
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Effortless Locality on Data Systems using
Relational Fabric

Tarikul Islam Papon∗§, Ju Hyoung Mun∗§, Konstantinos Karatsenidis∗, Shahin Roozkhosh∗, Denis Hoornaert†,
Ahmed Sanaullah‡, Ulrich Drepper‡, Renato Mancuso∗, Manos Athanassoulis∗

∗Boston University, email: {papon, jmun, karatse, shahin, rmancuso, mathan}@bu.edu
†Technical University of Munich, email: denis.hoornaert@tum.de

‡Red Hat, email: {asanaull, drepper}@redhat.com

Abstract—A key design decision for data systems is whether
they follow the row-store or the column-store paradigm. The
former supports transactional workloads, while the latter is better
for analytical queries. This decision has a significant impact
on the entire data system architecture. The multiple-decade-
long journey of these two designs has led to a new family of
hybrid transactional/analytical processing (HTAP) architectures.
Several efforts have been proposed to reap the benefits of both
worlds by proposing systems that maintain multiple copies of
data (in different physical layouts) and convert them into the
desired layout as required. Due to data duplication, the additional
necessary bookkeeping, and the cost of converting data between
different layouts, these systems compromise between efficient
analytics and data freshness. We depart from existing designs
by proposing a radically new approach. We ask the question:

“What if we could access any layout and ship only the relevant
data through the memory hierarchy by transparently converting rows
to (arbitrary groups of) columns?”

To achieve this functionality, we capitalize on the reinvigorated
trend of hardware specialization (that has been accelerated due
to the tapering of Moore’s law) to propose Relational Fabric,
a near-data vertical partitioner that allows memory or storage
components to perform on-the-fly transparent data transforma-
tion. By exposing an intuitive API, Relational Fabric pushes
vertical partitioning to the hardware, which profoundly impacts
the process of designing and building data systems. (A) There
is no need for data duplication and layout conversion, making
HTAP systems viable using a single layout. (B) It simplifies the
memory and storage manager that needs to maintain and update
a single data layout. (C) It reduces unnecessary data movement
through the memory hierarchy allowing for better hardware
utilization and, ultimately, better performance. In this paper,
we present Relational Fabric for both memory and storage. We
present our initial results on Relational Fabric for in-memory
systems and discuss the challenges of building this hardware
and the opportunities it brings for simplicity and innovation in
the data system software stack, including physical design, query
optimization, query evaluation, and concurrency control.

Index Terms—HTAP, Data layout, FPGA, Near-data processing

I. INTRODUCTION

OLTP vs. OLAP vs. HTAP. The popularity of large-scale
real-time data analytics has soared over the past few years [58],
[62], further fueled by the advent of new technological trends
like 5G, Internet-of-Things, and cloud computing [20], [32].
Database management systems (DBMS) now need to perform
both Online Transactional Processing (OLTP) and Online

§These authors contributed equally.

PROCESSOR

Relational Fabric

CACHE

DATA

legacy fetch
unnecessary data movement

on-the-fly transformerbetter cache utilization

relevant data

Fig. 1: Relational Fabric removes unnecessary data movement
by transparent on-the-fly data transformation.

Analytical Processing (OLAP) since many applications need to
analyze fresh data. However, traditional OLTP and OLAP sys-
tems are very different – OLTP systems generally use a row-
oriented data layout to optimize for write-intensive workloads
and point queries. In contrast, OLAP systems use a columnar
layout to optimize for read-only analytical queries. Hybrid
Transactional/Analytical Processing (HTAP) [62] systems aim
to maintain a single data store that offers data freshness and
efficient analytics on that same data set. HTAP systems attempt
to bridge the OLAP and OLTP requirements by maintaining
multiple copies of data in different formats [15], [43] or
converting data between different layouts [10], [13], [48], [54],
[77]. However, recent research on such hybrid layouts [6],
[13], [24], [44] shows the optimal layout of a query is often
neither a columnar nor a row-oriented one. Such approaches
carry extra complexity, either to convert data between layouts
or to manage multiple versions and copies of the data, while
not always being able to offer the optimal layout.

Hardware Specialization On The Rescue. Due to the his-
torically exponential growth of processor speed, the idea of
hardware specialization, although recurring every few years,
has not been able to attain its true potential. As Moore’s
law slows down and the data processing needs keep growing,
hardware specialization is becoming a feasible, and more
scalable alternative to general-purpose computing [38], [83].
In this post-Moore era, this has been further accelerated by the
advancements in reconfigurable logic [30], [53]. Recent tech-
nological developments (e.g., Google’s TPU [33], Microsoft’s
Catapult [57]) show that specialization is here to stay [38]. To
quote James Hamilton of AWS “When there might be several
hundred thousand servers all running the same workload,
hardware specialization goes from an interesting idea to
almost a responsibility” [36].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Idea: Transparent Data Transformation

What if we can access any arbitrary data layout using
near-data processing via specialized hardware?

In other words, “what if the optimal data layout is always
physically available?”. This will eliminate the need to keep
multiple layouts and we can perform efficient analytics over
the fresh data without converting between different layouts. If
the underlying specialized hardware accesses only the relevant
data (without accessing unnecessary data and without paying a
tuple reconstruction cost) while maintaining a single layout, it
will blend the benefits of row-stores and column-stores. It will
offer effortless locality, alleviating the need for separate row-
store and column-store query engines, decoupling the physical
data layout from the processing data layout.

Our Vision: Relational Fabric

A lightweight specialized hardware fabric that allows
accessing arbitrary data layouts from memory or storage.

Relational Fabric. We propose Relational Fabric [65], a new
lightweight specialized hardware fabric that accommodates
queries to access arbitrary column groups from memory-
resident base data without requiring any data duplication. The
base data is stored in a row-oriented physical layout (Figure 1),
to allow efficient data ingestion and updates, read-only queries
can quickly access only the relevant column groups (or the en-
tire row, if needed) using the underlying machinery. To do this,
Relational Fabric exposes a carefully designed API, termed
ephemeral columns that enables accessing arbitrary data ge-
ometries (i.e., any subset of data from relational tables) using
simple abstractions. This API creates non-materialized aliases
of column-groups which, from the cache perspective, pushes
arbitrary subsets of columns in dense memory addresses to
the memory hierarchy. This, in turn, supports both efficient
column- and row-oriented accesses while minimizing CPU
cache pollution with unnecessary attributes. Major benefits of
Relational Fabric include:

✓ Low Data Complexity: It allows efficient HTAP process-
ing while maintaining only one layout of the data. There
is no need to propagate changes to multiple data copies or
convert data among different layouts.

✓ Low Software Complexity: It reduces data system soft-
ware complexity by eliminating the requirement to main-
tain different execution engines. Rather, the execution
engine can always assume that only the relevant data will
be accessed via ephemeral columns.

✓ Efficient Hardware Utilization: It provides effortless
locality via shipping only relevant data through the mem-
ory hierarchy, alleviating unnecessary data movement, and
providing better cache and processor utilization.

As a first instance of Relational Fabric, we have developed
Relational Memory [59], [70] that utilizes recent advancements
in programmable logic [71], and pushes projection to the
hardware (§II). The API of Relational Memory is a simple,
lightweight programming abstraction, termed ephemeral vari-

ables, enabling the CPU to access arbitrary data geometries.
Relational Memory exploits the inherent parallelism of mem-
ory cells to efficiently access data in scattered locations, and
uses programmable logic to reorganize and compact it on the
fly before pushing it to the CPUs, thus improving locality.
Simplifying the Data Systems Software Stack. With Rela-
tional Fabric in place, the data system software stack can be
significantly simplified [65]. A data system that makes good
use of the Relational Fabric would have to drastically simplify
its physical design and query optimization components, while
the query evaluation engine would now be able to make
the most of code generation. Other components would also
be significantly affected, especially the transactions manager
that would have to implement a multi-version concurrency
control (MVCC) approach, and the compression algorithms
that should be compatible with scattered data accesses.

In this paper, we present our vision of building Relational
Fabric, along with the challenges and opportunities of in-
novation in data systems and some open research questions
to fully realize this vision. We begin by discussing how
to access arbitrary data geometries and present our initial
work on Relational Memory and ephemeral variables (§II).
The Relational Fabric vision has several opportunities for
simplicity and innovation across the data systems stack (§III):

• Simplify Physical Design: Relational Fabric will grossly
simplify the physical design process. There is no need
for creating (physical) vertical partitions anymore. Further,
indexes will mostly be useful for workloads with point
queries and updates since range queries can be evalu-
ated with column-group accesses very efficiently. Overall,
through the Relational Fabric any layout can be achieved
via on-the-fly data reorganization.

• Simplify Query Optimization: One major challenge in
query optimization is its combinatorial nature, that requires
to search a vast space to find the optimal query plan.
Relational Fabric expands this search space, providing
access to any data layout, however, this essentially removes
any search constraints. Hence, instead of solving a combi-
natorial problem, we can now construct the fastest solution.

