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Abstract—Multiple resource co-scheduling algorithms and
pipelined execution models are becoming increasingly popular,
as they better capture the heterogeneous nature of modern
architectures. The problem of scheduling tasks composed of
multiple stages tied to different resources goes under the name of
“flow-shop scheduling”. This problem, studied since the ’50s to
optimize production plants, is known to be NP-hard in the general
case. In this paper, we consider a specific instance of the flow-shop
task model that captures the behavior of a two-resource (DMA-
CPU) system. In this setting, we study the problem of selecting
the optimal operating speed of either resource with the goal
of minimizing power consumption while meeting schedulability
constraints. We derive an algorithm that finds an exact solution
to the problem in polynomial time, hence it is suitable for online
operation even in the presence of variable real-time workload.

I. INTRODUCTION

The current trend in embedded systems industry is to exploit
the high degree of parallelism offered by modern architectures.
In fact, they are rich in computational resources and offer
a plethora of specialized components capable of efficiently
performing specific sub-tasks. For instance, in scratchpad-
based architectures, data engines (DMAs) are first used to
load the task to be executed, or the data to be processed,
onto the scratchpad. Next, the loaded task is executed on the
CPU. Similarly, if we consider hybrid CPU-GPU architectures,
the CPU is responsible for device initialization and data
preparation, while image processing kernels are dispatched
to the GPU to boost performance. In the real-time literature,
execution models [1, 2] have been proposed whose tasks are
composed by two phases: a memory phase and an execution
phase. During the former one, task data are loaded from
main memory to cache or scratchpad memory; during the
latter phase, the task is executed using the preloaded data. A
precedence constraint between memory and execution phase
exists because the execution of a task cannot begin before the
required data have been loaded. Moreover, while the execution
phase is performed on the CPU, data load can be carried out
using a DMA. Thus, two phases of different tasks can be
performed in parallel.

In general, the class of scheduling problems for multiple-
stage jobs that execute on an ordered sequence of resources
takes the name of “flow-shop scheduling”. This class of
problems has been largely studied since the early ’50s because
is also relevant to schedule resources and assembly phases
in production plants. The problem of selecting the optimal
schedule for flow-shop jobs with more than two stages, how-
ever, has been proven to be NP-hard in [3]. In this work,
we focus on flow-shop tasks characterized by two stages and
consider a task model where: a) each task stage requires
to be executed on a specific type of resource, and b) one
resource of each type exists in the system. Given this setup,
we study the problem of determining the minimum speed at
which one of the two resources (e.g., CPU) can be operated
such that schedulability constraints are met. Specifically, we
propose an on-line algorithm that, given a batch of jobs
with the same deadline as input, determines the minimum
(optimal) speed at which to operate the variable-speed resource
subject to deadline constraints. The proposed algorithm runs

in polynomial time and is thus suitable for online operation in
open systems, where real-time workload changes at run-time
and the system needs to adapt its scheduling policy. In order to
solve the described problem and without loss of generality, we
instantiate our model on a DMA-CPU scenario and derive our
results assuming fixed DMA speed and variable CPU speed
(the same approach can be entirely reused for an equivalent
system where the speed of the first resource is varied instead).
In the following, speed is quantified in terms of variable clock
period of the computing resource. As clarified in Section V,
this allows us to reason on piecewise linear functions, hence
it is easier for the reader to follow the proposed results.

In a nutshell, this work introduces a novel and efficient
(polynomial-time) algorithm that derives the optimal CPU (or
memory) speed when single-rate periodic tasks that run across
two stages of single-unit resources are considered.The selected
optimal speed allows minimizing power consumption while
ensuring that schedulability constraints are met.
Organization of the paper. The remainder of this paper is
organized as follows. In Section II, we review related work.
In Section III, we present the adopted system model and
assumptions. Section IV establishes the necessary background.
Next, we describe the proposed algorithm in Section V, while
in Section VI we evaluate its complexity. Finally, Section VII
concludes the paper and outlines future work.

II. RELATED WORK

The flow-shop problem has been extensively studied by the
combinatorial optimization community, especially in the con-
text of production scheduling. In 1954, Johnson proposed an
optimal solution to the flow-shop problem in the case of a
two-stage production facility and a collection of independent
jobs to be processed in sequence on the two resources [4].
More recently, the flow-shop problem has been shown to be
strongly NP-hard if jobs consist of more than two stages [3],
or if two or more resources are available for each stage [5].
To overcome such limitations, several heuristic solutions [6]
and polynomial-time approximation schemes (PTAS) [7] have
been proposed.

