Relational Fabric: Transparent Data Transformation
[Vision]

Tarikul Islam Papon*, Ju Hyoung Mun*, Shahin Roozkhosh*, Denis Hoornaert”, Ahmed Sanaullah¥,
Ulrich Drepper?, Renato Mancuso*, Manos Athanassoulis*
*Boston University, email: {papon, jmun, shahin, rmancuso, mathan} @bu.edu
tTechnical University of Munich, email: denis.hoornaert@tum.de
fRed Hat, email: {asanaull, drepper} @redhat.com

Abstract—A Kkey design decision for data systems is whether
they follow the row-store or the column-store paradigm. The
former supports transactional workloads, while the latter is
better for analytical queries. This decision has a profound impact
on the entire data system architecture. The multiple-decade-
long journey of these two designs has led to a new family of
hybrid transactional/analytical processing (HTAP) architectures.
Several efforts have been proposed to reap the benefits of both
worlds by proposing systems that maintain multiple copies of
data (in different physical layouts) and convert them into the
desired layout as required. Due to data duplication, the additional
necessary bookkeeping, and the cost of converting data between
different layouts, these systems compromise between efficient
analytics and data freshness. We depart from existing designs
by proposing a radically new approach. We ask the question:

“What if we could access any layout and ship only the relevant
data through the memory hierarchy by transparently converting rows
to (arbitrary groups of) columns?”

To achieve this functionality, we capitalize on the reinvigorated
trend of hardware specialization (that has been accelerated due
to the tapering of Moore’s law) to propose Relational Fabric, a
near-data vertical partitioner that allows memory or storage com-
ponent to perform on-the-fly transparent data transformation.
By exposing an intuitive API, Relational Fabric pushes vertical
partitioning to the hardware, which has a profound impact on the
process of designing and building data systems. (A) There is no
need for data duplication and layout conversion, making HTAP
systems viable using a single layout. (B) It simplifies the memory
and storage manager that needs to maintain and update a single
data layout. (C) It reduces unnecessary data movement through
the memory hierarchy allowing for better hardware utilization,
and ultimately better performance. In this paper, we present
Relational Fabric for both memory and storage. We present
our initial results on Relational Fabric for in-memory systems
and discuss the challenges of building this hardware, as well
as the opportunities it brings for simplicity and innovation in
the data system software stack, including physical design, query
optimization, query evaluation, and concurrency control.

I. INTRODUCTION

OLTP vs. OLAP vs. HTAP. The popularity of large-scale
real-time data analytics has soared over the past few years [54],
[57], further fueled by the advent of new technological trends
like 5G, Internet-of-Things, and cloud computing [18], [29].
Database management systems (DBMS) now need to perform
both Online Transactional Processing (OLTP) and Online
Analytical Processing (OLAP) since many applications need to
analyze fresh data. However, traditional OLTP and OLAP sys-
tems are very different — OLTP systems generally use a row-

PROCESSOR [[] relevant data DATA
CACHE
l:l—l:[_]—]_‘ legacy fetch
IT] un ry data movement

Relational Fabric

on-the-fly transformer

better cache utilization

Fig. 1: Relational Fabric removes unnecessary data movement
by transparent on-the-fly data transformation.

oriented data layout to optimize for write-intensive workloads
and point queries. In contrast, OLAP systems use a columnar
layout to optimize for read-only analytical queries. Hybrid
Transactional/Analytical Processing (HTAP) [57] systems aim
to maintain a single data store that offers data freshness and
efficient analytics on that same data set. HTAP systems attempt
to bridge the OLAP and OLTP requirements by maintaining
multiple copies of data in different formats [14]], [39], [61] or
converting data between different layouts [9], [12l], [45], [S0],
[70]. However, recent research on such hybrid layouts [6],
[12], [21]], [40] shows the optimal layout of a query is often
neither a columnar nor a row-oriented one. Such approaches
carry extra complexity, either to convert data between layouts
or to manage multiple versions and copies of the data, while
not always being able to offer the optimal layout.

Hardware Specialization On The Rescue. Due to the his-
torically exponential growth of processor speed, the idea of
hardware specialization, although recurring every few years,
has not been able to fulfill its true potential. As Moore’s law
slows down and the data processing needs keep growing expo-
nentially, hardware specialization is becoming a feasible, and
more scalable alternative to general-purpose computing [34],
[75]. In this post-Moore era, this has been further accelerated
by the advancements in reconfigurable logic and the rise of
large-scale data processing applications. Recent technological
developments (e.g., Google’s TPU [30], Microsoft’s Cata-
pult [53]]) show that specialization is here to stay [34].

Idea: Transparent Data Transformation

What if we can access any arbitrary data layout using
near-data processing via specialized hardware?

In other words, “what if the optimal data layout is always
physically available?”. This will eliminate the need to keep
multiple layouts and we can perform efficient analytics over
the fresh data without converting between different layouts. If
the underlying specialized hardware accesses only the relevant
data (without accessing unnecessary data and without paying a
tuple reconstruction cost) while maintaining a single layout, it
will blend the benefits of row-stores and column-stores. It will
offer effortless locality, alleviating the need for separate row-
store and column-store query engines, decoupling the physical
data layout from the processing data layout.

Our Vision: Relational Fabric

A lightweight specialized hardware fabric that allows
accessing arbitrary data layouts from memory or storage.

We propose Relational Fabric, a new lightweight specialized
hardware fabric that accommodates queries to access arbitrary
column groups from memory-resident base data without re-
quiring any data duplication. The base data is stored in a
row-oriented physical layout (Figure[I)), to allow efficient data
ingestion and updates, read-only queries can quickly access
only the relevant column groups (or the entire row, if needed)
using the underlying machinery. To do this, Relational Fabric
exposes a carefully designed API, termed ephemeral columns
that enables accessing arbitrary data geometries (i.e., any
subset of data from relational tables) using simple abstractions.
This API creates non-materialized aliases of column-groups
which, from the cache perspective, pushes arbitrary subsets of
columns in dense memory addresses to the memory hierarchy.
This, in turn, supports both efficient column- and row-oriented
accesses while minimizing CPU cache pollution with unnec-
essary attributes. Relational Fabric has three major benefits:

v' Low Data Complexity: It allows efficient HTAP process-
ing while maintaining only one layout of the data. No need
to propagate changes to multiple data copies or to convert
data among different layouts.

v' Low Software Complexity: It reduces data system soft-
ware complexity. No need to maintain different execution
engines. Rather, the execution engine can always assume
that only the relevant data will be accessed.

v Efficient Hardware Utilization: It provides effortless
locality via shipping only relevant data through the mem-
ory hierarchy, alleviating unnecessary data movement, and
providing better cache and processor utilization.

As a first instance of Relational Fabric, we have developed
Relational Memory [63] that utilizes recent advancements
in programmable logic [64], and pushes projection to the
hardware (§I). The API of Relational Memory is a simple,
lightweight programming abstraction, termed ephemeral vari-
ables, enabling the CPU to access arbitrary data geometries.
Relational Memory exploits the inherent parallelism of mem-
ory cells to efficiently access data in scattered locations, and
uses programmable logic to reorganize and compact it on the
fly before pushing it to the CPUs, thus improving locality.