• Efficient MVCC: The natural way to implement concur-
rency control using Relational Fabric is MVCC, where
there is one source of truth (the base data in row-oriented
format), and the ephemeral columns access the correct data
using timestamp information associated with MVCC. A big
win for Relational Fabric is that it implements timestamp
comparisons in hardware, leading to a simple and good-
performance implementation of MVCC.

Building the Relational Fabric hardware requires bringing
together software and hardware expertise and benefit from the
tight integration of programming systems and programmable
logic which is increasingly gaining momentum (§IV). Our
preliminary Relational Memory design is implemented in such
a tightly integrated platform. We further outline our vision for
integrating data transformation with the memory controller and
extending the processor’s ISA. The ultimate goal is to be able
to use Relational Fabric without needing deep expertise in
hardware/software co-design.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Relational Memory

Core (ARM, X86)

•

classical variable
ephemeral variable

•

CACHE

struct row {
long key,
char text_field[8],
long num_field

};

ephemeral struct columns {
long num_field

};

Main MemoryProgrammable Logic
reorganizes the
layout on the fly

cache pollution
with unnecessary

attributes

Fig. 2: Relational Memory is an in-memory instance of
Relational Fabric that pushes projection closer to data.

II. ACCESSING ARBITRARY DATA GEOMETRIES

Motivation. When considering a row-oriented relational table,
accessing a specific (group of) column(s) leads to a strided
access pattern, where a few bytes (size of accessed columns)
are accessed every hundred or thousand bytes of data (size of
the row). This is inefficient since each new row always pulls
an entire cache line from memory resulting in lower cache
utilization and more data movement than what is required
(Figure 1). Further, strided accesses with large strides are
not handled well by hardware prefetchers [11]. Column-stores
avoid strided accesses by storing each attribute separately.
This results in accesses with high locality since only data
items strictly required for the final computation are transported
from the main memory. However, it also comes at the cost
of increased tuple reconstruction cost for queries with high
projectivity [1], and it is an inefficient layout for inserts and
deletes. Instead, we want to achieve effortless locality for
queries with any projectivity without having unnecessary data
movements or any tuple reconstruction cost.

A. Relational Fabric

To achieve effortless locality, we propose to utilize special-
ized hardware to perform transparent on-the-fly data transfor-
mation while the base data is stored in a row-oriented layout.
This allows efficient updates and inserts on the base data while
analytical queries may access the desired columns through
Relational Fabric [65]. Data transformation and operators like
projection and selection can be pushed closer to data to reduce
unnecessary data movement. For memory-based systems, the
hardware will sit between memory and the processor, intercept
the CPU-originated requests and transparently reorganize the
data on-the-fly, making it like the desired data layout already
exists in memory. For disk-based systems, the hardware will sit
between memory and storage and will be able to transparently
reorganize the data on-the-fly, making it like the desired data
layout already exists in storage. Operating closer to data
enables us to utilize the underlying device parallelism (either
within different memory banks [37], [50] or within storage
devices like flash-based SSDs [18], [63]) which ensures better
overall hardware utilization.

To ensure ease of programmability, the specialized hardware
is used via a simple abstraction that allows the data system
engineer to request the desired column groups (in case of
projection) or rows (in case of selection). For the memory-
based design, it will require compiler support to make this

1 // layout of the full relational table
2 struct row {
3 long n0; /* 8 bytes */
4 char s1[12]; /* 12 bytes */
5 char s2[16]; /* 16 bytes */
6 long n1; /* 8 bytes */
7 long n2; /* 8 bytes */
8 long n3; /* 8 bytes */
9 long n4; /* 8 bytes */

10 };
11

12 // the variable that holds the full relational table
13 struct row table[];
14 // the SQL query to execute
15 char* q = "SELECT SUM(n1 * n4) FROM table WHERE n0 > 10";
16

17 // the ephemeral variable of the SQL query to execute
18 ephemeral struct column_group {
19 long n0;
20 long n1;
21 long n4;
22 };
23 // configuring the ephemeral variable's geometry
24 struct column_group* cg = configure(table, q);
25

26 // executing the query using the ephemeral variable
27 long sum = 0;
28 for (int i = 0; i < rows; i++)
29 if (cg[i].n0 > 10)
30 sum += cg[i].n1 * cg[i].n4;

Fig. 3: The ephemeral variable is configured in line 24. Once
the CPU accesses it (line 30), the machinery fetches the
desired column groups as if they already exist in memory.

fully transparent to the system developer. In addition, in order
to make the memory fabric easy to integrate we envision
integrating it into the memory controller and modifying the
instruction set architecture (ISA). For the disk-based design,
the system developer will use a dedicated API that allows
to directly request from the proposed machinery to fetch the
desired columns from storage. This API will directly feed
into the scan operator sending only the relevant data for
further query processing. We now discuss our first instance
of Relational Fabric and its API that targets in-memory data
systems and is termed Relational Memory.

B. Relational Memory

To offer contiguous access to a specific column (or column-
group) in memory, we built Relational Memory (RM) [59],
[70], which leverages the PLIM paradigm [71] to create
references to data that does not exist in main memory, which
the CPU can use as if the data does exist in main memory.
In other words, RM enables accessing the same content in
main memory under different strides, but it can be accessed
as if it was stored contiguously from the CPU’s perspective.
Reorganizing data to improve locality minimizes the waste
of constrained CPU cache real-estate. In turn, this translates
to better efficiency for the query at hand and lower cache
pollution. Furthermore, operating closer to the data allows
to exploit the inherent parallelism of memory cells. Figure 2
shows a high-level diagram of the proposed design. Relational
Memory is located in programmable logic sitting between
the memory and the processor. Upon receiving a request, the
engine transforms on-the-fly rows to any desired group of
columns. The processor directly accesses data in the optimal
layout through an abstraction called ephemeral variables,
which we discuss next.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Ephemeral Variables. RM aims to provide the optimal layout
for any possible queries; thus, RM executes projection and
tuple reconstruction in hardware, and the reconstructed tuples
are accessible via ephemeral variables, a special type of
variables that identifies a specific subset of columns to access.
Ephemeral variables create memory aliases to expose non-
contiguous content as if it were contiguous. These transient
variables are never instantiated in main memory. Instead, upon
accessing such a variable, the underlying machinery generates
an on-the-fly projection of the requested columns according
to the format that maximizes data locality. We introduce
a lightweight software/hardware interface to initialize and
deploy the proposed hardware infrastructure. A query needs to
perform two tasks to efficiently employ Relational Memory.
First, to configure RM at run-time (which needs ∼ 0.3µs), and
second to read data from the ephemeral variable sequentially.

Figure 3 shows an example of using ephemeral variables.
Imagine a scenario where a complete relational table is loaded
into memory and organized as a traditional 2-D array, repre-
sented by the array struct row table[] (definition of a
row provided in lines 2-10). To execute a query (line 16), we
create an ephemeral variable (lines 18-22), and we register it
with RM (line 24) to have direct access to a single column or
a group of columns. From the CPU’s viewpoint, accessing this
newly created ephemeral variable is equivalent to having direct
access to a column group with a packed view of the relevant
fields (lines 28-30). This abstraction of non-materialized in-
memory aliases of column-group accesses grossly simplifies
the data management software stack, as we will discuss in
Section III. While in our current prototype ephemeral variables
are supported by low-level macros, our long-term vision is to
add full compiler support by integrating Relational Memory
into the memory controller and expanding the ISA, which we
discuss in more detail in Section IV. This will allow RM to
benefit any data systems with minimal engineering effort.

III. IMPLICATIONS ON DATA SYSTEMS ARCHITECTURE

We now discuss the opportunities for simplicity and innovation
that Relational Fabric brings across the data systems software
stack. Figure 4 shows the database components that will be
affected by Relational Fabric (green background).

A. Physical Design
The physical design process of a database entails (i) the
mapping from real-world data to relational data (tables, rows,
and columns), and (ii) decisions on how to physically store
the relational table regarding normalization, data layout, data
partitioning, and indexing. While the first part depends on the
nature of the application, the second part aims to optimize
performance while respecting some constraints (e.g., space
amplification) using workload knowledge. Relational Fabric
can radically simplify the second step of physical design be-
cause it can allow access to different data geometries without
needing to physically store data in that format. We now discuss
how the key decisions can be simplified.
Data Layout and Vertical Partitioning. One of the most
impactful physical design decisions is the data layout: a row-
oriented, a column-oriented, or a hybrid layout. This decision

{ } Query Parser

Query Optimizer

Evaluation Engine

Transaction
Manager

Log
Manager

Storage Manager

Relational Fabric

Legacy systems

Physical Design

Fig. 4: Relational Fabric enables opportunities for innovation
across the entire data system architecture.

is driven by the application requirements since a row-oriented
layout is a good fit for transactional applications, while a
columnar layout performs well for analytical systems. To
bridge the analytical and transactional requirements, hybrid
systems often maintain different engines for ingestion and an-
alytics, paying the cost of data layout conversion, duplication,
and the necessary additional bookkeeping. Both traditional and
hybrid systems use the expected workload to form educated
decisions about storing vertically partitioned data. The goal is
to collocate columns that are frequently accessed together to
reduce unnecessary data movement.

