
RT-Bench: A Long Overdue Update
Mattia Nicolella
Boston University

Boston, Massachusetts, U.S.A.
mnico@bu.edu

Denis Hoornaert
Technical University of Munich

Munich, Germany
denis.hoornaert@tum.de

Renato Mancuso
Boston University

Boston, Massachusetts, U.S.A.
rmancuso@bu.edu

Abstract—RT-Bench is a framework and community project
that aims to establish a unified set of benchmarks with a
homogeneous launch and result reporting interface, and with
a simple build system. RT-Bench targets academic researchers
and industry practitioners interested in understanding the per-
formance characteristics of embedded/real-time systems when
tested over realistic use-case applications. To facilitate real-time
systems research, RT-Bench is designed from the ground up to
include a set of fundamental capabilities such as periodic execu-
tion, selectable OS scheduler, and native and multi-architecture
performance counters support, to name a few.

RT-Bench has undergone continuous improvements and exten-
sions. This paper reviews the most recent additions and features
of the framework. Most prominently, these include heap migra-
tion, synchronized benchmark release, and experimental support
for multi-threaded applications. This contribution includes a
tutorial session with template benchmarks to showcase the new
features and illustrate the process of integrating new benchmark
suites.

Index Terms—Benchmarking, Real-time, Profiling, Periodic
benchmarks

I. INTRODUCTION

For practitioners and academics, benchmarking constitutes
an essential step in testing and validating their systems re-
gardless of the application domain. Naturally, many domain-
specific benchmark suites have emerged over time as a result
of independent efforts. On the one hand, this organic growth
has offered a broad and diversified portfolio of benchmarks.
On the other hand, however, it has caused an inherent fragmen-
tation w.r.t. the set of features, launch/command interfaces, and
supported metrics. This lack of a de facto standard primarily
hinders reproducibility, as well as productivity and adoption,
since practitioners must manually adapt each suite of interest
to their needs via a repetitive and time-consuming process.

Since its release [1], RT-Bench [2] has aimed to reduce these
frictions through a rich standardized interface that enables
compatible benchmarks to tap into its feature set seamlessly.
For instance, the framework allows users to swiftly leverage
common timing features, such as periodic execution and
reporting of elapsed time, in all the included benchmarks. Not
only does RT-Bench focus on features relevant to real-time
system benchmarking, but it also provides native support for
resource profiling, which has proven helpful in understanding
run-time resource requirements and pinpointing performance
bottlenecks in more general settings.

The framework also strives to combine user-friendliness,
requiring minimal effort when adapting to new benchmarks.

To that end, RT-Bench’s contributors have maintained an
extensive documentation [3] of the framework, ranging from
the supported benchmark suites to the framework’s APIs.

This article and its associated tutorial session aim to reiter-
ate RT-Bench’s core concepts, mechanisms, and goals while
formally introducing the newly ratified features.

II. WHAT’S NEW?

Since its first release in 2022 [1], RT-Bench has known
a relative success within the real-time community [4]–[10]1;
calling for many improvements, feature additions, feature revi-
sion, bug fixes and code consolidation. This section describes
the most prominent changes brought to RT-Bench.

A. Continuous Back-to-back Executions.

One of the first features introduced in RT-Bench in an
effort to more realistically reflect the behavior of real-time
applications was the enforcement of periodic execution. As
RT-Bench increased in adoption, however, it was brought to
our attention that many scenarios and use cases exist where
this mode of operation is not ideal and, in fact, undesirable.

Typically, these correspond to cases where the role of the
benchmark is to create pressure on the system’s resources (i.e.,
bandwidth from IsolBench [11]). As such, the intermittent
activity of interfering workloads that comes from periodic
releases and missed deadlines (and consequent job skipping,
showed in Fig. 1, top part) creates “pressure gaps” that can
make empirical worst-cases harder to observe and reliably
reproduce. Such gaps are also inconvenient when attempting
to collect stable readings of the performance counters.

Hence, a “continuous back-to-back execution” mode has
been introduced (Fig. 1, bottom part). It can be enabled simply
by omitting a period (-p), ensuring retro-compatibility with
existing RT-Bench command options. Note that nothing else
changes as the benchmark execution routine is still executed
in a loop until a SIGINT is received or until the specified
number of tasks instances (-t) has been completed.

