Hardware Data Re-organization Engine for
Real-Time Systems

Shahin Roozkhosh*, Denis Hoornaert!, Renato Mancuso* and, Manos Athanassoulis*

*Boston University

Y Technische Universitit Miinchen

*{shahin, rmancuso, mathan}@bu.edu, fdenis.hoornaert@tum.de

Abstract—Access patterns and cache utilization play a key role
in the analyzability of data-intensive applications. In this demo,
we re-examine our previous research on software-hardware co-
design to push data transformation closer to memory from a
real-time perspective. Deployed in modern CPU+FPGA systems,
our design enables efficient and cache-friendly access to large
data by only moving relevant bytes from the target memory. This
(1) compresses the cache footprint and (2) reorganizes complex
memory access patterns into sequential and predictable patterns.

Index Terms—Memory Semantic, Data re-organization

I. INTRODUCTION

One of the key bottlenecks in modern computing is moving
data through the memory hierarchy to processing elements.
The corresponding predictability issues are particularly prob-
lematic in real-time systems, especially when large-footprint
applications exhibiting complex memory access patterns are
considered. Multi-level caches have been introduced to hide
the latency of memory fetches. They are effective in opti-
mizing performance when data accesses are characterized by
spatial and temporal locality.

Unfortunately, achieving spatiotemporal locality in large-
footprint applications is challenging. Motivated by this, our
recently published work []1] investigates the role of hardware-
aided on-the-fly data reshaping for a specific class of large-
footprint applications, i.e., database systems.

Relational databases typically store in-memory relations (ta-
bles) employing a row-oriented layout—offering good locality
for transactional processing—or a column-oriented layout,
with good locality for analytical processing. New applica-
tions, however, blend analytical and transactional processing.
Therefore, no single optimal layout exists. At the same time,
switching between them introduces costly bookkeeping and
data duplication overheads [2].

The same challenge also appears in real-time workloads
such as image processing and neural-network-based applica-
tions, where accessing tensor data often results in complex
strides that break locality. Moreover, the mismatch between
the size of cache lines and data items (e.g., integers, double)
results in unwanted data being transferred from main memory.
As the size of the accessed data grows, moving data through
the memory hierarchy becomes a fundamental bottleneck.
The higher the pressure exerted on the bottleneck, the more
unpredictability worsens.

While the main focus of our previous work is to optimize
the average-case performance of relational databases, our

struct row { ‘ MAIN MEMORY PROCESSOR
long key:
char text_field [8];

long num_field;

I
fesch CACHE

Ui e
R

parallel
fetches +
packing

L
L | EBEER

PLIM Module

struct row table [];

Fig. 1: On-the-fly data transformation enhancing data locality.

intuition suggests that on-the-fly data reorganization can also
bring significant benefits in terms of predictability for two
main reasons: (1) reduced inter-process cache line eviction—
thanks to cache footprint compression and (2) conversion of
complex access patterns into sequential accesses—from the
cache and prefetcher perspective. Overall, enforcing access
patterns with high locality is increasingly more challenging
in data-intensive applications in both real-time and relational
systems. In all these applications, the processing is performed
by streaming over a set of data items that are (1) orders of
magnitude larger than the typical size of CPU caches; (2) often
sparsely stored in memory; and (3) accessed with hard-to-
predict, input-dependent patterns that are not optimized for
the linear organization of data in DRAM. In addition, often,
the computation performed on each data item is minimal.
Thus, hiding the cost of data movement via deep pipelines
and instruction-level reordering becomes ineffective.

In our demo, we will review the implications of on-the-fly
data reorganization in CPU+FPGA systems. Next, we will pro-
vide a walk-through of our Relational Memory Engine (RME),
capabilities, and deployment procedure on a real hardware
platform. Finally, we will showcase the live acquisition of
measurements that highlight the benefits of data reorganization
from the standpoint of performance predictability.

II. DATA RE-ORGANIZATION ENGINE

The RME is a hardware module located between the last-
level cache (LLC) and memory. Cache refills on a (config-
urable set of) variables go through the FPGA where RME
resides to capture CPU-memory accesses on-the-fly. Upon the
first capture, it initiates a set of transfers from main memory
to carve out only the desired bytes and into an internal buffer
where data locality is maximized (Figure [T). Once ready, a
cache line of packed useful data is available to the CPU as if
it existed in the main memory.

10-1.281.291.29 1.3 1.311.311.321.321.341.34

é 9 2.0 é 9-13120131311321.321.321.331.331.35 1.45
S5 8-144 S5 8-1331.321311321.321331.341.341351.36
S 713 S 71351341341321331.331341.351371.37
S 6-135144 "1.5 £ 6-1381371361341341.341.351.361.36 138 1.40
B 5-13138 1.822.012.032.04 2.02 1.98| B 5.011381371371351.351361.371.381.39
% BB SR IESE 174 1.93 2.1 2.08.2.09 206 RN % 4 SWEEWERWIEWH1581.38 1.37 1,38 1.39 1135
0 3061073132 11.65/1.842.02 216 2.15 2.12 DA 1 <6 1.451.441.42 1.421.41
o 2 -0.530.651.231.39 1.731.91 2.05 2.21 2.18| o 2 1.481.461.461.441.441.431.421.41 1.4 1.41|
% H# 1.30

1-0490570.681.32 -0.5 PR 1.491.481.471.471.451.451.441.431.431.41

12345678910
of Projected Columns

1.791.94 2.08 2.23

12345678910
of Projected Columns

(a) Speedup - RME vs Columnar (b) Speedup - RME vs Row

Fig. 2: Heat map of the RME speed-up against columnar
and row |7_5| store for varying projected and selected columns.