Relational Fabric simplifies the physical design process.
Since the query evaluation engine can always request arbitrary
column groups, there is no need to confine the physical
design space to a predetermined set of vertical partitions. The
base row-oriented data can efficiently facilitate updates and
ingestions, and analytical queries can be executed optimally
using the ephemeral columns to access arbitrary column group.
Thus, Relational Fabric eliminates the need to construct fixed
physical vertical partitions since the base data can be on-the-
fly vertically partitioned by the specialized hardware. Indexes
can still be defined on the original row-wise data. However, the
usefulness of indexes is now smaller, since range queries can
be efficiently evaluated with columnar accesses, so indexes
should be used for point queries and point updates. While
Relational Fabric does not necessitate any major changes in
the storage manager, it simplifies its operation, as it only needs
to maintain a single copy of each relation’s data.
Horizontal Partitioning. Contrary to vertical partitioning that
can happen on-the-fly using Relational Fabric, horizontal par-
titioning decisions would still need to be evaluated at physical
design time. While Relational Fabric does not affect horizontal
partitioning, it can be efficiently combined with it, along with
sharding which horizontally partitions data based on a sharding
key. Another functionality that Relational Fabric can integrate
is to handle the communication with storage devices while
exposing its simple ephemeral columns API to the query. That
way, the data system can request the desired column group on
a sharding key range, and the Relational Fabric will directly
return the corresponding data to the query.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Indexing. Indexes help accelerate access times, ensure unique-
ness, and allow sorting and clustering. In general, row-store
systems employ indexes that are useful for selection queries
and data updates. Column-store systems (and some recent row-
store systems) [47], [49] use column projections as a special
type of index. The strength of Relational Fabric is that it makes
such projections possible without having to materialize them.
This has deep implications on the data systems architecture
because the query engine may access the data at query time
using either the base row-oriented data, an index (if it exists),
or the desired columns projected from Relational Fabric. While
indexes will be mostly beneficial for workloads with point
queries and updates, Relational Fabric allows for efficient
range queries due to the arbitrary column-group accesses.

B. Query Optimization and Query Evaluation

When a query is submitted to the system, it is first processed
by the query parser via lexical, syntactic, and semantic anal-
ysis. Then the initial query plan is processed by the query
optimizer to find the best query plan to execute, which is, in
turn, submitted for execution to the query evaluation engine.
Relational Fabric will not affect the query parser, however,
the optimizer and the evaluation engine components will have
a significant impact. Row-oriented query execution models
execute query plans one-row-at-a-time, which offers good
performance for OLTP queries. In contrast, most column-store
systems use vectorized execution that progresses through the
query plan via processing batches of column data [45]. While
Relational Fabric maintains the base data in row format, it
makes columns available to the processor on the fly, and, thus,
it can naturally support efficient vectorized query execution.
A key challenge with query optimization is the combinatorial
process of searching a vast space – the DBMS has to select the
most efficient evaluation plan based on the cost of each plan.
While Relational Fabric seems to increase the search space
by enabling access to arbitrary data layouts, it also allows
every query to always use the best layout, and overall simplify
the problem, by replacing the combinatorial search with the
construction of the query plan that accesses the optimal data
fragments. This opens a whole new avenue of research with
the potential to speed up query processing: (i) generate the
fastest query plan, (ii) revise existing cost models considering
Relational Fabric, and (iii) re-evaluate classical single-column,
multi-column partitioning cost models.
Code Generation. Adaptive systems like Hyper, H2O, Actian
Vector, Hekaton, MemSQL and others [6], [23], [44], [55],
[77] examine the query and decide how data will be accessed
by evaluating alternative access plans. The appropriate code is
generated by considering the buffered available data layouts.
One disadvantage of this approach is the requirement to com-
pile code on the fly which is alleviated by buffering compiled
code fragments. The development of Relational Fabric aids
code generation in two ways. First, Relational Fabric does
not require buffering different layouts since any arbitrary
layout can be accessed on the fly. Second, since data layouts
are not buffered, Relational Fabric can buffer more code
fragments and reuse previously compiled code fragments more

aggressively which allows for better utilization of memory.
The query optimizer can now also consider various factors
like which code fragments are buffered and which indexes
are available. Through the Relational Fabric design we have
the opportunity to develop a novel full-fledged hybrid query
engine. This engine would seamlessly switch between row-at-
a-time and column-at-a-time processing while working on the
same base data. This allows for adaptive query processing,
where the system dynamically chooses the most efficient
processing method based on the characteristics of the query
and the data being processed.

C. Concurrency Control

The transaction manager is responsible for concurrency con-
trol. Relational Fabric can naturally support multi-version
concurrency control (MVCC). While the base data is in row
format, Relational Fabric offers native access to arbitrary data
geometries through ephemeral columns. For example, in our
in-memory implementation of Relational Memory, we use
ephemeral variables to access column groups. We consider
all ephemeral variables (or the respective API) as read-only
columns or column-groups that accelerate analytical queries.
The row-wise base data is marked as read/write and updates
are handled by appending new rows to this base data. For
updates and deletion, Relational Fabric uses two timestamp
fields for every row to support multiple versions. The first
timestamp is set when a row is inserted to mark the beginning
of its validity, while the second timestamp is set upon row
deletion or replacement by a newer version, marking the end
of its validity. Every time the API is accessed, it generates
the column groups that contain the valid rows at the time of
the query. A key advantage of this approach is that the times-
tamp comparison can be implemented in hardware, making
this implementation simple and performant. By offering the
optimal layout and using the timestamps to ship only valid
data, Relational Fabric supports MVCC transactions through
snapshot isolation.

D. Compression

The proposed design stores the base data in a row-oriented
format hence it can benefit only from specific types of com-
pression. General compression algorithms of the LZ family
[92] are frequently used by row stores, however, they are not a
natural fit for Relational Fabric since they require fully decom-
pressing your data before you can access separate columns.
Delta, dictionary, and Huffman encoding for compression
which are popular among state-of-the-art column stores [2],
[3], [93] are easily supported by Relational Fabric. Note that
these schemes can be used for row-wise data, and hence, they
can benefit any groups of columns requested by ephemeral
columns. However, the compression schemes under the run-
length encoding family cannot be used out of the box. Unlike
dictionary and delta encoding, RLE has an expensive decoding
step and relies on data, but it is still quite popular among
column stores. More research is required to find compression
techniques that can benefit both row-oriented and columnar
data and allow for direct operation on compressed data.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

IV. BUILDING RELATIONAL FABRIC

The key feature of Relational Fabric is that a specialized
hardware component transforms data on-the-fly. This section
presents the implementation details of our first in-memory
Relational Fabric instance, termed Relational Memory (RM).
We also discuss extending hardware support to more operators,
pushing the logic further into the memory controller, and
Relational Fabric for storage devices.

A. Implementing Relational Memory
RM is an FPGA-based data transformation engine that sits
between the processor and the memory and converts data
layouts on the fly as shown in Figure 2. Data transformation
in RM is performed in line with the instruction stream via
fine-grained information on the exact byte-wise location of
data items useful for the computation at hand. Our hardware
performs the following four key operations: (1) RM receives
the intended access stride of the query (that maps the physical
addresses of the columns to be accessed) and then issues
parallel main memory requests for the target data, (2) RM
communicates with memory via an AXI bus [12] and as-
sembles multiple entries into a single packed cache line to
be sent to the processor, in the meantime, (3) RM captures
the CPU requests and (4) transfers the reorganized data upon
availability. This abstraction creates non-materialized aliases
of column-groups which pushes arbitrary subsets of columns
to the memory hierarchy. Hence, RM supports both efficient
column- and row-oriented accesses while minimizing CPU
cache pollution with unnecessary attributes.

Figure 5 shows the high level overview of RM components
and their datapath. RM consists of four modules (Figure 5):
the Trapper, the Monitor-Bypass (MB), the Requestor, and
the Fetch Unit, as well as two Scratch Pad Memories (SPMs)
used as a Metadata Buffer and a Reorganization Buffer. RM
interacts with the Processing Subsystem (PS) of the FPGA
through two primary and one secondary AXI ports. The
configuration port allows the DBMS to specify the location
and geometry (tuple width and count, size and positions of
the requested columns) of the target table at runtime (0
in Figure 5). The Trapper works as the interface between
the CPU and RM that intercepts read requests (1) from
the CPU. It communicates with the Monitor-Bypass (2) to
check the availability of the requested data (3). If the data
is already in the reorganization buffer, the Monitor-Bypass
sends it to the Trapper (4), and then, the CPU receives the
data via RM (5). If the requested data is not in the buffer,
the Monitor-Bypass informs the Requestor about it (A). The
Requestor creates descriptors that identify the location of the
desired columns (B) based on the DB geometry. The column-
extracting module inside the Fetch Unit reads the bus lines that
contain useful data, extracts the relevant part (C), and sends
the retrieved parts to the Monitor-Bypass (D) so that it can be
stored in the reorganization buffer (E). Thus, RM transforms
data into the desired layout and minimizes cache pollution.

