
UltraScale+ SpinalHDL Wrapper: Streamlining
Ideas to Bitstream on UltraScale+ platforms.

Denis Hoornaert
Technical University of Munich

Munich, Germany
denis.hoornaert@tum.de

Giulio Corradi
Advanced Micro Devices

Munich, Germany
giulio.corradi@amd.com

Renato Mancuso
Boston University

Boston, Massachusetts, USA
rmancuso@bu.edu

Marco Caccamo
Technical University of Munich

Munich, Germany
marco.caccamo@tum.de

Abstract—In an embedded computing landscape that inex-
orably leans into heterogeneity, System-on-Chips (SoCs) featuring
tightly integrated Field Programmable Gate Arrays (FPGA) are
bound to proliferate. In particular, such architectures’ high
degree of flexibility and control caters well to the real-time
community. Despite the appeal, real-time research exploiting
HW/SW co-design on such architectures has remained tepid.
While the usual suspects, such as the complexity of Hardware
Description Languages, can be blamed, recent advancements
in tooling (e.g., languages, frameworks) have proven efficient
in easing the design of FPGA-located accelerators. However,
in the context of SoC with FPGA platforms, these solutions
fall short of addressing the next hurdle: integrating the custom
accelerators with the rest of the SoC, which requires the tedious
implementation of various supporting software resources.

This article presents the first iteration of the UltraScale+
SpinalHDL Wrapper; a SpinalHDL library dedicated to sup-
porting HW/SW co-design on SoC with FPGA platforms. The
support ranges from assisting during the design of accelerators
to automatically inferring and generating ready-to-use software
support, such as Linux Kernel modules and Vivado deployment
scripts.

Index Terms—FPGA, UltraScale+, Hardware/Software co-
design, Hardware Construct Languages

I. INTRODUCTION

Modern System-on-Chip (SoC) for embedded systems are
becoming more performant as the functional requirements
have prompted a surge in computational demand. Combined
with use case-specific Size, Weight, and Power (SWaP) con-
straints, this has pushed SoC architectures to become increas-
ingly heterogeneous by integrating highly specialized accel-
erators. Nowadays, platforms featuring on-chip specialized
units (e.g., GPUs, TPUs) are ubiquitous. Particularly, SoC
architectures featuring tightly integrated Field Programmable
Gate Arrays (FPGAs) have attracted attention due to their
inherent high degree of programmability and on-the-fly re-
programmability. The overall appeal of this SoC architecture is
confirmed by the emergence of many platforms [1]–[4] among
which the AMD-Xilinx UltraScale+ model [5] has garnered
the most attention. This class of platforms is also referred to
as PS-PL to denote the combination of a Processing System
(PS) (i.e., CPU cores and memory) and a Programmable Logic
(PL) (i.e., FPGA). This terminology is used in this article.

Since 2016, the opportunities offered by HW/SW co-design
on UltraScale+ platforms have caught the attention of the
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Fig. 1: Published paper since 2016 employing HW/SW co-
design on UltraScale+ in real-time oriented conferences.

embedded real-time community. Much research has focused
on implementing PL-located accelerators, with application
domains ranging from image processing [6] to artificial
intelligence [7]. Several research groups have also investigated
the impact of inter-accelerator bus activity on the latter’s
performance [8], [9] and proposed mitigation policies [10],
[11]. Frameworks [12], [13] tying together the FPGA’s support
for dynamic and partial reprogramming with scheduling mod-
els have been proposed. Finally, a series of papers explored
the idea of using the PL as part of the SoC’s memory
system, enabling memory requests manipulation [14], [15]
and traffic regulation [16], [17]. However, despite the many
potentials, these research threads have remained tepid within
the embedded real-time community, as illustrated in Fig. 1.