Lately, along with the advent of modern embedded sys-
tems, the real-time scheduling community renewed the inter-
est towards multi-stage execution models. In the embedded
and high-performance domain, co-scheduling algorithms are
increasingly used to bound the memory interference due to
concurrent accesses to shared memory by different cores. An
attempt in this direction was pursued by Pellizzoni et al. [1],
who introduced the PRedictable Execution Model (PREM).
This scheduling framework models a task as comprised of
two distinct phases: a memory phase, where the task context
is loaded into local memory, and an execution phase where
the task executes with no memory contention. Schedulability
analyses for PREM tasks have been proposed in [2, 8, 9].

A number of works that focus on schedulability analysis of
real-time tasks on scratchpad-based systems employ a two-
stage, two-resource task model [10, 11, 12]. These works
are concerned with the arrangement of scratchpad memory in
space and load/unload operations in time. While we inherently
share similarities in the task model adopted, to the best of our
knowledge none of the existing works considers the problem



of deriving the optimal speed of the two resources while
satisfying real-time constraints. By restricting our setting to
the case where an optimal schedule can be computed, we take
a first step in this direction by deriving the minimum operating
speed for the computing (or memory) resource that satisfies
schedulability constraints.

III. SYSTEM MODEL

While our results can be applied to generic two-resource flow-
shop tasks, we instantiate our problem on traditional com-
puting platforms, considering DMA-CPU tasks (e.g., PREM
tasks). Thus, we express tasks as composed of a memory
phase (M -phase), followed by a computation phase (C-phase).
More formally, we consider a set T of n periodic real-time
tasks τ1, . . . , τn. We assume that the two resources can operate
with any value of clock period1 in the range Tck ∈ [1,+∞).
Each task τi is defined by a (worst-case) memory-access time
Mi and a (worst-case) computation time Ci, relative to the
initial configuration where the clock period Tck is equal to
1, i.e., is the minimum possible. Hence, if the objective is
to optimize the speed of the first (resp., second) resource,
the memory-access time Mi (resp., computation time Ci)
of each task is linearly scaled2 as M t

i = Mi · t (resp.,
Cti = Ci · t) for any value of Tck = t ≥ 1, while the
speed of the other resource is kept constant. The underlying
assumption is that, in the considered platform, the speed of
each resource can be varied continuously. Albeit this is not true
in general, it is worth noticing that increasing attention is given
to advanced power scaling features in all modern architectures,
from embedded platforms to data-centers. Since operating
frequency is known to have a directly proportional impact
on power consumption [13], modern platforms are endowed
with Dynamic Voltage and Frequency Scaling (DVFS) units
that allow live adjustments of the operating frequencies at
a high granularity. For example, the Nvidia Tegra K1 SoC3

is a hybrid CPU-GPU architecture designed for embedded
applications that allows for nine levels of frequency scaling
on its low-power CPU cores, twenty levels for its high-power
CPUs and fifteen levels for its GPU. Similarly, the Intel i7
4770K4, designed for workstation machines, provides sixteen
frequency scaling levels.

We assume that all tasks share the same relative deadline
D, which is constrained to be smaller than or equal to their
period T . Therefore, starting from an arbitrary time r when
all tasks release their first job, subsequent job releases of all
tasks will happen at times r+kT , being k any positive integer.
Each job released by τi first executes its M -phase on a data
processor, and then executes its C-phase on a CPU. Thus, M -
phases (C-phases) of a given task τi can progress in parallel
with C-phases (M -phases) of a different task τj .

Since in our model tasks are synchronously released and
have the same deadline D, preemption does not provide
any schedulability advantage. Thereby, our results do not
use preemption. Also, modeling resources as non-preemptive
allows capturing the realistic behavior of some resources. For
instance, DMA operations can be aborted/canceled, but it is
often not safe to assume that a certain amount of data has
been successfully transferred.

1Although reasoning in terms of clock period Tck describes well the
performance of CPUs, it is more appropriate to reason in terms of bandwidth
when describing the performance of memory subsystems. However, since a
dualism exists between the two concepts, we will adopt the notation Tck when
referring to either resource type.

2Computation is performed over data that has been preloaded into local
memory, while memory operations do not involve computation. Thus compu-
tation time scales linearly with clock speed as long as CPU speed and local
memory are tied to the same clock. Similarly, performance of memory-only
operations scales linearly with the configured transfer bandwidth.

