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Abstract12

Following the needs of industrial applications, virtualization has emerged as one of the most effective13

approaches for the consolidation of mixed-criticality systems while meeting tight constraints in14

terms of space, weight, power, and cost (SWaP-C). In embedded platforms with homogeneous15

processors, a wealth of works have proposed designs and techniques to enforce spatio-temporal16

isolation by leveraging well-understood virtualization support. Unfortunately, achieving the same17

goal on heterogeneous MultiProcessor Systems-on-Chip (MPSoCs) has been largely overlooked.18

Modern hypervisors are designed to operate exclusively on main cores, with little or no consideration19

given to other co-processors within the system, such as small microcontroller-level CPUs or soft-cores20

deployed on programmable logic (FPGA). Typically, hypervisors consider co-processors as I/O21

devices allocated to virtual machines that run on primary cores, yielding full control and responsibility22

over them. Nevertheless, inadequate management of these resources can lead to spatio-temporal23

isolation issues within the system. In this paper, we propose the Omnivisor model as a paradigm24

for the holistic management of heterogeneous platforms. The model generalizes the features of25

real-time static partitioning hypervisors to enable the execution of virtual machines on processors26

with different Instruction Set Architectures (ISAs) within the same MPSoC. Moreover, the Omnivisor27

ensures temporal and spatial isolation between virtual machines by integrating and leveraging a28

variety of hardware and software protection mechanisms. The presented approach not only expands29

the scope of virtualization in MPSoCs but also enhances the overall system reliability and real-time30

performance for mixed-criticality applications. A full open-source reference implementation of the31

Omnivisor based on the Jailhouse hypervisor is provided, targeting ARM real-time processing units32

and RISC-V soft-cores on FPGA. Experimental results on real hardware show the benefits of the33

solution, including enabling the seamless launch of virtual machines on different ISAs and extending34

spatial/temporal isolation to heterogenous cores with enhanced regulation policies.35
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1 Introduction46

The current approach to address the increasing number of functional requirements in industries47

that deal with safety-critical systems such as automotive [8], avionics [73], and nuclear48

fusion [25] is toward an integrated development model rather than a federated one, where49

several services with varying degrees of criticality coexist on shared hardware platforms. These50

software architectures are usually referred to as mixed-criticality systems (MCSs) [18, 17].51

Developing mixed-criticality systems on multiprocessor architectures to reduce the size,52

weight, power, and cost (SWaP-C) is a challenge that, despite strong community interest,53

has not yet found a unique standard solution [3, 45, 19]. Among the proposed approaches,54

one of the most valuable in the scope of high-performance real-time systems is the use of55

real-time virtualization [22]. While traditional virtualization is a feature-rich technology56

that allows efficient resource utilization, real-time virtualization leans toward minimalist57

architectures focusing on safety, security, and predictability. In the wide spectrum of real-58

time virtualization technologies [23], the minimal and safest virtualization approach is static59

partitioning [64]. This partitioning-based approach is suitable for critical systems where the60

lack of determinism can significantly increase the validation and certification cost.61

This virtualization approach has shown outstanding isolation performance in symmetric62

multi-core architectures, as evidenced in recent studies [47]. However, alongside symmetric63

platforms, asymmetric architectures are increasingly gaining traction in the market; the64

complexity and heterogeneity of multi-core systems and Commercial Off-The-Shelf (COTS)65

boards are gradually increasing to meet the requirements of bleeding-edge industrial ap-66

plications. Therefore, we are currently witnessing the growing adoption of asymmetric67

MultiProcessor Systems-on-Chip (MPSoCs) in various industrial applications from auto-68

motive [8, 16, 65, 39], to avionics [73], and nuclear fusion [25, 7]. With the increase in69

hardware complexity within these systems, the already well-known challenges with predict-70

ability and security are further exacerbated. Modern MPSoCs, such as AMD/Xilinx Zynq71

UltraScale+ [78], Versal [77], NVIDIA Orin [56] and Xavier [57], Google Coral [33] and NXP72

i.MX8 [58], embed a heterogeneous set of processing elements. These include general-purpose73

microprocessor-level CPUs, sometimes referred to as Application Processing Units (APUs),74

and microcontroller-level CPUs that are simpler and more predictable, such as those within75

the ARM Cortex-M/R families. Additionally, some of these systems incorporate accelerators76

(e.g., Graphical Processing Units—GPUs, and/or Tensor Processing Units—TPUs), and,77

in some cases, also Field-Programmable Gate Arrays (FPGAs), that is, re-programmable78

hardware capable of integrating various types of special-purpose accelerators or additional79

cores (e.g., RISC-V soft-cores). All of these processing elements in the system are intricately80

interconnected and share numerous platform resources. From now on, to be consistent with81

ARM’s terminology, we will utilize the term "managers" to denote all hardware capable82

of initiating memory transactions. Additionally, we will refer to all cores that are not83

general-purpose application cores (main cores), as "remote cores" to be compliant with the84

terminology used by Linux (e.g. remoteproc driver [44]).85

To provide code running on such complex architectures with real-time guarantees, re-86

searchers have focused on mitigating temporal interference due to resource contention across87

MPSoCs. Over the years, considerable effort has been invested in exerting control over88

the memory hierarchy, including the last-level cache [42], DDR memory [80], and memory89

controller [82]. Significant attention has also gone into minimizing interrupt latency [29] and90

managing the sharing of memory channels among modules in the programmable logic [27].91

However, comparatively less attention has gone into the inherent limitation of static parti-92
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tioning hypervisors in efficiently managing heterogeneous platforms. Specifically, modern93

architectures present cores that manufacturers provide ad-hoc to execute specialized software.94

Examples include Real-Time Processing Units (RPUs) used to run critical applications and95

Deep Learning Processing Units (DPUs) used to improve the performance of AI applications.96

In a mixed-criticality system, we expect the execution time of code running on RPUs to97

remain unaffected by other independent applications, such as AI workload running on DPUs.98

Currently, remote cores are not managed by the hypervisors in the same way as the99

main CPUs; rather, these cores are either ignored entirely or, at best, treated as I/O devices100

allocated to virtual machines (VMs) running on primary cores. This means a VM controlling101

one or more remote cores can load and execute any code on them. Unfortunately, a remote102

processing core usually possesses enough privileges to access critical platform resources,103

becoming a threat to the other VMs running on the board from a spatial and temporal104

isolation point of view. In contrast, a hypervisor designed for heterogeneous MPSoCs should:105

Offer a unified and transparent interface to the user to flexibly deploy virtual machines106

on any core within the platform, regardless of the Instruction Set Architecture (ISA).107

Guarantee comprehensive spatial and temporal isolation between VMs across the platform.108

Research Question. The question that inspired this paper is: Can next-generation real-109

time static partitioning hypervisors adapt to the evolving landscape of modern heterogeneous110

platforms? Specifically, can they offer seamless and flexible mechanisms for deploying VMs111

across heterogeneous processing cores, all while ensuring robust isolation guarantees for112

mixed-criticality deployment?113

Contribution. To tackle such a question, in this paper, we propose the Omnivisor model.114

This model extends the traditional static partitioning hypervisor paradigm to take control115

over heterogeneous cores in MPSoCs platforms. Thus, we make the following contributions:116

We propose a novel model that generalizes the features of real-time static partitioning117

hypervisors to integrate the management of heterogeneous cores, improving their flexibility118

and usability in MPSoCs platforms.119

We show how a combination of various hardware-software protection mechanisms can be120

seamlessly orchestrated at runtime by our Omnivisor to ensure high isolation between121

