity for transactions targeting faster memory (e.g.,
DRAM) to progress, effectively throttling its throughput.

This observation motivated the next set of experiments
presented in the following section. Our goal is to investigate
how mixed access to two memory systems with significant
latency disparity respond under stress.

4) Heterogeneous Bandwidth Analysis: We present a het-
erogeneous bandwidth and latency analysis to address the
following question: how does temporal behavior change when
the target memory for the core under observation differs from
that of the interfering cores? To explore how MEMSCOPE
captures microarchitectural effects arising from the mixed
use of two memories with comparable MLP but significantly
different latencies, we consider two experiments: (1) The
core under observation targets DRAM, while interfering cores
target PL-DRAM. This case is labeled as ”Obs: DRAM,
Int: PL-DRAM” and color-coded in red. (2) The core under

(l,-)
0

200

400

600

La
te

nc
y 

(n
s)

Interf. Cores = 0

Memory Targets: Obs: DRAM, Int: PL-DRAM Obs: PL-DRAM, Int: DRAM
(l,r) (l,w)

Interf. Cores = 1

(l,r) (l,w)

Interf. Cores = 2

(l,r) (l,w)

Interf. Cores = 3

32 64 12
8
25

6
51

2
10

24
15

36
20

48
25

60
40

96
16

38
4

Buffer Size Obs. (KB)

0

200

400

600

La
te

nc
y 

(n
s)

DRAM_PL-DRAM

32 64 12
8
25

6
51

2
10

24
15

36
20

48
25

60
40

96
16

38
4

Buffer Size Obs. (KB)

PL-DRAM_DRAM

0, (l,r)
3, (l,r)

0, (l,w)
3, (l,w)

Fig. 7. Heterogeneous latency plots for DRAM and PL-DRAM under four
stress scenarios with buffer size of 4 MB

observation targets PL-DRAM, while interfering cores target
DRAM, labeled ”Obs: PL-DRAM, Int: DRAM,” in blue.
Figure 6 reports the results.

In the ”Obs: DRAM, Int: PL-DRAM ” case, DRAM ini-
tially outperforms PL-DRAM in isolation. However, as more
interfering cores are added, PL-DRAM exhibits more stable
performance, with fewer fluctuations compared to DRAM.
The results suggest that the degradation is not due to direct
contention over DRAM—since bandwidth is measured for
DRAM and the interfering cores stress PL-DRAM. Con-
versely, it suggests a bottleneck elsewhere in the system. At the
highest interference level (three interfering cores), the results
clearly reflect that saturating the PL-DRAM causes large
performance degradation for accesses to the DRAM.

This effect would be counterintuitive without the previously
examined MLP and latency analyses. Indeed, even with com-
parable MLP values, the higher latency of PL-DRAM (under
stress) can delay DRAM transactions when their paths overlap
in shared bus elements, such as at the level of CCI (Figure 3).
The increased latency of pending PL-DRAM transactions
causes them to occupy shared bus queue entries longer, thereby
reducing availability for DRAM-bound requests.

A similar observation, but in reverse, is presented in Fig-
ure 7, where we focus on latency analysis. In the ”Obs:
DRAM, Int: PL-DRAM ” experiment, a noticeable increase
in latency is observed when the heterogeneous system becomes
congested. This indicates that DRAM, despite its higher
standalone bandwidth, is substantially more prone to latency
degradation under high-stress mixed memory usage. The line
plots (bottom of Figure 7) for the same case clearly highlight
this trend. PL-DRAM is not affected by the issue, as shown
by the results for the ”Obs: PL-DRAM, Int: DRAM” case.

C. Scratchpad Analysis

We showcase how MEMSCOPE can be used to analyze the
performance of scratchpad memories available in the system.



These correspond to (1) the On-Chip Memory (OCM) module
on the PS side of the SoC and (2) a Block RAM (BRAM)
module on the PL side of the SoC—see Figure 3.

In our platform, although the OCM capacity is 256 KB, only
128 KB is reserved for the memory pool, while the BRAM
pool is 1 MB. Given the L1 and L2 cache sizes (32 KB
and 1 MB, respectively), using cacheable operations would
lead to cache hits, misrepresenting actual memory behavior.
Therefore, non-cacheable operations are necessary to conduct
scratchpad memory analysis. To address this, we leverage
the non-cacheable version of MEMSCOPE’s bandwidth (s for
reads, and x and y for writes) and latency (m) workloads, as
reported in Table I.

As described in Section III, non-cacheable read workloads
(s and m) perform a combination of cache line accesses
followed by cache clean+invalidations. We always perform
500 iterations in each scenario. Thus, after the first access and
invalidation, all the subsequent accesses are ensured to miss in
cache. We use two types of non-cacheable write operations.
The first, denoted as x, issues store operations followed by
cache invalidations. Since the cache policy is WAWB, reads
from memory to load cache lines will still occur. Conversely,
the y access strategy employs streaming writes, which follow
a write-no-allocate policy, bypassing the cache.

1) Homogeneous Bandwidth Analysis: Figure 8 presents
our measurements for homogeneous bandwidth analysis of
OCM and BRAM. As interference increases, OCM band-
width progressively degrades from the (s,s) case to the
(x,y) case. This trend mirrors the behavior discussed in
Section IV-B, where read operations are more vulnerable to
interference due to the non-blocking nature of writes. When
measuring read bandwidth, (s,y), which employs write
streaming, results in the lowest observed bandwidth. BRAM
exhibits the same decreasing trend observed for OCM, and its
absolute bandwidth remains consistently lower than OCM.

2) Homogeneous Latency Analysis: Figure 9 reports la-
tency results for BRAM (red) and OCM (blue) using the
m access pattern. With no interference, (m,-) case, OCM
outperforms BRAM, showing lower and more stable latency.
As interference increases, OCM maintains tighter and lower
latency. In contrast, BRAM exhibits higher median latency
across most interference, especially under (m,x) and (m,y).
In conclusion, BRAM shows higher sensitivity to interference
compared to OCM, making OCM a more reliable choice for
the allocation of latency-critical memory pages.