3See http://www.nvidia.com/object/tegra-k1-processor.html
4See http://ark.intel.com/products/75123/Intel-Core-i7-4770K

For a given schedule of jobs in a period, the makespan is
defined as the time between the release of the jobs and the
completion of the C-phase of the last job in the schedule. In
this setting, the schedulability problem (i.e., verify whether
deadlines are met) is equivalent to the problem of makespan
minimization, for which an optimal solution that runs in
polynomial time exists [4]. Since the execution pattern repeats
identically in each period, we can restrict our analysis to
consider only the first instance of each task, denoting such
a collection of jobs as J1, . . . , Jn. Without loss of generality,
we assume all such jobs to be released at time 0 and to have
deadline at time D.

We remark that, when more general task models are consid-
ered, the problem loses some of the desirable properties it has
in the case of two resources and two-stage tasks. We previously
mentioned that the makespan minimization problem becomes
NP-hard when each task consists of more than two phases [3]
or when two or more resources are available for each stage [5].
Moreover, if tasks do not share the same period/deadline,
the schedulability problem is no longer equivalent to that
of makespan minimization, and since no optimal scheduling
algorithm is known for the general schedulability of multi-
stage tasks, it is nontrivial to extend our results to more general
settings while preserving optimality.

Nonetheless, despite the negative results on the tractability
of the problem in the generic case, significant performance
gains can be achieved by devising novel co-scheduling policies
able to exploit the potential parallelism and energy saving
offered by modern embedded architectures. This work is a first
step to address the broader problem of speed selection for the
class of multi-stage execution models. We envision that future
research can extend this work to the scheduling of three-stage
jobs (under certain assumptions [4]), and to optimally adjust
speed of multiple resources. Finally, while extending the task
model to arbitrary periods is not needed for practical purposes,
we plan to extend it to support a limited set of task rates.
For instance, our approach could be reused with different job
rates on a multicore platform if each rate group is scheduled
in isolation on private hardware resources (core with dedicated
DMA channel).

IV. BACKGROUND

In this section, we provide the necessary background for the
reader to understand the analogies of our scheduling problem
with the well-known “flow-shop” problem.

A. Johnson’s algorithm
Johnson’s algorithm [4] provides an optimal solution to

schedule a collection of same-deadline, time-synchronized
two-resource tasks. The following theorem defines the relative
ordering between pairs of jobs in an optimal schedule.

Theorem 4.1: (from [4]) Given a collection J1, . . . , Jn of
two-stage flow-shop jobs, Ji precedes Jj in an optimal sched-
ule if

min(Mi, Cj) < min(Mj , Ci). (1)
The steps of Johnson’s algorithm for constructing an optimal

schedule are the following:
1) Partition the jobs into two sets S1 and S2. S1 contains

the jobs having Mi < Ci, S2 contains the jobs with
Mi > Ci. The jobs with Mi = Ci may be put in either
set;

2) Jobs in S1 are sorted in increasing order, while jobs in
S2 are sorted in decreasing order;

3) The final ordering is obtained by concatenating the two
sequences as S = [S1;S2].

The cost of sorting the two sets dominates over other
operations, hence the time complexity of Johnson’s algorithm
is O(n log(n)). In the rest of the paper, we will denote as
σt = {σt1, . . . , σtn} the permutation of jobs that determines
the optimal schedule when Tck = t.



B. Computing the optimal makespan

Given an optimal job ordering σt = {σt1, . . . , σtn}, the
corresponding value of makespan µt is given by:

µt =
n

max
i=1

 i∑
j=1

Mj + t ·
n∑
j=i

Cj

 . (2)

This expression gives us many insights. Specifically, it in-
dicates that an optimal schedule has the following characteris-
tics: (i) there are no internal gaps in the use of either resource;
(ii) there exists a critical path that determines the minimum
makespan; (iii) such a critical path can be determined by
identifying a crossover job J∗i such that jobs preceding it in the
optimal schedule contribute to µt with their memory-access
time, while subsequent jobs contribute with their computation
time; (iv) J∗i contributes to µt with both Mi and Ci.

Note also that Equation (2) can be implemented efficiently,
that is, to run in linear time in the size of the task-set.

V. OPTIMAL RESOURCE SPEED SELECTION

In this section, we present our algorithm to derive the min-
imum resource speed that guarantees the schedulability of a
given task-set. In the rest of the paper, we will denote as FC(t)
(resp., FM (t)) the function that associates the value of the
optimal makespan to any value of clock period Tck = t when
variations in the speed of the second (resp., first) resource are
considered. For ease of understanding, we will instantiate the
problem in the case of a fixed DMA speed and a variable CPU
speed, and then show how to reuse the same approach when
considering variations in the speed of the first resource.

