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Abstract Multiple resource co-scheduling algorithms and pipelined execution
models are becoming increasingly popular, as they better capture the het-
erogeneous nature of modern architectures. The problem of scheduling tasks
composed of multiple stages tied to different resources goes under the name
of “flow-shop scheduling”. This problem, studied since the ‘50s to optimize
production plants, is known to be NP-hard in the general case. In this paper,
we consider a specific instance of the flow-shop task model that captures the
behavior of a two-resource (DMA-CPU) system. In this setting, we study the
problem of selecting the optimal operating speed of the two resources with the
goal of minimizing power usage while meeting real-time schedulability con-
straints. In particular, we derive an algorithm that finds the optimal speed of
one resource while the speed of the other resource is kept constant. Then, we
discuss how to extend the proposed approach to jointly optimize the speed
of the two resources. In addition, applications to multiprocessor systems and
energy minimization are considered. All the proposed algorithms run in poly-
nomial time, hence they are suitable for online operation even in the presence
of variable real-time workload.
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Preliminary Publication

This work is an extended version of the DATE 2016 paper on Speed Opti-
mization for Tasks with Two Resources [22]. With respect to the conference
version, this paper provides a more exhaustive explanation and illustrative ex-
amples about the main results. In addition, the following novel contributions
are introduced:

– In Section 6.2, we extend our approach to power minimization by allowing
two degrees of freedom for speed selection, i.e., we derive an algorithm that
jointly optimizes the speed of both resources.

– In Section 7.1, we derive a heuristic approach for optimizing resource speed
in a partitioned multi-core system with a single DMA channel.

– We discuss in Section 7.2 what are the required steps to extend our tech-
nique to minimize energy consumption instead of instantaneous power us-
age.

– We strengthen the motivation of the adopted task model by formally prov-
ing the NP-completeness of the two-stage flow-shop problem with interme-
diate deadlines. The proof is reported in Section 8.

– In Section 9, we experimentally evaluate the performance of the proposed
algorithms, both in the single- and multi-core setting.

1 Introduction

The current trend in embedded systems industry is to exploit the high degree
of parallelism offered by modern architectures. In fact, they are rich in com-
putational resources and offer a plethora of specialized components capable of
efficiently performing specific sub-tasks. For instance, in scratchpad-based ar-
chitectures, data engines (DMAs) are first used to load the task to be executed,
or the data to be processed, onto the scratchpad. Next, the loaded task is ex-
ecuted on the CPU. Similarly, if we consider hybrid CPU-GPU architectures,
the CPU is responsible for device initialization and data preparation, while
image processing kernels are dispatched to the GPU to boost performance. In
the real-time literature, execution models [24, 36] have been proposed whose
tasks are composed by two phases: a memory phase and an execution phase.
During the former one, task data are loaded from main memory to cache
or scratchpad memory; during the latter phase, the task is executed using the
preloaded data. A precedence constraint between memory and execution phase
exists because the execution of a task cannot begin before the required data
have been loaded. Moreover, while the execution phase is performed on the
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CPU, data load can be carried out using a DMA. Thus, two phases of different
tasks can be performed in parallel.

In general, the class of scheduling problems for multiple-stage jobs that
execute on an ordered sequence of resources takes the name of “flow-shop
scheduling”. This class of problems has been largely studied since the early
’50s because it is also relevant to schedule resources and assembly phases
in production plants. The problem of selecting the optimal schedule for flow-
shop jobs with more than two stages, however, has been proven to be NP-hard
in [14]. In this work, we focus on flow-shop tasks characterized by two stages
and consider a task model where: a) each task stage requires to be executed
on a specific type of resource, and b) one resource of each type exists in the
system. Given this setup, we study the problem of determining the minimum
speed at which one or both resources can be operated such that real-time
schedulability constraints are met. Specifically, we propose an on-line algo-
rithm that, given a batch of jobs with the same deadline as input, determines
the minimum (optimal) speed at which to operate the two resources subject to
deadline constraints. The proposed algorithm runs in polynomial time and is
thus suitable for online operation in open systems, where real-time workload
changes at run-time and the system needs to adapt its scheduling policy. In
order to solve the described problem and without loss of generality, we instan-
tiate our model on a DMA-CPU scenario. First, we derive our results assuming
fixed DMA speed and variable CPU speed; then, we show how the same ap-
proach can be entirely reused for an equivalent system where the speed of the
first resource is varied instead; next, we show a possible approach to optimize
power usage considering the speed variation of both resources; finally, we pro-
pose a (non-optimal) extension targeting partitioned multiprocessor systems.
In the following, speed is quantified in terms of variable clock period of the
computing resource. As clarified in Section 5, this allows us to reason on piece-
wise linear functions, so that it is easier for the reader to follow the proposed
results.