D. Cache Analysis

In the experiments presented in this section, we leverage
MEMSCOPE to reproduce the effect of cache bank con-
tention under hits previously observed in [18]. We also use
this experiment to validate that the measurements obtained
through MEMSCOPE match those observable with traditional
benchmarks. In particular, we compare MEMSCOPE to the
bandwidth benchmark from the IsolBench suite2. First,

2https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth.c

TABLE III
EVENT COUNTS UNDER VARYING INTERFERENCE LEVELS

Event/Interf. cores Zero One Two Three

CPU_CYCLE 17,131,051 26,228,725 39,834,512 53,836,500
MEM_ACCESS 2,049,051 3,764,331 3,760,759 3,748,782
L2D_CACHE 3,855,710 3,764,331 3,760,759 3,748,782
L2D_CACHE_REFILL 5,182 204 1,748 5,591
Cache Hit Rate 99.87% 99.99% 99.95% 99.85%
Cycles/Access 4.44 6.97 10.59 14.36

Figure 10 compares two DRAM bandwidth measurement
experiments: one using IsolBench (color-coded in red), and
the other using MEMSCOPE (color-coded in blue). In both
cases, the buffer size per core is set to 256 KB: larger than
L1 but small enough to fit within the LLC, ensuring that
all accesses are hits. Thus, both experiments target the same
memory module and follow equivalent configurations. The
very close match in the measurements obtained using the two
benchmarking approaches serves as validation that what is
observed with MEMSCOPE is indeed in line with established
memory performance benchmark measurement toolkits, justi-
fying further analysis relying solely on MEMSCOPE.

1) Bank contention under cache hits: Having ascertained
that the cache-hit performance drop under stress identified by
MEMSCOPE is repeatable, we conduct a further experiment to
verify that indeed the source of the performance degradation
observed in Figure 10 can be attributed to the problem of cache
bank contention, as previously studied in [18].

To this end, we leveraged the integrated support for
performance counter sampling in MEMSCOPE. We sam-
pled the counters on the core under observation, focus-
ing on four key metrics listed in Table III: CPU cycles
(CPU_CYCLE), data memory accesses (MEM_ACCESS), L2
data cache accesses (L2D_CACHE), and L2 data cache refills
(L2D_CACHE_REFILL). The results confirmed our hypothe-
sis: cache hit rates (>99.8%) aligned with expectations. How-
ever, the number of CPU cycles per cache access increased
notably (3.23×). As such, we conclude that the effect arises
from cache bank-level contention on the hit path.

2) Bank contention under hits, with cache partitioning:
Since cache bank contention on the hit path [18] is unaffected
by cache partitioning, we postulate that the same results
should be obtainable with MEMSCOPE. Indeed, while cache
partitioning divides the cache space, it does not deconflict
the banks, so contention at the bank level remains. We use
MEMSCOPE to reproduce this effect for the first time on a
platform featuring in-order Cortex-A53 cores with a single-
bank LLC, while it was previously observed on out-of-order
Cortex-A72, Cortex-A52, and Xuantie C910 [18], [19] First,
as mentioned in Section IV-A, we leverage the Jailhouse
partitioning hypervisor to export a 25% private L2 cache
reservation as a memory pool, namely pvtpool. Since this is
yet another pool, we can utilize the full array of benchmarks
available in MEMSCOPE. For this experiment, we focus on
bandwidth behavior.

Next, we use a similar setup as per Figure 10 in Figure 11,
i.e., where all the cores hit in L2 cache (256 KB buffers).
However, in these experiments, we consider the cases in which

https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth.c


(s,-) (x,-)
0.0

0.2

0.4

Ba
nd

wi
dt

h 
(G

B/
s) Interf. Cores = 0

Memory Targets:
Obs + Int: BRAM
Obs + Int: OCM

(s,s) (s,x) (s,y) (x,s) (x,x) (x,y)

Interf. Cores = 1

(s,s) (s,x) (s,y) (x,s) (x,x) (x,y)

Interf. Cores = 2

(s,s) (s,x) (s,y) (x,s) (x,x) (x,y)

Interf. Cores = 3

Fig. 8. Homogeneous bandwidth results for OCM and BRAM under four stress scenarios with 32KB buffer.

(m,-)
0

100

200

La
te

nc
y 

(n
s)

Interf. Cores = 0

Memory Targets: Obs + Int: BRAM Obs + Int: OCM
(m,s) (m,x) (m,y)

Interf. Cores = 1

(m,s) (m,x) (m,y)

Interf. Cores = 2

(m,s) (m,x) (m,y)

Interf. Cores = 3

Fig. 9. Homogeneous latency results for OCM and BRAM under four stress
scenarios with 32KB buffer.

(r,-) (w,-)
0

2

4

6

8

Ba
nd

wi
dt

h 
(G

B/
s)

Interf. Cores = 0

Memory Type: Obs + Int: DRAM (IsolBench) Obs + Int: DRAM (MemScope)
(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 1

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 2

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 3

Fig. 10. LLC bandwidth measurement for buffer size 256KB using the
IsolBench suite (color-coded in red) and MEMSCOPE (color-coded in blue).

partitioning is disabled (red) vs. enabled (blue). In the latter
case, the observed core strictly allocates from the private
cache partition (pvtpool). As expected, due to hit-path bank
contention, partitioning is ineffective in mitigating contention.

3) Bank contention under miss, with cache partitioning:
We conducted additional experiments to understand the condi-
tions under which the system benefits from cache partitioning.
Figure 12 presents such a case. In these experiments, we
consider two cases. In the first case (red), all the cores access
256 KB from the shared cache partition—which is 3/4 of the
L2, thus 768 KB. Thus, the observed core suffers inter-core
evictions. In the second case (blue), the observed core accesses
256 KB mapping to the private cache partition (pvtpool),
hitting in cache; all the stressor cores access 4 MB from the

(r,-) (w,-)
0

2

4

6

8

Ba
nd

wi
dt

h 
(G

B/
s)

Interf. Cores = 0

Memory Targets: Obs + Int: Shared Cache Obs: Private Part.; Int: Shared Part.
(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 1

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 2

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 3

Fig. 11. Bandwidth measurement, for buffer size 256 KB, with and without
cache partitioning.