For any fixed value of Tck, Johnson’s algorithm (see Section
IV-A) can be used to find the job ordering that corresponds
to the minimum makespan. However, as the clock period is
scaled, the value of the optimal makespan increases, due to
the scaling factor applied to computation times. Additionally,
depending on the scheduling decisions imposed by Equa-
tion (1), jobs can be possibly rearranged in a different order.
As an example, consider a task-set composed of three tasks
τ1 = (M1, C1) = (4, 4), τ2 = (3, 2) and τ3 = (5, 1), with
T = D = 20. Initially, when Tck = 1, Johnson’s algorithm
orders the jobs as depicted in Figure 1(a), with J3 being the
crossover job. The optimal makespan is equal to 13 and can
be found by Equation (2), where the maximum is achieved for
i = 3. As the clock period is scaled, the optimal makespan
linearly increases, due to the inflation of the C-phase of J3.
However, when the value of C1+C2 reaches that of M2+M3
(i.e., when Tck = (M2+M3)/(C1+C2) = 1.33), J1 becomes
the crossover job, as shown in Figure 1(b), and the makespan
increases at a higher rate. Then, as soon as the computation
time of τ2 reaches the value of its memory-access time (i.e.,
when Tck = M2/C2 = 1.5), Johnson’s algorithm imposes a
job reordering (see Figure 1(c)) that reduces the makespan
growth rate. Finally, the rate of the optimal makespan will
increase again as soon as C2 reaches the value of M1, i.e.,
when Tck =M1/C2 = 2, because from this point there is no
gap in the processor usage, and all three jobs will contribute to
the makespan with their computation times (see Figure 1(d)).

Figure 2 illustrates the function FC(t) for the example
above. We can immediately observe that such a function: (a) is
monotonically increasing; (b) is piecewise linear; and (c) the
points where its slope changes (i.e., Tck = {1.33, 1.5, 2}) are
exactly those described in Figure 1. The intersection point be-
tween this function and the horizontal line corresponding to the
relative deadline gives the minimum processor speed (i.e., the
maximum clock period) that optimizes the power consumption
while ensuring the schedulability of the considered task-set.

In the rest of the paper, we will denote as changing points
those values of Tck where the slope of FC(t) changes. As
evident from the example of Figure 1, changing points may
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b)
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M2 M3M1
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M2 M1 M3
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Fig. 1. Example of a task-set composed of three tasks with parameters
τ1 = (4, 4), τ2 = (3, 2), τ3 = (5, 1). The four insets illustrate the optimal
schedule when a) Tck = 1; b) Tck = 1.33; c) Tck = 1.5; d) Tck = 2.
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Fig. 2. Example of the function FC(t) associating the clock period Tck to
the value of the optimal makespan for the task-set in Figure 1. The horizontal
line corresponds to the relative deadline D = 20.

be of two types, according to the following definitions.
Definition 5.1 (Schedule changing points): A schedule

changing point is a value of clock period t̃ of the
form Mi/Ci, for some i ∈ [1, . . . , n], such that
limt→t̃− F

′
C(t) > limt→t̃+ F

′
C(t) (i.e., the slope of FC(t)

decreases in correspondence of t = t̃).
Definition 5.2 (Crossover changing points): A crossover

changing point is a value of clock period t̂ of the form5

Mσt̂
i+1

+ . . .+Mσt̂
i+k+1

Cσt̂
i
+ . . .+ Cσt̂

i+k

,

for some i ∈ [1, . . . , n] and some k ∈ [0, . . . , n − i], such
that limt→t̂− F

′
C(t) < limt→t̂+ F

′
C(t) (i.e., the slope of FC(t)

increases in correspondence of t = t̂).
Intuitively, schedule changing points correspond to values

of clock period at which a job reordering occurs according
to Johnson’s algorithm. The slope of FC(t) decreases after a
schedule changing point because, if a reordering takes place
in the optimal schedule, then the minimum makespan in the
new configuration must be strictly dominated by the previous
one. A more formal characterization of FC(t) is given in [14].

The next lemma shows that a job may change its position in
an optimal schedule only when its computation time becomes
equal to its memory-access time.

Lemma 5.1: For any pair of jobs Ji and Jj , such that Ji
precedes Jj in an optimal schedule at Tck = t′ ≥ 1, a job
swapping may occur in the interval Tck ∈ (t′,+∞) only at
Tck = t′′ =Mj/Cj , provided that t′′ > t′.