VMs running on heterogeneous cores.122

We provide an open source reference implementation [61] and an evaluation of the123

proposed model on a COTS board (AMD/Xilinx’s UltraScale+) by extending Jailhouse,124

a real-time static partitioning hypervisor, to run virtual machines over remote cores with125

different ISAs (Aarch32 RPUs and RISC-V soft-cores).126

Experimental results on the board show that a user can seamlessly launch a VM on127

heterogeneous cores via the Ominivisor with comparable boot times. These experiments128

highlight the Omnivisor’s flexibility which enables compelling scenarios such as real-time129

live migration [41], reboot after failure [51], system rejuvenation [1], and over-the-air (OTA)130

updates [28, 36]. Experiments also demonstrate the isolation capabilities of the Ominivisor by131

executing critical workload on remote cores in the presence of severe disturbances generated132

by the other cores and the FPGA on the same board. Finally, by using realistic benchmarks,133

we show how the Ominivisor can enforce a controlled degradation policy to keep real-time134

guarantees while not limiting the overall system performance.135

Paper Structure. In Sec. 2, we review modern hardware protection mechanisms on MPSoCs136

and discuss traditional hypervisor models’ limitations. Sec. 3 introduces the Omnivisor model,137

highlighting its benefits and differences from traditional models. We also discuss Omnivisor’s138

requirements, responsibilities, and features. In Sec. 4, we walk through the implementation139
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of the Omnivisor on a Xilinx Ultrascale+ board, assessing strengths and weaknesses. Sec. 5140

and 6 present experimental analysis and practical use cases. Sec. 7 compares Omnivisor with141

related works.Conclusive remarks and future works are provided in Sec. 8.142

2 Background and Motivations143

Considering the high heterogeneity of processing elements deployed on MPSoCs that act as144

managers—i.e., heterogeneous CPUs, GPUs, DMAs, and FPGAs sharing system resources145

like the memory controller, memory storage, I/O devices—hardware manufacturers provide146

a robust suite of hardware protection mechanisms to improve both spatial and temporal147

isolation guarantees. Spatial isolation ensures that a processing element accessing a shared148

resource prevents other processing elements from accessing its private data. Temporal149

isolation guarantees that the time behavior of a processing element is not affected by (or150

has a bounded effect on) the behavior of other processing elements, even if those (partially)151

access the same shared resources.152

This section aims to provide a comprehensive summary and categorization of the various153

processor types and protection mechanisms employed on state-of-the-art MPSoCs, shedding154

light on their roles and scope within the considered class of platforms. Following that, we155

explain how traditional static partitioning hypervisors utilize these mechanisms only to156

a limited extent, highlighting why this presents a significant constraint compared to the157

extensive capabilities provided by modern COTS platforms.158

2.1 MPSoCs processors classes159

Embedded MPSoCs are nowadays characterized by heterogeneous clusters of CPUs that can160

be categorized into three classes that feature different protection mechanisms:161

microprocessor-level CPUs: Fully featured general-purpose multi-core CPUs charac-162

terized by all the modern hardware optimization techniques such as prefetching, branch163

prediction, cache coherence, as well as memory virtualization (MMU-based, see Sec. 2.2.1).164

These processors present at least three privilege levels to differentiate permissions and165

registers belonging to the hypervisor, the operating system, and the user-level applications.166

These are often referred to as Application Processing Units (APUs); an example is the167

cores belonging to the ARM Cortex-A family.168

microcontroller-level CPUs: Specific-purpose CPUs that do not have any mechanism169

for memory virtualization (MPU-based). They exhibit reduced hardware optimization170

techniques to improve simplicity and predictability. Furthermore, these microcontrollers171

usually support less than three privileged levels. This is because the software deployed172

on these CPUs is simpler and typically consists of a bare-metal application or, at most, a173

real-time operating system (RTOS). An example includes the ARM Cortex-M and the174

ARM Cortex-R family, and often referred to as Real-Time Processing Units (RPUs).175

programmable logic CPUs: Highly specialized soft-cores deployed on re-programmable176

hardware to run code with specific requirements. Although these processors are extremely177

heterogeneous, their deployment on FPGA platforms enables communication with the rest178

of the system, mediated by the SMMU (see Sec. 2.2.1). This category includes soft-cores179

such as the AMD MicroBlaze [5], or the RISC-V Pico32 [79].180

2.2 MPSoCs Protection Mechanisms181

The MPSoCs protection mechanisms can be systematically categorized as follows.182
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2.2.1 Spatial Isolation183

Address Translation (MMU/SMMU): The Memory Management Unit (MMU) is the184

most known and used memory isolation mechanism for address translation. It is a component185

integrated into most microprocessor-level CPUs, serving a fundamental role in virtual memory186

management. The MMU maps virtual addresses to physical addresses, enabling applications187

(or guest OSes) to access memory locations in a manner that is transparent and independent188

of the physical memory layout. In the context of heterogeneous MPSoCs, the System Memory189

Management Unit (SMMU) is an extension of the MMU, tailored to manage memory and190

address translation for DMA-capable devices and accelerators. However, not all processing191

elements that can potentially assume the role of a manager on these boards are equipped with192

an MMU/SMMU. Consequently, if not properly configured, certain managers can potentially193

access other managers’ data in a manner that poses inherent security risks and/or results in194

poor fault containment, as evidenced in our evaluation.195

Accesses Protection (MPU/SMPU/SPPU): Address translation mechanisms are not196

the only means of achieving spatial isolation. Microcontroller-level CPUs typically employed197

to run bare-metal software or Real-Time Operating Systems (RTOS) do not necessitate198

address translation mechanisms. This is due to both the inherent cost of such mechanisms199

in terms of space occupation and energy consumption and the temporal unpredictability200

that MMU-based mechanisms introduce [62]. In these scenarios, CPUs are equipped with201

more straightforward mechanisms known as Memory Protection Units (MPUs). These are202

implemented as hardware tables deployed between the manager (CPU) and the subordinate203

(Memory). Using the tables, an MPU enforces specific permissions to fixed address space204

regions.In heterogeneous MPSoCs, given that not all processing elements within these205

platforms possess address translation mechanisms, a comprehensive spatial isolation strategy206

is implemented by deploying system MPU-based protection mechanisms at the access port207

of important system resources. We term these system-level protection mechanisms System208

Memory Protection Units (SMPUs) when used to protect memory; we use the term System209

Peripheral Protection Units (SPPUs) when they are used to protect memory-mapped I/O.210

2.2.2 Temporal Isolation211

Hardware Bandwidth Allocation: In modern ARM-based platforms, Quality of Service212

(QoS) support offers a mechanism to manage memory traffic at the level of bus managers.213

Communication between a manager and a subordinate within an ARM-based platform is214

facilitated through the AXI protocol. The latest iteration of the AXI protocol, the AXI4215

standard, incorporates a set of signals, specifically ARQOS and AWQOS, which convey traffic216

prioritization details essential to enforce bandwidth regulation in QoS-aware on-chip memory.217

The QoS technology was initially introduced into MPSoCs with the primary objective of218

achieving load balancing. However, numerous studies have subsequently demonstrated its219

versatility and effectiveness in ensuring temporal isolation [67, 32]. However, there is a220

common trend in existing QoS-enabled platforms [69]: multi-core CPUs are typically treated221

as a unified manager. As a result, QoS support is primarily employed to regulate the222

aggregate traffic generated by all CPUs collectively. While this observation holds for main223

cores, it differs in the case of remote cores. These remote processors are usually equipped224

with distinct QoS ports for each CPU, a crucial distinction leveraged in the Omnivisor model225

to achieve temporal isolation between heterogeneous cores.226

Software Bandwidth Allocation: Despite the QoS limitation in managing individual227

CPUs in a multi-core cluster, software solutions exist to regulate the bandwidth of the228

ECRTS 2024



6:6 The Omnivisor

multi-core processors, offering per-CPU granularity that an Omnivisor shall leverage [81] [82].229

2.3 From Traditional to Static Partitioning Hypervisors230

Traditional Hypervisors. In the traditional hypervisor model, a virtualization layer is set231

between multiple software environments, namely virtual machines (VMs), and the underlying232

hardware. The responsibility of this layer is to abstract the physical hardware resources233

to the VMs to give them the illusion of running alone on the platform. To realize such234

abstractions, modern hypervisors take advantage of a combination of software mechanisms,235

including hypercalls and the trap-and-emulate technique. In addition, they leverage hardware236

mechanisms such as advanced MMU systems with dual stages of translation and support for237

multiple privilege levels within processor cores. This approach is designed to ensure spatial238

isolation between VMs, preventing one VM from accessing the data belonging to another239