(r,-) (w,-)
0

2

4

6

8

Ba
nd

wi
dt

h 
(G

B/
s)

Interf. Cores = 0

Memory Targets: Obs + Int: DRAM Obs: Private Part.; Int: Shared Part.
(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 1

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 2

(r,r) (r,w)(w,r)(w,w)

Interf. Cores = 3

Fig. 12. Bandwidth measurement with all cores accessing 256 KB in shared
cache partition (red) vs. observed core accessing 256 KB from private cache
partition and all interfering cores accessing 4 MB from shared partition (blue).

(r,-) (w,-)
0

2

4

6

8

Ba
nd

wi
dt

h 
(G

B/
s)

Interf. Cores = 0

Memory Targets: Nc write stream Obs: Private Part.; Int: Shared Part.
(r,r) (r,w*)(w,r)(w,w*)

Interf. Cores = 1

(r,r) (r,w*)(w,r)(w,w*)

Interf. Cores = 2

(r,r) (r,w*)(w,r)(w,w*)

Interf. Cores = 3

Fig. 13. Bandwidth measurement for core under observation always accessing
256 KB in private cache partition. Interfering cores access 4 MB from shared
cache partition w/ normal reads/writes (blue) vs. write-streaming (red).

shared cache partition, missing in cache. The plot shows that
cache partitioning is effective for most types of interfering
workloads. The only exceptions are the (r,w) and (w,w)
cases, where miss-path cache bank contention occurs.

MEMSCOPE allows us to push the effects of miss-path
cache bank contention to the limit. To test this, in Figure 13,
we run an experiment where the core under observation
always accesses 256 KB from the private cache partition while
interfering cores use normal reads/writes (blue) to access 4 MB
from the shared cache partition—this is identical to the blue
case in Figure 12. Next, we compare it to the case (red)
where no changes are made to the observed core, while the
interfering cores still access 4 MB from the shared cache
partition, but they do so using non-cacheable write-streaming
operations—y access strategy, see Table I. For the non-
cacheable write-stream experiment, we evaluated the (r,y)
and (w,y) combinations. Since some experiments included
both w (normal cacheable write) and y (non-cacheable write
stream) operations, we use the w∗ notation in the plot. This
corresponds to w for the case where stressors use normal writes
(blue) and to y otherwise (red).

The results clearly show that while the measured bandwidth
is identical in the case of one stressor core, drastic performance
degradation is caused by streaming writes with two or more
active interfering cores, in spite of cache partitioning. The
very high performance loss (about 40×) is in line with similar
results from [20] also obtained on Cortex-A53 platforms.

E. Management of Real-Time Applications using MEMSCOPE

In this section, we investigate how applications can practi-
cally leverage the insights captured by MEMSCOPE. Typically,
real-time management of applications accessing shared mem-
ory subsystems relies on memory bandwidth regulation. In
this subsection, we present a new dimension of management
enabled by the insights captured through MEMSCOPE and its
ability to characterize the full heterogeneous memory subsys-
tem. In addition to traditional bandwidth regulation, it becomes
possible to make informed decisions about which memory
type should be used by a given application. Understanding
the memory characteristics and predicting their behavior under
stress can significantly aid this determination.



mser
vga

canny
vga

grayscale
vga

svm
cif

sobel
vga

sepia
vga

tracking
fullhd

sift
vga

disparity
vga

0

2

4

6
Sl

ow
do

wn
 (×

) upool2
upool3
Obs: upool2, Int: upool2

Obs: upool2, Int: upool3
Obs: upool3, Int: upool2
Obs: upool3, Int: upool3

Fig. 14. Heterogeneous memory management in real-world applications.
TABLE IV

COMPARISON WITH OTHER MEMORY BENCHMARKING TOOLS

Prior Work Open Multi Heterogeneous Kernel Performance Supported
Source Core Memory Mode Counters Architectures

Intel MLC [13] ✗ ✓ ✓ ✗ ✓ x86
Isolbench [25] ✓ ✓ ✗ ✗ ✓ x86/Arm
Nanoench [12] ✓ ✗ ✗ ✓ ✓ x86
Heimdall [26] ✓ ✓ ✓ ✓ ✗ x86
LENS [27] ✓ ✓ ✓ ✓ ✗ x86
tinymembench [28] ✓ ✗ ✗ ✗ ✗ x86/Arm
MEMSCOPE ✓ ✓ ✓ ✓ ✓ Arm

We perform our analysis on benchmarks from the San Diego
Vision Benchmark Suite (SD-VBS) [21] and the Image Filters
from RT-Bench [22]. RT-Bench provides the ability to map the
benchmark’s heap to any of the pools exported by MEMSCOPE
to user space (upool), as described in Section III. We investi-
gate how their end-to-end runtime varies by changing where
the heap is mapped and present the results in Figure 14.

We focus on upool2 and upool3, which correspond to
DRAM and PL-DRAM, respectively. The x-axis reports the
name of the benchmark alongside its input size. The y-axis
depicts the slowdown, with each job’s duration normalized to
the baseline (1st bar) defined as the case where the application
runs in isolation and allocates solely from upool2 (normal
DRAM). The 2nd bar corresponds to the in-isolation run with
the heap allocated in upool3 (PL-DRAM).

In the 3rd, 4th, 5th, and 6th bars in each cluster, the legend
reports the upool used to allocate the heap of the observed
application, while write-heavy interference from 3 stressors is
introduced targeting upool2 and upool3, as per legend.