This trend can be in part associated with the notorious
difficulty of designing accelerators for FPGAs compared to
programming for other Processing Elements (PEs, e.g., CPUs,
GPUs). The commonly agreed-upon culprits are the traditional
Hardware Description Languages (HDLs, e.g., VHDL, Ver-
ilog). Aspects such as their verbosity and confusing specifi-
cation model are often considered key factors slowing down
productivity and learning rate. In that regard, considerable
efforts from the research community and the industry have
led to the development of advanced approaches and tooling
to speed up hardware design time. Notably, High-level Syn-
thesis (HLS) and Hardware Construct Languages (HCL) have
addressed these issues by using higher abstraction languages
to design and generate digital circuits.

Unfortunately, however, in the context of PS-PL platforms,



Fig. 2: Overview of the co-design flow for UltraScale+ platforms. Each layer of the system involves manual work requiring
specialized expertise (dashed ellipse). The “PL Design Flow” can be extended by a HLS or HCL. Our SpinalHDL+USW
(dotted red arrows) only requires human intervention for specifics about the hardware, firmware, and final user application.

the aforementioned tools do not address the next productivity
hurdle: hardware/software interaction. Existing tools [18],
[19] focus solely on the accelerator’s logic while integration
tools [20] consider the PL side in isolation, leaving designers
with the tedious—yet delicate—task of integrating the FPGA
accelerator with the rest of the system by implementing the
necessary software drivers. Nonetheless, proper integration on
such a platform is challenging because it may require firmware
and Operating System (OS) expertise.

As the authors found out, after several years of experience
with the UltraScale+ platform, most of the productivity hurdles
often correspond to repetitive implementation tasks. As such,
instead of curating their experience as a set of guidelines and
documents, the authors propose the UltraScale+ SpinalHDL
Wrapper (USW), an open-source [21] library extending a
HCL (i.e., SpinalHDL) that aims to generate ready-to-use sup-
port to ease HW/SW co-design on AMD-Xilinx UltraScale+
platforms. Such support includes (1) pre-defined specialized
hardware constructs for several UltraScale+ boards (e.g., Kria
KV260 and Kria KR260), (2) the generation of Linux kernel
modules, and (3) the generation of AMD-Xilinx Vivado TCL
scripts to enable “one command line” deployment. Through
this, USW aims to lower the entry barrier of HW/SW co-
designing on UltraScale+ platforms.

II. ANCILLARY CONCEPTS

A. FPGA and Hardware Description Language

A Field Programmable Gate Array (FPGA) is a type of re-
programmable PE capable of emulating virtually any special-
ized digital circuits. FPGAs sit at the cross-road between spe-
cialized hardware accelerators and general purpose (e.g., ISA-
based) PEs. Like the latter, FPGAs can implement workload-
tailored data manipulation and display aggressive parallelism
(e.g., via pipelining) while, like general-purpose PEs, they can
be dynamically re-programmed on demand.

The design of digital circuits in FPGA is done via HDLs
(e.g., Verilog, VHDL), which uses the Register Transfer Level
(RTL) abstraction. As the names suggest, with these languages,
one describes the data flow from registers to registers, wires to
wires, and vice versa. An Electronic Design Automation tool
(e.g., Vivado) is employed to synthesize the RTL description
into a logically equivalent and target-specific bitstream that can
be flashed onto the FPGA. This process, illustrated in Fig. 2
(green-shaded box), is performed through a sequence of steps
referred to as the PL design flow. Essentially, once the HDL
description is created, it must be connected and co-designed
with—potentially vendor-locked—third-party IPs. The output
design is synthesized into an intermediate representation called
a netlist on which a series of optimizations are applied. The
implementation step yields the bitstream.