VM while striving to maintain high performance and resource utilization levels. On top of240

this layer, hypervisors provide an interface for managing the VMs, allowing a high-privilege241

user to create, stop, and control the resources assigned to VMs at run-time. Well-known242

open-source hypervisors that follow this model are KVM [40], Xen [11], and many others.243

These are widely used, and researchers have extended their capabilities to accommodate244

various use cases, including real-time scenarios [2, 30].245

Static Partitioning hypervisors. Real-time static partitioning hypervisors (SPHs), such as246

Jailhouse [63], Bao [48], Xtratum [49], and Quest-V [74], moves from traditional hypervisor247

model by adding resource separation constraints bearing the cost of less efficient use of248

resources to meet the requirements of real-time applications. In the SPH model, temporal249

isolation is as important as spatial isolation; therefore, they statically partition hardware250

resources between VMs to minimize shared components and mitigate temporal interference.251

According to this model, each VM gets a subset of the platform’s resources; therefore,252

the CPUs are statically assigned to the VMs, and so are the memory, I/O devices, and253

accelerators.254

2.4 SPH Shortcoming over Asymmetric MPSoCs255

SPHs are currently designed to operate exclusively on microprocessor-level CPUs, with256

little or no consideration given to remote cores within the system, such as microcontrollers257

or soft-cores on FPGAs. In this scenario, deploying code on remote cores requires the258

system programmer to manually load the code and start the core. This is currently possible259

using two approaches: (I) using the bootloader and thus at boot time or (II) using the260

Linux remoteproc driver on a VM at runtime. However, the former approach sacrifices261

the flexibility of dynamically halting and reloading code on the remote cores as needed,262

and the latter gives a VM full access to remote cores that can easily introduce time delays,263

interferences, or even system failures. Specifically, the remote cores are not isolated by default264

from the other virtual machines, and the code running on them can cause temporal and/or265

spatial isolation issues for the other VMs by accessing the shared resources. To address266

this, a system programmer can manually configure and enable platform-specific hardware267

protection mechanisms, such as SMPU/SPPU and QoS, to isolate the cores from the other268

VMs. Although effective, this approach diminishes the flexibility of the hypervisor and269

requires significant effort and specialized expertise. To actually maintain the isolation, every270

time a new VM is created, and every time a new code is loaded in the remote cores, the271

system developer must promptly reconfigure these mechanisms to isolate resources, otherwise272

risking data corruption or possible interference between cores.273
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An SPH on heterogeneous MPSoCs should ensure holistic protection across the entire274

board, transparently to the user. It should handle isolation seamlessly, avoiding the need for275

manual programming of specialized hardware protection mechanisms and providing a more276

user-friendly and robust solution for running code on asymmetric multi-core systems.277

3 The Omnivisor278

In this paper, we introduce the Omnivisor, a novel hypervisor model that generalizes static279

partitioning hypervisors to enable the transparent execution of VMs on heterogeneous cores280

over commercial off-the-shelf (COTS) MPSoCs. The model aims to streamline the deployment281

process and simplify the programming model of such complex architectures while providing282

strong spatial and temporal isolation as required by mixed-criticality systems.283

Model Purpose. As depicted in Fig. 1, while conventional hypervisors are designed to284

manage microprocessor-level CPUs, our model extends its control to include microcontroller-285

level CPUs and soft-cores on programmable logic (FPGA). To achieve this, the Omnivisor286

assumes control over different hardware mechanisms to ensure isolation, both temporally287

and spatially, of the VMs. Three primary objectives underpin the Omnivisor model:288

1. To offer users a consistent, transparent, and easy-to-use interface for managing virtual289

machines on both primary and remote cores.290

2. To reorganize the privilege levels of the software running on heterogeneous cores in291

order to build a holistic privilege hierarchy across the platform.292

3. To seamlessly administer spatial and temporal isolation between virtual machines,293

regardless of the specific core on which they are deployed.294

According to this novel model, remote cores are no longer mere I/O devices; instead, they295

are elevated to primary CPUs capable of running self-contained, strongly isolated VMs.296

Clarification of Terminology. Before delving into the specifics of the Omivisor, it is297

important to clarify why we chose to use the term "Virtual Machine" to denote the code298

executed by the Omnivisor on all the types of cores. We acknowledge that the code running on299

remote cores does not execute atop an actual hypervisor, meaning that there is no scheduler,300

and the code has complete control over the core itself. However, we have opted to label them301

VM for two main reasons. First, they are encapsulated by the Omnivisor, which is capable302

of isolating the accessible resources in the system, similar to how SPHs handle traditional303

VMs. Second, we provide users with a unified and transparent method for utilizing remote304

cores, mirroring the process of launching a VM on application cores.305

3.1 Requirements306

The Omnivisor model is based on the assumption of having at its disposal a fully featured307

MPSoC with the following characteristics:308

Multiple Core Clusters: Two or more heterogeneous clusters of cores, and at least one of309

the clusters is a multiprocessor-level CPU cluster.310

Address Translation: An MMU featuring two levels of translation in front of each311

multiprocessor-level CPU cluster and an SMMU placed between DMA-capable peripher-312

als/accelerators and shared resources.313

Accesses Protection: SMPU/SPPU hardware protection mechanisms to shield shared314

resources (memory, system registers, and peripherals).315

Bandwidth Regulation: A hardware QoS-like bandwidth allocation mechanism for each316

core cluster and DMA-capable peripherals that access shared resources.317

ECRTS 2024



6:8 The Omnivisor

Figure 1 A block diagram illustrates the Omnivisor model, showcasing varied temporal and
spatial isolation mechanisms across CPU clusters, emphasizing their heterogeneity. The arrows
indicate the flow of a request from an initiator to the accessed resource (memory or I/O).

Power Management Firmware: A board-specific firmware that exposes an interface to318

the hypervisor for heterogeneous cores power management.319

These specified characteristics represent the foundational prerequisites for a platform to320

be deemed Omnivisor-ready. Although these requirements may initially appear as limit-321

ing factors, they effectively align with the design standards of modern embedded system322

platforms [78, 77, 58], tailored to meet industrial demands.323

3.2 Responsibilities324

The Omnivisor operates as holistic software running at the highest privilege level on the325

board. It delivers services to software running at lower privilege levels. Therefore, its primary326

responsibility is to prevent the escalation of VM privileges, regardless of the used cores.327

AMP privilege enforcement. The coexistence of multiple cores with varying architectures328

in an MPSoC precludes the application of a Symmetric Multi-Processing (SMP) approach.329

In SMP, all cores are orchestrated by a single software instance sharing a common address330

space. Instead, MPSoCs imply the use of an Asymmetric Multi-Processing (AMP) approach,331

where different core clusters operate independently, each with a unique address space. Given332

that constraint, similar to traditional hypervisors in SMP configuration, the Omnivisor333

must ensure that VMs running in AMP configuration do not access resources outside of the334

boundaries of the partitions. However, while traditional hypervisors can leverage multi-core335

hardware extensions to manage the privilege levels of VMs, the Omnivisor must employ336

a combination of distinct hardware mechanisms tailored to the specific core cluster it is337

managing. For instance, while soft-cores deployed on FPGA can be protected using the338

SMMU, the Omnivisor must leverage SMPUs to shield the resources from the VMs running339

on microcontroller-level CPUs. Consequently, as shown in Fig.2 (right), every time a new340

VM is launched on a remote core, before starting the core, the Omnivisor must configure341

an isolation layer that restrains the capabilities of the newly-created VM restricting access342

to both higher privileged resources (e.g., system registers) as well as resources belonging343

to different VMs (e.g., I/O peripherals, memory regions). The arrows in Fig.2 (right) are344
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Figure 2 Omnivisor feature set (left) and remote core VM startup process (right).