The performance macro-trends observed in Figure 14 align
with the insights captured by MEMSCOPE. Indeed, although
it may initially seem counterintuitive without MEMSCOPE’s
guidance, allocating pages of the target application from
DRAM (via upool2) while stressors target PL-DRAM (via
upool3) results in higher slowdowns compared to the inverse
setup. This is true across all the benchmarks and especially
noticeable in benchmarks like mser and disparity. We
postulate that the variation in sensitivity observed across the
benchmarks is related to differences in their access patterns
and memory-boundness. Said differences have been studied
using workload profiling tools [9]–[11] and examining sensi-
tivity to memory subsystem performance [23], [24].

V. RELATED WORK

Performance characterization is crucial for any heteroge-
neous system. When a system features resource heterogeneity
(in compute and/or memory), it must continuously decide
how to optimally utilize these diverse resources for varying
compute demands. Making such decisions is only possible
with a thorough understanding of the performance character-
istics of each individual resource. As a result, performance
characterization has been the focus of many studies [26], [29],

[30]. In particular, the performance of memory subsystems has
received significant attention [26], [30]–[34]. Most of these
studies, however, focus on either cache behavior [32]–[34] or
a single memory technology [25], [26], [30], [31], often in
general-purpose, high-performance settings. Furthermore, the
majority are implemented in user space, making them subject
to the limitations outlined in Section II. In contrast, Mem-
scope offers a precise, extensible, kernel-level, open-source
framework specifically designed for heterogeneous memory
systems in embedded real-time environments. Table IV shows
a high-level comparison of MEMSCOPE with closely related
memory benchmarking tools. In the rest of this section, we
survey works in the broader area of memory characterization.

a) Characterizing Caches: Several prior studies have
proposed microbenchmark techniques to determine cache hier-
archy parameters, such as cache size, associativity, block size,
and latency [32]–[40]. These studies are performed either to
guide performance optimization [32]–[34], or for performing
cache side-channel attacks [40], [41]. Most of these work
assume a constant penalty for accesses that miss the cache and
thus need to go to a single-technology main memory. While
MEMSCOPE’s microbenchmarks also often need to consider
caches–mostly to bypass them and reach to the main memory,
Memscope’s goal is different. It provides a benchmarking
framework to precisely characterize a heterogeneous memory
system beyond just cache properties.

b) Characterizing Single Memory Technology: Prior
work also extensively studied performance properties of a
single memory technology as the main memory. DRAM is
perhaps the most studied one [31], [42]–[45]. SoftMC [31] of-
fers an open-source FPGA-based benchmarking platform that
can test DRAM memory modules through a DDR interface,
by directly sending DDR commands to the modules and mea-
suring the response time. More recently DRAM Bender [42]
builds on top of SoftMC and provides users the ability to
write DRAM-based tests in high-level programming languages
such as python. There are also other benchmarking studies that
try to determine undocumented DRAM properties such as the
refresh mechanism [43], DRAM row buffer [44], and DRAM
address to row mappings [44]–[46]. Similarly there many
studies to understand low-level device-level characteristics of
other memory technologies such as NVM [27], [30], [47],
HBM [48]–[51], and PIM [52]. In contrast to these studies,
MEMSCOPE does not target only one memory technology, but
focuses on understanding the entire heterogeneous memory
system, including how different memories affect each other.

c) Characterizing Heterogeneous Memory: The major-
ity of prior work on characterizing heterogeneous memory
systems has focused on general-purpose, high-performance
computing. Modern high-performance multicore servers typi-
cally feature a non-uniform memory access (NUMA) design,
where clusters of cores share a single memory controller,
and nodes are interconnected via high-speed links. In such
systems, any core can access memory attached to the entire
system, but with non-uniform latency, as the access time de-
pends on the memory location relative to the requesting core.



This introduces challenges similar to those in heterogeneous
memory systems. Several studies [53], [54] have characterized
NUMA performance to optimize overall system efficiency. The
introduction of persistent memory modules (such as Intel’s
Optane) has added another layer of heterogeneity in high-
performance computing, and prior work has explored their
performance characteristics [27], [30], [47], [55]. More re-
cently, CXL (Compute Express Link) has emerged as a cache-
coherent interconnect built on top of PCIe, allowing systems
to add memory modules to the CXL fabric, introducing yet
another form of heterogeneity. The performance of CXL-based
memory has been the focus of several recent studies [26], [56].

RAMify [57] is a complementary framework that gener-
ates fine-grained, customizable memory-centric workloads for
early-stage design space exploration, often in simulation. Its
targeted workload generation, including worst-case-oriented
real-time stress patterns, can be used to design hardware
characterization experiments for MEMSCOPE on physical
platforms. Moreover, the characterization of heterogeneous
memory, as in our work, can inform frameworks that optimize
data placement. For example, MOCA [58] targets user-space
memory objects and KLOCs [59] targets kernel objects, allo-
cating them to faster/slower memory tiers.

d) Generic Benchmarking Frameworks: Prior work has
also proposed generic microbenchmarking tools that allow
users to infer performance characteristics of user-provided
code, usually through measuring performance counters. Linux
perf [60] allows users to measure performance counters for a
particular executable. Agner tool [61] gives users more control
by allowing measurement for a particular part of the code.
Similarly, Nanobench [12] also allows users to read perfor-
mance counters of a microbenchmark written for x86 and runs
in kernel mode. However, unlike MEMSCOPE, nanobench does
not provide multi-core microbenchmarks for heterogeneous
memory characterization and only supports x86.

VI. PROFILE-DRIVEN RTOS MEMORY ALLOCATION

The coexistence of multiple memory technologies with
different latency, bandwidth, and capacity characteristics in-
troduces technological heterogeneity, while the non-uniform
performance impact of different application pages creates
usage heterogeneity, as discussed in Section II. Together, these
two factors introduce a gap between the theoretical capabilities
of modern heterogeneous memory subsystems and the ability
of modern real-time operating systems (RTOS) to leverage
said capabilities. This gap presents both a challenge and an
opportunity, i.e., devising practical approaches to best map
application pages onto heterogeneous memory resources.