B. Pushing Other Relational Operators
Relational Memory is the first instance of a new class of data
systems architectures. Implementing projection in hardware

Core
Trapper Monitor-

Bypass

Fetch-UnitRequestor

M
ain M

em
ory

(D
RA

M
)

PS PL PS

0

1
2

45

A

B
C

D

Metadata
SPM

Data
SPM3

E

PL

CoreCoreCore

Fig. 5: Abstract overview of Relational Memory components
and interconnections with the PS-side.

lays the groundwork for pushing other relational operators to
the hardware as well. The Relational Fabric philosophy is that
new hardware designs will be adopted if they are simple and
general. In other words, a very application-specific design is
hard to make its way to mass production. With that in mind,
we propose to further reduce unnecessary data movement
by transparent on-the-fly data transformation using minimal
hardware complexity, by pushing selection and aggregation
in the hardware. Both operations are general enough in the
sense that they are part of other applications (like operating on
matrices and tensors) and have the potential to offer even larger
data movement reduction benefits. Implementing selection in
Relational Fabric will further alleviate the need for indexes al-
together, while aggregation will help both relational and matrix
operations. In this design, the ephemeral variables will contain
only the required data or the aggregation result, which will be
passed through the memory hierarchy ensuring minimal data
movement while maintaining the hardware complexity low.

C. Pushing RM Further: Relational Memory Controller

Following the aforementioned philosophy, we are developing
another instance of Relational Fabric, termed Relational Mem-
ory Controller (RMC), where we place RM further closer to
memory as shown in Figure 6. Integrating RM into a memory
controller (MC) is a game-changer as it will allow for easy
adoption of the RM design with minimal development effort.
Further, pushing RM into the memory controller maximizes
its benefits, since it has low-level access to the physical data
placement on the memory DIMMs.

Memory controllers hide the complexity of interfacing with
DDR memories, however, they cannot fully exploit the capa-
bilities of DDR memory chips since they have no information
about the workload or the application setup. By integrating
RM with the memory controller, we pass just enough semantic
information about the access patterns that makes it possible
to effortlessly offer data locality via exploiting new memory
controller commands. This maximizes the memory throughput
and reduces unnecessary data movement. To achieve this, we
base our implementation on a Red Hat prototype memory
controller that models DDR3 DRAM, and expand it to capture
first the DDR4 and eventually the DDR5 design. RMC lever-
ages unaligned and interleaved accesses to implement part of
the on-the-fly data transformation in the memory controller
while maximizing the parallelism (across memory banks) to
further improve performance. Compared to our first prototype
of Relational Memory, RMC allows the embedded Relational
Memory Engine to see the same memory bandwidth as the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Ph
ys

ic
al

 L
ay

er

DD
R

SD
RA

M

CalibrationConfiguration

Coordinatoraccelerated path

conventional path

CP
U

Relational Memory Engine

Trapper Monitor
Bypass

ColExtRequestor

Relational Memory Controller

Fig. 6: Architecture of RMC. Pushing RM into the memory
controller allows RM to exploit low-level information to
maximize memory bandwidth utilization.

CPU, further improving overall efficiency. This is attributed
to having direct access to the physical memory and the same
clock domain as the memory controller. This is corroborated
by our preliminary results that show data transformation
through RMC happens at close-to-memory throughput.

Integrating RM into the memory controller has a profound
impact. Specifically, it enables rapid research and prototyping
of new ideas regarding MCs, something that is increasingly
needed with the rapid evolution of interconnects, memory, and
reconfigurable hardware.
Extending the ISA as an RMC Interface. An Instruction Set
Architecture (ISA) is the abstraction between hardware and
software. The ISA guarantees that the resulting binary code
correctly executes regardless of the toolchain; thus, it helps
developers to write and debug software more efficiently [74].
Therefore, integrating RM with ISA, such as RISC-V [14],
[86], provides a more valuable interface. The benefits of using
RM via ISA are two folds: (1) it will provide a simple interface
with no need to understand the details of the underlying
hardware and (2) it will simplify the code generation process
during the compile time. Thus, RMC along with an ISA
extension provides a simple API that can further be beneficial
for SQL queries (or other applications benefiting from data
transformation) [73], [87].

D. Implementing Relational Storage

Following our discussion about building Relational Memory,
we propose to develop Relational Fabric in storage devices.
Near-storage computation is more challenging than near-
memory computation because traditionally storage devices
are incapable of performing logic. However, recent modern
storage devices like SmartSSD [66] and OpenSSD [16] have
processing power that can be exploited to achieve this. We
call this approach of pushing computation to storage Rela-
tional Storage (RS). RS can be directly implemented in a
specialized storage device (i.e., in OpenSSD or SmartSSD)
or a programmable logic (i.e., FPGAs), similar to our Rela-
tional Memory approach. When implementing projection in
the custom hardware, a read-only analytical query will have
access to only a read-only version of the optimal layout.
In other words, pages will be marked as read/write during
loading as row-store, while only the columnar pages will be
shipped marking as read-only. Writes/updates will access the
base data in row-format, and the existing read-only versions
will be marked as invalid (similar to an out-of-place data

structure) for the corresponding data. Further, we plan to
experiment with a flipped design where the base data is stored
in columnar format on storage, allowing for the most efficient
compression algorithms like RLE. The processing capabilities
of smart SSDs coupled with new custom logic that can be
designed in FPGAs that are embedded within the storage
device will perform decompression when needed, and tuple
reconstruction, removing this burden from the software stack
of the database system [19]. This design has great potential
since it enables better compression techniques while offloading
decompression and tuple reconstruction to the storage. Further
research is required to reveal its challenges and opportunities.

Overall, Relational Storage can significantly reduce end-to-
end latency by massively reducing data movement. In contrast
to RM, it is possible to push operators like selection and aggre-
gation by utilizing the processing power of in-storage custom
logic. Exploiting the internal parallelism of the storage device
[63], [64] can enhance performance. Furthermore, the software
stack will be redesigned to take advantage of near-storage
computation for better query processing and optimization in
contemporary storage devices.

E. Practicality & Feasibility of Relational Fabric

With the tapering of Moore’s Law, hardware specializa-
tion is gaining popularity over the past decade [38], [83].
FPGAs, once limited to specific applications, are now ubiq-
uitous across various domains. Our first Relational Memory
prototype is developed on a PS-PL platform, however, with
reprogrammable and custom hardware being tightly integrated
with CPUs increasingly more often, Relational Memory can be
deployed to standard servers. For example, Enzian is a research
computer built by the Systems Group at ETH Zurich with a
big server-class CPU closely coupled to a large FPGA [21].
Further, manufacturers, such as Intel and AMD, are investing
substantially in FPGA technology (e.g., with the acquisitions
of Altera and Xilinx, respectively), thus driving the momentum
towards systems with tightly integrated CPUs and FPGAs [7],
[39], [80]. Moreover, recent work on reprogrammable memory
controllers [17], [75] further fuels our vision for integrating
data reorganization within the memory controller, as discussed
in Section IV-C. Finally, the emergence of Smart SSDs and
PIM (Processing-in-memory) also adds reprogrammable logic
closer to data [16], thus being able to offload processing tasks,
like compression [19].

Overall, the current hardware trends (widespread adoption
of reprogrammable hardware, slowdown in Moore’s Law, and
dark silicon) show great promise for Relational Fabric to
improve memory utilization and performance.