Simplifying the Data Systems Software Stack. With Rela-
tional Fabric in place, the data system software stack can be
significantly simplified. A data system that makes good use
of the Relational Fabric would have to drastically simplify
its physical design and query optimization components, while
the query evaluation engine would now be able to make
the most of code generation. Other components would also
be significantly affected, especially the transactions manager
that would have to implement a multi-version concurrency
control (MVCC) approach, and the compression algorithms
that should be compatible with scattered data accesses.

In this paper, we present our vision of building Relational
Fabric, along with the challenges and opportunities of in-
novation in data systems and some open research questions
to fully realize this vision. We begin by discussing how
to access arbitrary data geometries and present our initial
work on Relational Memory and ephemeral variables (§I).
The Relational Fabric vision has several opportunities for
simplicity and innovation across the data systems stack (§III):

« Simplify Physical Design: Relational Fabric will grossly
simplify the physical design process. There is no need
for creating (physical) vertical partitions anymore. Further,
indexes will mostly be useful for workloads with point
queries and updates, since range queries can be very
efficiently evaluated with column-group accesses. Overall,
through the Relational Fabric any layout can be achieved
via on-the-fly data reorganization.

« Simplify Query Optimization: One of the key challenges
with query optimization is that it is a combinatorial process
that has to search a vast space. Relational Fabric increases
the search space by allowing access to any data layout,
however, this essentially removes any search constraints
in that space. Hence, instead of solving a combinatorial
problem, we can now construct the fastest solution.

o Efficient MVCC: The natural way to implement concur-
rency control using Relational Fabric is MVCC, where
there is one source of truth (the base data in row-oriented
format), and the ephemeral columns access the correct data
using timestamp information associated with MVCC. A big
win for Relational Fabric is that it implements timestamp
comparisons in hardware, leading to a simple and good-
performance implementation of MVCC.

Building the Relational Fabric hardware requires bringing
together software and hardware expertise and benefit from the
tight integration of programming systems and programmable
logic which is increasingly gaining momentum (§IV). Our
preliminary Relational Memory design is implemented in such
a tightly integrated platform. We further outline our vision for
integrating data transformation with the memory controller and
extending the processor’s ISA. The ultimate goal is to be able
to use Relational Fabric without needing deep expertise in
hardware/software co-design.

Outline. The remainder of the paper is organized as follows.

Section |lI| presents the concept of accessing arbitrary data
geometries in detail. Section [III] discusses the implications on

struct row {
long key,
char text_field[8],

Core (ARM, X86) CACHE
long

classical variable| ® - EEEE:] ¥
ephemeral variable| e f--- El:l:l:l:l:l

cache pollution
with y

ephemeral struct columns {
long

B

(1
[
izes the
layout on the fly Main Memory

Fig. 2: Architecture and data flow of Relational Memory, an
in-memory instance of Relational Fabric that pushes projection
closer to the in-memory data.

the data management software stack, Sectioan_VI discusses how
to build the Relational Fabric hardware, and Sectionmpresents
our early results. Finally, Section discusses related work,
Section outlines aspects of the vision that warrant further
investigation, and Section [VIII] concludes.

II. ACCESSING ARBITRARY DATA GEOMETRIES

Motivation. When considering a row-oriented relational table,
accessing a specific (group of) column(s) leads to a strided
access pattern, where a few bytes (size of accessed columns)
are accessed every hundred or thousand bytes of data (size of
the row). This is inefficient since each new row always pulls
an entire cache line from memory resulting in lower cache
utilization and more data movement than what is required
(Figure [I). Further, strided accesses with large strides are
not handled well by hardware prefetchers [10]]. Column-stores
avoid strided accesses by storing each attribute separately.
This results in accesses with high locality since only data
items strictly required for the final computation are transported
from the main memory. However, it also comes at the cost
of increased tuple reconstruction cost for queries with high
projectivity [1]], and it is an inefficient layout for inserts and
deletes. Instead, we want to achieve effortless locality for
queries with any projectivity without having unnecessary data
movements or any tuple reconstruction cost.

Relational Fabric. To achieve this, we propose to utilize
specialized hardware to perform transparent on-the-fly data
transformation while the base data is stored in a row-oriented
layout. This allows efficient updates and inserts on the base
data while analytical queries may access the desired columns
through Relational Fabric. Data transformation and selection
operators like projection and selection can be pushed closer
to data to reduce unnecessary data movement.

For memory-based systems, the hardware will sit between
memory and the processor, intercept the CPU-originated re-
quests and transparently reorganize the data on-the-fly, making
it like the desired data layout already exists in memory. For
disk-based systems, the hardware will sit between memory and
storage and will be able to transparently reorganize the data
on-the-fly, making it like the desired data layout already exists
in storage. Operating closer to data enables us to utilize the
underlying device parallelism (either within different memory

// layout of the full relational table
struct row {
long key; /#* 8 bytes x/
char text_fldl [12]; /% 12 bytes =/
i

LI = Y S R

char text_fld2 [16] /+ 16 bytes */
long num_f1dl; /% 8 bytes x/
long num_f1d2; /% 8 bytes x/
long num_f1d3; /+ 8 bytes x/
9 long num_f1d4; /+ 8 bytes x/

10 };
11
12 // the variable that holds the full relational table
13 struct row the_tablel[];
14
15 // the SQL query to execute
16 charx QUERY =
;
17 // the ephemeral variable of the SQL query to execute
18 ephermeral struct column_group {

19 long key;
20 long num_f£f1dl;
21 long num_f£f1d4;

2 };

23 // configuring the ephemeral variable's geometry
24 struct column_group* cg;
25 cg = configure (the_table,
26

27 // executing the query using the ephemeral variable
28 long sum = O;

29 for (int i = 0; 1 < cg.length; i++) {

30 if (cg[i].key > 10) {

31 sum += cg[i].num_£fldl * cg[i].num_£f1ld4; } }

QUERY) ;

Fig. 3: The ephemeral variable is configured in line Once
the CPU accesses it (line [31), the machinery starts fetching
the desired columns to the CPU as if they already exist as a
column group in memory.

banks [33], [47] or within storage devices like flash-based
SSDs [116], [58I.

To ensure ease of programmability, the specialized hardware
is used via a simple abstraction that allows the data system
engineer to request the desired column groups (in case of
projection) or rows (in case of selection). For the memory-
based design, it will require compiler support to make this
fully transparent to the system developer. In addition, in order
to make the memory fabric easy to integrate we envision
integrating it into the memory controller and modifying the
instruction set architecture (ISA). For the disk-based design,
the system developer will use a dedicated API that allows
to directly request from the proposed machinery to fetch the
desired columns from storage. This API will directly feed
into the scan operator sending only the relevant data for
further query processing. We now discuss our first instance
of Relational Fabric and its API that targets in-memory data
systems and is termed Relational Memory.