In a nutshell, this work introduces a novel and efficient (polynomial-time)
algorithm that derives the optimal speed of resources, either memory, CPU or
both, when single-rate periodic tasks that run across two stages of single-
unit resources are considered. The selected speed allows optimizing power
usage while ensuring that schedulability constraints are met. Moreover, in this
work, we provide additional insights about the hardness of two-stage flow-shop
problem in the more general setting with intermediate deadlines. Additionally,
applications to multiprocessor systems and energy consumption minimization
are discussed. Finally, we perform a quantitative evaluation of the proposed
approach in comparison to simple heuristics.

Organization of the paper. The remainder of this paper is organized as
follows. In Section 2, we review related work. In Section 3, we present the
adopted system model and assumptions, while Section 4 establishes the neces-
sary background. Next, we describe the proposed algorithm and its complexity
in Sections 5 and 6. Additional extensions targeting multiprocessor systems
and energy consumption are discussed in Section 7. Section 8 contains hard-
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ness considerations for the more general scheduling problem with intermediate
deadlines. In Section 9 we evaluate the performance of our approach. Finally,
Section 10 concludes the paper and outlines the future work.

2 Related Work

The flow-shop problem has been extensively studied by the combinatorial op-
timization community, especially in the context of production scheduling. In
1954, Johnson proposed an optimal solution to the flow-shop problem in the
case of a two-stage production facility and a collection of independent jobs to
be processed in sequence on the two resources [20]. More recently, the flow-shop
problem has been shown to be strongly NP-hard if jobs consist of more than
two stages [14], or if two or more resources are available for each stage [15]. To
overcome such limitations, several heuristic solutions [8] and polynomial-time
approximation schemes (PTAS) [27] have been proposed.

Lately, along with the advent of modern embedded systems, the real-
time scheduling community renewed the interest towards multi-stage execu-
tion models. In the embedded and high-performance domain, co-scheduling
algorithms are increasingly used to bound the memory interference due to
concurrent accesses to shared memory by different cores [26]. An attempt in
this direction has been pursued by Pellizzoni et al. [24], who introduced the
PRedictable Execution Model (PREM). This scheduling framework models a
task as comprised of two distinct phases: a memory phase, where the task
context is loaded into local memory, and an execution phase where the task
executes with no memory contention. Schedulability analyses for PREM tasks
have been proposed in [36, 1, 2, 23].

While the main objective of PREM is to implement the load-execute task
model on COTS cache-based architectures, this model represents the com-
monly adopted one for scratchpad-based architectures. A number of works
that focus on schedulability analysis of real-time tasks on scratchpad-based
systems employ a two-stage, two-resource task model [13, 34, 35]. These works
are concerned with the arrangement of scratchpad memory in space and load-
/unload operations in time. While we inherently share similarities in the task
model adopted, to the best of our knowledge none of the existing works con-
siders the problem of deriving the optimal speed of the two resources while
satisfying real-time constraints. By restricting our setting to the case where
an optimal schedule can be computed, we take a first step in this direction by
deriving the minimum operating speed for the computing or memory resource
(or a combination of the two speeds) that satisfies schedulability constraints.