Indeed, traditional RTOS memory allocation strategies are
designed without considering the aforementioned sources of
heterogeneity. Therefore, little to no customization is exerted
over the physical memory allocation of individual application
pages. This results in the inability to optimize memory man-
agement by leveraging different memory types and technolo-
gies to guarantee access latency constraints. On the contrary,
by capturing and exploiting awareness of such heterogeneity,

it is possible to propose and study a number of solutions to the
heterogeneous memory allocation problem, to achieve better
temporal predictability and/or performance tuning in time-
sensitive applications.
Profiling Usage Heterogeneity. The first step towards a
profile-driven heterogeneous memory subsystem involves the
extraction of per-page importance metrics to understand us-
age heterogeneity for the application(s) under analysis. In
this context, given a profiled memory page, the notion of
importance must capture a quantification of the end-to-end
temporal impact induced by the latency to access the memory
blocks contained in the page. Per-page importance metrics can
be expressed in absolute terms, for instance, by computing
the worst-case end-to-end runtime improvement/degradation
caused by allocating the page under analysis from a memory
resource with a given access latency. Importance metrics can
also be expressed in relative terms. In this case, only a ranking
of pages is created, with the insight that prioritizing allocation
in low-latency memory following said ranking maximizes the
impact on the end-to-end execution time. While more research
is required to create comprehensive page profiling toolkits,
existing literature in this space has already explored the
extraction of memory profiles for real-time applications. Most
prominently, the BBProf [11] toolkit enables the construction
of relative importance rankings in the form of binary profiles.
Profiling Technological Heterogeneity. The second mile-
stone in truly profile-driven OS memory management subsys-
tems consists of acquiring and retaining information about the
performance characteristics of heterogeneous memory com-
ponents. In this sense, MEMSCOPE provides a comprehen-
sive solution to construct said characterization. In practice,
however, driving this characterization using expert insights
(as carried out in Section IV) might be costly on each new
hardware platform. Thus, we envision that it might be worth
engineering semi-automatic characterization toolkits built atop
the proposed MEMSCOPE. Note that in some cases, the
temporal behavior of memory components might change even
on the same hardware platform, e.g., due to a change in
the boot parameters concerning power management settings
and/or clock tuning. Semi-automatic characterization is there-
fore attractive because it could be used offline to construct
the initial parameters, but also at boot-time to validate the
current memory characteristics. After proper characterization
has been obtained (and validated), it must remain available in
the OS across boot cycles and be readily available as lookup
information when performing page allocations. Multiple ap-
proaches can be used to this end. As mentioned in Section III,
(RT)OS’s use hardware description files (e.g., device trees) to
understand the hardware configuration at hand. Once acquired,
memory characterization profiles could be embedded within
the same hardware description files.

Once both per-application page profiles and memory re-
source profiles have been acquired, how they shall be used
to perform profile-driven memory management depends on
the class of system under consideration. Thus, we hereby
distinguish between designs that apply to (1) microcontroller-



grade RTOS’s where physical memory is statically provisioned
at boot time vs. (2) rich microprocessor-grade, Linux-like
RTOS or Linux-based (soft) real-time solutions, where physi-
cal memory is allocated via demand paging.
Profile-driven Boot-time Memory Allocation. In deter-
ministic allocation settings where all memory is statically
committed at boot, the page-to-resource assignment can be
formulated as an offline optimization problem, akin to what
was proposed in [62]. An optimal static mapping can then
be computed based on application page profiles and MEM-
SCOPE-provided memory characterization models. The main
advantage of this solution consists of the ability to have a
global view of the memory demand of all the tasks that will be
active in the system and attempt to achieve a global optimum.
Additionally, the allocation strategy is consistently applied at
every boot, ensuring predictability across reset cycles. The
main drawbacks are (1) the inherent complexity due to the high
dimensionality of the problem, and (2) a costly re-evaluation
of the full allocation strategy upon any update to the taskset.
Profile-driven Runtime Memory Allocation. In systems
that rely on demand paging or support open workloads,
new tasks can be introduced at runtime. Moreover, physical
memory may not be allocated immediately, but only when
a page fault occurs, as is often the case in many soft real-
time systems. Granted, it is customary to pre-fault memory
pages at task creation to improve predictability. Pre-faulting a
memory page forces the population of a page table entry early
on (e.g., at process initialization) instead of performing it after
suffering a page fault when the page is accessed for the first
time (a.k.a., demand paging). This reduces the number of page
faults that occur when a program accesses a virtual memory
page not yet mapped to physical memory. In the worst case,
page fault handling might require interaction with I/O devices
(e.g., fetching data from disk), resulting in slower and/or less
predictable execution. In classes of systems that primarily rely
on demand paging, a more practical approach to enact profile-
driven heterogeneous memory allocation consists of leveraging
heuristics. Indeed, global/static memory provisioning might
overly constrain the system, and relying on heuristics that use
profiling information to guide memory placement decisions as
they occur is preferred.

A key requirement for these heuristics is that they remain
lightweight because their runtime will directly contribute to
the page fault handling latency. As such, any added overhead
might directly impact the task’s WCET. This is a lesser
concern if real-time tasks are engineered to systematically
pre-fault the required memory at initialization time. But even
then, implementing long-running routines inside a kernel-level
allocator must be avoided to prevent blocking of other user-
space real-time applications.

Ultimately, a hybrid approach might be the most desirable
in this context: more complex and optimal policies can be
employed at process creation for pre-faulted pages, while
lightweight heuristics are leveraged for runtime demand pag-
ing. Balancing the use of the two approaches effectively allows
trading off slightly longer process startup time for better

allocation decisions and less pessimistic WCET.
Integration Roadmap. As it emerges from the discussion
above, while MEMSCOPE constitutes a fundamental building
block towards OS-level profile-driven heterogeneous memory
management, dedicated research efforts are still necessary to
this end. Exploration of the outlined next steps constitutes part
of our ongoing research roadmap. In particular, our efforts
are currently directed towards (1) the integration of profiling
information for both memory resources and application pages
in a microcontroller-grade RTOS; and (2) the design of mid-
complexity and low-complexity heuristics that can be em-
ployed in microprocessor-grade RTOS’s to handle pre-faulted
pages and demand paging requests, respectively.