color-coded based on the operation and are enumerated in temporal order.345

DMA-capable I/O: The cores are not the only platform managers within the system.346

Indeed, DMA engines could have access to all system resources, potentially jeopardizing347

inter-partition spatio-temporal isolation. To address this risk, the Omnivisor must prevent:348

1. DMA engines from having unrestricted and unregulated access to memory resources.349

2. A core from programming the DMA to access memory regions it does not own.350

As depicted in Fig. 1, the Omnivisor addresses the first issue by employing SMMU mechanisms351

to enforce address translation and access protection for DMA, much like traditional SPHs.352

Additionally, the QoS is employed to provide temporal isolation.353

Typically, when an SPH allocates the DMA to a VM, it configures the SMMU to allocate354

the same memory regions to both. Therefore, a VM cannot exploit the DMA to access355

inaccessible regions. However, If a second virtual machine is running on a remote core without356

MMU/SMMU protection (microcontroller-level CPUs), it can freely access the address region357

of the DMA registers. Therefore, it could potentially program the DMA to gain unauthorized358

access to memory areas belonging to the first VM. To avoid that, addressing the second issue,359

the Omnivisor employs a strategy wherein SMPUs are configured to restrict access to the360

DMA registers exclusively to the Omnivisor itself and to the VM that is supposed to use it.361

In a broader context, the Omnivisor applies a similar strategy to restrict permissions of362

remote cores to protect other critical address regions, including those for configuring the363

SMMU, SMPUs, and QoS.364

3.3 Features365

The Omnivisor provides a set of features that includes that of the traditional SPHs while366

expanding them to encompass heterogeneous processing elements (see Fig. 2). Given the367

diversity among existing hypervisors, defining the minimum feature set and how they are368

extended for effective operation on asymmetric architectures is crucial.369

The Privileged Virtual Machine (PVM) interface. First, we introduce the Privileged370

VM (PVM), which is a known concept in hypervisor’s literature [54], and is the only VM with371

the ability to manage other VMs. A few examples are the root-cell in Jailhouse [63], and the372

Dom0 in Xen [70]. The Omnivisor provides the PVM with the same interface for managing373

VMs for both the main and remote cores. For instance, as shown in Fig. 2, the PVM only374

needs to request the VM launch, and then the Omnivisor takes charge of programming the375

underlying resources to serve the request for the specified processor. Other than launching a376

VM, the Omnivisor provides methods for stopping and restarting a VM and an interface for377

monitoring the current status of the VMs.378

Omnicall. Most state-of-the-art hypervisors implement hypercalls to expose functionalities379

to virtual machines, akin to how operating systems implement system calls for processes.380
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Despite the current implementation of Omnivisor restricting this mechanism to virtual381

machines running on the APUs, we aim to propose a design for extending this service to382

VMs running on remote cores, which we will refer to as "Omnicalls". To implement this383

mechanism, the Omnivisor needs to provide three additional features:384

1. Event signaling from the Omnivisor to VMs on remote cores.385

2. Event signaling from VMs on remote cores to the Omnivisor.386

3. A real-time protocol for inter-VM communication.387

For the first functionality, we need to differentiate between processing elements that support388

interrupt delivery, like APUs, and those that do not support them, such as hardly restricted389

soft-cores. To signal an event to the former category, the Omnivisor can leverage Software390

Generated Interrupts (SGI). Meanwhile, signaling events to the latter requires the remote391

VM to periodically check for Omnivisor-originated pending events (polling).392

Regarding the second functionality, the Omnivisor can grant the VMs on remote cores393

access to a subset of the interrupt controller’s configuration space, enabling the generation of394

SGIs toward the cores where the Omnivisor operates. Currently, the Omnivisor supports395

restricted access to the interrupt controller configuration space for these VMs.396

Lastly, using shared memory for data exchange is already implemented in most legacy397

SPHs. We extended this feature to remote cores in the Omnivisor, but enhancing the398

real-time performance of the communications requires a tailored mechanism. To provide399

real-time guarantees, one existing solution consists of using an external processing element400

as a broker to orchestrate the communications between VMs. This has been theoretically401

proved and tested on a heterogeneous MPSoC by Schwäricke et al. [66], and the Omnivisor402

can easily integrate the broker as a VM running on a remote core while using its features to403

isolate it both temporally and spatially from the other VMs.404

Dynamic Address Translation. In traditional hypervisors, when a new VM is created405

on the APU, address translation is typically implemented using the MMU. The Omnivisor406

extends this functionality to soft-cores by utilizing the SMMU. It’s worth noting that407

the SMMU is already employed by SPHs to perform address translation for I/O devices408

associated with VMs. However, the Omnivisor changes the perspective and utilizes the409

same mechanism to implement self-contained translation specifically for soft-cores, which are410

treated as self-contained VMs in this context.411

Dynamic Accesses Protection. Protection mechanisms on MPSoCs, such as SMPU/SPPU,412

are commonly configured statically at boot time by high-privilege and secure software (e.g.,413

first-stage bootloader). These configurations typically remain unchanged throughout the414

system’s lifetime. However, to enable the seamless execution of isolated VMs on remote cores,415

the Omnivisor dynamically determines how to configure all access protection mechanisms.416

This approach ensures dynamic system-level protection that adapts during runtime based on417

the specific VMs currently active.418

Dynamic Bandwidth Allocation. Traditional SPHs ensure that resource assignments419

remain static between PVM management calls. This implies that everything can be dynamic-420

ally reassigned by these calls, remaining static until the next call. The Omnivisor maintains421

consistency by applying the same approach to bandwidth allocation. Hence, every time422

a new VM is launched, it is possible to dynamically allocate the bandwidth to that VM.423

Moreover, to enable mission-critical reconfiguration scenarios and ease parameter tuning, the424

Ominivisor implements bandwidth allocation as a settling call that the user can leverage425

to modify the temporal behavior of the VMs to a new static configuration. Once more, the426

Omnivisor shifts the paradigm regarding resource utilization. Unlike SPHs, which primarily427

focus on protecting VMs solely on the APU, the Omnivisor extends its scope to encompass428
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VMs on other remote processors. Consequently, bandwidth regulation mechanisms like QoS429

are not only employed on accelerators to maintain service quality for APUs but also for430

remote cores, even if they are soft-core deployed on FPGA.431

4 Omnivisor Implementation432

The Omnivisor model is designed to apply to a wide range of existing partitioning hypervisors;433

nonetheless, our reference implementation is built on top of the Jailhouse hypervisor [63]434

because it has low overhead [47] while maintaining an easy-to-use interface to manage VMs at435

runtime. Furthermore, the Jailhouse-RT branch, overseen by Minerva Systems [50], already436

implements MemGuard-like regulators for the APUs, page coloring, and basic SMMU drivers.437

It also provides a rudimental interface to control ARM Quality of Service (QoS) regulators.438

The implementation was carried out with testing focused on the ARM-based Zynq439

Ultrascale+ board from Xilinx. This MPSoC aligns with all the requirements outlined in440

Sec. 3.1: it features a quad-core ARM Cortex-A53 (APUs), a dual-core ARM Cortex-R5F441

(RPUs), and a 16nm FinFET + Programmable Logic (FPGA). Additionally, the platform is442

equipped with protection mechanisms for both temporal isolation (QoS), address translation443

(MMU, SMMU), and access permissions (SMPUs, and SPPUs). From now on, we will refer444

to this platform with the ZCU+ notation. Moreover, to use the correct terminology, the445

SMPUs/SPPUs on the board are named Xilinx Memory Protection Units (XMPU) and446

Xilinx Peripherals Protection Units (XPPU).447

This section aims to illustrate key Omnivisor technical details, providing a comprehensive448

discussion of strengths and limitations. To achieve this, we first briefly describe the Jailhouse449

hypervisor, and the additional functionalities introduced by the Omnivisor extension. Then,450

we walk through the compiling and start processes of a VM from the user’s perspective while451

explaining how the Omnivisor manages the system under the hood.452

Jailhouse in a Nutshell. A pivotal design choice in Jailhouse is to initiate the hypervisor453

from a running Linux instance. Specifically, by utilizing a Linux kernel module, users can454

load the hypervisor into memory and initiate a series of procedures to prepare the system.455