Relational Memory (RM). To offer contiguous access to
a specific column (or column-group) in memory, we built
Relational Memory (RM) [63], which leverages the PLIM
paradigm [64] to create references to data that does not exist
in main memory, which the CPU can use as if the data does
exist in main memory. In other words, RM enables accessing
the same content in main memory under different strides,
but it can be accessed as if it was stored contiguously from
the CPU’s perspective. Reorganizing data to improve locality
minimizes the waste of constrained CPU cache real-estate. In

turn, this translates to better efficiency for the query at hand
and lower cache pollution. Furthermore, operating closer to
the data allows to exploit the inherent parallelism of memory
cells. Figure 2] shows a high-level diagram of the proposed
design. Relational Memory is located in programmable logic
sitting between the memory and the processor. Upon receiving
a request, the engine transforms on-the-fly rows to any desired
combination of columns. The processor directly accesses data
in the optimal layout through an abstraction called ephemeral
variables, which we discuss next.

Ephemeral Variables. RM aims to provide the optimal layout
for any possible queries; thus, RM executes projection and
tuple reconstruction in hardware, and the reconstructed tuples
are accessible via ephemeral variables, a special type of
variables that identifies a specific subset of columns to access.
Ephemeral variables create memory aliases to expose non-
contiguous content as if they were contiguous. These transient
variables are never instantiated in main memory. Instead, upon
accessing such a variable, the underlying machinery is set in
motion and generates an on-the-fly projection of the requested
columns according to the format that maximizes data locality.
Figure [3] shows an example of using ephemeral variables.
This abstraction of non-materialized in-memory aliases of
column-group accesses grossly simplifies the data manage-
ment software stack, as we will discuss in Section While
in our current prototype ephemeral variables are supported by
low-level macros, our long-term vision is to add full compiler
support by integrating Relational Memory into the memory
controller and expanding the ISA, which we discuss in more
detail in Section [IV] This will allow RM to benefit any data
systems with minimal engineering effort.

III. IMPLICATIONS ON DATA SYSTEMS ARCHITECTURE

Relational Fabric can significantly simplify the data system
software stack. We now discuss the opportunities for simplicity
and innovation across the data systems software stack. Figure[d]
shows the database components that will be affected by
Relational Fabric (green background).

A. Physical Design

The physical design process of a database entails (i) the
mapping from real-world data to relational data (tables, rows,
and columns), and (ii) decisions on how to physically store
the relational table regarding normalization, data layout, data
partitioning, and indexing. While the first part depends on the
nature of the application, the second part aims to optimize
performance while respecting some constraints (e.g., space
amplification) using workload knowledge. Relational Fabric
can radically simplify the second step of physical design be-
cause it can allow access to different data geometries without
needing to physically store data in that format. We now discuss
how the key decisions can be simplified.

Data Layout and Vertical Partitioning. One of the most
impactful physical design decisions is the data layout: a row-
oriented, a column-oriented, or a hybrid layout. This decision
is driven by the application requirements since a row-oriented

e N N N
0d =) 2s][.
L Parser) g ap S
wvn 9 o <]
e £ S = 8
Query EE =
i l \ Optimizer
- J
() -
€E)$ Evaluation :/
kg'::é\zg Engine |)L)
. J/
~
Storage Manager
J

Legacy systems

/" Physical Design

mmmmnmng
[0 I [I A
. D0

Relational Fabric

mumpining

Fig. 4: Relational Fabric enables opportunities for innovation
across the entire data system architecture. It simplifies phys-
ical design, provides more options for query processing and
supports efficient multi-version concurrency control.

layout is a good fit for transactional applications, while a
columnar layout performs well for analytical systems. To
bridge the analytical and transactional requirements, hybrid
systems often maintain different engines for ingestion and an-
alytics, paying the cost of data layout conversion, duplication,
and the necessary additional bookkeeping. Both traditional and
hybrid systems use the expected workload to form educated
decisions about storing vertically partitioned data. The goal is
to collocate columns that are frequently accessed together to
reduce unnecessary data movement.

Relational Fabric simplifies the physical design process.
Since the query evaluation engine can always request any ar-
bitrary column groups, there is no need to restrict the physical
design space to a predefined set of vertical partitions. The
base data is stored in a row-oriented format and can efficiently
facilitate updates and ingestions, and any analytical query can
be executed using the optimal column group, i.e., the column
groups that are required by the query. Thus, Relational Fabric
eliminates the need for creating physical vertical partitions
since the base data can be on-the-fly vertically partitioned
with the help of specialized hardware. Note that indexes can
still be defined on the base (row-oriented) data. However, the
usefulness of indexes is now smaller, since range queries can
be efficiently evaluated with columnar accesses, so indexes
should be used for point queries and point updates. While
Relational Fabric does not necessitate any major changes in
the storage manager, it simplifies its operation, as it only needs
to maintain a single copy of each relation’s data.

Horizontal Partitioning. Contrary to vertical partitioning that
can happen on-the-fly using Relational Fabric, horizontal par-

titioning decisions would still need to be evaluated at physical
design time. While Relational Fabric does not affect horizontal
partitioning, it can be efficiently combined with it, along with
sharding which horizontally partitions data based on a sharding
key. Another functionality that Relational Fabric can integrate
is to handle the communication with storage devices while
exposing its simple ephemeral columns API to the query. That
way, the data system can request the desired column group on
a sharding key range, and the Relational Fabric will directly
return the corresponding data to the query.

Indexing. Indexes help accelerate access times, ensure unique-
ness, and allow sorting and clustering. In general, row-store
systems employ indexes that are useful for selection queries
and data updates. Column-store systems (and some recent row-
store systems) [44]], [46] use column projections as a special
type of index. The strength of Relational Fabric is that it makes
such projections possible without having to materialize them.
This has deep implications on the data systems architecture
because the query engine may access the data at query time
using either the base row-oriented data, an index (if it exists),
or the desired columns projected from Relational Fabric. While
indexes will be mostly beneficial for workloads with point
queries and updates, Relational Fabric allows for efficient
range queries due to the arbitrary column-group accesses.

B. Query Optimization and Query Evaluation

When a query is submitted to the system, it is first processed
by the query parser via lexical, syntactic, and semantic anal-
ysis. Then the initial query plan is processed by the query
optimizer to find the best query plan to execute, which is, in
turn, submitted for execution to the query evaluation engine.
Relational Fabric will not affect the query parser, however,
the optimizer and the evaluation engine components will have
a significant impact. Row-oriented query execution models
execute query plans one-row-at-a-time, which offers good
performance for OLTP queries. In contrast, most column-
store systems use vectorized execution that progresses through
the query plan via processing batches of column data [41],
[43]]. While Relational Fabric maintains the base data in row
format, it makes columns available to the processor on the fly,
and, thus, it can naturally support efficient vectorized query
execution. A key challenge with query optimization is the
combinatorial process of searching a vast space — the DMBS
has to select the most efficient evaluation plan based on the
cost of each plan. While Relational Fabric seems to increase
the search space by enabling access to arbitrary data layouts,
it also allows every query to always use the best layout, and
overall simplify the problem, by replacing the combinatorial
search with the construction of the query plan that accesses
the optimal data fragments. This opens a whole new avenue of
research with the potential to speed up query processing: (i)
generate the fastest query plan, (ii) revise existing cost models
considering Relational Fabric, and (iii) re-evaluate classical
single-column, multi-column partitioning cost models.