The design and implementation of a scratchpad-centric OS was proposed
in [29]. In this work, a three-stage (load, execution, unload) task model is used.
The load and unload phases are performed using a single DMA engine, while
execution phases are performed in parallel on two application cores. During
the load phase, the DMA engine copies the task code/data image from main
memory to local memory (scratchpad), so that contention-free execution can
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be performed. Although a schedulability analysis is provided, two main dif-
ferences substantially set this work apart. First, in [29] the goal is to achieve
time-deterministic task execution on commercial multi-core platforms, rather
than power/energy optimization. Second, in this work we discuss scheduling
strategies that specifically target two-stage tasks. Conversely, in [29] parti-
tioned Rate Monotonic and TDMA for load/unload operations are used.

The analysis of multi-stage tasks has some similarities with the literature
about DAG task analysis [28, 7, 5]. Two main differences, however, set this
work apart. First, we consider only one precedence constraint per job: exe-
cution phase cannot start before memory phase has been completed. Second,
the execution of each job phase is tied to a specific resource type. In addition,
we consider task parameters that variate as speed of resources is adjusted
to achieve power efficiency. Some works about DAG-task scheduling have also
added further optimization dimensions, and thus can be considered as resource
co-scheduling problems. For instance, the work in [33] proposes a ILP-based
technique and an heuristic to optimize scheduling of DAG-tasks while consid-
ering the inter-processor communication overhead and the memory footprint of
message buffering. In [19], a non-linear programming formulation is proposed
to jointly optimize temperature and performance for applications with loops
deployed on hybrid memory architectures (containing both on-chip cache and
scratchpad memory).

3 System Model

While our results can be applied to generic two-resource flow-shop tasks, we
instantiate our problem on traditional computing platforms, considering DMA-
CPU tasks (e.g., PREM tasks). Thus, we express tasks as composed of a
memory phase (M -phase), followed by a computation phase (C-phase). More
formally, we consider a set T of n periodic real-time tasks τ1, . . . , τn. We
assume that the two resources can operate with any value of clock period1

in the range Tck ∈ [1,+∞). Each task τi is defined by a worst-case memory-
access time Mi and a worst-case computation time Ci, relative to the initial
configuration where the clock period Tck is equal to 1, i.e., is the minimum
possible. Hence, if the objective is to optimize the speed of the first (resp.,
second) resource, the memory-access time Mi (resp., computation time Ci)
of each task is linearly scaled2 as M t

i = Mi · t (resp., Cti = Ci · t) for any
value of Tck = t ≥ 1, while the speed of the other resource is kept constant

1 Reasoning in terms of clock period Tck describes well the performance of CPUs; however,
it is more appropriate to reason in terms of bandwidth when describing the performance
of memory subsystems. Since a dualism exists between the two concepts, we will adopt the
notation Tck when referring to either resource type.

2 Computation is performed over data that has been preloaded into local memory, while
memory operations do not involve computation. Thus computation time scales linearly with
clock speed as long as CPU speed and local memory are tied to the same clock. Similarly,
performance of memory-only operations scales linearly with the configured transfer band-
width.
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(a) (b)

Fig. 1: Considered platform model for single-core (a) and multi-core (b) case.

in the considered platform. The underlying assumption is that the speed of
each resource can be varied continuously. Albeit this is not true in general, it
is worth noticing that increasing attention is given to advanced power scaling
features in all modern architectures, from embedded platforms to data-centers.
Since it is known that operating frequency has a directly proportional impact
on power usage [25], modern platforms are endowed with Dynamic Voltage and
Frequency Scaling (DVFS) units that allow live adjustments of the operating
frequencies at a fine granularity. For example, the Nvidia Tegra K1 SoC3 is a
hybrid CPU-GPU architecture designed for embedded applications that allows
for nine levels of frequency scaling on its low-power CPU cores, twenty levels
for its high-power CPUs and fifteen levels for its GPU. Similarly, the Intel i7
4770K4, designed for workstation machines, provides sixteen frequency scaling
levels.

Additionally, we assume that the power usage of both resources is defined
by their power profile. In particular, PM (s) denotes the memory access power
profile, i.e., the function that associates the power used while accessing memory
to any value of clock speed T−1ck = 1/t = s. Analogously, PC(s) denotes the
computation power profile, i.e., the function that expresses the power used
while performing computation for any value of clock speed.