Upon initialization on each core, the hypervisor takes control of the underlying hardware,456

transforming the running Linux into the first virtual machine within the system, referred457

to as the root-cell. For its bootstrap, the hypervisor requires only a configuration file that458

lists the resources allocated to the root-cell. Next, to create reservations (cells in Jailhouse459

jargon) for the creation of additional VMs (inmates), the hypervisor reallocates hardware460

resources (e.g., CPU(s), memory, PCI or MMIO devices) from Linux to the new cells as461

detailed in other cell-specific configuration files. From now on, we will use the term "VM" to462

refer to the cell plus inmate pair and "PVM" to refer to the root-cell.463

Omnivisor Extension Overview. Starting from a vanilla Jailhouse, besides the small464

modifications integrated all over the code to transparently unify the interface of Jailhouse465

with the new services, the Omnivisor extends the hypervisor with new low-level functionalities.466

First, the power management of remote cores has been implemented, encompassing shut-down,467

stop, and start functionalities for both microcontroller-level and soft-cores. Second, spatial468

isolation management has been enhanced to include dynamic control of XMPUs/XPPUs.469

Moreover, temporal isolation management has been refined through the integration of QoS470

regulator control. Finally, the compiling procedure for remote cores VMs has been integrated471

into the hypervisor offline workflow. The usage of these functionalities is detailed below.472
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Figure 3 Architectural view of VM compiling and start procedures using the Omnivisor imple-
mentation on top of Jailhouse and the Zynq Ultrascale+ board.

4.1 Omnivisor Usage Workflow473

One of the key objectives of the Omnivisor is to simplify the utilization of complex hetero-474

geneous architectures for users. Therefore, the Omnivisor provides a unified approach for475

managing VMs on both main and remote cores. In our implementation, based on the ZCU+,476

alongside the legacy APUs we have integrated all the necessary code to run VMs on two477

types of remote cores: RPUs (ARM32-CortexR5F) and RISC-V soft-cores (Pico32 [79]). To478

streamline our discussion, we will utilize the term "rCPUs" to refer to any remote core, while479

we will delve into the implementation for RPU and RISC-V cores only when required.480

4.1.1 VM Compiling Process (Offline)481

The initial step involves the user compiling a specific VM application to run on a remote482

core. The offline compiling procedure, along with its input and output, is depicted in Fig. 3.483

Given the nature of the remote cores, the applications we run are either bare-metal or built484

on top of simple RTOSes. In both cases, linking some libraries may be a requirement for the485

code to work correctly on a specific core. For instance, the traditional compiling approach486

for RPUs on ZCU+ entails using Xilinx-provided libraries. To streamline the utilization487

of rCPUs and align with the Jailhouse methodology, we have integrated the libraries for488

compiling VMs targeting RPU and RISC-V cores into the Omnivisor code. Consequently,489

the user only needs to integrate the application-specific code into the Omnivisor code, as490

all the necessary libraries are already provided, similar to how Jailhouse includes libraries491

for compiling APU-based VMs. Additionally, the user must provide a configuration file for492

the VM, specifying the required resources. This configuration should include details on the493

core(s) used by the VM, whether they are main cores or remote cores, as well as information494

about memory regions and peripherals the VM will access. Furthermore, the configuration495

must list the IDs with which the VM’s managers (e.g., CPUs/rCPUs and DMA-capable496

devices) are recognized in the system. Once the user has prepared the application code and497

the configuration file for the VM, they can be compiled together with the Omnivisor code.498

To do it, the user must provide a list of cross-compilers, with one compiler designated for499

each core with a different ISA in the system. For instance, in the case of the ZCU+, this500

would entail using the AArch64 compiler for main cores, the AArch32 compiler for RPUs,501

and the RISC-V 32-bit compiler for the soft-cores. The output after compilation will consist502

of the Omnivisor binary along with the binary images for the VMs.503
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4.1.2 VM Start-Up Process (Online)504

Omnivisor Enable. Before starting an inmate, since the Omnivisor generalizes Jailhouse,505

we need to enable it from a Linux instance as explained in Sec. 4. Different from the vanilla506

Jailhouse, the configuration in our Omnivisor may also include a field for the rCPUs. If507

this is the case, the Omnivisor verifies whether the remote cores are already active, and if508

they are, it proceeds to shut them down. After that, it statically assigns their ownership to509

the PVM so that it can later assign the cores to other VMs. Additionally, the Omnivisor510

disables all the access permissions to the resources protected by the XMPUs such as memory511

and system registers. Then it configures the first entry of each XMPU’s table to allow only512

the PVM to access those regions specified in its configuration file. This means that every513

manager outside the Omnivisor control can not access any resource in the system.514

While the Omnivisor is up and running, launching a VM for the user involves using three515

simple commands, as depicted in Fig. 3: (1) create, (2) load, and (3) start, reviewed below.516

Create. The create command takes as input the configuration file of the VM, which is parsed517

to generate per-VM data structures. Resources are then carved out from the PVM and518

mapped to the new VM. For example, the requested remote and main cores are hot-plugged519

and detached from the PVM to be assigned to the new VM. After that, the isolation layer is520

configured. First, the MMU is programmed to manage the APU’s memory region accesses.521

However, the rCPUs lack protection from the MMU and, if left unprotected, have direct522

access to all memory-mapped regions. Therefore, XMPUs are dynamically re-programmed523

to allow access permissions only to the resources requested in the configuration, avoiding524

unexpected accesses to sensible memory-mapped registers (e.g. DMA registers) and memory525

regions belonging to other VMs. Finally, in the case of soft-cores over FPGA, the Omnivisor526

configures the address translation by leveraging the SMMU.527

Load. The load command requires as input the VM image. Initially, it verifies the image528

size against the carved-out memory reservation. Then, if the available memory is sufficient,529

it loads the VM image into memory. Moreover, before starting the VM, the user can530

optionally regulate the memory bandwidth assigned to the managers to provide specific531

temporal guarantees to the VMs. The Omnivisor provides the knobs to do it, leveraging the532

aforementioned QoS and MemGuard interfaces in Jailhouse-RT [50]. This step is integrated533

into the load command during the start-up of a VM to avoid adding another PVM call534

between load and start. However, the Omnivisor also implements a PVM call for bandwidth535

allocation separately from the load to enable mission-critical reconfiguration scenarios. When536

selecting parameters for bandwidth allocation, it is the system integrator’s responsibility537

to determine the suitable bandwidth for each VM, as this choice heavily relies on the538

application’s requirements. However, using the tools offered by the Omnivisor, it is possible539

to empirically evaluate the parameters needed to enforce a specific maximum slowdown for540

a given VM. An example of a simple offline policy to automatize the choice of bandwidth541

parameters is provided in the experimental section.542

Start. Finally, using the start command, the user initiates the VM start-up. Different543

MPSoC’s architectures have different standards for power management of cores, such as544

the ARM PSCI [6] or the Intel ACPI [38]. However, the functionalities provided by these545

standards are similar. Therefore, the Omnivisor implements a series of generic power546

management procedures that are subsequently customized to the specific platform and core.547

We have implemented the procedures for the RPUs (ARM32-CortexR5F) and for a RISC-V548

soft-core (Pico32) deployed on the FPGA. In the ZCU+ the RPUs are overseen by the549

Platform Management Unit (PMU) core, which exercises control over their execution and550

power state. The only software with enough permission to call PMU services is the PSCI layer551
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within the ARM trusted firmware. Consequently, we implement a specific ZCU+ module to552

communicate with the PSCI to request the wake-up and power-off of the RPUs. Regarding553

the soft-core(s), instead, we have implemented a memory-mapped configuration port in554