We implemented and deployed RME on commercially avail-
able Systems-on-Chips (SoCs) integrating an on-chip FPGA
and a traditional multi-core processor (e.g., Intel HARPv2,
Xilinx UltraScale+). By employing commercially available
CPU+FPGA SoCs, we create an immediately-usable complete
prototype capable of running realistic applications. Our design
is based on the Programmable Logic In the Middle (PLIM) [3[]
approach and can be employed to achieve greater control over
memory traffic by instantiating custom logic as an intermedi-
ary between processors and main memory.

III. DATA-RESHAPE FOR REAL-TIMES SYSTEMS

RME creates a re-organized alias of the target memory
based on a software-provided configuration. RME achieves the
timeliness requirements of real-time systems by accessing only
the desired subset of data items in main memory on behalf of
the processing units before sending fully compressed cache
lines to the LLC. This mechanism effectively filters out all
undesired elements that would otherwise pollute the cache,
enabling high data locality in upstream caching layers.

Motivated by real-time applicability, first, we experimen-
tally demonstrate that RME offers efficient native accesses
to any matrix column or column group, outperforming direct
row-wise and direct columnar accesses. To perform a fair
comparison, we implement RME, the row-store (ROW), and
the column-store (COL) approach in the same memory. The
default size of each row is 64 bytes, and the column width
is 4 bytes. Each experiment was repeated 30 times, and we
reported averages and standard deviations. We run two sets of
experiments for RME: hot (when the targeted data is ready in
the internal) and cold (otherwise).

We design a synthetic benchmark (Listing [I) to test the
behavior of our engine under representative memory access
patterns. Consider the following operation: Given a matrix M,
it reads over the columns subset based on a different selection
predicate. Here, COL,,,...,COL,, are projection columns
and COL,,, ..., C’OLSJ. are selection columns.

Listing 1: Synthetic Matrix Operation
,COL,, 5 COLg;> % ;

READ COLy,, ... FROM M WHERE COL,,,..

A. Latency Showcase

Figures [2a] and [2b] show the speedup of RME compared
to the in-memory row-store and column-store. In the x- and

I ROW [JcoL I RME cold [ZIRME Hot
475
£
£50
c
S
S 25
19
2
ad oo
16 32 64 128 256

Row width in Bytes

Fig. 3: RME enables deterministic accesses latency.

y-axis we vary the number of projection (i) and selection
(j) columns. Figure 2a shows that when the number of
involved columns is small (< 4), column-store dominates
over RME (colored red). However, as the number of columns
increases due to the tuple materialization cost, the diminished
prefetching columnar access performance falls behind. In fact,
RME can be up to 2.23x faster than columnar access (bottom
rightmost cell). Figure [2b] further highlights that RME always
outperforms in-memory row access by being 1.3 —1.5x faster.

B. Predictability Showcase

We continue our experimentation with the benchmark above
where ¢ = 1,7 = 1,COL; # COL;, focusing on the
comparison between RME, direct row-wise (ROW), and direct
columnar access (COL). We access 4 byte-wide columns while
varying the row size. Figure [3] shows the absolute latency.

We note from this figure that even without having the
projected column in the Reshape Buffer in FPGA (RME cold),
RME has faster execution than both ROW and COL in all
experiments. The reason is that (1) RME better exploits the
internal memory bandwidth to fetch only the desired data
items at bus-width granularity, and (2) the CPU caches are
not polluted with unwanted fields.

RME’s latency remains virtually the same as it accesses
only the relevant data. However, answering the query via direct
access of the row-oriented data leads to poor cache utilization
as larger rows lead to higher cache pollution. Conversely, RME
exhibits stable and predictable performance regardless of the
row size. Thus, RME allows predicting and exploiting data
reuse across processing phases.

C. Real-Time Evaluation

RME outperforms the row-store layout because, by defini-
tion, it accesses fewer data. On the other hand, queries that
access fewer columns can be more efficiently evaluated from
a columnar layout. However, when the number of projected
columns is high enough (more than four in our setup), RME
outperforms the columnar layout. Further, the RME imple-
mentation used in this setup runs at only 1/3 of the maximum
FPGA frequency. Operating at a higher frequency may reduce
memory access time and increase the benefits of RME.

IV. CONCLUSION

We depart from the traditional view of memory as a flat
array of bytes. We reshape the data via near-memory compu-
tation before moving it to the CPU, resulting in improvement
of both performance and determinism of memory accesses.

ACKNOWLEDGMENT

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant number CCF-2008799. Any opinions, findings, and
conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views
of the NSE. Denis Hoornaert was supported by the Chair for
Cyber-Physical Systems in Production Engineering at TUM
and the Alexander von Humboldt Foundation.

REFERENCES

[1] S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational memory:
Native in-memory accesses on rows and columns,” in Proceedings
26th International Conference on Extending Database Technology,
EDBT 2023, loannina, Greece, March 28-31, 2023. [Online]. Available:
https://doi.org/10.48786/edbt.2023.06

[2] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki,
“The Case For Heterogeneous HTAP,” in Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR), 2017. [Online].
Available: http://cidrdb.org/cidr2017/papers/p21-appuswamy-cidr17.pdf

[3] S. Roozkhosh and R. Mancuso, “The potential of programmable logic in
the middle: cache bleaching,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 1EEE, 2020.

https://doi.org/10.48786/edbt.2023.06
http://cidrdb.org/cidr2017/papers/p21-appuswamy-cidr17.pdf

	Introduction
	Data Re-organization Engine
	Data-reshape for real-times systems
	Latency Showcase
	Predictability Showcase
	Real-Time Evaluation

	Conclusion
	References