The following assumptions are made on the power profiles:

– PM (s) is a monotonically increasing linear function, with slope α > 0. This
trend is in line with typically available mechanisms to perform in-hardware
bandwidth control of DMA engines. In fact, as explained later, DMA speed
is controlled by configuring the number of idle cycles between the transfer
of two memory blocks. This leads to a linear correlation between selected
speed and power level;

– PC(s) is a monotonically increasing convex function, with the intuitive
physical interpretation that, given a fixed energy budget, the amount of
computation that can be performed can only decrease as the CPU speed
increases. This is a known trend commonly assumed in the literature [4].

The platform model considered in this paper is depicted in Figure 1. In
the single-core case (Figure 1a), the execution phase of each task is carried

3 See http://www.nvidia.com/object/tegra-k1-processor.html
4 See http://ark.intel.com/products/75123/Intel-Core-i7-4770K
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out on the CPU. The CPU has a local memory where the task code/data is
located after the memory phase is completed. As a given task executes on the
CPU, a memory phase for a different task can be performed in parallel using
the DMA engine. For the sake of this work, we assume that the local memory
is large enough in size to accommodate the payload of all the simultaneously
released jobs. In the multi-core case (Figure 1b), m > 1 CPUs use a shared
interconnect to access a single block of main memory. Each CPU embeds a
private local memory where application tasks can be loaded using a DMA
engine. Even if multiple CPUs are present, a single DMA engine is shared by
all the CPUs. Note that when more than one DMA is available, it is possible
to reason on the system by defining clusters of CPUs that share a single DMA
engine. Hence the model in Figure 1b can be re-used.

While frequency scaling is an effective way to scale performance and power
usage on CPUs, DMA engines are regulated using bandwidth control (BWC)
features instead. BWC features allow specifying the number of intermediate
idle states between every block of transferred bytes in a DMA operation. Since
both the transfer block size and the number of idle states are a configurable
parameter, BWC features provide a fine granularity of performance scaling.
Note that since speed and power control on memory phases is enforced through
DMA’s BWC features, no frequency scaling is performed or required on the
system memory or bus. Table 1 reports a non-exhaustive list of commercially
available platforms that are compliant with the model considered in Figure 1.
For instance, the Freescale MPC5777M SoC5 can be configured to perform
DMA operations with up to eight idle states between two memory transactions,
and with block sizes ranging from 1 byte to 16 bytes. Similarly, the Freescale
P40806 features eleven levels of DMA throttling with four configurable transfer
block sizes.

Features MPC5777M MPC5746M TMS320C66x
Local memories 3 3 3

DMA engines 3 3 3

Nr. of cores 3 3 8

Table 1: Suitable Commercial Multicore COTS platforms.

We assume that all tasks share the same relative deadline D, which is
constrained to be smaller than or equal to their period T . Therefore, starting
from an arbitrary time r when all tasks release their first job, subsequent job
releases of all tasks will happen at times r+ kT , being k any positive integer.
Each job released by τi first executes its M -phase on a data processor, and
then executes its C-phase on a CPU. Thus, M -phases (C-phases) of a given

5 See http://cache.freescale.com/files/32bit/doc/fact sheet/MPC5777MFS.pdf
6 See http://cache.freescale.com/files/32bit/doc/prod brief/P4080PB.pdf
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task τi can progress in parallel with C-phases (M -phases) of a different task
τj .

Since in our model tasks are synchronously released and have the same
deadlineD, preemption does not provide any schedulability advantage. Thereby,
our results do not use preemption. Also, modeling resources as non-preemptive
allows capturing the realistic behavior of some resources. For instance, DMA
operations can be aborted/canceled, but it is often not safe to assume that a
certain amount of data has been successfully transferred.

For a given schedule of jobs in a period, the makespan is defined as the time
between the release of the jobs and the completion of the C-phase of the last job
in the schedule. In this setting, the schedulability problem (i.e., verify whether
deadlines are met) is equivalent to the problem of makespan minimization,
for which an optimal solution that runs in polynomial time exists [20]. More
specifically, since one job of each task is released at multiples of T , it is enough
to compute the (optimal) makespan of such a collection of jobs and check it
against the global relative deadline D ≤ T to verify the schedulability of a
given task-set. Since the execution pattern repeats identically in each period,
we can restrict our analysis to consider only the first instance of each task,
denoting such a collection of jobs as J1, . . . , Jn. Without loss of generality, we
assume all such jobs to be released at time 0 and to have deadline at time D.