FPGA, and we expose this port to the Omnivisor to control the reset state of each soft-core.555

5 Use Cases556

In this section, we report a few use cases that inspired us toward the creation of the Omnivisor.557

Real-time control in nuclear fusion power reactors. Nuclear fusion is foreseen as a558

promising clean energy source for the next century, and the ITER tokamak reactor (iter.org)559

is set to be the first fusion device with a net-positive energy output. In a tokamak, magnetic560

confinement of the plasma is achieved using several magnetic fields generated by the electric561

current that flows in an array of external coils. These currents are controlled by the so-called562

plasma control system (PCS) [68], which is a complex and multi-input-multi-output control563

system. The PCS includes several subcomponents, each aiming to control a specific plasma564

feature with different requirements in terms of reliability, latency, and needed computational565

resources. The ITER project intends to use MPSoCs [7] to run multiple control loops and566

signal conditioning algorithms with different sampling times and reliability requirements567

on the same system [60]. Being an experimental facility, one of the missions of ITER is to568

test the efficiency of advanced control schemes, e.g., using reinforcement learning, running569

side-by-side with basic control loops, for safety reasons.570

The use of the Omnivisor in this context can speed up the development and testing phases571

by enabling the deployment of advanced and computationally heavy control algorithms,572

launched as VMs on the APUs, along with stable safety controllers, launched as VMs on573

RPUs or soft-cores, while assuring spatial and temporal isolation between them.574

MPSoCs for advanced system management research. Researchers adopt heterogeneous575

architectures to run computation-intensive applications in safety-critical [19] and mission-576

critical scenarios, such as vision control units for self-driving vehicles [20]. Moreover, the577

real-time community has shown significant interest in leveraging MPSoCs resources, like578

remote cores, for monitoring and management. Executing monitoring or management tasks579

on the same platform as the monitored applications can introduce overhead and interference,580

while remote monitoring (e.g., over a network connection) suffers from communication581

latency [24]. Therefore, utilizing on-board resources, when available, is a good compromise.582

For instance, the work described in [82] utilizes RPUs on a ZCU+ to finely monitor memory583

transactions and control the bandwidth of APUs using the board’s debug infrastructure.584

In [32], instead, authors employ QoS setups on the memory controller to ensure high-degree585

isolation of critical applications across heterogeneous cores. Additionally, in [21], the progress586

of a critical application running on APUs is monitored by an RPU on a ZCU+ to provide587

online regulation based on the application’s state.588

Integrating an Omnivisor can greatly simplify utilizing these cutting-edge mechanisms in589

real-world industrial scenarios by providing an easy way to deploy and isolate the applications.590

Furthermore, it can speed up the experimental phase for researchers aiming to implement591

complex applications on heterogeneous platforms.592

6 Experimental Analysis593

In this section, we provide an evaluation of the Omnivisor model and its implementation.594

The reference implementation, along with a set of scripts to reproduce the experiments, is595

https://iter.org
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openly available as open-source software [61]. The platform under test is the ZCU+ described596

in Sec. 4. The evaluation aims to address the following questions:597

Is the boot time of a VM on a remote core comparable to that on main cores?598

What degree of spatio-temporal isolation does the Omnivisor guarantee for remote VMs?599

Can the Ominvisor be a turnkey solution to achieve controlled degradation?600

It’s important to note that the additional functionalities introduced in our Omnivisor, as601

described in Section 4, are only invoked during the startup of newly created VMs, not at602

runtime. Therefore, the overhead of Omnivisor is consistent with prior findings on Jailhouse603

[47]. Consequently, we do not present runtime overhead results in this paper.604

6.1 Boot Time Performance Assessment605

This section shows that booting a VM on a remote core using Omnivisor is comparable in time606

to booting a VM via Jailhouse on a main core. Thus, with Omnivisor, users can deploy VMs607

on either main or remote cores with negligible differences in boot times, enabling flexibility608

for scenarios like real-time migration [41], reboot after failure [51], system rejuvenation [1]609

and OTA updates [28, 36].610

Fig. 4 shows the boot times obtained by deploying a VM on RPU and RISC-V soft-core,611

using the Omnivisor, compared to the boot time on APU using vanilla Jailhouse. In each case,612

the binary contains the identical bare-metal application. However, running the application613

on the APU with the Jailhouse hypervisor necessitates linking a tiny ’inmates’ library for614

initialization whose overhead is negligible during boot times. To obtain the boot time values,615

the root-cell acquires the initial value from a global platform timer just before initiating616

the new cell (Create). The same timer is used to measure the length of the load sequence617

(Create + Load). Finally, the newly started cell captures the third timer sample (Create +618

Load + Start), representing the boot time, and records it in a shared memory page. The619

described process has been repeated 100 times for ten different VM image sizes, specifically620

from 1 to 90 megabytes. It is possible to observe in Fig. 4 in more detail the three phases621

that comprise the boot times: create (blue line), load (orange line), and start (green line).622

We first compare the boot times of a cell on APU and RPU. The results exhibit significant623

similarity, indicating that starting a VM on a microcontroller-level CPU does not result in624

performance losses. On the contrary, the RPU boot shows a slight speed advantage during625

the configuration phase. This difference arises because the APU needs to reorganize the page626

tables for the new cell, while the RPU does not use page tables. However, the final boot627

time is quite similar, partially due to the lower frequency of the RPU (600MHz) compared628

to the APU (1.5GHz), leading to the longer RPU wake-up procedure that involves both the629

PSCI and the PMU, as detailed in Sec. 4.1.2. The results for the RISC-V soft-core exhibit630

similar creation and loading times as the RPU, as there is no necessity for configuring the631

page tables in either case. Nonetheless, the boot time is notably faster. Despite the soft-core632

lower frequency (100Mhz), the boot time disparity arises because the soft-core is always633

powered on in the FPGA. Removing it from its reset mode via the FPGA’s configuration634

port is a fast operation compared to the RPU boot procedure.635

In the ITER project, a fusion experiment enforces multiple stages of the plasma: ramp-up,636

flattop, and ramp-down [35]. Each stage requires different controllers to effectively manage637

the plasma. Leveraging the Omnivisor ensures flexibility in dynamically reconfiguring these638

controllers, deployed as VMs on the board, by rebooting them on main or remote cores.639
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Figure 4 Comparison of boot times across heterogeneous processors in the ZCU+ Platform

6.2 Omnivisor’s Isolation Capability640

To demonstrate the Omnivisor isolation capabilities we initially highlight the vulnerabilities641

that arise when executing unprotected code across various cores within an MPSoC. Sub-642

sequently, we activate the Omnivisor with solely spatial protection mechanisms. Finally, we643

show the effectiveness of the full-fledged Omnivsior by enabling also temporal isolation.644

Experiment Setup. Fig. 5a (left) depicts our experimental setup: we run a VM under test645

both on RPU-0 and RISC-V soft-core, while other managers, such as the APUs, the other646

RPU (RPU-1), and the FPGA, create interference by accessing the memory area owned by647

the VMs under test. The deployed application is the same on both remote cores. It involves648

a simple periodic task that reads an array from memory, calculates the sum of its values, and649

then writes the result back into memory at a different location. The only difference is that,650

due to the frequency difference between the soft-core (100Mhz) and the RPU (600Mhz), the651

matrix used in the soft-core application is smaller than that used in the RPU application to652

ensure comparable results in terms of execution time. The RPUs are configured with disabled653

caches and operate in split mode, where RPU-0 operates independently from RPU-1. The654

RISC-V soft-core is deployed on FPGA without any cache. Since the experiments are the655

same for both VMs under test, we will generally refer to both cores as "rCPU" for simplicity.656

To assess the isolation capability of the Omnivisor against the vanilla Jailhouse hypervisor,657

we augment the Jailhouse hypervisor with minimal code necessary to execute applications658

on remote cores, a functionality not available by default. This enables us to compare the659

isolation achieved using Jailhouse alone with those obtained using an Omnivisor.660