Due to the tediousness of designing hardware accelerators
with traditional HDLs, many projects and industrial products
have sought to lift the level of abstraction. Existing solutions
rely on CPU programming languages to generate HDLs, sitting
atop the usual design flow as shown in Fig. 2. Two notable
approaches exist. (1) HLS [22], [23] aim at transpiling C
code into HDL such as Verilog to take advantage of the
existing code base and enable a fast time-to-bitstream for non-
HDL experts. However, the procedural-to-RTL transformation
is not straightforward and requires designers to expertly guide
the tools via C pragmas. (2) HCL such as Chisel [19] and
SpinalHDL [18] take a different route. They posit that the
limited code re-utilization and associated language features
of HDLs are the main productivity hurdle, not the RTL
abstraction. Hence, these HCLs still use the RTL abstraction
but embed it within high-level programming languages such
as Scala. The latter acts as both a framework and a pre-
processing language, offering object-oriented and functional
programming features, as well as expressiveness to elaborate
and test the designs. Because the final hardware description



Fig. 3: Overview of a UltraScale+ SoC where only relevant
components are depicted. Components are marked by x .

uses the RTL abstraction, unlike HLSs, the final logic corre-
sponds 1-to-1 to the desired semantics, avoiding any “black-
magic” [18] transformation.

B. PS-PL platforms

As depicted in Fig. 3, the UltraScale+ multi-processor SoC
manufactured by AMD-Xilinx features four ARM Cortex-A53
CPU cores 0 equipped with a 1 MB last-level cache 1 , a
pair of real-time ARM CPU cores 2 , and an FPGA 3 (i.e.,
the PL side). These elements and the DRAM controller 4 are
linked via a system of interconnects 5 and dedicated signals.

A key aspect of co-designing PS software with PL accelera-
tors is their interactions. On UltraScale+, PS-PL interaction is
facilitated by a diverse set of interfaces, including: (1) seven
unidirectional AXI4 interfaces: (a) three of whom are memory
mapped PS-to-PL interfaces used by the PS to fetch data from
the PL 6 and (b) four PL-to-PS interfaces that allow access
to any on-chip memories and the main memory 7 . (2) One
two-way cache coherent interface (ACE) that allows the PL
to become a member of the SoC cache coherence domain 8
(i.e., snoop and be snooped by the CPU cores). (3) Several
direct PS-to-PL and PL-to-PS interrupt 91 and cross-trigger
92 lines enable fast communications to/from the PS-side

interrupt controller and CoreSight debugging infrastructure.
With an increased heterogeneity comes an increase in design

complexity and scope. In fact, not only should designers
take into account the PL, they must also prepare the PS and
its various software requirements. In this widened co-design
flow (shown in Fig. 2), each traditional layer of a system
(i.e., firmware, OS, and user/application) must be set up and
tailored for communication with the PL-located accelerator(s).
On UltraScale+ platforms, it comes as firmware patches (e.g.,
to enable the PL-side ACE port) and OS kernel modules (e.g.,
to map the various ports and interrupt lines).

III. OBJECTIVES AND OVERVIEW

Unlike existing FPGA integration tools (e.g., LiteX [20]),
the proposed approach does not consider the PL side as an
isolated block but instead focuses on its integration with

the PS side. Based on the authors’ experience, much of the
software support required to smoothly interface software with
PL-located accelerators can be automatically generated and,
especially, inferred from the hardware module description. The
proposed approach leans on this observation to ease HW/SW
co-design on UltraScale+ platforms.

This article proposes to extend SpinalHDL [18] (an HCL)
via a dedicated library called the UltraScale+ SpinalHDL
Wrapper (USW). The library assists the hardware designer
by providing pre-defined hardware constructs common to
all UltraScale+ boards and implicitly generating ready-to-
use software resources associated with them. As illustrated
in Fig. 2 by the dashed red arrows, the software resources
generation ranges from Vivado TCL script to kernel modules.
Note that using USW does not lock the designer in, as the
generated support can be used as is or as the starting point
toward further (manual) customization.

This section presents some of the constructs and tools of-
fered by USW. The code snippet displayed in Listing 1 exem-
plifies the use of USW; however, details regarding SpinalHDL
syntax will not be presented due to space constraints. For
further details, readers are invited to look at [18].