We remark that, when more general task models are considered, the prob-
lem loses some of the desirable properties it has in the case of two resources
and two-stage tasks. We previously mentioned that the makespan minimiza-
tion problem becomes NP-hard when each task consists of more than two
phases [14] or when two or more resources are available for each stage [15].
Moreover, if tasks do not share the same period/deadline, the schedulability
problem is no longer equivalent to that of makespan minimization. In par-
ticular, we prove in Section 8 that the flow-shop scheduling problem with
intermediate deadlines is indeed NP-complete.

Nonetheless, despite the negative results on the tractability of the problem
in the generic case, significant performance gains can be achieved by devising
novel co-scheduling policies able to exploit the potential parallelism and energy
saving offered by modern embedded architectures.

This work addresses the broader problem of speed selection for the class of
multi-stage execution models. We envision that future research can extend this
work to encompass task models with different rates. Note that in this work we
discuss how our solution can be applied, albeit not optimally, to partitioned
multiprocessor systems (Section 7.1). This allows a straightforward extension
to platforms featuring multiple DMA engines, each used by a set of processors.
In this case, it is possible to reason in terms of isolated clusters. Hence, the
assumption on a single system-wise task rate can be lifted, as long as tasks
allocated to the same cluster are tied to the same period.
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4 Background

In this section, we provide the necessary background for the reader to under-
stand the analogies of our scheduling problem with the well-known “flow-shop”
problem.

4.1 Johnson’s algorithm

Johnson’s algorithm [20] provides an optimal solution to schedule a collection
of same-deadline, time-synchronized two-resource tasks.

The steps of Johnson’s algorithm for constructing an optimal schedule are
the following:

1. Partition the jobs into two sets S1 and S2. S1 contains the jobs having
Mi < Ci, S2 contains the jobs with Mi > Ci. The jobs with Mi = Ci may
be put in either set;

2. Jobs in S1 are sorted in ascending order of Mi, while jobs in S2 are sorted
in descending order of Ci;

3. The final ordering is obtained by concatenating the two sequences as S =
[S1;S2].

The cost of sorting the two sets dominates over other operations, hence the
time complexity of Johnson’s algorithm is O(n log(n)).

The following theorem defines the relative ordering between pairs of jobs
in an optimal schedule derived by Johnson’s algorithm.

Theorem 4.1 (from [20]) Given a collection J1, . . . , Jn of two-stage flow-shop
jobs, Ji precedes Jj in an optimal schedule if

min(Mi, Cj) < min(Mj , Ci). (1)

In case of equality, either ordering is optimal, provided it is consistent with
all the definite relations between the other jobs.

In the rest of the paper, we denote as σt = {σt1, . . . , σtn} a generic schedule,
while we indicate as σ̂t = {σ̂t1, . . . , σ̂tn} the optimal schedule, i.e., the permuta-
tion of jobs that determines the minimum makespan, given a particular value
of clock period Tck = t.

4.2 Computing the optimal makespan

The makespan µt of task-set T corresponds to the time that elapses between
the activation of any instance of T and the completion of the last job in a
generic schedule σt. Note that when the optimal schedule σ̂t is considered, µt

corresponds to the minimum makespan for the task-set T . In the remainder of
this paper, we will say that a job Ji contributes to the makespan of schedule
σt with its M-phase (resp., C-phase) to indicate that the term Mi (resp., t ·Ci)
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belongs to the longest path in the usage of the two resources that determines
the value of µt, and therefore is accounted for when computing the makespan.

In order to describe how to compute µt, we first introduce the notion of
crossover job, which applies to any generic schedule (not necessarily optimal).
Intuitively, the crossover job J∗ determines the actual makespan, because it
identifies the critical path in the usage of the two resources. Specifically, the
crossover job is such that jobs preceding it in the schedule contribute to µt

with their memory-access time, while subsequent jobs contribute to it with
their computation time; instead, J∗ is the only job that contributes to µt with
both its execution phases. The following theorem formalizes this notion.