Code Generation. Adaptive systems like Hyper, HoO, Actian
Vector, Hekaton, MemSQL and others [6], [20], [40], [51],

[70] examine the query and decide how data will be accessed
by evaluating alternative access plans. The appropriate code is
generated by considering the buffered available data layouts.
One disadvantage of this approach is the requirement to
compile code on the fly which is alleviated by buffering
compiled code fragments. The development of Relational
Fabric aids code generation in two ways. First, Relational
Fabric does not require to buffer different layouts since any
arbitrary layout can be accessed on the fly. Second, since data
layouts are not buffered, Relational Fabric can buffer more
code fragments and reuse previously compiled code fragments
more aggressively. The query optimizer can now also consider
various factors like which code fragments are buffered and
which indexes are available. One key opportunity of innovation
through Relational Fabric design is the development of a novel
full-fledged hybrid query engine that can alternate between
row-at-a-time and column-at-a-time while working on the
same base data.

C. Concurrency Control

The transaction manager is responsible for concurrency con-
trol. Relational Fabric can naturally support multi-version
concurrency control (MVCC). While the base data is in row
format, Relational Fabric offers native access to arbitrary data
geometries through ephemeral columns. For example, in our
in-memory implementation of Relational Memory, we use
ephemeral variables to access column groups. We consider
all ephemeral variables (or the respective API) as read-only
columns or column-groups that accelerate analytical queries.
The row-wise base data is marked as read/write and updates
are handled by appending new rows to this base data. For
updates and deletion, Relational Fabric uses two timestamp
fields for every row to support multiple versions. The first
timestamp is set when a row is inserted to mark the beginning
of its validity, while the second timestamp is set upon row
deletion or replacement by a newer version, marking the end
of its validity. Every time the API is accessed, it generates
the column groups that contain the valid rows at the time of
the query. A key advantage of this approach is that the times-
tamp comparison can be implemented in hardware, making
this implementation simple and performant. By offering the
optimal layout and using the timestamps to ship only valid
data, Relational Fabric supports MVCC transactions through
snapshot isolation.

D. Compression

The proposed design stores the base data in a row-oriented
format hence it can benefit only from specific types of com-
pression. General compression algorithms of the LZ family
[85] are frequently used by row-oriented systems, however,
they are not a natural fit for Relational Fabric since they
require fully decompressing your data before you can access
separate columns. Delta, dictionary, and huffman encoding for
compression which are popular among state-of-the-art column
stores [2], [3], [86] are easily supported by Relational Fabric.
Note that these schemes can be used in row-oriented data,

and hence, they can benefit any groups of columns requested
by ephemeral columns. However, the compression schemes
under the run-length encoding family cannot be used out of
the box. In contrast to dictionary and delta encoding, RLE
has an expensive decoding step and relies on data, but it is
still quite popular among column stores. More research is
required to find compression techniques that can benefit both
row-oriented and columnar data and allow for direct operation
on compressed data.

IV. BUILDING RELATIONAL FABRIC

The key feature of Relational Fabric is that a specialized
hardware component transforms data on-the-fly. This section
presents the implementation details of our first in-memory
Relational Fabric instance, termed Relational Memory (RM).
We also discuss extending hardware support to more operators,
pushing the logic further into the memory controller, and
Relational Fabric for storage devices.

A. Implementing Relational Memory

RM is an FPGA-based data transformation engine that sits
between the processor and the memory and converts data
layouts on-the-fly as shown in Figure [2| Data transformation
in RM is performed in line with the instruction stream via
fine-grained information on the exact byte-wise location of
data items useful for the computation at hand. The developed
hardware performs following four key operations: (1) RM
receives the intended access stride of the query (that maps
the physical addresses of the columns to be accessed) and
then issues parallel main memory requests for the target data,
(2) RM communicates with memory via an AXI bus [[11] and
assembles multiple entries into a single packed cache line to
be sent to the processor, in the meantime, (3) RM captures
the CPU requests and (4) transfers the reorganized data upon
availability. This abstraction creates non-materialized aliases
of column-groups which pushes arbitrary subsets of columns
to the memory hierarchy. Hence, RM supports both efficient
column- and row-oriented accesses while minimizing CPU
cache pollution with unnecessary attributes.

B. Pushing Other Relational Operators

Relational Memory is the first instance of a new class of data
systems architectures. Implementing projection in hardware
lays the groundwork for pushing other relational operators to
the hardware as well. The Relational Fabric philosophy is that
new hardware designs will be adopted if they are simple and
general. In other words, a very application-specific design is
hard to make its way to mass production. With that in mind,
we propose to further reduce unnecessary data movement
by transparent on-the-fly data transformation using minimal
hardware complexity, by pushing selection and aggregation
in the hardware. Both operations are general enough in the
sense that they are part of other applications (like operating on
matrices and tensors) and have the potential to offer even larger
data movement reduction benefits. Implementing selection in

Relational Fabric will further alleviate the need for indexes al-
together, while aggregation will help both relational and matrix
operations. In this design, the ephemeral variables will contain
only the required data or the aggregation result, which will be
passed through the memory hierarchy ensuring minimal data
movement while maintaining the hardware complexity low.

C. Pushing RM Further: Relational Memory Controller

Following the aforementioned philosophy, we are developing
another instance of Relational Fabric, termed Relational Mem-
ory Controller (RMC) where we place RM further closer to
memory. Integrating RM into a memory controller has the
potential to become a game-changer as it will allow for easy
adoption of the RM design with a minimal development effort.
Further, pushing RM into the memory controller maximizes
its benefits, since it has low-level access to the actual memory
DIMMs. State-of-the-art memory controllers handle complex
interfacing with DDR memories while guaranteeing reliable
performance. However, memory controllers cannot fully ex-
ploit the capabilities of DDR memory chips since they have
no information about the target workloads or environments.
By integrating RM with a memory controller, just enough
semantic information about the access patterns will make
it to the hardware, making it possible to fully exploit the
capabilities of DDR memory chips, thus offering superior
performance and further reducing unnecessary data movement.

Extending the ISA as an RMC Interface. An Instruction Set
Architecture (ISA) is the abstraction between hardware and
software. The ISA guarantees that the resulting binary code
correctly executes regardless of the toolchain; thus, it helps
developers to write and debug software more efficiently [67].
Therefore, integrating RM with ISA, such as RISC-V [13],
[78], provides a more valuable interface. The benefits of using
RM via ISA are two folds: (1) it will provide a simple interface
with no need to understand the details of the underlying
hardware and (2) it will simplify the code generation process
during the compile time. Thus, RMC along with an ISA
extension provides a simple API that can further be beneficial
for SQL queries (or other applications benefiting from data
transformation) [66], [80].

D. Implementing Relational Storage

Following our discussion about building Relational Memory,
we propose to develop Relational Fabric in storage devices.
Near-storage computation is more challenging than near-
memory computation because traditionally storage devices
are incapable of performing logic. However, recent modern
storage devices like SmartSSD [59] and OpenSSD [15] have
processing power that can be exploited to achieve this. We
call this approach of pushing computation to storage Rela-
tional Storage (RS). RS can be directly implemented in a
specialized storage device (i.e., in OpenSSD or SmartSSD) or
a programmable logic (i.e., FPGAs), similar to our Relational
Memory approach. In contrast to RM, it is possible to push
other operators like selection and aggregation by utilizing
the processing capabilities of in-storage custom logic. Even

. — ROW [COL mmE RM
£, oo 1
(8]

(0]

x

Y05

€

[e]

2 0.0

1 2 3 4 5 6 7 8 9 10 11
Projectivity (Number of target columns)
Fig. 5: RM outperforms row-wise memory accesses irrespec-
tively of projectivity, while RM shows better performance than
columnar accesses for projecting more than 4 columns.

decompression can be done on-the-fly along with data trans-
formation [17]. In a similar manner, exploiting the internal
parallelism of the storage device [38] can enhance perfor-
mance. Furthermore, the software stack will be redesigned to
take advantage of near-storage computation for better query
processing and optimization in contemporary storage devices.