VII. CONCLUSION AND FUTURE RESEARCH AVENUES

MEMSCOPE is a novel kernel-level memory benchmark-
ing framework designed and implemented to characterize
the temporal behavior of heterogeneous memory subsystems,
particularly in real-time embedded systems. Implemented fully
in kernel space, it leverages privileged APIs for fine-grained
control of core execution, physical memory allocation, and
cache states. MEMSCOPE includes an extensible benchmark
library not only for measuring bandwidth and latency but also
for observing the relevant microarchitectural behaviors and
events. MEMSCOPE offers several new insights into heteroge-
neous memory performance and enables counter-intuitive yet
effective memory management decisions for real-time tasks to
reduce contention sensitivity.

Our immediate research roadmap already envisions the
use of MEMSCOPE as a crucial building block to design
and implement OS-level profile-driven heterogeneous memory
management geared toward predictability via careful resource
provisioning. In addition, we anticipate that MEMSCOPE could
be an invaluable framework in a number of other research
domains. In system security research, MEMSCOPE can be
used to investigate denial-of-service and timing-based side-
channel attacks that exploit memory contention in heteroge-
neous systems. Furthermore, modern compilers can leverage
MEMSCOPE’s memory performance insights to determine the
optimal placement of performance-critical data structures and
routines in high-bandwidth, low-latency memory. Additionally,
MEMSCOPE allows system designers to evaluate hypothetical
scenarios, like adding heterogeneous memory modules (e.g.,
FPGA-side BRAM), to see how they might benefit target
workloads. MEMSCOPE’s design is agnostic to specific mem-
ory types; thus, it can be used to evaluate the benefits of inte-
grating emerging technologies such as HBM, LPDDR5, NVM,
or CXL-attached memory. Last but not least, MEMSCOPE’s
insights can aid in refining WCET analysis. For measurement-
based approaches, MEMSCOPE can help discover and exercise
counterintuitive memory behaviors by reproducing extreme
stressing conditions. For static analysis, MEMSCOPE-derived
insights can refine the microarchitectural models used for
WCET estimation on complex multi-core systems.



ACKNOWLEDGMENTS

This research was supported by the National Science Foun-
dation (NSF) under grant number CSR-2238476 and by a gift
from Ampere Computing. Different co-authors used Gram-
marly and Chat-GPT solely with the intention of assisting in
grammatical correction and enhancement.

REFERENCES

[1] A. Melo, J. Carretero, P. Stenstrom, S. Ranka, and E. Ayguade, “Trends
on heterogeneous and innovative hardware and software systems,”
Journal of Parallel and Distributed Computing, vol. 133, pp. 362–364,
2019.

[2] The Linux Kernel Community, Linux Kernel Documentation: Remote
Processor Framework. The Linux Foundation, 2024. https://docs.kernel.
org/staging/remoteproc.html.

[3] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” IEEE Computational Science and En-
gineering, vol. 5, no. 1, pp. 46–55, 1998.

[4] M. Hassan, “On the off-chip memory latency of real-time systems: Is
DDR DRAM really the best option?,” in 2018 IEEE Real-Time Systems
Symposium (RTSS), pp. 495–505, 2018.

[5] K. Asifuzzaman, M. Abuelala, M. Hassan, and F. J. Cazorla, “De-
mystifying the characteristics of high bandwidth memory for real-time
systems,” in 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), p. 1–9, IEEE Press, 2021.

[6] M. Bazzaz, A. Hoseinghorban, and A. Ejlali, “Fast and predictable non-
volatile data memory for real-time embedded systems,” IEEE Transac-
tions on Computers, vol. 70, no. 3, pp. 359–371, 2021.

[7] D. Oehlert, A. Luppold, and H. Falk, “Bus-Aware Static Instruction SPM
Allocation for Multicore Hard Real-Time Systems,” in 29th Euromicro
Conference on Real-Time Systems (ECRTS 2017) (M. Bertogna, ed.),
vol. 76 of Leibniz International Proceedings in Informatics (LIPIcs),
(Dagstuhl, Germany), pp. 1:1–1:22, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017.

[8] S. Wasly and R. Pellizzoni, “A dynamic scratchpad memory unit
for predictable real-time embedded systems,” in 2013 25th Euromicro
Conference on Real-Time Systems, pp. 183–192, 2013.

[9] T. Janjusic and K. Kavi, “Gleipnir: a memory profiling and tracing tool,”
SIGARCH Comput. Archit. News, vol. 41, p. 8–12, Dec. 2013.

[10] H. Brais and P. R. Panda, “Alleria: An advanced memory access profiling
framework,” ACM Trans. Embed. Comput. Syst., vol. 18, Oct. 2019.

[11] G. Ghaemi, D. Tarapore, and R. Mancuso, “Governing with Insights:
Towards Profile-Driven Cache Management of Black-Box Applications,”
in 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)
(B. B. Brandenburg, ed.), vol. 196 of Leibniz International Proceedings
in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 4:1–4:25, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[12] A. Abel and J. Reineke, “nanobench: A low-overhead tool for running
microbenchmarks on x86 systems,” in 2020 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
pp. 34–46, IEEE, 2020.

[13] Intel, “Intel® memory latency checker v3.11b.” https:
//www.intel.com/content/www/us/en/developer/articles/tool/
intelr-memory-latency-checker.html, 2014.

[14] Xilinx, Inc., “Zynq UltraScale+ MPSoC data sheet: Overview
(v1.8).” https://www.xilinx.com/support/documentation/data sheets/
ds891-zynq-ultrascale-plus-overview.pdf, 2019.