Proof: Due to space limitations, the proof is omitted. The
interested reader can find the proof in [14].

On the other hand, crossover changing points correspond to
clock periods at which the crossover job changes. In other

5We recall that σt
1, . . . , σ

t
n is the permutation of jobs corresponding to the

minimum makespan when Tck = t.



words, when some of the gaps in the processor usage are
filled, a larger number of jobs could start contributing to the
makespan with their computation times. To better clarify the
difference between the two sets of changing points, consider
again the example in Figures 1. Here, 1.5 is a schedule
changing point, while 1.33 and 2 are crossover changing
points. Note also that when Tck ∈ [1, 1.33), the slope of
FC(t) is given by C3, as J3 is the crossover job, while when
Tck ∈ [1.33, 1.5), FC(t) starts increasing with a larger slope
(
∑3
i=1 Ci), since now J1 has become the crossover job.

A. Finding changing points
We now describe how, for a given collection of jobs, the

changing points of FC(t) can be computed. Due to space
constraints, we omit some details about the algorithms and
refer to an extended version of our paper [14] for a more
detailed description.

a) Schedule changing points
To compute the list of schedule changing points Ps, we first

define a list CPs of candidate schedule changing points:

CPs = {Mi/Ci |Mi > Ci, i = 1, . . . , n}. (3)

The list of candidates CPs may be larger than Ps because not
necessarily a job reordering takes place when the computation
time of a job Ji reaches the value of Mi. In fact, it may
happen that the precedence relations imposed by Equation (1)
remain unchanged, meaning that Ji is already in its “right
position” with the current ordering. In this case, Mi/Ci does
not represent a schedule changing point.

The list Ps can be identified starting from CPs as described
in Algorithm 1. The algorithm returns two pieces of informa-
tion. First, it provides the list of schedule changing points Ps
ordered according to their occurrence as the clock period is
scaled in (0+,+∞). Second, the algorithm generates a list of
schedules S. Each element of S corresponds to the schedule
that minimizes the makespan for all values t of clock period
in the interval [Ps,i,Ps,i+1). In other words, it always holds
that Si = σt for Ps,i ≤ t < Ps,i+1.

Algorithm 1 Computation of the lists Ps and S
1: procedure SCHEDULEPOINTS(T )
2: B ← DSORT(T , key = Ci)
3: E ← ASORT(T , key =Mi)
4: SW ← ASORT(T , key =Mi/Ci)
5: L← ARRAY(size = n, value = null)
6: S ← B; Ps ← {0}; f ← −1
7: for j = 1 to n do
8: r ← SWj .M/SWj .C
9: k ← INDEXOF(SWj , E)

10: Lk ← SWj

11: B ← REMOVE(SWj , B)
12: L′ ← FILTER(L, value = null)
13: σcurr ← CONCAT(L′, B)
14: if σcurr 6= LAST(S) then
15: Ps ← APPEND(r,Ps)
16: S ← APPEND(σcurr, S)
17: if f = −1 and r ≥ 1 then
18: f ← r
19: end if
20: end if
21: end for
22: {Ps, S} ← REINIT(Ps, S, f)
23: return {Ps, S}
24: end procedure

Algorithm 1 first constructs the beginning and ending
optimal schedules for values of Tck ranging in (0+,+∞).
According to Equation (1), when the computation time Ci of
each job is shorter than its corresponding memory-access time

Mi, the optimal schedule is obtained by sorting the jobs by Ci
in descending order. Thus, this schedule is the initial one for
Tck ≈ 0+, and is calculated as B at line 2, and also stored as
first element of S at line 6. Similarly, for Tck ≈ +∞, the jobs
are sorted in ascending order according to Mi. This sequence
is calculated and stored into E at line 3.

The key idea to find the schedule changing points is to
observe that each candidate is associated to a single job, and,
by Johnson’s rule, if a schedule changing point occurs at
Tck = t, only the associated job will swap position from
σt

−
to σt. Hence, by sorting the candidate changing points

in ascending order, we can build a list of possibly swapping
jobs SW (line 4).