A. Top Module, Interfaces, and I/Os

The top module is designed such that it contains all PL’s
elements. As such, it mirrors all PS-PL interfaces and I/Os.
The idea is that the SpinalHDL description is self-contained,
and no subsequent manipulation of the outcome is needed.

This implies that most information must come or be derived
from the SpinalHDL description. In the proposed library, in-
formation such as (1) the target board, (2) the target frequency,
and (3) the desired interfaces and I/Os are specified directly
in the top-module definition. The top module can be created
via a Scala class that inherits a curated class describing the
target board (e.g., Kria KV260, Kria KR260, or ZCU102).
For instance, the code snippet in Listing 1 implements a top
module called ConfigTestPort on the Kria KV260 (see
line 9). This parent class takes two construction parameters: a
frequency and an I/O configuration.

The frequency parameter indicates the desired synthesis
(line 10) but does not imply that the Verilog produced can
operate at that frequency. The library provides an early indi-
cation of whether the target board can support the frequency,
sets the closest if not, and considers it when generating the
Vivado TCL script (see Sec. III-D). The I/O configuration
indicates which interfaces and I/Os should be implemented
(lines 11-13). The associated apertures become available in
the description block by enabling specific options. In our
example, asserting withLPD_HPM0 tethers the design to the
LPD HPM0 PS-PL interface and allows access to the individual
fields in the description via io.lpd.hpm0 ( 61 in Fig. 3).

B. Configuration Port

A configuration port is a key component of any accelerator
on UltraScale+ as it allows the PS-located software layers
to instrument the PL-located accelerators. Implementing an



1 package example
2

3 import spinal.core._
4 import spinal.lib._
5 import kv260._
6 import ultrascaleplus.scripts._
7 import ultrascaleplus.configport._
8

9 case class ConfigPortTest() extends KV260(
10 frequency = 100 MHz,
11 config = new KV260Config(
12 withLPD_HPM0 = true, withIO_PMOD0 = true
13 )
14 ) {
15 val configPort = ConfigPort(io.lpd.hpm0,

io.lpd.hpm0.getPartialName())↪→

16

17 val clockCount = Reg(UInt(64 bits)) init(0)
18 configPort.read(clockCount,

io.lpd.hpm0.apertures(0).base)↪→

19

20 clockCount := clockCount+1
21

22 for (i <- 0 until io.pmod0.length)
23 io.pmod(i) := clockCount(63-i)
24

25 KernelModule.addIO(io.lpd.hpm0)
26 KernelModule.generate()
27 this.generate()
28 }

Listing 1: SpinalHDL code snippet implementing an AXI4
config. port using USW for the Kria KV260 (line 9). Con-
figuration port is tethered to the LPD HPM0 (line 15) PS-PL
interfaces and enables access to a 64-bit wide counter (lines
17-18).

AXI4 compliant configuration port is tedious, but, luckily,
SpinalHDL provides an easy-to-use generator [24]. However,
the generator lacks a few features to ease the integration with
the PS side.

To this end, our USW library provides a specialized ver-
sion: the ConfigPort generator. The latter extends via
inheritance the SpinalHDL’s generator to provide ready-to-
use C code generation support for the PS side. More pre-
cisely, after being instantiated (line 17), registers can be
added to the configuration in read-only, write-only, and
read-write modes. For example, in Listing 1 line 18, the
clockCount register is added for read-only access at ad-
dress io.lpd.hpm0.apretures(0).base. At Spinal-
HDL elaboration-time, the USW library produces boilerplate
C code that defines a C struct with a field for each register
added to the configuration port. Their placement reflects the
address specified in the hardware description (Listing 1, line
18). When required, padding is automatically added to the
struct. The generated C struct provides the typical code to
memory-map (mmap) the associated PS-PL AXI4 interface
and cast the returned pointer into the generated struct.