V. EARLY RESULTS ON RELATIONAL MEMORY

We now present selected experimental results of RM show-
ing that it outperforms direct row-wise and direct columnar
accesses by offering the optimal layout to any query [63].
Target Platform. The full-stack prototype of RM is imple-
mented on a Xilinx Zynq UltraScale+ MPSoC platform [82]]
which consists of heterogeneous Systems-on-Chip (SoC)
where a traditional processing system (PS) is tightly associated
with a programmable logic (PL), i.e., an FPGA. The PS
equips with 4 Cortex-A53 1.5 GHz cores, each with a private
32432 KB L1 I+D cache and sharing a unified 1 MB L2
cache. PL side, RM prototype, is constrained to 100 MHz.
In order to compare the performance of RM to the row-store
(ROW) and the column-store (COL), we custom implement
an in-memory row-store following the volcano-style process-
ing model (tuple-at-a-time) and an in-memory column-store
following the column-at-at-time processing model.

RM Shines for Queries with High Projectivity. In the first
experiment, we vary the projectivity from 1 to 11 columns
for 4-byte wide columns and 64-byte wide rows, as shown in
Figure[5] For any projectivity, RM outperforms direct row-wise
accesses since RM provides the optimal layout that minimizes
cache pollution. When the projectivity is low (< 4), columnar
accesses are faster since the tuple materialization cost is still
small and the prefetcher can efficiently support up to four
parallel sequential accesses. As projectivity becomes larger
than four columns, however, RM starts to outperform direct
columnar accesses due to the tuple reconstruction cost.

RM Offers Optimal Projection-Selection Queries. The ex-
periment shown in Figures [6a] and [6b] compares the perfor-
mance of RM with direct row-wise and columnar accesses
while varying the number of columns in a projection and
selection query. The number of projected columns (z-axis)
and the number of columns used for selection (y-axis) range
from 1 to 10 columns. Figure [6a] shows the speedup of RM
compared to the direct row-wise accesses. Similarly to the
previous experiment, RM consistently outperforms the direct

10-1.281.291.29 1.3 1.311.311.321.321.341.34 10- @@Em

) n

S 9-13129131311.321.321.321.331.331.35 JRCR 149 1.62 1.6 1.71 1,68 1.66 1.64 1.62 1.61

€ 1.45 € 2.0
S 8-1331.321311.321321.331341.341351.36 35 8-144 1.74 1.761.72 1.69 1.68 1.66 1.65

8 7-1351301341.321331331.341.351371.37 S 713 1.641.79/1.82 1.84 181 1.78 1.76 1.74

S 6-1381371361341341341.351361361.38 1.40 [155171 1.891.92 1,94 1,93 1.89 1.57 [15
5 5-4111.381371371.351.351361.371.38 1.39 T 5-13138 1.sz 2.012.032.04 2.021.98

% 4 JWEEWEEWEEWE1591.38 1.37 1.38 1,39m % 4-126131 14 1.741.93 2.1 2.082.09 2,06 [N
(2R 1 461.451.441.42 1.4211.41 1.4 FIT DA RUXCUREREEIN 1 65/1.54 2.02 2.16 2.15 2.12 :
v u“

[SIo IR | 45 1.461.461.441.441.431.421.41 O 2-0.530.651.231.39 1.7311.91 2.05 2.21 2.18|

#* IR 1.491.481.471.47]1.451.451.441.431.43 # 1-0.490570.68 1.32 1,79 1.94 2,08 2.23| -0.5

12345678910
of Projected Columns
(a) Speedup - RM vs Row (b) Speedup - RM vs Columnar
Fig. 6: (a) RM always outperforms in-memory row access. (b)
RM dominates when the total number of columns grows larger
(> 4), while columnar accesses achieve better performance
when the total number of columns is small (< 4).

12345678910
of Projected Columns

% —> ROW CcoL —A— RM 4 —> ROW CcoL —— RM

S £

[2 [

10

f= =4

o 2

5.1 =1

g 10 g 100

w 9 18 35 69 137 273 545 W 11 22 44 87 173 346 692
(2) (4) (8) (16) (32) (64)(128) (2) (4) (8) (16) (32) (64)(128)
Data size (Taget column size (MB)) Data size (Taget column size (MB))

(@) Q1 (b) Q6

Fig. 7: RM shows better performance than direct row-wise or
columnar accesses in practical queries such as TPC-H Q1 and
Q6 regardless of the data size.

row-wise access by 1.3-1.5x. In contrast, direct columnar
access achieves better performance than RM when the number
of columns used for projection and selection is less than four
as shown in the lower left corner of Figure [6b] As the number
of columns in a query increases, RM outperforms the columnar
accesses. Overall, RM achieves better performance than direct
row-wise accesses for any number of target columns, while
RM outperforms a columnar layout only when the number of
target columns is large enough (> 4).

RM Shows Stable Performance for Practical Queries. In
order to evaluate RM in a practical environment, we execute
Q1 and Q6 from TPC-H [76] while varying the data size. RM
supports arbitrary data sizes even with a small data memory of
2 MB on the FPGA by refilling it whenever it is full. Figure 7]
shows the running time of Q1 and (6 on tables from 11 MB
to 692 MB. Since we choose the data size based on the size of
target columns (shown in the parentheses of x-axis), the range
of data sizes varies for Q1 and Q6. For @1, the execution
time is similar for all layouts, as shown in Figure [7al This is
because executing CPU-intensive operations in (J1 dominates
the data movement cost. On the other hand, for queries such
as ()6 where data movement is the bottleneck, RM accelerates
the execution time by offering the optimal layout (Figure [7b).
Overall, our proof-of-concept prototype Relational Memory
shows better or comparable performance compared to in-
memory row- or column-store for various queries by offering
data transformation on-the-fly (more experimental results are
available in our conference paper [63]]). These experimental
results of RM further fuel our vision for Relational Fabric.