Next, in the for loop at lines 7-21, we distinguish between
jobs that have passed their schedule changing point and jobs
that have not. It is enough to order the former class in
ascending order by Mi and the latter class in descending order
by Ci. The concatenation of the two sets will represent the
optimal schedule at Tck = t. The array L, initialized at line 5,
will progressively store the jobs that have passed their schedule
changing point. As jobs are moved to L, their position is
determined by their index in the final schedule E. The filtering
on L is needed to remove placeholder null objects and
construct a valid candidate schedule (line 12). At lines 14-20,
only changing points that determine a change in the optimal
schedule are appended to Ps, and the corresponding schedule
is appended to S. Finally, since we are only interested in the
changing points within [1,+∞), all points below 1 should be
discarded. At line 22, the function REINIT filters the points,
based on the first element to consider (i.e., f at line 18), setting
1 as first element of Ps and updating S accordingly.

b) Crossover changing points
Since a job reordering occurs only in correspondence of

schedule changing points, the optimal schedule never changes
between pairs of adjacent schedule changing points. Then,
to characterize FC(t), it is necessary to find the crossover
changing points falling between each pair of adjacent elements
in Ps, i.e., in any interval of the form [Ps,i,Ps,i+1)

6. The
challenging task is then to predict in which order the gaps in
the processor usage are filled as the clock period is scaled.
Indeed, the number of crossover changing points strictly
depends on the order in which the gaps are filled. If they
are filled in order, starting from the last job in the schedule,
distinct crossover changing points are generated, because the
slope of FC(t) increases when each of the gaps is filled. If
they are filled out of order, a crossover changing point may be
generated only when the first of the considered jobs becomes
the crossover job. We refer to [14] for a more exhaustive
explanation and an illustrative example.

Relying on these observations, Algorithm 2 derives the
sublist of crossover changing points falling inside any interval
[Ps,i,Ps,i+1). The algorithm takes as input the initial task-set
T , the list Ps, the index therein representing the left endpoint
of the interval, and the list of optimal schedules S. It produces
in output a structure ρ of crossover changing points, where
the field ρ.ck stores their values, while the field ρ.x contains
the index of the crossover job in the optimal schedule. As
explained in Section VI, this is needed to efficiently compute
the value of FC(t) once the list of changing points is known.

At line 3, the gaps in the processor usage are computed by
the function ADJACENTJOBS, which initializes the structure Z
as follows. The field Z.jobs stores the groups of jobs whose
C-phases are executed consecutively in the optimal schedule,
with the exception of the last group, which may not give rise
to a gap in the processor usage (e.g., C3 in Figure 1(a)). The
field Z.ck stores instead the values of clock period at which the
gaps are closed. Each of such values Zj .ck can be computed
as M(Zj .jobs)

C(Zj .jobs)
, where the operators M(J) and C(J) take as

6For the last element of Ps, we consider the interval [Ps,i,+∞).



Algorithm 2 Crossover changing points in [Ps,i,Ps,i+1)

1: procedure CROSSOVERPOINTS(T , Ps, i, S)
2: t← Ps,i; ρ← ∅; σt ← Si

3: Z ← ADJACENTJOBS(T , σt); D ← 0; N ← 0
4: for j = SIZE(Z) to 1 do
5: if j 6= SIZE(Z) and t · Zj .ck > ϕ.ck then
6: if i == SIZE(Ps) or ϕ.ck < Ps,i+1 then
7: ρ← APPEND(ϕ, ρ)
8: end if
9: D ← 0; N ← 0

10: end if
11: D ← D + C(Zj .jobs)
12: N ← N +M(Zj .jobs)
13: ϕ.ck = t · (N/D); ϕ.x← Zj .jobs1
14: end for
15: if i == SIZE(Ps) or ϕ.ck < Ps,i+1 then
16: ρ← APPEND(ϕ, ρ)
17: end if
18: return ρ
19: end procedure

input a group J of s adjacent jobs in σt of the form J =
{σtk, . . . , σtk+s−1} and are defined as follows:

C(J) =

k+s−1∑
h=k

Cσt
h
; (4)

M(J) =

k+s−1∑
h=k

Mσt
h+1

. (5)

Note that the index shift in Equation (5) (i.e., σth+1 instead
of σth) complies with the notion of crossover changing point
given in Definition 5.2.

The variable N (resp., D) is used to compute the numerator
(resp., denominator) of the partially computed changing point,
stored in ϕ.ck, while ϕ.x keeps track of the current index of
the crossover job. In the for loop at lines 4-14, the structure Z
of adjacent jobs is walked backward. If the currently examined
group Zj is not the last one, and its value of clock period is
greater than ϕ.ck, it means that the gap corresponding to Zj
will be filled later than the one relative to ϕ (i.e., in order), and
the two groups of jobs will give rise to two distinct crossover
changing points. Hence, ϕ is appended to ρ, provided that the
check at line 6 is passed. This check ensures that the newly
computed changing point does not exceed the right endpoint
of the interval Ps,i+1.