Employing a traditional hypervisor, as illustrated in Table 5b, will cause applications661

running on remote cores (RPU, RISCV) to experience failures when other managers access662

their memory (e.g., RPU1 and FPGA ). Conversely, when the Omnivisor extension is enabled,663

we expect these applications to continue functioning without failures.664

Spatial Isolation Evaluation The results in Fig. 6 show that without explicitly program-665

ming the isolation layer, a manager can break both spatial and temporal isolation of VMs.666

In the test, the VM under test starts on one rCPU and, after two seconds of execution,667

an interfering application starts on one of the other managers. We repeat the test using668

Jailhouse vanilla (no protection mechanisms) and using the Omnivisor extension first with669

only spatial isolation and then the full-fledged version with temporal isolation too.670

The interference application deployed on the APU is the well-known IsolBench bandwidth671

benchmark [71] from the RT-Bench framework [55]. The test is launched on three APU cores672

out of four and it reaches a utilization factor close to 1 on each processor. The free core is673

used to launch the scripts, start the tests, and save the results. On RPU-1, we deploy a674

synthetic bare-metal application mirroring the bandwidth benchmark behavior. Finally, in675

the FPGA, we deploy two instances of the AXI traffic generator IP from Xilinx [76].676

We can observe the results when the RPU-1, FPGA, and APU managers are the source677

of interference in Figs. 6a, 6b, and 6c respectively. The lower bars represent the execution678
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(a) Architectural View of the experiments

Interference Hypervisor Omnivisor

APU( ) No Failure No Failure

RPU-1( ) Crash No Failure

FPGA( , ) Crash No Failure

(b) Fault behavior of a VM under test

Figure 5 Experimental configuration (left) and expected fault outcomes (right) of VMs running
on rCPU subjected to interference from various sources (APU, RPU-1, FPGA): a comparative
analysis between traditional Hypervisor and Omnivisor.

state of the VM, where green indicates that the application is running, while red denotes679

that the application has failed. We can observe that, without the Omnivisor, all managers680

can break the spatial containment of the cell, causing the virtual machine to fail except when681

the APU is the source of interference (5b). This is because the Jailhouse hypervisor already682

uses the MMU to protect the memory areas of the VMs. Since the APU is the only manager683

that accesses memory using the MMU, it is also the only one for which spatial permissions684

are enforced with traditional hypervisors. Notably, the access of the cell running on the APU685

to the memory belonging to a different cell causes the APU-bound VM to be shut down by686

the hypervisor while the latter continues undisturbed. That is the reason why, in Fig. 6c, the687

execution time of the VM under test is not impacted when the vanilla hypervisor is deployed.688

To run this evaluation, we have integrated the code to run VMs on remote cores in689

Jailhouse. Without this upgrade, launching an application on remote cores at run-time is690

possible with the remoteproc driver [44]. In that case, since the hypervisor has no vision of691

the memory used by the RPU, it would not offer any form of isolation, leading to a fallback692

in the same failing scenario, even when the APU is the source of traffic.693

In real-world scenarios, like the ITER project, diverse applications, often developed by694

separate groups, introduce the potential for bugs that can adversely affect other components.695

For instance, a control application running on the RPUs might inadvertently overwrite696

memory used by APUs for critical log information, resulting in the loss of invaluable insights697

during expensive experiments. Thus, the containment level provided by the Omnivisor698

emerges as a crucial feature, mitigating the risk of system failures caused by the malfunction699

of individual applications and facilitating seamless integration.700

Temporal Isolation Evaluation Fig. 6d illustrates the temporal behavior of the periodic701

task running on the rCPU when all other managers access the memory. Every four seconds,702

a new manager is activated and starts creating contention over the memory communication703

channels. From the result, it is clear that hardware mechanisms such as MMU, SMMU, and704

XMPUs/XPPUs can provide spatial isolation between VMs but cannot guarantee temporal705

isolation and, therefore, cannot ensure real-time performance. This is intuitively due to706

the resources that are still shared on board, such as the bus and the memory controller.707

Therefore, temporal isolation can be enforced using mechanisms for bandwidth regulation.708

As discussed in Sec. 4.1.2, the Omnivisor provides the knobs to regulate the memory709

bandwidth of different managers in the system by leveraging a QoS and MemGuard imple-710
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(a) Slowdown with RPU-1 memory interference. (b) Slowdown with FPGA memory interference.

(c) Slowdown with APU memory interference. (d) Execution time with multiple interference.

Figure 6 Execution time slowdown of simple periodic task running in a VM over both RPU-0
and RISC-V soft-core. The behavior of the applications under different sources of interference is
shown first when using a plain jailhouse, then a partial Omnivisor implementation only with spatial
isolation mechanisms enabled, and finally the full Omnivisor implementation.

mentation. Since there are already papers exploring these mechanisms in detail [67, 32, 69],711

in this experiment, we are interested in demonstrating that the Omnivisor can use these712

mechanisms to reduce the temporal interference caused on a VM running on remote cores.713

To isolate the VM running on rCPU from the other managers, the Omnivisor first714

configures the QoS for the FPGA and RPUs channels. In this experiment, each channel has715

a request rate bounded to 11, which, using the formula from [69], translates to a memory716

bandwidth of 4.7 MB/s. Regarding the APU, on the other hand, we enabled a MemGuard717

regulation of 78 cache refills each millisecond for all the cores, which corresponds to having718

4.997 MB/s of available bandwidth. Combining the two approaches strongly reduces the719

performance impact on the rCPUs, as shown in Fig. 6d. Specifically, the maximum slowdown720

drops from 142% to 7% on RPU and from 85% to 6% on RISCV.721

Integrating state-of-the-art monitoring and profiling applications into real safety-critical722

systems is often sidestepped in favor of legacy methods. This hesitation primarily stems from723

the difficulty in demonstrating that these applications don’t disrupt the temporal behavior724

of the critical application under observation. However, with the Omnivisor, integrating725

such mechanisms becomes significantly easier, thanks to the utilization of a fully temporally726

isolated VM running on remote cores.727

6.3 Parameter Tuning for Controlled Degradation728

To comprehensively evaluate and demonstrate the usability of the Omnivisor beyond synthetic729

benchmarks, we execute a realistic benchmark suite on the remote cores. Specifically, our730
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(a) Benchmarks on VMs running on RPU.

(b) Benchmarks on VMs running on RISC-V.
Figure 7 Comparative evaluation of TACLeBench: The bar plots depict the execution time

slowdown with and without temporal constraints. Each benchmark showcases the bandwidth
limitation imposed on other managers to achieve the desired 20% maximum degradation on the VM.

choice has gone towards using the benchmark set called TACLeBench provided in [31]. It731

is a collection of 56 benchmark programs from several research groups and tool vendors732

worldwide. However, while we were able to execute all the benchmarks on the RPU, due to733

the limitations related to the absence of a floating-point extension of the RISC-V processor734

(Pico32) deployed on FPGA, we used a subset of them for our RISC-V experiments.735

The objective of this evaluation is twofold: first, to demonstrate how the Omnivisor736

can induce controlled degradation in the execution time of a VM running on remote cores,737

and second, to elucidate how the Omnivisor streamlines the parameter tuning process for738

achieving an acceptable performance degradation level. Therefore, we first determine the739

bandwidth allocation required to ensure unrestricted memory transactions on every manager.740

Specifically, leveraging findings from [69] and experimental evaluations, we established that741

a bandwidth limit of 950 MB/s for each manager is sufficient to maintain a comparable rate742

of memory transfers to what was observed without regulation. Then, using these values as a743

starting point, we developed a script iterating the execution of the benchmarks employing a744

binary search algorithm to calculate the bandwidth allocation parameters. Specifically, we745

search for those parameters that ensure a maximum slowdown of 20% for each benchmark.746

Still, the script is generic and can be used to find the parameters for any value of degradation.747