C. Kernel Module

Part of the challenge when co-designing an accelerator with
Linux is to allow access to the PS-PL interfaces. In particular,
allocating address ranges falling within the FPD HPM[0,1]
apertures as cacheable regions directly entails the involved
alteration of the Linux kernel or the use of a hypervisor as
done in [15], [16]. An alternative is to create an “insertable”
kernel module that creates /dev file system targets. When
these /dev targets are mapped (via mmap), they return a
pointer to the base address of the desired aperture.

The library’s kernel module generator leverages the latter
option. As shown in Listing 1 line 28, it is as simple as
invoking a singleton named KernelModule and calling
its addIO method on the desired AXI4 port. In this case,
the generated kernel module will create, after insertion, a
/dev/lpd_hpm0 file that, when mapped, allows I/O (i.e.,
uncached) access to the region. Cacheable targets can be
generated using the add method instead.

D. Vivado TCL Script

The generation of TCL scripts is supported and provided
natively by Vivado and is the de facto preferred way to share
and maintain versioning of Vivado projects. However, unless
designers can expertly program in TCL from scratch, the
design and all PS-PL I/O connections must be established
manually over the GUI. This introduces a human-in-the-loop
step that still requires some expertise with the tool, effectively
keeping the entry barrier high and preventing fast prototyping.
Moreover, any future changes to the design’s PS-PL inter-
facing or in-use I/O entail manipulating and regenerating the
TCL script using Vivado. Finally, Vivado projects’ portability
and deployment are challenging because the TCL scripts are
version dependent, and licenses are available only for some
versions.

Following the aforementioned philosophy, our USW library
can generate a Vivado TCL script to easily share and deploy
UltraScale+ designs at the elaboration of a SpinalHDL descrip-
tion (i.e., from SpinalHDL to Verilog). The automated TCL
script generation is made possible by the information provided
in the description’s top module. The produced and ready-to-use
TCL scripts are placed in the vivado/ folder and named after
the design they implement—e.g., ConfigPortTest.tcl
for the design in Listing 1. A clear advantage of inferring the
TCL script from the design is the augmented cross-version
portability. Concretely, with USW, sharing the design sources
is sufficient to allow any collaborator to seamlessly deploy
and implement the design regardless of their installed Vivado
version. We have tested that USW-generated TCL scripts work
correctly for the 2024.2, 2024.1, 2022.2, and 2019.2 versions
of Vivado and expect broad compatibility with other versions.

Like other USW-generated support, TCL scripts do not need
to be regenerated every time. For instance, if no I/O nor PS-
PL interface is altered, removed, or added, the TCL script
can serve as an initial springboard toward further manual
customization by the designer. Alternatively, the TCL script
can be disregarded at the designer’s discretion. Finally, note



(a) The AES accelerator receives cacheable transactions on the FPD
HPM0 port. The a-la PLIM module deciphers and ciphers data on
reads and writes. The NN and frames remain encrypted in memory.

(b) The PL-located PWM controllers are configured by the CPUs via
the LPD HPM0 port to (1) emit one PWM signal aimed at controlling
the pole’s car and (2) maintain an estimation of the system’s state.

Fig. 4: Abstract overview of the two example use-cases described in Sec. IV implemented on the AMD-Xilinx UltraScale+
platform using SpinalHDL and the USW library.

that any (i.e., small or not) changes applied to a hardware
design (e.g., change of condition operator from & or |)
obligatorily implies going down the PL design flow again.
This is a lengthy process even for smaller projects, making
the redeployment phase of the Vivado project via the USW-
generated TCL script a hardly noticeable overhead.

E. SpinalHDL+USW to Bitstream

Once a SpinalHDL description exists, generating the bit-
stream is a matter of two command lines, as shown below.
The resulting bitstream file is placed in the project’s folder,
and the Vivado project is created in the vivado/ folder.