If the check at line 5 fails, it means that the processor gap
corresponding to Zj will be filled before the one relative to ϕ,
hence the two groups of jobs will generate a single changing
point. At lines 11-13, the intermediate values of D and N
are updated using the operators C(J) and M(J), and the new
value of ϕ.ck is computed. The ratio N/D is scaled by t
to account for the inflation of computation times occurred in
the interval [1,Ps,i), as the crossover changing points in each
interval are initially computed with respect to Ps,i. Also, ϕ.x is
updated with the new index of the crossover job, given by the
first element of Zj .jobs. After the for loop, the last crossover
changing point is appended to ρ (subject to the same check
performed at line 6), which is finally returned as output.

B. Complete algorithm
We now describe the complete algorithm to derive the list
P of changing points of FC(t).

The pseudo-code is shown in Algorithm 3. At line 2, Algo-
rithm 1 is invoked to compute the list of schedule changing
points Ps, and P is initialized with its first value (we recall
that by construction Ps,1 = 1). Then, at line 3, Algorithm 2 is
initially invoked with i = 1, and then the for loop at lines 4-8

Algorithm 3 Computation of the list P
1: procedure CHANGINGPOINTS(T )
2: {Ps, S} ← SCHEDULEPOINTS(T ); P ← Ps,1

3: P ← APPEND(CROSSOVERPOINTS(T ,Ps, 1, S),P)
4: for i = 2 to SIZE(Ps) do
5: P ← APPEND(Ps,i,P)
6: T ′ ← SCALEJOBS(T ,Ps,i)
7: P ← APPEND(CROSSOVERPOINTS(T ′,Ps, i, S),P)
8: end for
9: return P

10: end procedure

iterates on the subsequent schedule changing points. At each
iteration, the i-th point in Ps is appended to P , and a new task-
set T ′ is obtained by scaling the original computation time of
each task by the value of Ps,i, to account for the inflation
occurred in the previous interval (line 6). Then, the crossover
changing points in [Ps,i,Ps,i+1) are computed and appended
to P , which is finally returned as output.

Since FC(t) is a piecewise linear function, it can be com-
pletely specified by computing its value in correspondence of
all changing points, and determining the slope of the last piece.
As the optimal job ordering is known for all values of Tck (it
only changes in correspondence of schedule changing points),
Equation (2) can be applied to find the value of FC(t) for each
changing point. The slope of the last piece is simply given by∑n
i=1 Ci, because, in the final schedule, the computation times

of all jobs contribute to the makespan (e.g., see Figure 1(d)).

C. Scaling the speed of the first resource
We now consider variations in the speed of the first resource,

that is, we seek to find the function FM (t), assuming a fixed
CPU speed while varying the DMA speed. This function can
be simply derived once the list P = {p1, . . . , p`} of changing
points of FC(t) is known7. Thus, we adapt the original system
as follows.

First, we establish the initial parameters corresponding to
the configuration Tck = 1. Since we are interested in scaling
memory-access times, we set the computation time C ′i of each
job Ji by imposing a fixed CPU speed β ≥ 1, such that C ′i =
β · Ci. Next, we select the starting point for the DMA speed
as a fraction α of the original value, with 0 < α ≤ 1, such
that M ′i = α ·Mi. In this new setting, computation times are
kept constant, while memory-access times are scaled as M ′i · t
for any value of Tck = t.

The list of changing points of FM (t) is then given by P ′ =
{p′1, . . . , p′`}, whose generic element p′j is equal to:

p′j =
1

p`−j+1
· β
α
.

Intuitively, this means that the changing points in P ′ can
be simply found as the reciprocal of those in P , up to
a multiplicative factor given by the choice of the initial
parameters. Due to this correspondence, the points in P ′ are
indexed in reverse order with respect to P . It is then necessary
to discard all points < 1 from P ′ to restrict the domain of the
function to the interval [1,+∞). As before, Equation (2) can
be used to find the value of FM (t) in correspondence of each
changing point. Symmetrically, the slope of its last piece is
given by

∑n
i=1Mi.

VI. COMPLEXITY

In this section, we discuss the complexity of the proposed
algorithm (we refer to [14] for a more comprehensive eval-

7Here, we refer to the complete list of changing points of FC(t), i.e.,
including all changing points in the interval Tck ∈ (0+,+∞). This means
that, when running Algorithm 1, the function REINIT at line 22 should not
be executed.



uation). First, we derive bounds on the maximum number of
changing points of FC(t) (equivalently, FM (t)).