B. Heap Migration

The push toward heterogeneous System-on-Chips is not just
confined to processing elements. Modern embedded platforms,
in particular, also tend to feature a diversified array of on-
and off-chip memories with different sizes and temporal

1For sake of transparency, cited papers exclude research items involving
the authors of the original paper [1] and their close collaborators.

mnico@bu.edu
denis.hoornaert@tum.de
rmancuso@bu.edu


Deadline miss
Benchmark 1

Benchmark 2

Time

Job 1 Job 2 Job 3

Job 1 Job 2 Job 3 Job 4 Job 5

Fig. 1: RT-Bench execution modes: Periodic execution (top)
and continuous back-to-back (bottom).

characteristics. On Linux-based systems, these memories are
often treated as reserved memory nodes. Thus, unless system
designers add ad-hoc support, these nodes remain natively
inaccessible to standard user-space applications.

To enable the study of benchmarks’ memory affinity, RT-
Bench integrates a user-friendly heap migration mechanism.
When heap migration is enabled, RT-Bench switches to a cus-
tom heap allocator over an internally allocated memory region.
The user can control the type of allocation via command-
line parameters. Specifically, when enabling heap migration
(-H), users can indicate the target memory in two ways: (1)
by providing a physical memory address; or (2) by providing
a file pathname.

In the former case, RT-Bench will perform a non-cacheable
memory mapping using /dev/mem and will use said mapping
as the applications’ heap memory region. In the latter case, RT-
Bench will memory-map the provided file. If this is a normal
file (e.g., in a tempfs filesystem), the resulting memory
region will be cacheable. This option is handy as reserved
heterogeneous memory nodes can be exposed to user space by
exporting them as block devices that can be memory-mapped.
Kernel-level support for the creation of said interface, however,
is out of the scope of RT-Bench. When using the (-H) option
in either mode, the end-users are responsible for providing
adequate access to the underlying memory (e.g., by ensuring
it is a usable physical address/file) to avoid bus errors.

Note that a heap size limit parameter (-m) is required
because RT-Bench must terminate the target benchmark if the
working set size exceeds the size of target memory region.

C. External Synchronized Release

As RT-Bench runs atop of a rich full-fledged operating
system (i.e., Linux), running several benchmarks concurrently
to observe and study their interactions is already possible.
However, no control over the release time of the workloads
is usually possible. This makes the simulation of specific
conditions, such as the worst-case job release pattern, hard
to perform.

Thus, an initial release (offset) synchronization mechanism
has been added to RT-Bench. This mechanism, shown in
Fig. 2, allows different benchmarks or different instances of
the same benchmark to be released together via the newly
introduced (-s[=TASKSET_NAME]) parameter. When the
parameter is used, the released benchmarks behave as if they
belong to the same task set with synchronized release offset.

Process start

SIGUSR1

Process start

Process start

Benchmark 1

Benchmark 2

Benchmark 3

Time

Job 2 Job 3

Fig. 2: RT-Bench synchronized release example with three
benchmarks.

Specifying a task set name is optional. If an explicit name is
not provided, RT-Bench will default to an implicit name.

Practically speaking, RT-Bench’s synchronization unrolls
in three phases. Initially, all workloads initialize themselves
until they are ready to execute for a first iteration. There,
they wait to receive a synchronization signal (i.e., SIGUSR1).
This behavior allows users to add an arbitrary number of
benchmarks to the set by simply starting them with the same
(-s) parameter value. Once all the desired benchmarks have
been launched, the user can start the full experiment by
sending the SIGUSR1 signal to any one of the benchmarks
in the set. Once any of the benchmarks receives the signal,
said benchmark becomes the synchronization manager. The
manager is endowed with the responsibility to (1) determine
a synchronized release time in the near future and (2) send
a signal to wake up all the other benchmarks (subordinates).
Upon reception of the signal, each subordinate benchmark, as
well as the manager, will configure an absolute release timer
with the exact coordinate time determined earlier.

Note that the mechanism still involves the end-users as they
must manually start the required benchmarks and choose a
unique task set name (TASKSET_NAME). They also must send
the first SIGUSR1 signal once all the desired benchmarks have
been launched. Alternatively, a synch-helper tool is also
provided which allows users to specify how many benchmarks
to wait for before the start SIGUSR1 signal is sent.

D. Extended Reporting of Benchmark-specific Metrics

For some benchmarks, the default performance metrics
reported by RT-Bench are only a subset of the information
useful for the experiment at hand. Since its initial release,
RT-Bench offers the possibility to report one benchmark-
specific metric for each benchmark. This feature is used, by
the applications in the IsolBench suite [11], which also report
measured memory latencies and bandwidths. However, in a
number of cases, limiting benchmark-specific metric reporting
to a single value was deemed too restrictive. For instance,
a benchmark performing neural network inference for object
identification might want to simultaneously report the number
of detected objects and the corresponding confidence scores.