V. EXPERIMENTAL RESULTS ON RELATIONAL MEMORY

We now present selected experimental results of RM show-
ing that it outperforms direct row-wise and direct columnar
accesses by offering the optimal layout to any query [70].
Target Platform. The full-stack prototype of RM is imple-
mented on a Xilinx Zynq UltraScale+ MPSoC platform [89]
which consists of heterogeneous Systems-on-Chip (SoC)
where a traditional processing system (PS) is tightly associated
with a programmable logic (PL), i.e., an FPGA. The PS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

32 64 128 256 512
Row width in Bytes

101

102

Ex
ec

ut
io

n
tim

e
(

s) ROW COL RM cold RM Hot

Fig. 7: Execution time for a query projecting 3 columns.
RM outperforms row-oriented direct memory accesses while
providing comparable performance to column-stores.

equips with 4 Cortex-A53 1.5 GHz cores, each with a private
32+32 KB L1 I+D cache and sharing a unified 1 MB L2
cache. PL side, RM prototype, is constrained to 100 MHz.
In order to compare the performance of RM to the row-
store (ROW) and the column-store (COL), we custom im-
plement an in-memory row-store following the volcano-style
processing model (tuple-at-a-time) and an in-memory column-
store following the column-at-a-time processing model. We
run two sets of experiments for RM: hot (when the targeted
data is ready in the Reorganization Buffer) and cold (when
the targeted data is not yet in the Reorganization Buffer).
RM Enables Native Columnar Accesses. Our initial exper-
iment illustrates that RM can efficiently accesses and retrieve
individual columns while the base data is stored as a row-
store. We evaluate a query that projects three non-contiguous
columns having the same width, while varying the row size
from 32B to 512B. Figure 7 shows the execution time where
we compare the query time when data is accessed directly (i)
from the in-memory row-store (ROW), (ii) through RM Hot
and (iii) RM Cold accesses, and (iv) using the in-memory
columnar format (COL). We observe that RM outperforms
ROW regardless of accesses being cold or hot which shows
RM can provide optimal data layout. In fact, RM achieves
an average latency that is comparable to columnar accesses.
Further, RM’s performance remains virtually unchanged irre-
spective of whether the data is ready in the Reorganization
Buffer, meaning that RM achieves virtually the same benefit
for the cold accesses. We also experiment with varying column
width where we observe RM to outperform ROW consistently
and have comparable performance as COL for smaller col-
umn width while RM outperforms COL for larger column-
widths [70]. This experiment shows RM’s ability to efficiently
access column groups without unnecessary data movement.
RM Shines for Queries with High Projectivity. In this
experiment, we vary the projectivity from 1 to 11 columns
for 4-byte wide columns and 64-byte wide rows, as shown in
Figure 8. For any projectivity, RM outperforms direct row-wise
accesses since RM provides the optimal layout that minimizes
cache pollution. When the projectivity is low (≤ 4), columnar
accesses are faster since the tuple materialization cost is still
small and the prefetcher can efficiently support up to four
parallel sequential accesses. As projectivity becomes larger
than four columns, however, RM starts to outperform direct
columnar accesses since the columnar accesses exceed the
capacity of prefetcher as observed in Figure 7.

2 3 4 5 6 7 8 9 10 11
Projectivity (Number of target columns)

0.0

0.5

1.0

No
rm

. e
xe

c.
 ti

m
e ROW COL RM Cold

Fig. 8: RM outperforms row-wise memory accesses irrespec-
tively of projectivity, while RM shows better performance than
columnar accesses for projecting more than 5 columns.

1 2 3 4 5 6 7 8 9 10
of Projected Columns

1
2
3
4
5
6
7
8
9

10

of

 S
el

ec
tio

n
Co

lu
m

ns

1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.4 1.4 1.4
1.5 1.5 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4
1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
1.4 1.4 1.4 1.3 1.3 1.3 1.4 1.4 1.4 1.4
1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4
1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4
1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4
1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

1.3

1.4

1.5

(a) Speedup - RM vs Row

1 2 3 4 5 6 7 8 9 10
of Projected Columns

1
2
3
4
5
6
7
8
9

10

of

 S
el

ec
tio

n
Co

lu
m

ns

0.5 0.6 0.7 1.3 1.5 1.6 1.8 1.9 2.1 2.2
0.5 0.7 1.2 1.4 1.6 1.7 1.9 2.0 2.2 2.2
0.6 0.7 1.3 1.5 1.6 1.8 2.0 2.2 2.1 2.1
1.3 1.3 1.4 1.5 1.7 1.9 2.1 2.1 2.1 2.1
1.3 1.4 1.5 1.6 1.8 2.0 2.0 2.0 2.0 2.0
1.4 1.4 1.6 1.7 1.9 1.9 1.9 1.9 1.9 1.9
1.4 1.5 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.7
1.4 1.6 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.6
1.5 1.6 1.7 1.7 1.7 1.7 1.6 1.6 1.6 1.6
1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6

0.5

1.0

1.5

2.0

(b) Speedup - RM vs Columnar

Fig. 9: (a) RM always outperforms row access. (b) RM
dominates column store for larger number of columns (> 4).

RM vs Col-Store vs Row-Store. The experiment shown in
Figures 9a and 9b compares the performance of RM with
direct row-wise and columnar accesses while varying both
the number of projected columns (x-axis) and the columns
used for the selection (y-axis). They both range from 1 to 10
columns. Figure 9a shows the speedup of RM compared to the
direct row-wise accesses. Similarly to the previous experiment,
RM consistently outperforms the direct row-wise access by
1.3-1.5×. In contrast, direct columnar access achieves better
performance than RM when the number of columns used for
projection and selection is less than four, as shown in the
lower left corner of Figure 9b. As the number of columns in a
query increases, RM outperforms the columnar accesses due to
the tuple materialization cost and the diminished prefetching
benefits of column-store. Overall, RM achieves better perfor-
mance than direct row-wise accesses for any number of target
columns, while RM outperforms a columnar layout only when
the number of target columns is large enough (> 4).
RM Shows Stable Performance for Practical Queries. In
order to evaluate RM in a practical environment, we execute
Q1 and Q6 from TPC-H [84] while varying the data size. RM
supports arbitrary data sizes even with a small data memory of
2 MB on the FPGA by refilling it whenever it is full. Figure 10
shows the running time of Q1 and Q6 on tables from 11 MB
to 692 MB. Since we choose the data size based on the size of
target columns (shown in the parentheses of x-axis), the range
of data sizes varies for Q1 and Q6. For Q1, the execution
time is similar for all layouts, as shown in Figure 10a. This is
because executing CPU-intensive operations in Q1 dominates
the data movement cost. On the other hand, for queries such
as Q6 where data movement is the bottleneck, RM accelerates
the execution time by offering the optimal layout (Figure 10b).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

9
(2)

18
(4)

35
(8)

69
(16)

137
(32)

273
(64)

545
(128)

Data size (Taget column size (MB))

101

102

Ex
ec

ut
io

n
tim

e
(m

s) ROW COL RM

(a) Q1

11
(2)

22
(4)

44
(8)

87
(16)

173
(32)

346
(64)

692
(128)

Data size (Taget column size (MB))

100

101

Ex
ec

ut
io

n
tim

e
(m

s) ROW COL RM

(b) Q6

Fig. 10: RM shows better performance than direct row-wise
or columnar accesses in practical queries such as TPC-H Q1
and Q6 regardless of the data size.

1 2 4 8 16
Column width in Bytes

0.0

0.5

1.0

 N
or

m
. e

xe
c.

 ti
m

e

ROW COL RME

(a) Varying column size

16 32 64 128 256 512
Row width in Bytes

 1

 2

 3

Ex
ec

ut
io

n
tim

e
(m

s)

ROW COL RME CPU DataROW COL RME

(b) Varying row size

Fig. 11: RM performs join faster than traditional row-store
join by minimizing data movement.

RM Reduces Data Movement for Joins. Queries that involve
multiple tables (e.g., join), RM projects only the relevant
columns, encompassing the join attributes and the target
columns for projection or selection. This reduces unneces-
sary data movement and minimizes cache pollution. In this
particular experiment, we perform a join operation using a
state-of-the-art hash-based join with a single-pass hash table
generation. This generated hash table is subsequently probed
by the second relation where half of the entries of the outer
relation have a match in the inner relation. Figure 11a shows
the normalized query latency while varying target column
sizes. We observe that RM gives a benefit between 5% and
10% compared to row-wise access when performing joins. The
figure also shows that RM outperforms the columnar join as
well, providing up to 10% improvement. Figure 11b compares
the execution time of this query while varying the row sizes.
RM reduces the total runtime by up to 12% depending on
the row size. A key takeaway from the figure is that the CPU
overhead (depicted by the solid portion of the bars) of hashing
represents the predominant portion of the runtime which is
constant across RM, ROW, and COL. However, as the row
size increases, RM can optimize the data movement by up to
41% because of its lower cache misses, better-strided accesses,
and higher cache utilization.
RM Offers Any Layout via Data Reorganization. Fig-
ure 12a highlights the capability of RM to on-the-fly vertically
partition. In this experiment, we use a table with 128 columns
of 4B each (512-byte rows). We use four columns for selection
and another four columns for the final projection. We compare
six approaches: a full row-store (ROW), a full column-store
(COL), RM that accesses exactly all 8 columns (RM 8),
RM that accesses separately the four columns for selection
first, and then the four columns of projection (RM 4+4), and
the optimal layout where the 8 and the 4+4 column-groups

ROW COL 8 4+4 8 4+4
Layouts

0

1

2

3

4

Ex
ec

ut
io

n
tim

e
(m

s) RM Optimal

(a) RM vs. Classical vs. Optimal

1 2 3 4 5
of Projected Columns

1

2

3

4

5

of

 S
el

ec
tio

n
Co

lu
m

ns

2.5 2.0 1.8 1.5 1.3

2.0 1.8 1.5 1.3 1.2

1.7 1.5 1.3 1.2 1.2

1.5 1.3 1.2 1.1 1.0

1.3 1.2 1.1 1.0 1.0

1.00

1.25

1.50

1.75

2.00

2.25

(b) Speedup: Optimal vs. Row

Fig. 12: (a) RM offers any layout efficiently, thus simplifying
physical design. (b) Relational Storage pushes projection to
storage, thus improving query processing.

are already created as projections (Optimal 8 and Optimal
4+4). RM 8 outperforms ROW and matches COL, while
RM 4+4 further reduces the data movement avoiding some
more unnecessary accesses from the projected columns. When
compared with having the optimal layout readily available,
RM offers similar performance with Optimal 8, while some
additional performance optimizations seem to be possible for
the RM 4+4 vs Optimal 4+4 case. Overall, we see that RM can
virtually mimic having any layout available having significant
impact on simplifying physical design.
Potential of Relational Storage. In our last experiment, we
quantify the headroom of improvement for Relational Storage.
We vary the number of projection and selection columns, and
we compare the performance of a row store with 10 columns
(4-bytes each) against the optimal data layout containing
only the relevant columns. Figure 12b illustrates the potential
benefit (up to 2.5× for low projectivity). Building on-the-
fly data transformation capabilities within storage (e.g., using
Smart SSDs) will unlock this performance benefit for any
query that can benefit without compromising the performance
of other queries.