Theorem 4.2 Given a job ordering σt = {σt1, . . . , σtn}, each job Ji in the
sequence contributes to the makespan with either the term Ci or Mi (but not
both), except for a single job J∗ that contributes with both M∗ and C∗. The
latter job is called crossover job.

Proof Since memory phases of different jobs do not have precedence con-
straints, there are no gaps in the usage of the first resource, which is occupied
for M =

∑n
i=1Mi time units. Conversely, gaps are possible in the usage of

the second resource whenever there exist two jobs Js and Je, with s < e, such
that

(i.)
∑e
i=s+1Mi >

∑e−1
i=s Ci;

(ii.) job Je starts executing its C-phase as soon as its M-phase has termi-
nated.

While Condition (i.) identifies the relation among execution times to produce a
gap in the usage of the second resource, Condition (ii.) delimits the gap exten-
sion by selecting as job Je the first job that initiates a sequence of contiguous
computations after the gap.

As a visual example, consider the schedule in Figure 2(a), consisting of
three jobs J1, J2, J3. In this case, a gap in the usage of the second resource
exists between the execution of C2 and C3. Conditions (i.) and (ii.) are verified
by Js = J2 and Je = J3. In fact, J3 starts executing its C-phase as soon as
its M-phase has terminated, delimiting the gap in the usage of the second
resource.

Let us now consider the maximum possible value of s and e such that
Conditions (i.) and (ii.) above are satisfied. From the way s and e are selected,
it follows that no gaps in the usage of the second resource are possible after
the execution of Ce for job Je. Hence, all jobs Ji with i > e only contribute to
the makespan with the term Ci. Conversely, all jobs Ji with i < e contribute
to the makespan with the term Mi, since a gap in the usage of the second
resource exists between the execution of Ce−1 and Ce, and the memory phases
of all jobs are executed with no gaps. Finally, the execution of Je contributes
to the makespan with both Me and Ce. Hence, Je is unique and corresponds
to the crossover job J∗. ut
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In the example of Figure 2(a), J3 is the crossover job, since s = 2 and e = 3
are the maximum job indexes satisfying Conditions (i.) and (ii.). Indeed, J3
contributes with both M3 and C3 to the makespan, while preceding jobs only
contribute with their M-phase.

We rely on the result in Theorem 4.2 to calculate the makespan µt of a
schedule σt.

Theorem 4.3 Given a job ordering σt = {σt1, . . . , σtn}, the corresponding
value of makespan µt is given by:

µt =
n

max
i=1

 i∑
j=1

Mj + t ·
n∑
j=i

Cj

 , (2)

and the value of i that maximizes the expression corresponds to the index of
the crossover job J∗ in σt.

Proof As previously stated, each job Ji except J∗ contributes with either Ci
or Mi to the makespan. Equation (2) captures the latter consideration by
maximizing the sum of first- and second-resource-only contribution around
a pivot job. The pivot job is accounted for both contributions. When the
crossover job J∗ is considered as a pivot, it follows that the first-resource-
only (second-resource-only) contribution on the left (right) of J∗ is greater
than the second-resource-only (first-resource-only) contribution. Hence, the
theorem follows. ut

Note also that Equation (2) can be implemented efficiently, that is, to run
in linear time in the size of the task-set.

5 Optimal resource speed selection

In this section, we present our algorithm to derive the minimum resource
speed that guarantees the schedulability of a given task-set. In the rest of the
paper, we will denote as FC(t) (resp., FM (t)) the function that associates the
value of the optimal makespan to any value of clock period Tck = t when
variations in the speed of the second (resp., first) resource are considered. For
ease of understanding, we will instantiate the problem in the case of a fixed
DMA speed and a variable CPU speed, and then show how to reuse the same
approach when considering variations in the speed of the first resource.