1 sbt "runMain example.ConfigPortTestVerilog"
2 vivado -source vivado/ConfigPortTest.tcl

IV. DEMONSTRATORS

As mentioned in Section I, HW/SW co-design on PS-
PL platforms (and the UltraScale+ platform in particular)
have already been successfully deployed in several real-time
contexts. Naturally, USW can be used (or has already been
used) to replicate the prototypes presented in [10], [15]–[17].
For instance, readers can find SpinalHDL support to generate
PLIM-like IPs1 and a simplified implementation of the PLIM-
style bleacher2 from [15] in the example designs of USW.

The authors selected two divergent HW/SW co-designed
projects to illustrate the PS-PL interfaces and I/O generation
abilities. These examples are individually presented in this
section and illustrated in Fig. 4.

1https://github.com/denishoornaert/ultrascale-spinal-wrapper/blob/master/
hw/spinal/example/Plim.scala

2https://github.com/denishoornaert/ultrascale-spinal-wrapper/blob/master/
hw/spinal/example/Bleacher.scala

A. Security: On-the-fly AES Encryption

This use case, whose rationale is exhaustively presented
in [25], aims to enable on-demand access to confidential
data while always keeping the latter encrypted in memory.
Typically, the PL-located accelerators encrypt/decrypt confi-
dential data block-by-block upon explicit instrumentation by
the PS CPU cores. Instead, as illustrated in Fig. 4a, the design
follows the PLIM [15] approach to allow greater flexibility
and smoother integration with the PS-located software. This
approach creates an alternative PL-traversing route to memory
featuring an encryption engine that encrypts and decrypts
individual transactions.

Concretely, the encryption engine is implemented as a
counter-mode AES-128 accelerator [26] from scratch using
SpinalHDL+USW for the Kria KV260. The tethering of the
three PS-PL interfaces (LPD HPM0, FPD HPM0, and FPD HP0)
with the top module is realized via the USW library and the
generation of the kernel modules mapping the two primary
ports is delegated to the USW library (see Sec. III-C). The LPD
HPM0 port is attached to a configuration port (see Sec. III-B)
that stores crucial information (e.g., encryption key) and USW
generates a ready-to-use C struct for HW/SW interfacing.

On the software side, the confidential (i.e., encrypted) work-
loads consist of (1) the weights of neural network detecting
the presence of humans (implemented and run via TensorFlow
Lite) and (2) encrypted video frames coming from a remote
device (e.g., over the internet). This data is accessible via four
/dev targets as illustrated in Fig. 4a (see arrows); two of
which are generated by the USW library. More accurately,
the orange and red arrows represent the data path created by
the /dev targets generated by USW. They allow the software
direct communication with the PL and access to the decrypted
version of neural network (NN) weights (i.e., /dev/dec_NN)
and the video frame (i.e., /dev/dec_frame) respectively.

From a subjective point of view, contributors to the project



concurred that the establishment of the /dev targets and C
struct as a high-level and well-specified interface rendered
the HW/SW co-designing more approachable. In particular,
it enabled better cross-team communication. This observation
underscores the usefulness of streamlining software support.

B. Robotic: Inverted Pendulum

This demonstrator showcases the ability of the library to
support HW/SW co-designed robotic systems. In such sys-
tems, software-implemented controllers running on the PS in-
teract with custom PL-located peripheral (i.e., I/O) controllers
to sense and act on their environment. These controllers can
also feature high-frequency stream processing (i.e., acceler-
ated) logic.

We selected a custom inverted pendulum mechanical system
as a use case. To achieve the goal of balancing and maintaining
the free-flowing rod in an upward position, the cart, actuated
by a motor, is controlled by an LQR+Simplex controller. The
latter interacts with the PL to set its action (i.e., motor RPM)
and access an estimation of the system’s state.