Overall, our proof-of-concept prototype Relational Memory
shows better or comparable performance compared to in-
memory row- or column-store for various queries by offering
data transformation on the fly (more experimental results are
available in our conference paper [70]). These experimental
results of RME further fuel our vision for Relational Fabric.

VI. RELATED WORK

Hybrid Layouts. Many HTAP systems like SAP HANA [31],
Oracle TimesTen [48], MemSQL [77], BatchDB [52], and
L-store [72] follow the one size does not fit all rule [81],
hence, they use the row-format to ingest data and then convert
it to columnar-format for analytical processing [62]. The
optimal layout is more often neither a column-store nor a row-
store [6]. On the other hand, systems like H2O [6], Hyper [44],
Peloton [13], and OctopusDB [24] use adaptive layouts de-
pending on the query patterns. All these systems need to
store multiple layouts of the data and convert between formats
which increases the complexity, materialization overhead, and
maintenance cost.
Hardware Specialization. There have been many efforts
to utilize specialized hardware for data management sys-
tems [30], [40]. We categorize the developed specialized hard-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

ware by its objectives. The first line of specialized hardware is
to accelerate particular DBMS operators such as selection [82],
aggregation [22], compression [67], decompression [29], data
partitioning [42], sort [91], group by [4], and join [35], [90].
Secondly, we classify attempts to offload the SQL query
itself or the subset of queries [60], [61], [78], [88]. Due
to the inflexible nature of hardware, these approaches’ main
limitation lies in supporting ad-hoc queries. A third class
is query accelerators accessing non-local memory aiming to
reduce data movement [5], [9], [46], [68], [79].

Contrary to the aforementioned related work or the
Processing-In-Memory (PIM) approach [51], [76], the Rela-
tional Fabric paradigm does not aim to implement complex
logic near memory/storage, nor to change the physical mem-
ory/storage hardware (e.g., memory or flash cells). Rather,
Relational Fabric sits between the query execution engine and
the data, and offers a light-weight layer that performs on-
the-fly transparent data transformation into the optimal layout
for the query in question without materializing it. Our first
Relational Fabric instance, RM, sits between the CPU and
memory and transparently transforms data into the optimal
layout that does not exist in main memory. Therefore, any
ad hoc queries can be accelerated with no data duplication.
Furthermore, RM does not require any modification of the
memory hierarchy unlike PIM and is fully implemented on
commercially available platforms [8], [28], [56], [89].

To develop Relational Fabric for storage devices, we
capitalize on recent advancements in computational SSDs
(OpenSSD [16], SmartSSD [66]). These SSDs have processing
power in the flash controller that allows programmability
which can be utilized to enable highly efficient SSD execu-
tion [26]. There have been several works on performing near-
data processing in SSDs [25], [34], [41], [85] leveraging their
computational capability which can also aid the development
of Relational Fabric in modern storage devices.

VII. DISCUSSION & FUTURE WORK

A. Relational Fabric on Disaggregated Storage

With the network interfaces being upgraded to 50Gbps
or 100Gbps in many (private or public) cloud deployments
and many applications being storage space limited [27], it
is increasingly common to leverage disaggregated storage. In
this context, Relational Fabric can offer ideal data movement
over the network, ensuring that despite not having the optimal
layout on storage, only the desired columns are shipped
from the storage node to the compute node. This can be
implemented using the computational capabilities of SSDs
that are attached to the storage node as discussed in Section
IV-D or through a software approach that is implemented in
the storage node. Depending on the specific setup (network
interface speed, local storage throughput, data geometry), the
Relational Fabric approach can deliver superior performance
along with better device and network utilization, all while
using hardware capabilities that are widely available. It is
worth experimenting with both the hardware-based and the
software-based solutions to uncover the tradeoffs between the
two approaches, which is left for future work.

B. Generalized Data Transformation

Moving further than relational data, we plan to build a
generalized Data Transformation Unit (DTU) capable of en-
hancing the locality of spatiotemporal data in arbitrarily high-
dimensional objects, with tensors being a prime example. This
will allow ML-based applications to enhance their data access
locality and, ultimately, their efficiency. To achieve this, we are
developing a resource-efficient data transformation algebra that
can handle complex, multi-dimensional access patterns. The
DTU we are currently building uses the requested address
to identify and retrieve an N -dimensional memory object,
extracting details about the access pattern. It then accesses
the desired (potentially scattered) data points within the tensor
and consolidates them into a restructured cache line, ready for
delivery to CPUs in response to the cache-line refill request.
During writes, the DTU starts from an altered cache line
aiming to distribute the (again, potentially scattered) updates
to their positions in the base data. With more high-throughput
cache coherent interfaces between CPUs and FPGA being
available, integrating DTUs is now efficient and feasible as a
practical solution. Recent findings [69] indicate a 30% higher
data rate compared to the original PLIM [71] approach by
leveraging cache coherence ports for cache line refills.

VIII. OPEN QUESTIONS

In addition to the opportunities for simplicity and innovation
discussed in this paper, the Relational Fabric vision has several
open research challenges that require further investigation.
Q1. Is data transformation (projection) enough? Relational
Fabric is a layer that offers transparent and efficient projection
that leads to the benefits we discussed above. Further, data
transformation has great potential for other data-intensive
applications over multi-dimensional data (matrix/tensor slicing
and vectorized operations on matrix/tensor slices). In addition,
there have been several recent efforts to implement more
complex logic near or within memory. We purposefully avoid
this path because it increases the hardware complexity and
specialization, making it less general and, thus, to our un-
derstanding, less appealing for real-life use and deployment.
However, it remains an open question whether more logic
can be implemented between the memory and the processor.
Overall, our thesis is that any added logic should benefit many
different applications to be ultimately viable.
Q2. How does Relational Fabric interact with compression?
While delta and dictionary compression schemes can be used
as a starting point, we also believe it is worth investigating new
compression schemes that can be applied to row-oriented data
and allow for on-the-fly vertical partitioning and potentially
allow for operating on compressed data.
Q3. Can you have Relational Fabric both on storage and in
memory? The vision we outline assumes that the Relational
Fabric is implemented either in memory on storage, depending
on the use-case. However, a scheme that uses Relational Fabric
in both storage and memory may also be interesting. Consider
that the two fabrics may play different roles. For example, the
storage one can convert from compressed columns to rows
in memory, and the in-memory one can allow the processor

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

to access arbitrary column groups. We believe that more
investigation in this direction is warranted.

IX. CONCLUSION

In this paper, we present our vision of Relational Fabric, a new
lightweight specialized hardware fabric that offers effortless
locality by accessing arbitrary data layouts from row-oriented
base data without any data duplication. Relational Fabric will
simplify data and software complexity, and it will enable
efficient hardware utilization and true HTAP processing. We
outline the principles, goals, and impact of Relational Fab-
ric, and as a proof-of-concept, we present its first instance,
Relational Memory that uses reprogrammable hardware to
implement logic between the memory and the processor. Re-
lational Memory on-the-fly converts rows to arbitrary column
groups, alleviating the need to vertically partition data. We
also outline the necessary steps toward building Relational
Fabric in memory, discuss its opportunities for innovation in
data systems architecture in physical design, query processing,
and concurrency control, and some open questions that require
further research. We further discuss building Relational Fabric
in computational SSDs by developing Relational Storage.
Developing Relational Fabric in memory and storage has the
potential to be a paradigm shift where different specialized
hardware components (in memory and storage) can syner-
gistically turn data processing more efficient, scalable, and
resource-efficient for data-intensive applications.

ACKNOWLEDGMENT

We thank the reviewers for their constructive feedback and
Teona Bagashvili for her assistance in rerunning some experi-
ments. This work is funded by a RedHat Research Incubation
Award, a RedHat Research Award, a Cisco gift, and partially
supported by the National Science Foundation (NSF) under
grant number IIS-2144547, CCF-2008799 and CNS-2238476.
The opinions expressed in this publication are those of the
authors and not necessarily reflective of NSF views. Denis
Hoornaert was supported by the Chair for Cyber-Physical
Systems in Production Engineering at TUM and the Alexander
von Humboldt Foundation.