VI. RELATED WORK

Hybrid Layouts. Many HTAP systems like SAP HANA [27],
Oracle TimesTen [45], MemSQL [70], BatchDB [49], and
L-store [65] follow the one size does not fit all rule [73],
hence, they use the row-format to ingest data and then convert
it to columnar-format for analytical processing [S7]. The
optimal layout is more often neither a column-store or a row-
store [[6]. On the other hand, systems like HyO [6]], Hyper [40],
Peloton [12]], and OctopusDB [21] use adaptive layouts de-
pending on the query patterns. All these systems need to
store multiple layouts of the data and convert between formats
which increases the complexity, materialization overhead, and
maintenance cost.
Hardware Specialization. There have been many efforts
to utilize specialized hardware for data management sys-
tems [20], [36]. We categorize the developed specialized hard-
ware by its objectives. The first line of specialized hardware is
to accelerate particular DBMS operators such as selection [[74],
aggregation [19]], compression [60], decompression [25]], data
partitioning [38l]], sort [84], group by [4]], and join [32], [83].
Secondly, we classify attempts to offload the SQL query itself
or the subset of queries [S5], [56l, [71], [[79], (80N, [81].
Due to the inflexible nature of hardware, these approaches’
main limitation lies in supporting ad-hoc queries. A third class
is query accelerators accessing non-local memory aiming to
reduce data movement [5], [8], [28], [42], [62], [72].
Contrary to the aforementioned related work or the
Processing-In-Memory (PIM) approach [48], [69], the Rela-
tional Fabric paradigm does not aim to implement complex
logic near memory/storage, nor to change the physical mem-
ory/storage hardware (e.g., memory or flash cells). Rather,
Relational Fabric sits between the query execution engine and
the data, and offers a light-weight layer that performs on-
the-fly transparent data transformation into the optimal layout
for the query in question without materializing it. Our first
Relational Fabric instance, RM, sits between the CPU and
memory and transparently transforms data into the optimal
layout that does not exist in main memory. Therefore, any
ad hoc queries can be accelerated with no data duplication.
Furthermore, RM does not require any modification of the
memory hierarchy unlike PIM and is fully implemented on
commercially available platforms [7], [24], [35], [52], [82].
To develop Relational Fabric for storage devices, we
capitalize on recent advancements in computational SSDs
(OpenSSD [[15]], SmartSSD [59]). These SSDs have processing
power in the flash controller that allows programmability
which can be utilized to enable highly efficient SSD execu-
tion [23]. There have been several works on performing near-
data processing in SSDs [22], [31], [37], [68l], [77] leveraging
their computational capability which can also aid the develop-
ment of Relational Fabric in modern storage devices.

VII. OPEN QUESTIONS

In addition to the opportunities for simplicity and innovation
discussed in this paper, the Relational Fabric vision has several
open research challenges that require further investigation.

Q1. Is data transformation (projection) enough? Relational
Fabric is a layer that offers transparent and efficient projection
that leads to the benefits we discussed above. Further, data
transformation has great potential for other data-intensive
applications over multi-dimensional data (matrix/tensor slicing
and vectorized operations on matrix/tensor slices). In addition,
there have been several recent efforts to implement more
complex logic near or within memory. We purposefully avoid
this path because it increases the hardware complexity and
specialization, making it less general and, thus, to our un-
derstanding, less appealing for real-life use and deployment.
However, it remains an open question whether more logic
can be implemented between the memory and the processor.
Overall, our thesis is that any added logic should benefit many
different applications to be ultimately viable.

Q2. How does Relational Fabric interact with compression?
While delta and dictionary compression schemes can be used
as a starting point, we also believe it is worth investigating new
compression schemes that can be applied to row-oriented data
and allow for on-the-fly vertical partitioning and potentially
allow for operating on compressed data.

Q3. Can you have Relational Fabric both on storage and in
memory? The vision we outline assumes that the Relational
Fabric is implemented either in memory on storage, depending
on the use-case. However, a scheme that uses Relational Fabric
in both storage and memory may also be interesting. Consider
that the two fabrics may play different roles. For example, the
storage one can convert from compressed columns to rows
in memory, and the in-memory one can allow the processor
to access arbitrary column groups. We believe that more
investigation in this direction is warranted.

VIII. CONCLUSION

In this paper, we present our vision of Relational Fabric, a new
lightweight specialized hardware fabric that offers effortless
locality by accessing arbitrary data layouts from row-oriented
base data without any data duplication. Relational Fabric will
simplify data and software complexity, and it will enable
efficient hardware utilization and true HTAP processing. We
outline the principles, goals, and impact of Relational Fab-
ric, and as a proof-of-concept, we present its first instance,
Relational Memory that uses reprogrammable hardware to
implement logic between the memory and the processor.
Relational Memory on-the-fly convert rows to arbitrary groups
of columns, alleviating the need to vertically partition data. We
further outline the necessary steps toward building Relational
Fabric in memory, discuss its opportunities for innovation in
data systems architecture in physical design, query processing,
and concurrency control, and some open questions that require
further research. In addition, we discuss building Relational
Fabric in computational SSDs by developing Relational Stor-
age. Developing Relational Fabric in memory and storage
has the potential to be a paradigm shift where different
specialized hardware components (in memory and storage) can
synergistically turn data processing more efficient, scalable,
and resource-efficient for data-intensive applications.

[1]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
Database Systems,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1664-1665, 2009.

D. J. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden,
“The Design and Implementation of Modern Column-Oriented Database
Systems,” Foundations and Trends in Databases, vol. 5, no. 3, pp. 197—
280, 2013.

D. J. Abadi, S. Madden, and M. Ferreira, “Integrating Compression and
Execution in Column-oriented Database Systems,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data, 2006,
pp. 671-682.

I. Absalyamov, P. Budhkar, S. Windh, R. J. Halstead, W. A. Najjar, and
V. J. Tsotras, “FPGA-accelerated group-by aggregation using synchro-
nizing caches,” in Proceedings of the International Workshop on Data
Management on New Hardware (DAMON), 2016, pp. 11:1—11:9.

M. K. Aguilera, K. Keeton, S. Novakovic, and S. Singhal, “Designing
Far Memory Data Structures: Think Outside the Box,” in Proceedings
of the Workshop on Hot Topics in Operating Systems (HotOS), 2019,
pp. 120-126.

1. Alagiannis, S. Idreos, and A. Ailamaki, “H20: A Hands-free Adaptive
Store,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, 2014, pp. 1103-1114.

G. Alonso, T. Roscoe, D. Cock, M. Ewaida, K. Kara, D. Korolija,
D. Sidler, and Z. Wang, “Tackling Hardware/Software co-design from
a database perspective,” in Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2020.

E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” in Proceedings of the EuroSys Conference (EuroSys), 2020,
pp. 14:1—14:16.

R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki,
“The Case For Heterogeneous HTAP,” in Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR), 2017.
ARM, “Arm Cortex-A53 MPCore Processor Technical Reference
Manual,” Tech. Rep., 2018. [Online]. Available: https://developer.arm.
com/documentation/ddi0500/j

——, “AMBA AXI and ACE Protocol Specification,” Tech. Rep., 2019.
[Online]. Available: https://developer.arm.com/documentation/ihi0022/h
J. Arulraj, A. Pavlo, and P. Menon, “Bridging the Archipelago between
Row-Stores and Column-Stores for Hybrid Workloads,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data,
2016, pp. 583-598.

K. Asanovi¢ and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

R. Barber, G. M. Lohman, V. Raman, R. Sidle, S. Lightstone, and
B. Schiefer, “In-Memory BLU Acceleration in IBM’s DB2 and dashDB:
Optimized for Modern Workloads and Hardware Architectures,” in
Proceedings of the IEEE International Conference on Data Engineering
(ICDE), 2015.

M. Bjgrling, J. Gonzdlez, and P. Bonnet, “LightNVM: The Linux open-
channel SSD subsystem,” in Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), 2019, pp. 359-373.