For this use case, the Kria KR260 board is used. As
illustrated in Fig. 4b, the PL hosts an inverted pendulum [27]
design consisting of three controllers: two encoders with state
estimation logic ( 0 and 1 ), two buttons indicating each end
of the rail ( 2 and 3 ), and one PWM controller ( 4 ). The
encoder controllers are tasked to monitor all switching activity
on the PMOD0 associated I/O lines and process them to update
state estimation. In our use case, one provides an estimate
of the rod position as an angle w.r.t. to the starting point
(i.e., pointing downwards), and the second one provides an
estimate of the cart’s position as a distance w.r.t. the middle
of the rails. All controllers can be instrumented and their state
accessed by the PS software via a configuration port (see
Sec.III-B; 5 ) generated and connected to the LPD HPM0 port
by USW. The PS-located controller utilizes the associated C
struct and a kernel module (see Sec. III-C) generated by our
USW framework.

V. DISCUSSION

A. Scalability and Portability

The choice of the UltraScale+ platforms as a focus point
is logical considering its widespread availability and om-
nipresence in the few real-time research using PS-PL platform
for HW/SW co-design. However, the USW can be extended
to support virtually any platform. This is greatly facilitated
by the UltraScale+ SoC implementation of standard open-
specification protocols (e.g., AXI) as PS-PL interfaces. The
combined flexibility and agile approach of USW and Spinal-
HDL ease the introduction of new interfaces and protocols.

Naturally, expanding USW support to include closely
aligned SoCs such as AMD-Xilinx’ Zynq and Versal are
expected to be easier as they share a common interface
naming convention and synthesis backend (i.e., Vivado) with
the UltraScale+ platform. The amount of effort required to
support other platforms will vary depending on a few factors.
For instance, the Enzian [3] platform would benefit from

the same backend support as the PL is AMD-Xilinx based.
However, some work will be required to add the bus protocol
specific to their platform. On the other hand, platforms like
[1], [2] rely on different backends, meaning that the TCL script
generation may have to be revamped. This could be addressed
by raising the abstraction level to provide a common interface
and automatic backend selection. Interface-wise, expanding
support is easier as the interface protocols used (e.g., AXI,
TileLink) are already supported by SpinalHDL.

B. PS-PL Interfaces, Interactions, and Timings

Many related research works cited in this paper already
provide timing measurements for accessing PL and PS ele-
ments that traverse their shared interfaces. In particular, [28]
provides an exhaustive analysis and result set for PL-to-PS
communications. It shows that the PS and PL can access the
main memory with up to 4.8 GBps of throughput. In [15],
the authors report that accessing PL-located memory blocks
can be done at ±800 MBps. These results provide insight
into the level of performance one can expect when employing
“simple” direct access means like the memory region mapping
supported by USW (see Sec. III-C).

However, in the future, USW aims to enable the gen-
eration of more sophisticated means of interaction between
the PL-located accelerators and the PS-located OS, such as
io_uring and virtIO. In these cases, the previously reported
measurements only represent a performance upper limit as the
protocols’ control logic must also be considered. The exact
final timings are difficult to predict as they are influenced
by orthogonal factors such as the communication protocol’s
control logic, the PL frequency, bus concurrency, etc. Imple-
menting and evaluating such OS-to-accelerator communication
is part of the authors’ future research.

VI. CONCLUSION AND EXTENSIONS

This article presents USW; an open-source SpinalHDL
library to simplify HW/SW co-design on AMD-Xilinx Ultra-
Scale+ platforms. It does so by conveniently generating ready-
to-use software infrastructure, effectively supporting collabo-
rative development on the UltraScale+ platforms.

At the time of writing, the library is in its inception,
and further development and refinement will take place. The
authors foresee three directions. (1) Expanding the supported
interfaces and I/O types (e.g., CoreSight trace port interface,
Raspberry Pi camera), boards, and Vivado versions. An im-
portant milestone is to provide hardware and software support
for designing cache-coherent PL accelerator in the form of
(a) re-usable hardware templates and (b) generating ready-to-
use Arm Trusted Firmware patches. (2) Addition of support
for established AMD-Xilinx technologies such as partitioning
of the PL and partial reprogramming. (3) Simplification of
PS-PL communication via the generation of software support
and hardware modules following established protocols such as
io_uring, remote_proc, and ROS.
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