REFERENCES

[1] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
Database Systems,” PVLDB, vol. 2, no. 2, pp. 1664–1665, 2009.

[2] D. J. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden,
“The Design and Implementation of Modern Column-Oriented Database
Systems,” Found. Trends Databases, vol. 5, no. 3, pp. 197–280, 2013.

[3] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating Compression and
Execution in Column-oriented Database Systems,” SIGMOD, 2006.

[4] I. Absalyamov, P. Budhkar, S. Windh, R. J. Halstead, W. A. Najjar, and
V. J. Tsotras, “FPGA-accelerated group-by aggregation using synchro-
nizing caches,” DAMON, 2016.

[5] M. K. Aguilera, K. Keeton, S. Novakovic, and S. Singhal, “Designing
Far Memory Data Structures: Think Outside the Box,” HotOS, 2019.

[6] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2O: A Hands-free Adaptive
Store,” SIGMOD, 2014.

[7] P. Alcorn, “AMD to Fuse FPGA AI Engines Onto EPYC Processors,”
2022. [Online]. Available: https://www.tomshardware.com/news/
amd-to-fuse-fpga-ai-engines-onto-epyc-processors-arrives-in-2023

[8] G. Alonso, T. Roscoe, D. Cock, M. Ewaida, K. Kara, D. Korolija,
D. Sidler, and Z. Wang, “Tackling Hardware/Software co-design from a
database perspective,” CIDR, 2020.

[9] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” EuroSys, 2020.

[10] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki, “The
Case For Heterogeneous HTAP,” CIDR, 2017.

[11] ARM, “Arm Cortex-A53 MPCore Processor Technical Reference
Manual,” Tech. Rep., 2018. [Online]. Available: https://developer.arm.
com/documentation/ddi0500/j

[12] ——, “AMBA AXI and ACE Protocol Specification,” https://static.docs.
arm.com/ihi0022/g/IHI0022G amba axi protocol spec.pdf, 2019.

[13] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the Archipelago between
Row-Stores and Column-Stores for Hybrid Workloads,” SIGMOD, 2016.

[14] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, 2014.

[15] R. Barber, G. M. Lohman, V. Raman, R. Sidle, S. Lightstone, and
B. Schiefer, “In-Memory BLU Acceleration in IBM’s DB2 and dashDB:
Optimized for Modern Workloads and Hardware Architectures,” ICDE,
2015.

[16] M. Bjørling, J. González, and P. Bonnet, “LightNVM: The Linux open-
channel SSD subsystem,” FAST, 2019.

[17] M. N. Bojnordi and E. Ipek, “PARDIS: A programmable memory
controller for the DDRx interfacing standards,” ISCA 2012, 2012.

[18] F. Chen, B. Hou, and R. Lee, “Internal Parallelism of Flash Memory-
Based Solid-State Drives,” TOS, vol. 12, no. 3, pp. 13:1–13:39, 2016.

[19] X. Chen, N. Zheng, S. Xu, Y. Qiao, Y. Liu, J. Li, and T. Zhang,
“KallaxDB: A Table-less Hash-based Key-Value Store on Storage Hard-
ware with Built-in Transparent Compression,” DAMON, 2021.

[20] Cisco, “Cisco Global Cloud Index: Forecast and Methodology,
2016–2021,” White Paper, 2018.

[21] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He,
N. Hossle, D. Korolija, M. Licciardello, K. Martsenko, R. Achermann,
G. Alonso, and T. Roscoe, “Enzian: an open, general, CPU/FPGA
platform for systems software research,” ASPLOS, 2022.

[22] C. Dennl, D. Ziener, and J. Teich, “Acceleration of SQL Restrictions and
Aggregations through FPGA-Based Dynamic Partial Reconfiguration,”
FCCM, 2013.

[23] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling, “Hekaton: SQL server’s memory-
optimized OLTP engine,” SIGMOD, 2013.

[24] J. Dittrich and A. Jindal, “Towards a One Size Fits All Database
Architecture,” CIDR, 2011.

[25] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query
processing on smart SSDs: opportunities and challenges,” SIGMOD,
2013.

[26] J. Do, S. Sengupta, and S. Swanson, “Programmable solid-state storage
in future cloud datacenters,” CACM, vol. 62, no. 6, pp. 54–62, 2019.

[27] S. Dong, S. S. P., S. Pan, A. Ananthabhotla, D. Ekambaram, A. Sharma,
S. Dayal, N. V. Parikh, Y. Jin, A. Kim, S. Patil, J. Zhuang, S. Dunster,
A. Mahajan, A. Chelluri, C. Datye, L. V. Santana, N. Garg, and
O. Gawde, “Disaggregating RocksDB: A Production Experience,” Proc.
ACM Manag. Data, vol. 1, no. 2, pp. 192:1—-192:24, 2023.

[28] ETHZ, “Enzian Systems,” http://enzian.systems/, 2021.
[29] J. Fang, J. Chen, J. Lee, Z. Al-Ars, and H. P. Hofstee, “A Fine-Grained

Parallel Snappy Decompressor for FPGAs Using a Relaxed Execution
Model,” FCCM, 2019.

[30] J. Fang, Y. T. B. Mulder, J. Hidders, J. Lee, and H. P. Hofstee, “In-
memory database acceleration on FPGAs: a survey,” VLDBJ, vol. 29,
no. 1, pp. 33–59, 2020.

[31] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and
J. Dees, “The SAP HANA Database – An Architecture Overview,” IEEE
DEBULL, vol. 35, no. 1, pp. 28–33, 2012.

[32] Gartner, “Gartner Says 8.4 Billion Connected “Things” Will Be in Use
in 2017, Up 31 Percent From 2016,” https://tinyurl.com/Gartner2020,
2017.

[33] Google, “Cloud TPU,” https://cloud.google.com/tpu/, 2017.
[34] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,

M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A
Framework for Near-Data Processing of Big Data Workloads,” ISCA,
2016.

[35] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “FPGA-
based Multithreading for In-Memory Hash Joins,” CIDR, 2015.

[36] J. Hamilton, “Tensor Processing Unit,”
https://perspectives.mvdirona.com/2017/04/tensor-processing-unit/.

[37] M. Hassan, “Reduced latency DRAM for multi-core safety-critical real-
time systems,” Real-Time Systems, vol. 56, no. 2, pp. 171–206, 2020.

https://www.tomshardware.com/news/amd-to-fuse-fpga-ai-engines-onto-epyc-processors-arrives-in-2023
https://www.tomshardware.com/news/amd-to-fuse-fpga-ai-engines-onto-epyc-processors-arrives-in-2023
https://developer.arm.com/documentation/ddi0500/j
https://developer.arm.com/documentation/ddi0500/j
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[38] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” CACM, vol. 62, no. 2, pp. 48–60, 2019.

[39] Intel, “Intel Completes Acquisition of Altera,” 2015. [Online].
Available: https://www.intc.com/news-events/press-releases/detail/302/
intel-completes-acquisition-of-altera

[40] Z. István, “The Glass Half Full: Using Programmable Hardware Accel-
erators in Analytics,” IEEE DEBULL, vol. 42, no. 1, pp. 49–60, 2019.

[41] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, “KAML: A
Flexible, High-Performance Key-Value SSD,” 2017 IEEE International
Symposium on High Performance Computer Architecture, HPCA 2017,
Austin, TX, USA, February 4-8, 2017, 2017.

[42] K. Kara, J. Giceva, and G. Alonso, “FPGA-based Data Partitioning,”
SIGMOD, 2017.

[43] M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, “Adaptive
Query Processing on RAW Data,” PVLDB, vol. 7, no. 12, pp. 1119–
1130, 2014.

[44] A. Kemper and T. Neumann, “HyPer: A Hybrid OLTP & OLAP Main
Memory Database System Based on Virtual Memory Snapshots,” ICDE,
2011.

[45] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. A.
Boncz, “Everything You Always Wanted to Know About Compiled and
Vectorized Queries But Were Afraid to Ask,” PVLDB, vol. 11, no. 13,
pp. 2209–2222, 2018.

[46] D. Korolija, D. Koutsoukos, K. Keeton, K. Taranov, D. S. Milojicic, and
G. Alonso, “Farview: Disaggregated Memory with Operator Off-loading
for Database Engines,” CIDR, 2022.

[47] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T.-H. Lee, J. Loaiza, N. Macnaughton,
V. Marwah, N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja,
M. Roth, E. Soylemez, and M. Zait, “Oracle Database In-Memory: A
Dual Format In-Memory Database,” ICDE, 2015.

[48] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle TimesTen: An In-
Memory Database for Enterprise Applications,” IEEE DEBULL, vol. 36,
no. 2, pp. 6–13, 2013.

[49] A. Lamb, M. Fuller, and R. Varadarajan, “The Vertica Analytic Database:
C-Store 7 Years Later,” PVLDB, vol. 5, no. 12, pp. 1790–1801, 2012.