For any fixed value of Tck, Johnson’s algorithm (see Section 4.1) can be
used to find the job ordering that corresponds to the minimum makespan.
However, as the clock period is scaled, the value of the optimal makespan
increases, due to the scaling factor applied to computation times. Additionally,
depending on the scheduling decisions imposed by Equation (1), jobs can be
possibly rearranged in a different order. As an example, consider a task-set
composed of three tasks τ1 = (M1, C1) = (4, 4), τ2 = (3, 2) and τ3 = (5, 1),
with T = D = 20. Initially, when Tck = 1, Johnson’s algorithm orders the
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M2 M3M1

C1 C2 C3

a)

b)

c)

M2 M3M1

C1 C2 C3

M2 M1 M3

C2 C1 C3

d)
M2 M1 M3

C2 C1 C3

Fig. 2: Example of a task-set composed of three tasks with parameters τ1 =
(4, 4), τ2 = (3, 2), τ3 = (5, 1). The four insets illustrate the optimal schedule
when a) Tck = 1; b) Tck = 1.33; c) Tck = 1.5; d) Tck = 2.

jobs as depicted in Figure 2(a), with J3 being the crossover job. The optimal
makespan, equal to 13, can be found by Equation (2), where the maximum is
achieved for i = 3. As the clock period is scaled, the optimal makespan linearly
increases, due to the inflation of the C-phase of J3. However, when the value of
C1+C2 reaches that of M2+M3, i.e., when Tck = (M2+M3)/(C1+C2) = 1.33,
J1 becomes the crossover job, as shown in Figure 2(b), and the makespan
increases at a higher rate. Then, as soon as the computation time of τ2 reaches
the value of its memory-access time (i.e., when Tck = M2/C2 = 1.5), Johnson’s
algorithm imposes a job reordering (see Figure 2(c)) that reduces the makespan
growth rate. Finally, the rate of the optimal makespan will increase again as
soon as C2 reaches the value of M1, i.e., when Tck = M1/C2 = 2, because
from this point there is no gap in the processor usage, and all three jobs will
contribute to the makespan with their computation times (see Figure 2(d)).

Figure 3 illustrates the function FC(t) for the example above. We can im-
mediately observe that such a function: (a) is monotonically increasing; (b)
is piecewise linear; and (c) the points where its slope changes (i.e., Tck =
{1.33, 1.5, 2}) are exactly those described in Figure 2. The intersection point
between this function and the horizontal line corresponding to the relative
deadline gives the minimum processor speed (i.e., the maximum clock period)
that optimizes power usage while ensuring the schedulability of the considered
task-set. Note that the clock speed that optimizes power usage does not nec-
essarily guarantee the minimum energy consumption of the system, and vice
versa. In Section 7.2, we will discuss how the proposed approach needs to be
modified when the optimization objective is energy consumption instead of
power usage.

In the rest of the paper, we will denote as changing points those values of
Tck where the slope of FC(t) changes. As evident from the example of Figure 2,
changing points may be of two types, according to the following definitions.
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Fig. 3: Example of the function FC(t) associating the clock period Tck to the
value of the optimal makespan for the task-set in Figure 2. The horizontal line
corresponds to the relative deadline D = 20. The portion of the function lying
below the line identifies the values of Tck that make the task-set schedulable.

Definition 5.1 (Schedule changing points) A schedule changing point is
a value of clock period t̃ of the form Mi/Ci, for some i ∈ [1, . . . , n], such that
limt→t̃− F

′
C(t) > limt→t̃+ F

′
C(t) (i.e., the slope of FC(t) decreases in correspon-

dence of t = t̃).

Definition 5.2 (Crossover changing points) A crossover changing point
is a value of clock period t̂ of the form7

Mσ̂t̂
i+1

+ . . .+Mσ̂t̂
i+k+1

Cσ̂t̂
i

+ . . .+ Cσ̂t̂
i+k

,

for some i ∈ [1, . . . , n] and some k ∈ [0, . . . , n− i], such that limt→t̂− F
′
C(t) <

limt→t̂+ F
′
C(t) (i.e., the slope of FC(t) increases in correspondence of t = t̂).

Intuitively, schedule changing points correspond to values of clock period
at which a job reordering occurs according to Johnson’s algorithm. The slope
of FC(t) decreases after a schedule changing point because, if a reordering
takes place in the optimal schedule, then the minimum makespan in the new
configuration must be strictly dominated by the previous one.