[15] ARM Holdings, “Cortex-A53 MPCore technical reference manual
(r0p4).” https://developer.arm.com/documentation/ddi0500/j/, 2018.

[16] A. Holdings, “Arm Architecture Reference Manual Armv8, for Armv8-
A architecture profile (version G.a),” 2011.

[17] Minervasys, “Jailhouse.” https://github.com/Minervasys/jailhouse, 2023.
[18] M. Bechtel and H. Yun, “Cache bank-aware denial-of-service attacks

on multicore ARM processors,” in 2023 IEEE 29th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 198–
208, 2023.

[19] C. Sullivan, A. Manley, M. Alian, and H. Yun, “ Per-Bank Bandwidth
Regulation of Shared Last-Level Cache for Real-Time Systems ,” in
2024 IEEE Real-Time Systems Symposium (RTSS), (Los Alamitos, CA,
USA), pp. 336–348, IEEE Computer Society, Dec. 2024.

[20] M. Bechtel and H. Yun, “ Denial-of-Service Attacks on Shared Cache
in Multicore: Analysis and Prevention ,” in 2019 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), (Los
Alamitos, CA, USA), pp. 357–367, IEEE Computer Society, Apr. 2019.

[21] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The san diego vision
benchmark suite,” in 2009 IEEE International Symposium on Workload
Characterization (IISWC), pp. 55–64, Oct 2009.

[22] M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and R. Mancuso,
“RT-Bench: An extensible benchmark framework for the analysis and
management of real-time applications,” in Proceedings of the 30th
International Conference on Real-Time Networks and Systems, RTNS
2022, (New York, NY, USA), p. 184–195, Association for Computing
Machinery, 2022.

[23] Z. Xu, Y. Chon, Y. Su, Z. Tan, S. Apostolakis, S. Campanoni, and D. I.
August, “PROMPT: A fast and extensible memory profiling framework,”
Proc. ACM Program. Lang., vol. 8, Apr. 2024.

[24] J. Ren, D. Xu, J. Ryu, K. Shin, D. Kim, and D. Li, “MTM: Rethink-
ing memory profiling and migration for multi-tiered large memory,”
in Proceedings of the Nineteenth European Conference on Computer
Systems, EuroSys ’24, (New York, NY, USA), p. 803–817, Association
for Computing Machinery, 2024.

[25] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pp. 1–12, 2016.

[26] Z. Wang, S. Mahar, L. Li, J. Park, J. Kim, T. Michailidis, Y. Pan,
T. Rosing, D. Tullsen, S. Swanson, et al., “The hitchhiker’s guide to
programming and optimizing cxl-based heterogeneous systems,” arXiv
preprint arXiv:2411.02814, 2024.

[27] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and modeling non-volatile memory systems,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 496–508, IEEE, 2020.

[28] S. Siamashka, “Simple benchmark for memory throughput and latency
resources.” https://github.com/ssvb/tinymembench, 2016.

[29] A. Lu, Z. Fang, W. Liu, and L. Shannon, “Demystifying the memory
system of modern datacenter FPGAs for software programmers through
microbenchmarking,” in The 2021 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, FPGA ’21, (New York, NY,
USA), p. 105–115, Association for Computing Machinery, 2021.

[30] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor, et al., “Basic performance
measurements of the intel optane DC persistent memory module,” arXiv
preprint arXiv:1903.05714, 2019.

[31] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhi-
menko, D. Lee, O. Ergin, and O. Mutlu, “SoftMC: A flexible and
practical open-source infrastructure for enabling experimental DRAM
studies,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 241–252, 2017.

[32] R. Saavedra and A. Smith, “Measuring cache and TLB performance and
their effect on benchmark runtimes,” IEEE Transactions on Computers,
vol. 44, no. 10, pp. 1223–1235, 1995.

[33] C. Thomborson and Y. Yu, “Measuring data cache and TLB parameters
under linux,” in Proceedings of the symposium on Performance Evalua-
tion of Computer and Telecommunication Systems, pp. 383–390, 2000.

[34] C. L. Coleman and J. W. Davidson, “Automatic memory hierarchy
characterization.,” in ISPASS, pp. 103–110, 2001.

[35] J. Dongarra, S. Moore, P. Mucci, K. Seymour, and H. You, “Accurate
cache and TLB characterization using hardware counters,” in Com-
putational Science-ICCS 2004: 4th International Conference, Kraków,
Poland, June 6-9, 2004, Proceedings, Part III 4, pp. 432–439, Springer,
2004.

[36] K. Yotov, K. Pingali, and P. Stodghill, “Automatic measurement of
memory hierarchy parameters,” in Proceedings of the 2005 ACM SIG-
METRICS international conference on Measurement and modeling of
computer systems, pp. 181–192, 2005.

[37] K. Yotov, S. Jackson, T. Steele, K. Pingali, and P. Stodghill, “Automatic
measurement of instruction cache capacity,” in International Workshop
on Languages and Compilers for Parallel Computing, pp. 230–243,
Springer, 2005.

[38] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory
performance and cache coherency effects on an intel nehalem multi-

https://docs.kernel.org/staging/remoteproc.html
https://docs.kernel.org/staging/remoteproc.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://developer.arm.com/documentation/ddi0500/j/
https://github.com/Minervasys/jailhouse
https://github.com/ssvb/tinymembench


processor system,” in 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, pp. 261–270, IEEE, 2009.

[39] A. Abel and J. Reineke, “Measurement-based modeling of the cache
replacement policy,” in 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 65–74, IEEE,
2013.

[40] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse engineering intel last-level cache complex addressing using
performance counters,” in Research in Attacks, Intrusions, and Defenses:
18th International Symposium, RAID 2015, Kyoto, Japan, November 2-
4, 2015. Proceedings 18, pp. 48–65, Springer, 2015.

[41] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE symposium on security
and privacy, pp. 605–622, IEEE, 2015.