For this reason, the benchmark-specific reporting mech-
anism has been revamped. In this revision, benchmark-
specific metrics and metadata are stored in a struct named
extra_measurement aggregating pairs of headers and
metrics. At run-time, the struct is populated by the user-



defined benchmark_log_data() routine with the desired
metrics and their human-readable name. Accordingly, the
EXTENDED_REPORT compilation flag has been deprecated.

E. Performance Monitoring Thread Improvements

Recall that RT-Bench included the option to spawn a per-
formance monitoring thread PMThread. The PMThread runs
in parallel with a given benchmark, and its goal is to perform
high-frequency sampling of architectural performance counters
to more accurately profile the benchmark under analysis.

An interesting challenge in the design of the PMThread is
how to store the trace of performance samples efficiently. In
the initial version, sample measurements2 were stored in one
contiguous container (i.e., a buffer) where each entry corre-
sponded to a timestamp in the execution. For a time bucket ∆t,
the ith entry contains the performance measurements sampled
at instant i×∆t of the benchmark run-time. Such pre-allocated
container would limit the execution time of the benchmark and
eventually lead to a buffer overflow.

The reworked implementation, instead, features support for
a list of buffers that can hold these measurements. This is
achieved dynamically during the execution phase as follows.
Whenever a buffer is filled, a new buffer is allocated and added
to the list, with a size that is twice as large as the previous
buffer in the list. The approach limits the number of memory
allocations during execution while not copying/moving any
previously acquired data samples. Finally, any memory used
to hold performance counters is not tracked by the memory
watchdog, and thus, it does not count against the benchmark’s
memory limit (-m).

F. Experimental Multi-thread Support

The feedback following the previous release of RT-Bench
lamented the lack of support for multithreading. The absence
was justified by several—feasible but tricky—implementation
hurdles such as synchronization and core affinity assignment.

Since then, steady progress has led to the introduction of
an experimental support for multithreading. It is now possible
to easily use the framework with a multithreaded benchmark
since new APIs to (1) spawn new threads and (2) define a
parallel computation section with these threads are available.
With these APIs the main execution thread can operate before,
during and after the parallel section; with minimal changes to
RT-Bench’s execution logic as shown in Fig. 3.

Note that, at the time of writing, multi-threading cannot
be used in conjunction with other options. For instance, as
the subsystem used for heap migration and Working Set Size
(WSS) reports are not thread-safe, multi-threading can only be
used provided no dynamic memory allocations are performed
during the execution phases. Likewise, performance counter
reports generated by the PMThread only cover the main thread.

III. DEMONSTRATION SESSION OUTLINE

This section provides a step-by-step overview of the tu-
torial session accompanying this paper. The objective is to

2i.e., a struct aggregating a selected set of PMCs such as L2_refills.

Job 1 Job 2

Main thread

Sync start Sync completion Sync start Sync completion

Deadline miss

Worker thread 1

Worker thread 2

Fig. 3: Execution model for multithreaded benchmarks.

demonstrate the user-friendliness of RT-Bench and provide the
audience with key pointers to get started with their projects.
1. Building and Launching a Benchmark. Using a project
template [12] specifically made for this occasion, we will
showcase how RT-Bench-adapted benchmarks can be com-
piled and executed. In particular, we will focus on the required
command line parameters, scenario configuration via .json
files, and where to find built binaries. This part will cover
how to release a taskset, a heap migration example, and how
to retrieve performance measurements, including an example
using the PMThread.
2. Adding a Benchmark. This part will showcase how to
extend RT-Bench with additional benchmarks [13], whether
single- or multi-threaded. The inspection of the single-threaded
benchmark from the template will serve as a stepping stone to
revise RT-Bench’s basics. Specifically, it will include how to
split a main function into the three required harness functions
(i.e., init, execute, and teardown) and tips on how
to manage any inputs modified in place during execution.
This part of the demo will also cover how to add custom
logged metrics. Finally, the steps that must be undertaken to
tap into the experimental multi-thread support will be shown
by adapting the benchmark at hand.

IV. CONCLUSION & FUTURE WORK

RT-Bench benefits from a continued effort in maintaining
the project and adding new features. Future work is directed
towards (1) adding multithreaded benchmarks and improving
the support for multithread execution, (2) supporting C++
benchmarks, and (3) the ability to define and release a taskset
from a single .json specification. Other future work includes
the construction of a RT-Bench database, which contains
metrics of different benchmarks categorized by platform.