F. Chen, B. Hou, and R. Lee, “Internal Parallelism of Flash Memory-
Based Solid-State Drives,” ACM Transactions on Storage (TOS), vol. 12,
no. 3, pp. 13:1-13:39, 2016.

X. Chen, N. Zheng, S. Xu, Y. Qiao, Y. Liu, J. Li, and T. Zhang,
“Kallaxdb: A table-less hash-based key-value store on storage
hardware with built-in transparent compression,” in Proceedings of
the 17th International Workshop on Data Management on New
Hardware (DaMoN 2021), ser. DAMON’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3465998.3466004
Cisco, “Cisco Global Cloud Index:
2016-2021,” White Paper, 2018.

C. Dennl, D. Ziener, and J. Teich, “Acceleration of SQL Restrictions and
Aggregations through FPGA-Based Dynamic Partial Reconfiguration,”
in Proceedings of the IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2013, pp. 25-28.
C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-

pher, N. Verma, and M. Zwilling, “Hekaton: SQL server’s memory-
optimized OLTP engine,” in Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, 2013, pp. 1243-1254.

Forecast and Methodology,

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

J. Dittrich and A. Jindal, “Towards a One Size Fits All Database
Architecture,” in Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR), 2011, pp. 195-198.

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query
processing on smart SSDs: opportunities and challenges,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data,
2013, pp. 1221-1230.

J. Do, S. Sengupta, and S. Swanson, “Programmable solid-state storage
in future cloud datacenters,” Communications of the ACM, vol. 62, no. 6,
pp. 54-62, 2019.

ETHZ, “Enzian Systems,” http://enzian.systems/, 2021.

J. Fang, J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “A Fine-Grained
Parallel Snappy Decompressor for FPGAs Using a Relaxed Execution
Model,” in Proceedings of the IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2019,
p. 335.

J. Fang, Y. T. B. Mulder, J. Hidders, J. Lee, and H. P. Hofstee, “In-
memory database acceleration on FPGAs: a survey,” The VLDB Journal,
vol. 29, no. 1, pp. 33-59, 2020.

F. Firber, N. May, W. Lehner, P. GroB3e, I. Miiller, H. Rauhe, and J. Dees,
“The SAP HANA Database — An Architecture Overview,” IEEE Data
Engineering Bulletin, vol. 35, no. 1, pp. 28-33, 2012.

P. Francisco, “The Netezza Data Appliance Architecture: A Platform for
High Performance Data Warehousing and Analytics,” IBM Redbooks,
2011.

Gartner, “Gartner Says 8.4 Billion Connected “Things” Will Be in Use
in 2017, Up 31 Percent From 2016,” https://tinyurl.com/Gartner2020,
2017.

Google, “Cloud TPU,” https://cloud.google.com/tpu/, 2017.

B. Gu, A. S. Yoon, D.-H. Bae, L. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A
Framework for Near-Data Processing of Big Data Workloads,” in
Proceedings of the ACM/IEEE Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 153-165.

R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “FPGA-
based Multithreading for In-Memory Hash Joins,” in Proceedings of
the Biennial Conference on Innovative Data Systems Research (CIDR),
2015.

M. Hassan, “Reduced latency DRAM for multi-core safety-critical real-
time systems,” Real-Time Systems, vol. 56, no. 2, pp. 171-206, 2020.
J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Communications of the ACM, vol. 62, no. 2, pp. 48-60,
2019.

Intel, Corp., “Intel’s Stratix 10 FPGA: Supporting the smart and
connected revolution,” October 2016, accessed on 09.01.2020. [Online].
Available: https://tinyurl.com/IntelStratix2016

Z. Istvan, “The Glass Half Full: Using Programmable Hardware Accel-
erators in Analytics,” IEEE Data Engineering Bulletin, vol. 42, no. 1,
pp. 49-60, 2019.

Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML:
A Flexible, High-Performance Key-Value SSD,” in 2017 IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA
2017, Austin, TX, USA, February 4-8, 2017, 2017, pp. 373-384.

K. Kara, J. Giceva, and G. Alonso, “FPGA-based Data Partitioning,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2017, pp. 433-445.

M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, “Adaptive
Query Processing on RAW Data,” Proceedings of the VLDB Endowment,
vol. 7, no. 12, pp. 1119-1130, 2014.

A. Kemper and T. Neumann, “HyPer: A Hybrid OLTP & OLAP Main
Memory Database System Based on Virtual Memory Snapshots,” in
Proceedings of the IEEE International Conference on Data Engineering
(ICDE), 2011, pp. 195-206.

T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. A.
Boncz, “Everything You Always Wanted to Know About Compiled and
Vectorized Queries But Were Afraid to Ask,” Proceedings of the VLDB
Endowment, vol. 11, no. 13, pp. 2209-2222, 2018.

D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. S. Milojicic, and
G. Alonso, “Farview: Disaggregated Memory with Operator Off-loading
for Database Engines,” in Proceedings of the Conference on Innovative
Data Systems Research (CIDR), 2022.

C. Labs, “Vectorized Query Execution,”
https://www.cockroachlabs.com/docs/stable/vectorized-execution.html,
2019.

https://developer.arm.com/documentation/ddi0500/j
https://developer.arm.com/documentation/ddi0500/j
https://developer.arm.com/documentation/ihi0022/h
https://doi.org/10.1145/3465998.3466004
https://tinyurl.com/IntelStratix2016

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T.-H. Lee, J. Loaiza, N. Macnaughton,
V. Marwah, N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja,
M. Roth, E. Soylemez, and M. Zait, “Oracle Database In-Memory:
A Dual Format In-Memory Database,” in Proceedings of the IEEE
International Conference on Data Engineering (ICDE), 2015.

T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle TimesTen: An In-
Memory Database for Enterprise Applications,” IEEE Data Engineering
Bulletin, vol. 36, no. 2, pp. 613, 2013.

A. Lamb, M. Fuller, and R. Varadarajan, “The Vertica Analytic Database:
C-Store 7 Years Later,” Proceedings of the VLDB Endowment, vol. 5,
no. 12, pp. 1790-1801, 2012.

C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving
memory bank-level parallelism in the presence of prefetching,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 42. New York, NY, USA:
Association for Computing Machinery, 2009, p. 327-336. [Online].
Available: https://doi.org/10.1145/1669112.1669155

G. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. Meswani,
D. P. Zhang, and M. Ignatowski, “A Processing in Memory Taxonomy
and a Case for Studying Fixed-function PIM,” in Proceedings of the
Workshop on Near-Data Processing (WoNDP), 2013.

D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, “BatchDB:
Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications,” in Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, 2017, pp. 37-50.

N. May, A. Bohm, and W. Lehner, “SAP HANA - The Evolution of
an In-Memory DBMS from Pure OLAP Processing Towards Mixed
Workloads,” in Proceedings of the Datenbanksysteme fur Business,
Technologie und Web (BTW), 2017, pp. 545-563.

P. Menon, A. Pavlo, and T. C. Mowry, “Relaxed Operator Fusion for In-
Memory Databases: Making Compilation, Vectorization, and Prefetching
Work Together At Last,” Proceedings of the VLDB Endowment, vol. 11,
no. 1, pp. 1-13, 2017.