[42] A. Olgun, H. Hassan, A. G. Yağlıkçı, Y. C. Tuğrul, L. Orosa, H. Luo,
M. Patel, O. Ergin, and O. Mutlu, “DRAM bender: An extensible and
versatile FPGA-based infrastructure to easily test state-of-the-art DRAM
chips,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 42, p. 5098–5112,
Dec. 2023.

[43] H. Hassan, Y. C. Tugrul, J. S. Kim, V. van der Veen, K. Razavi, and
O. Mutlu, “Uncovering In-DRAM rowhammer protection mechanisms:a
new methodology, custom rowhammer patterns, and implications,” in
MICRO-54: 54th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’21, (New York, NY, USA), p. 1198–1213,
Association for Computing Machinery, 2021.

[44] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
exploiting DRAM addressing for cross-cpu attacks,” in Proceedings of
the 25th USENIX Conference on Security Symposium, SEC’16, (USA),
p. 565–581, USENIX Association, 2016.

[45] C. Helm, S. Akiyama, and K. Taura, “Reliable reverse engineering of
intel DRAM addressing using performance counters,” in 2020 28th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 1–8, 2020.

[46] A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-only re-
verse engineering of physical DRAM mappings for rowhammer attacks,”
in 2018 IEEE 3rd International Verification and Security Workshop
(IVSW), pp. 19–24, IEEE, 2018.

[47] Z. Wang, M. Taram, D. Moghimi, S. Swanson, D. Tullsen, and J. Zhao,
“NVLeak: Off-Chip Side-Channel attacks via Non-Volatile memory
systems,” in 32nd USENIX Security Symposium (USENIX Security 23),
(Anaheim, CA), pp. 6771–6788, USENIX Association, Aug. 2023.

[48] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, “Performance
evaluation and optimization of HBM-enabled GPU for data-intensive
applications,” in Proceedings of the Conference on Design, Automation
& Test in Europe, DATE ’17, (Leuven, BEL), p. 1245–1248, European
Design and Automation Association, 2017.

[49] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Benchmarking
high bandwidth memory on FPGAS,” in 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 111–119, 2020.

[50] I. B. Peng, R. Gioiosa, G. Kestor, J. S. Vetter, P. Cicotti, E. Laure, and
S. Markidis, “Characterizing the performance benefit of hybrid memory
system for HPC applications,” Parallel Computing, vol. 76, pp. 57–69,
2018.

[51] K. Asifuzzaman, M. Abuelala, M. Hassan, and F. J. Cazorla, “De-
mystifying the characteristics of high bandwidth memory for real-time
systems,” in 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pp. 1–9, 2021.

[52] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a new paradigm: Experimental analysis
and characterization of a real processing-in-memory system,” IEEE
Access, vol. 10, pp. 52565–52608, 2022.

[53] R. Entezari-Maleki, Y. Cho, and B. Egger, “Evaluation of memory
performance in NUMA architectures using stochastic reward nets,”
Journal of Parallel and Distributed Computing, vol. 144, pp. 172–188,
2020.

[54] R. Geist and J. Westall, “Performance and availability evaluation of
NUMA architectures,” in Proceedings of IEEE International Computer
Performance and Dependability Symposium, pp. 271–280, 1996.

[55] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, “Performance
characterization of a DRAM-NVM hybrid memory architecture for
HPC applications using intel optane DC persistent memory modules,”
in Proceedings of the International Symposium on Memory Systems,

MEMSYS ’19, (New York, NY, USA), p. 288–303, Association for
Computing Machinery, 2019.

[56] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal,
J. Lou, I. Jeong, R. Wang, J. H. Ahn, T. Xu, and N. S. Kim, “Demysti-
fying CXL memory with genuine CXL-ready systems and devices,” in
56th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’23, p. 105–121, ACM, Oct. 2023.

[57] M. Abuelala and M. Hassan, A Framework for Explainable, Compre-
hensive, and Customizable Memory-Centric Workloads. New York, NY,
USA: Association for Computing Machinery, 2025.

[58] A. Narayan, T. Zhang, S. Aga, S. Narayanasamy, and A. Coskun,
“MOCA: Memory object classification and allocation in heterogeneous
memory systems,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 326–335, 2018.

[59] S. Kannan, Y. Ren, and A. Bhattacharjee, “KLOCs: kernel-level object
contexts for heterogeneous memory systems,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’21, (New York, NY,
USA), p. 65–78, Association for Computing Machinery, 2021.

[60] A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux
Kongress, vol. 18, 2010.

[61] A. Fog, “Test programs for measuring clock cycles and performance
monitoring.” https://agner.org/optimize, 2025.

[62] A. Druetto, E. Bini, A. Grosso, S. Puri, S. Bacci, M. Di Natale,
and F. Paladino, “Task and memory mapping of large size embedded
applications over NUMA architecture,” in Proceedings of the 31st
International Conference on Real-Time Networks and Systems, RTNS
’23, (New York, NY, USA), p. 166–176, Association for Computing
Machinery, 2023.

https://agner.org/optimize

	Introduction
	Motivation and Goal
	Sources of Memory Heterogeneity
	Key Challenges
	The msApproach

	msDesign
	Experiment Structure in ms
	Memory Pool Manager
	Workload Library
	Core Coordinator
	User-Space Interface
	Portability of ms

	Evaluation
	Experimental Methodology
	Analysis of DRAM Modules
	Homogeneous Bandwidth Analysis
	Homogeneous Latency Analysis
	MLP Derivation
	Heterogeneous Bandwidth Analysis

	Scratchpad Analysis
	Homogeneous Bandwidth Analysis
	Homogeneous Latency Analysis

	Cache Analysis
	Bank contention under cache hits
	Bank contention under hits, with cache partitioning
	Bank contention under miss, with cache partitioning

	Management of Real-Time Applications using ms

	Related Work
	Profile-driven RTOS Memory Allocation
	Conclusion and Future Research Avenues
	References