The authors are certainly committed to providing commu-
nity support, maintaining, and extending the RT-Bench project.
Nonetheless, they also welcome inputs and contributions by
the community, such as new benchmarks, features, and support
for additional platforms: these are fundamental to keep the
project relevant, up to date, and ultimately useful.

V. ACKNOWLEDGMENTS

This research was supported by the National Science Foun-
dation (NSF) under grant number CSR-2238476. Denis Hoor-
naert was supported by the Chair for Cyber-Physical Systems
in Production Engineering at TUM and the Alexander von
Humboldt Foundation.



REFERENCES

[1] M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and R. Mancuso,
“Rt-bench: An extensible benchmark framework for the analysis and
management of real-time applications,” in Proceedings of the 30th
International Conference on Real-Time Networks and Systems, 2022,
pp. 184–195.

[2] Rt-bench repository. [Online]. Available: https://gitlab.com/rt-bench/
rt-bench/-/tree/OSPERT25

[3] Rt-bench documentation. [Online]. Available: https://rt-bench.gitlab.io/
rt-bench/branch/OSPERT25/index.html

[4] C.-F. Yang and Y. Shinjo, “Compounded real-time operating systems for
rich real-time applications,” IEEE Access, vol. 13, pp. 26 079–26 104,
2025.

[5] A. Oliveira, G. Moreira, D. Costa, S. Pinto, and T. Gomes, “IA&AI:
interference analysis in multi-core embedded AI systems,” in Data
Science and Artificial Intelligence, C. Anutariya, M. M. Bonsangue,
E. Budhiarti-Nababan, and O. S. Sitompul, Eds. Singapore: Springer
Nature Singapore, 2025, pp. 181–193.

[6] M. A. Soomro, A. Nasrullah, and F. Anwar, “Poster abstract: Time
attacks using kernel vulnerabilities,” in Proceedings of the 23rd ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’25.
New York, NY, USA: Association for Computing Machinery, 2025, p.
626–627. [Online]. Available: https://doi.org/10.1145/3715014.3724040

[7] M. A. Khelassi and Y. Abdeddaı̈m, “Impact of compilation optimization
levels on execution time variability,” in 2024 IEEE 29th International
Conference on Emerging Technologies and Factory Automation (ETFA),
2024, pp. 1–4.

[8] M. A. Khelassi, “Using statistical methods to model and estimate
the time variability of programs executed on multicore architectures,”
Theses, Université Gustave Eiffel, Dec. 2024. [Online]. Available:
https://hal.science/tel-04921969

[9] W. Dewit, A. Paolillo, and J. Goossens, “A preliminary assessment of
the real-time capabilities of real-time Linux on Raspberry Pi 5,” in 18th
annual workshop on Operating Systems Platforms for Embedded Real-
Time applications. Alexander Zuepke and Kuan-Hsun Chen, 2024.

[10] K. Hosseini, “Real-time system benchmarking with embedded Linux
and RT-Linux on a multi-core hardware platform,” Master’s thesis,
Linköping University, Department of Computer and Information Sci-
ence, 2024.

[11] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking caches to
improve isolation in multicore real-time systems,” in 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
April 2016, pp. 1–12.

[12] Rt-bench benchmark suite template. [Online]. Available: https:
//gitlab.com/rt-bench/templates/benchmark-template/-/tree/OSPERT25

[13] Benchmark template to extend rt-bench. [Online]. Available: https:
//gitlab.com/rt-bench/templates/adapt-bmark/-/tree/OSPERT25

https://gitlab.com/rt-bench/rt-bench/-/tree/OSPERT25
https://gitlab.com/rt-bench/rt-bench/-/tree/OSPERT25
https://rt-bench.gitlab.io/rt-bench/branch/OSPERT25/index.html
https://rt-bench.gitlab.io/rt-bench/branch/OSPERT25/index.html
https://doi.org/10.1145/3715014.3724040
https://hal.science/tel-04921969
https://gitlab.com/rt-bench/templates/benchmark-template/-/tree/OSPERT25
https://gitlab.com/rt-bench/templates/benchmark-template/-/tree/OSPERT25
https://gitlab.com/rt-bench/templates/adapt-bmark/-/tree/OSPERT25
https://gitlab.com/rt-bench/templates/adapt-bmark/-/tree/OSPERT25

	Introduction
	What's new?
	Continuous Back-to-back Executions.
	Heap Migration
	External Synchronized Release
	Extended Reporting of Benchmark-specific Metrics
	Performance Monitoring Thread Improvements
	Experimental Multi-thread Support

	Demonstration session outline
	Conclusion & Future Work 
	Acknowledgments
	References