Microsemi — Microchip Technology Inc., “PolarFire SoC - Lowest
Power, Multi-Core RISC-V SoC FPGA,” July 2020, accessed
on 09.01.2020. [Online]. Available: https://www.microsemi.com/
product-directory/soc-fpgas/5498-polarfire-soc-fpga

Microsoft, “Project Catapult,” https://www.microsoft.com/en-
us/research/project/project-catapult/, 2017.

C. Mohan, “Hybrid Transaction and Analytics Processing (HTAP): State
of the Art,” in Proceedings of the International Workshop on Business
Intelligence for the Real-Time Enterprise (BIRTE), 2016.

M. Najafi, M. Sadoghi, and H.-A. Jacobsen, “Flexible Query Processor
on FPGAs,” Proceedings of the VLDB Endowment, vol. 6, no. 12, pp.
1310-1313, 2013.

Oracle, “DAX,’ https://blogs.oracle.com/linux/post/oracle-data-
analytics-accelerator-dax-for-sparc, 2021.

F. Ozcan, Y. Tian, and P. Téziin, “Hybrid Transactional/Analytical Pro-
cessing: A Survey,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2017, pp. 1771-1775.

T. I. Papon and M. Athanassoulis, “A Parametric I/O Model for Modern
Storage Devices,” in Proceedings of the International Workshop on Data
Management on New Hardware (DAMON), 2021.

K. Park, Y.-S. Kee, J. M. Patel, J. Do, C. Park, and D. J. DeWitt, “Query
Processing on Smart SSDs,” IEEE Data Engineering Bulletin, vol. 37,
no. 2, pp. 19-26, 2014.

W. Qiao, J. Du, Z. Fang, M. Lo, M.-C. F. Chang, and J. Cong, “High-
Throughput Lossless Compression on Tightly Coupled CPU-FPGA
Platforms,” in Proceedings of the IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2018,
pp. 37-44.

R. Ramamurthy, D. J. DeWitt, and Q. Su, “A Case for Fractured
Mirrors,” The VLDB Journal, vol. 12, no. 2, pp. 89-101, 2003.

A. Redshift, “Aqua (advanced query accelerator) for amazon redshift,”
2021. [Online]. Available: https://aws.amazon.com/redshift/features/
aqua/

S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational Memory:
Native In-Memory Accesses on Rows and Columns,” in Proceedings
of the International Conference on Extending Database Technology
(EDBT), 2023, pp. 66-79.

S. Roozkhosh and R. Mancuso, “The Potential of Programmable Logic
in the Middle: Cache Bleaching,” in Proceedings of the Real-Time and

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]
(771

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Embedded Technology and Applications Symposium (RTAS), 2020, pp.
296-309.

M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim, “L-
Store: A Real-time OLTP and OLAP System,” in Proceedings of the
International Conference on Extending Database Technology (EDBT),
2018, pp. 540-551.

B. Salami, G. A. Malazgirt, O. Arcas-Abella, A. Yurdakul, and
N. Sonmez, “AxleDB: A novel programmable query processing platform
on FPGA,” Microprocessors and Microsystems, vol. 51, pp. 142-164,
2017.

A. Sanaullah, “Risc-v for fpgas: benefits and opportunities,” Red Hat
Research Quarterly, no. May, 2022.

S. Seshadri, M. Gahagan, M. S. Bhaskaran, T. Bunker, A. De, Y. Jin,
Y. Liu, and S. Swanson, “Willow: A User-Programmable SSD,” in
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2014, pp. 67-80.

V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Gather-scatter DRAM: in-DRAM address
translation to improve the spatial locality of non-unit strided accesses,”
in Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2015, pp. 267-280.

N. Shamgunov, “The MemSQL In-Memory Database System,” in Pro-
ceedings of the International Workshop on In-Memory Data Manage-
ment and Analytics (IMDM), 2014.

D. Sidler, M. Owaida, Z. Istvan, K. Kara, and G. Alonso, “doppioDB:
A hardware accelerated database,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL),
2017.

D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “StRoM:
smart remote memory,” in Proceedings of the EuroSys Conference
(EuroSys), 2020, pp. 29:1—-29:16.

M. Stonebraker and U. Cetintemel, “”’One Size Fits All”: An Idea Whose
Time Has Come and Gone,” in Proceedings of the IEEE International
Conference on Data Engineering (ICDE), 2005, pp. 2-11.

X. Sun, C. J. Xue, J. Yu, T.-W. Kuo, and X. Liu, “Accelerating data
filtering for database using FPGA,” Journal of Systems Architecture, vol.
114, p. 101908, 2021.

N. C. Thompson and S. Spanuth, “The decline of computers as a general
purpose technology,” Communications of the ACM, vol. 64, no. 3, pp.
64-72, 2021.

TPC, “TPC-H benchmark,” http://www.tpc.org/tpch/, 2021.

J. Wang, D. Park, Y. Papakonstantinou, and S. Swanson, “SSD In-
Storage Computing for Search Engines,” IEEE Transactions on Com-
puters, p. 1, 2016.

A. S. Waterman, Design of the RISC-V instruction set architecture.
University of California, Berkeley, 2016.

L. Woods, Z. Istvan, and G. Alonso, “Ibex - An Intelligent Storage
Engine with Support for Advanced SQL Off-loading,” Proceedings of
the VLDB Endowment, vol. 7, no. 11, pp. 963-974, 2014.

L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: the
architecture and design of a database processing unit,” in Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 255-268.
——, “The Q100 Database Processing Unit,” IEEE Micro, vol. 35, no. 3,
pp. 3446, 2015.

Xilinx, Inc., “Zynq UltraScale+ MPSoC - All Programmable
Heterogeneous MPSoC,” August 2016, accessed on 09.01.2020.
[Online]. Available: https://www.xilinx.com/products/silicon-devices/
soc/zyng-ultrascale-mpsoc.html

M. Xue, Q. Xing, C. Feng, F. Yu, and Z.-G. Ma, “FPGA-Accelerated
Hash Join Operation for Relational Databases,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67-11, no. 10, pp. 1919-
1923, 2020.

C. Zhang, R. Chen, and V. K. Prasanna, “High Throughput Large Scale
Sorting on a CPU-FPGA Heterogeneous Platform,” in Proceedings of
the IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPS Workshops), 2016, pp. 148-155.

J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory (TIT), vol. 23,
no. 3, pp. 337-343, 1977.

M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Super-Scalar RAM-
CPU Cache Compression,” in Proceedings of the IEEE International
Conference on Data Engineering (ICDE), 2006, p. 59.

https://doi.org/10.1145/1669112.1669155
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://aws.amazon.com/redshift/features/aqua/
https://aws.amazon.com/redshift/features/aqua/
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

	Introduction
	Accessing Arbitrary Data Geometries
	Implications on Data Systems Architecture
	Physical Design
	Query Optimization and Query Evaluation
	Concurrency Control
	Compression

	Building Relational Fabric
	Implementing Relational Memory
	Pushing Other Relational Operators
	Pushing RM Further: Relational Memory Controller
	Implementing Relational Storage

	Early Results on Relational Memory
	Related Work
	Open Questions
	Conclusion
	References