[50] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, “Improving memory
bank-level parallelism in the presence of prefetching,” MICRO, 2009.

[51] G. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. Meswani,
D. P. Zhang, and M. Ignatowski, “A Processing in Memory Taxonomy
and a Case for Studying Fixed-function PIM,” WoNDP, 2013.

[52] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, “BatchDB:
Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications,” SIGMOD, 2017.

[53] R. Mancuso, S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, and
M. Athanassoulis, “Software-Shaped Platforms,” Proceedings of Cyber-
Physical Systems and Internet of Things Week 2023, CPS-IoT Week 2023
Workshops, San Antonio, TX, USA, May 9-12, 2023, 2023.

[54] N. May, A. Böhm, and W. Lehner, “SAP HANA - The Evolution of
an In-Memory DBMS from Pure OLAP Processing Towards Mixed
Workloads,” BTW, 2017.

[55] P. Menon, A. Pavlo, and T. C. Mowry, “Relaxed Operator Fusion for In-
Memory Databases: Making Compilation, Vectorization, and Prefetching
Work Together At Last,” PVLDB, vol. 11, no. 1, pp. 1–13, 2017.

[56] Microsemi — Microchip Technology Inc., “PolarFire SoC -
Lowest Power, Multi-Core RISC-V SoC FPGA,” July 2020.
[Online]. Available: https://www.microsemi.com/product-directory/
soc-fpgas/5498-polarfire-soc-fpga

[57] Microsoft, “Project Catapult,” https://www.microsoft.com/en-
us/research/project/project-catapult/, 2017.

[58] C. Mohan, “Hybrid Transaction and Analytics Processing (HTAP): State
of the Art,” BIRTE, 2016.

[59] J. H. Mun, K. Karatsenidis, T. I. Papon, S. Roozkhosh, D. Hoornaert,
U. Drepper, A. Sanaullah, R. Mancuso, and M. Athanassoulis, “On-
the-fly Data Transformation in Action,” PVLDB, vol. 16, no. 12, pp.
3950–3953, 2023.

[60] M. Najafi, M. Sadoghi, and H.-A. Jacobsen, “Flexible Query Processor
on FPGAs,” PVLDB, vol. 6, no. 12, pp. 1310–1313, 2013.

[61] Oracle, “DAX,” https://blogs.oracle.com/linux/post/oracle-data-
analytics-accelerator-dax-for-sparc, 2021.

[62] F. Özcan, Y. Tian, and P. Tözün, “Hybrid Transactional/Analytical
Processing: A Survey,” SIGMOD, 2017.

[63] T. I. Papon and M. Athanassoulis, “A Parametric I/O Model for Modern
Storage Devices,” DAMON, 2021.

[64] ——, “The Need for a New I/O Model,” CIDR, 2021.

[65] T. I. Papon, J. H. Mun, S. Roozkhosh, D. Hoornaert, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational Fabric:
Transparent Data Transformation,” ICDE, 2023.

[66] K. Park, Y.-S. Kee, J. M. Patel, J. Do, C. Park, and D. J. DeWitt, “Query
Processing on Smart SSDs,” IEEE DEBULL, vol. 37, no. 2, pp. 19–26,
2014.

[67] W. Qiao, J. Du, Z. Fang, M. Lo, M.-C. F. Chang, and J. Cong, “High-
Throughput Lossless Compression on Tightly Coupled CPU-FPGA
Platforms,” FCCM, 2018.

[68] A. Redshift, “Aqua (advanced query accelerator) for amazon redshift,”
2021. [Online]. Available: https://aws.amazon.com/redshift/features/
aqua/

[69] S. Roozkhosh, D. Hoornaert, and R. Mancuso, “CAESAR: Coherence-
Aided Elective and Seamless Alternative Routing via on-chip FPGA,”
in Proceedings of the 43rd IEEE Real-Time Systems Symposium (RTSS),
Houston, TX, USA, 2022.

[70] S. Roozkhosh, D. Hoornaert, J. H. Mun, T. I. Papon, A. Sanaullah,
U. Drepper, R. Mancuso, and M. Athanassoulis, “Relational Memory:
Native In-Memory Accesses on Rows and Columns,” EDBT, 2023.

[71] S. Roozkhosh and R. Mancuso, “The Potential of Programmable Logic
in the Middle: Cache Bleaching,” RTAS, 2020.

[72] M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim, “L-
Store: A Real-time OLTP and OLAP System,” EDBT, 2018.

[73] B. Salami, G. A. Malazgirt, O. Arcas-Abella, A. Yurdakul, and
N. Sönmez, “AxleDB: A novel programmable query processing platform
on FPGA,” Microprocessors and Microsystems, vol. 51, pp. 142–164,
2017.

[74] A. Sanaullah, “Risc-v for fpgas: benefits and opportunities,” Red Hat
Research Quarterly, no. May, 2022.

[75] B. C. Schwedock, P. Yoovidhya, J. Seibert, and N. Beckmann, “täkō: a
polymorphic cache hierarchy for general-purpose optimization of data
movement,” ISCA, 2022.

[76] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Gather-scatter DRAM: in-DRAM address
translation to improve the spatial locality of non-unit strided accesses,”
MICRO, 2015.

[77] N. Shamgunov, “The MemSQL In-Memory Database System,” IMDM,
2014.

[78] D. Sidler, M. Owaida, Z. István, K. Kara, and G. Alonso, “doppioDB:
A hardware accelerated database,” FPL, 2017.

[79] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “StRoM:
smart remote memory,” EuroSys, 2020.

[80] A. D. C. Solution, “Xilinx Deep Learning Solution on AMD
EPYC™ Processors,” 2019. [Online]. Available: https://www.amd.
com/content/dam/amd/en/documents/epyc-business-docs/white-papers/
xilinx-deep-learning-solution-on-amd-epyc-processors.pdf

[81] M. Stonebraker and U. Cetintemel, “”One Size Fits All”: An Idea Whose
Time Has Come and Gone,” ICDE, 2005.

[82] X. Sun, C. J. Xue, J. Yu, T.-W. Kuo, and X. Liu, “Accelerating data
filtering for database using FPGA,” Journal of Systems Architecture, vol.
114, p. 101908, 2021.

[83] N. C. Thompson and S. Spanuth, “The decline of computers as a general
purpose technology,” CACM, vol. 64, no. 3, pp. 64–72, 2021.

[84] TPC, “TPC-H benchmark,” http://www.tpc.org/tpch/, 2021.
[85] J. Wang, D. Park, Y. Papakonstantinou, and S. Swanson, “SSD In-

Storage Computing for Search Engines,” IEEE TC, p. 1, 2016.
[86] A. S. Waterman, Design of the RISC-V instruction set architecture.

University of California, Berkeley, 2016.
[87] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “Q100: the

architecture and design of a database processing unit,” ASPLOS, 2014.
[88] ——, “The Q100 Database Processing Unit,” IEEE Micro, vol. 35, no. 3,

pp. 34–46, 2015.
[89] Xilinx, Inc., “Zynq UltraScale+ MPSoC - All Programmable

Heterogeneous MPSoC,” August 2016. [Online]. Available: https://www.
xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

[90] M. Xue, Q. Xing, C. Feng, F. Yu, and Z.-G. Ma, “FPGA-Accelerated
Hash Join Operation for Relational Databases,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67-II, no. 10, pp. 1919–
1923, 2020.

[91] C. Zhang, R. Chen, and V. K. Prasanna, “High Throughput Large Scale
Sorting on a CPU-FPGA Heterogeneous Platform,” IPDPS Workshops,
2016.

[92] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” TIT, vol. 23, no. 3, pp. 337–343, 1977.

[93] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Super-Scalar RAM-
CPU Cache Compression,” ICDE, 2006.

https://www.intc.com/news-events/press-releases/detail/302/intel-completes-acquisition-of-altera
https://www.intc.com/news-events/press-releases/detail/302/intel-completes-acquisition-of-altera
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://aws.amazon.com/redshift/features/aqua/
https://aws.amazon.com/redshift/features/aqua/
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/xilinx-deep-learning-solution-on-amd-epyc-processors.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/xilinx-deep-learning-solution-on-amd-epyc-processors.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/xilinx-deep-learning-solution-on-amd-epyc-processors.pdf
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

	Introduction
	Accessing Arbitrary Data Geometries
	Relational Fabric
	Relational Memory

	Implications on Data Systems Architecture
	Physical Design
	Query Optimization and Query Evaluation
	Concurrency Control
	Compression

	Building Relational Fabric
	Implementing Relational Memory
	Pushing Other Relational Operators
	Pushing RM Further: Relational Memory Controller
	Implementing Relational Storage
	Practicality & Feasibility of Relational Fabric

	Experimental Results on Relational Memory
	Related Work
	Discussion & Future Work
	Relational Fabric on Disaggregated Storage
	Generalized Data Transformation

	Open Questions
	Conclusion
	References