Lemma 6.1: FC(t) contains at most n− 1 schedule chang-
ing points.

Proof: The number of schedule changing points is max-
imized when the maximum number of swaps between jobs is
necessary to reach the final schedule, where M -phases are
sorted in ascending order. Such a worst-case configuration
corresponds to the one where: (i) for any job Ji, Ci < Mi,
i.e., in the initial optimal schedule, all jobs are computation-
dominated (hence sorted by decreasing Ci), and (ii) M -phases
are also sorted in descending order. In this case, it is immediate
to see that n − 1 moves are necessary to reorder the jobs as
in the final schedule, proving the lemma.

Lemma 6.2: Between any two adjacent schedule changing
points of FC(t), there are at most n − 1 crossover changing
points.

Proof: The worst-case scenario that maximizes the num-
ber of crossover changing points in any interval [Ps,i,Ps,i+1)
is given by the situation in which there are n − 1 gaps in
the processor usage that are closed in order. The last job is
excluded (leading to a bound of n− 1 instead of n) because,
as previously observed, it may not give rise to a gap in the
processor usage.

By combining the two lemmas above, it follows that the
number of changing points is quadratic in the number of jobs.
A bound on the time complexity of the complete algorithm is
then given by O(n2). Indeed, the complexity of Algorithm 1,
which finds the list Ps, is O(n2), because the for loop at lines
7-21 iterates n times, and at each iteration the cost of filtering
the array L at line 12, also linear in the number of tasks,
dominates over the other operations. The cost of finding the
crossover changing points is also quadratic, because Algorithm
3 invokes n− 1 times Algorithm 2, which in turn has a linear
cost, since the for loop at lines 4-14 iterates n times and each
iteration has a constant complexity. Note that the operations
at lines 11 and 12 do not increase the complexity of the
algorithm, because the operators C(J) and M(J) are applied
to disjoint sets that have an aggregate cardinality of n− 1.

Note also that since Algorithm 2 keeps track of the index
of the crossover job for each crossover changing point, it is
then sufficient to compute the value of the optimal makespan
µt only in correspondence of the schedule changing points
(which can be done in O(n2)), and then update its value for
each crossover point (based on the knowledge of the crossover
job), which requires O(n2) overall. In this way, the complexity
remains quadratic in the task-set size.

While our algorithm derives the function FC(t) (or, equiv-
alently, FM (t)) analytically, a naı̈ve approach would be to
perform a binary search on the clock period domain, trying to
find the optimal value of Tck that guarantees the schedulability.
Such an approach would require to select a quantization step
and to run Johnson’s algorithm at each point. Beside having
a high computational cost, this solution could imply some
technical difficulties, mainly due to the non-convexity of the
functions. Also, this method would only be able to identify
the optimal solution up to the size of the quantization step.

A final remark concerns the applicability of our method also
when considering systems having a small number k << n of
speeds. In this case, the computation of the schedule changing
points would require O(n log(n)) for the sorting at line 4
of Algorithm 1, which dominates the cost of the filtering at
line 12, given by O(nk), as it should be performed only k
times. The computation of crossover changing points should
be performed only once, i.e., for the interval [Ps,i,Ps,i+1)
that delimits the optimum. Hence, the complexity would
be comparable to running Johnson’s algorithm k times, but
without any dependence on the number of available speeds.

VII. CONCLUSION AND FUTURE WORK

Co-scheduling algorithms are increasingly being developed
to exploit the great potential of modern architectures, and
particularly to coordinate the access to memory and computing
resources. In this paper, we considered a system composed of
DMA-CPU tasks executing sequentially on the two resources.
We developed an algorithm that optimally determines the
speed of either resource as the one that minimizes power
consumption while ensuring the schedulability of the con-
sidered task-set. The algorithm leverages the seminal results
on flow-shop scheduling to propose an exact solution for
the problem. In addition, the algorithm is shown to have a
quadratic complexity in the task-set size, hence it can be
efficiently applied for both offline and online operations.

As future work, we plan to extend our results by considering
simultaneous variations in the speed of the two resources. We
also intend to apply our approach to three-stage task systems in
special sub-cases of interest, widening its applicability to more
general task models. Finally, we envision that by introducing
additional assumptions or constraints to the problem, the time
complexity of our algorithm could be further improved.
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