The slowdown is calculated in comparison with the observed maximum execution time over748

thirty repetitions of the benchmarks without any interference. Furthermore, in between each749

change of parameters, we execute thirty repetitions and consider the worst result as the target750
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value for the slowdown; when the target value is below the decided threshold, we consider751

the bandwidth allocation quota used in that iteration as a possible candidate. However, we752

stop the binary search after 15 iterations or when the slowdown is strictly between 19% and753

20%. Fig. 7 presents the slowdown over thirty repetitions for each benchmark under two754

scenarios. First, the slowdown without any bandwidth regulation is depicted. Next, the755

case where the bandwidth is configured to incur at most a 20% degradation is shown. In756

the same figure, we can also observe the level of bandwidth regulation in MB/s applied to757

obtain the controlled degradation for each benchmark. The results demonstrate that it is758

possible to achieve the desired slowdown even when the unconstrained slowdown exceeds759

350%, provided you are willing to significantly constrain the rest of the system (e.g., max760

bandwidth limit of 4MB/s).761

Naturally, given specific application constraints, an ad-hoc policy that chooses the762

parameters based on the importance of the VMs can be implemented to further improve the763

utilization of the cores while maintaining the real-time guarantees of critical applications [32].764

7 Related765

Partitioning Systems: Numerous real-time hypervisors and microkernels proposed in the766

literature are engineered with partitioning techniques aiming to explicitly meet certifications767

such as ARINC-653 and AUTOSAR [72, 15]. Instead, the Omnivisor distinguishes itself768

by offering partitioning with spatio-temporal isolation for a diverse range of processor769

categories. Unlike works such as [83], which propose a partitioning microkernel-based design770

targeting microcontrollers-level cores, and [72], which propose an ARINC-653 scheduling771

on Xen focusing microprocessor-level cores, Omnivisor addresses the challenge of applying772

partitioning to asymmetric core platforms by leveraging different isolation mechanisms for773

each category in a coordinated manner. Although this work’s focal point is not about774

certification, the Omnivisor aims at establishing the blueprint of a partitioning hypervisor775

for heterogeneous systems which is the first step for future certification endeavors.776

Asymmetric Multi-Core Architectures: The management of asymmetric multi-core777

architectures is a well-explored field within the systems software community, which has778

proposed OS designs [9, 10, 43, 13] and hypervisors [37, 59] capable of fully leveraging779

heterogeneous platforms. However, these existing works are not directly comparable to the780

Omnivisor, since they often overlook the isolation challenges that heterogeneous cores can781

introduce, making them unsuitable for mixed-criticality scenarios. In [12] the authors discuss782

the challenges and opportunities of asymmetric architectures, proposing the OpenAMP783

framework as a solution for remote core communication and power management. Despite784

the framework is not meant for mixed-criticality, the works in [26, 60] and [4] explore the785

possibility of using such a framework in critical scenarios. Both approaches focus on real-time786

communication with remote cores, overlooking the interference between cores. In contrast,787

the Omnivisor aims to provide spatio-temporal isolation between asymmetric cores, offering788

a complementary solution that will incorporate real-time communication in the future.789

MPSoCs Hypervisors: Some recent works have been proposing techniques to virtualize790

heterogeneous platforms featuring programmable logic (FPGA) as well as heterogeneous791

processors, to realize reliable mixed-criticality systems. Moratelli et al. propose a real-792

time full-virtualization technique for MPSoCS [52]. While this work provides a solution793

to run unmodified software on a traditional hypervisor with real-time requirements, the794

Omnivisor is an extension for partitioning systems where the resources are statically allocated795

to virtual machines and there is no need for schedulers. Gracioli et al. [34] explore the796
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capability to run mixed-criticality systems in MPSoCs where an SPH is deployed on APUs797

to isolate resources. The paper outlines how the rich hardware features provided by modern798

heterogeneous SoCs can reduce the contentions between partitioned applications. However,799

while this work analyzes the optimal utilization of heterogeneous resources such as diverse800

scratchpad memories, aspects not considered in our work, it overlooks the threat posed801

by unrestrained microcontroller-level CPUs. In contrast, Omnivisor focuses specifically on802

addressing temporal and spatial isolation issues between asymmetric cores and it also offers803

flexible and seamless control over remote cores through the hypervisor. CHIPS-AHOy is804

a predictable holistic hypervisor [53] that aims to satisfy temporal predictability and high-805

performance requirements of software running over MPSoCs while simultaneously handling806

energy efficiency, thermal bound, and system lifetime. The authors’ goal is to address the807

most relevant source of unpredictability in MPSoCs, such as the memory hierarchy, the I/O808

subsystem, and the hardware variability, by using techniques such as cache coloring and I/O809

throttling. However, the authors do not provide a common interface to manage heterogeneous810

VMs and neither consider using bandwidth regulation mechanisms to improve temporal811

isolation. Biondi et al. present the SPHERE project [14], an integrated framework to abstract812

the hardware complexity of MPSoCs and simplify the management of heterogeneous hardware.813

The work explores the interesting possibility of using the dynamic partial reconfiguration814

of the FPGA to provide efficient implementations for cryptography modules, as well as815

hardware acceleration for deep neural networks in a hypervisor-based system. However, the816

authors do not explore asymmetric ISA cores as the Omnivisor, and instead focus solely817

on accelerators. While there is a strong effort in the literature to develop virtualization818

systems that utilize FPGA, existing works primarily focus on sharing the FPGA among819

Virtual Machines running on the main cores [75, 46]. In contrast, Omnivisor acknowledges820

the presence of cores in FPGA, which run entire and isolated VMs.821

Although the Omnivisor model has similar objectives to those described in related work,822

that is, to realize a mixed-criticality system with strong real-time guarantees for critical823

VMs and to streamline the use of heterogeneous systems, it may be distinguished primarily824

by three points. First, it is the first hypervisor model that considers running isolated825

VMs on cores with heterogeneous ISAs as equal from the point of view of the hypervisor826

interface. This simplifies the adoption of such complex platforms and improves the overall827

system reliability. Secondly, unlike other solutions, it dynamically coordinates a combination828

of modern heterogeneous hardware protection mechanisms at runtime (including MMU,829

SMMU, SMPU/SPPU, and QoS) to provide spatial-temporal isolation to heterogeneous830

cores, transparently to the user. Finally, it is the first approach that considers using the831

soft-cores deployed on FPGA as isolated domains where to run VMs.832

8 Conclusions833

The increasing complexity of next-generation industrial applications has led to the widespread834

adoption of feature-rich heterogeneous MPSoCs. However, as the number of features within a835

single hardware platform increases, so does the complexity of deployment and the challenges836

of maintaining temporal guarantees for software. In this paper, we have introduced the837

Omnivisor, a novel model that extends static partitioning hypervisors to manage heterogen-838

eous processing elements within asymmetric architectures. Our experimental results have839

demonstrated that deploying this model on a real system enables the seamless deployment840

of virtual machines on cores with heterogeneous ISAs (ARM and RISC-V) within a single841

platform, even if some or all are implemented as soft-cores in FPGA. Furthermore, the solu-842
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tion ensures robust spatial and temporal isolation of VMs, achieved through a combination843

of software/hardware mechanisms. Additionally, we have showcased how the Omnivisor844

enhances the user’s control over MPSoCs. Specifically, we utilized Omnivisor features to845

precisely regulate the degradation of a real-time virtual machine executing on a remote core.846

For future research directions we intend to (1) integrate a library of remote core utilities847

sourced from open-source scientific works in order to enhance the monitoring and management848

capabilities of MPSoCs. Following this (2), we aim to elevate the flexibility of these platforms849

to the next level by introducing dynamic FPGA hardware reconfiguration at the hypervisor850

level. Our objective is to integrate the capability to reconfigure portions (tiles) of the851

programmable logic as an additional Omnivisor feature, enabling the instantiation of soft-852

cores ad-hoc and on the fly to launch a VM with specific requirements.853

Overall, our work showcases the potential of the Omnivisor in addressing the challenges854

posed by modern industrial applications, offering a promising solution for the efficient855

utilization of heterogeneous MPSoCs.856
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