The next lemma shows that a job may change its position in an optimal
schedule only when its computation time becomes equal to its memory-access
time.

7 We recall that σ̂t
1, . . . , σ̂

t
n is the permutation of jobs corresponding to the minimum

makespan when Tck = t.
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Lemma 5.1 For any pair of jobs Ji and Jj, such that Ji precedes Jj in an
optimal schedule at Tck = t′ ≥ 1, a job swapping may occur in the interval
Tck ∈ (t′,+∞) only at Tck = Mj/Cj, provided that Mj/Cj > t′.

Proof According to Theorem 4.1 and the corresponding algorithm described
in Section 4.1, the optimal schedule does not change as long as sets S1 and S2

do not change. A job reordering is only possible if some job passes from set
S2 to S1, which can only happen for values of t such that Mi = t · Ci. ut

On the other hand, crossover changing points correspond to clock periods
at which the crossover job changes. In other words, when some of the gaps in
the processor usage are filled, a larger number of jobs could start contributing
to the makespan with their computation times. To better clarify the difference
between the two sets of changing points, consider again the example in Fig-
ure 2. Here, 1.5 is a schedule changing point, while 1.33 and 2 are crossover
changing points. Note also that when Tck ∈ [1, 1.33), the slope of FC(t) is
given by C3, as J3 is the crossover job, while when Tck ∈ [1.33, 1.5), FC(t)

starts increasing with a larger slope (
∑3
i=1 Ci), since now J1 has become the

crossover job.

The next lemmas justify the relation between each type of changing point
and its effect on the slope of FC(t).

Lemma 5.2 In correspondence of a schedule changing point, the slope of
FC(t) can only decrease.

Proof Each schedule changing point determines a job reordering. By contra-
diction, assume that after any schedule changing point the makespan starts
increasing at a higher rate (i.e., more jobs start contributing to FC(t)) until
the subsequent changing point is reached. This would contradict the optimality
of FC(t), because, by keeping the previous job ordering, the makespan would
increase at a smaller rate. It then follows that a schedule changing point can
only determine a slope decrease of FC(t). ut

Lemma 5.3 In correspondence of a crossover changing point, the slope of
FC(t) can only increase.

Proof The lemma trivially follows by observing that a gap in the processor
usage is closed in correspondence of each crossover changing point, but the
job ordering remains the same. This means that when a crossover changing
point is reached, the index of the crossover job moves to the left in the current
optimal schedule. By Theorem 4.2, it follows that more jobs start contributing
to the makespan with their computation time, hence the slope of FC(t) can
only increase. ut

The two lemmas above can be applied to the example of Figure 3 to visually
identify schedule and crossover changing points.
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Fig. 4: Example of different functions FC(t) associated to fixed scheduling
decisions as a function of the clock period Tck. The considered task-set is the
same as in Figure 2. The horizontal line corresponds to the relative deadline
D = 20.

5.1 Finding changing points

We now describe how, for a given collection of jobs, the changing points of
FC(t) can be computed.

Schedule changing points In order to better understand the occurrence of
schedule changing points, consider Figure 4. The figure uses the same task-set
considered for Figure 3 and depicts the makespan as a function of Tck under
different and fixed scheduling decisions. As can be seen, the scheduling deci-
sion that is optimal for a low value of resource frequency, e.g. Tck = 1, may
not be optimal for larger values of Tck, due to different patterns in the usage
of the second resource. The figure shows that, for values of Tck between 1
and about 1.25, the schedule A = {τ1, τ2, τ3} behaves exactly as the schedule
B = {τ2, τ1, τ3}. In this case, the makespan grows linearly with the length of
C3 because it corresponds to the situation depicted in Figure 2(a). For value
of Tck beyond 1.25 and less than 1.33, A is the optimal schedule (Figure 2(b)).
Next, for values of Tck greater then 1.5, schedule B is the optimal schedule
(Figure 2(c) and 2(d)). Hence, a schedule changing point occurs whenever a
change in the operating frequency of the second resource determines a change
in the optimal schedule. In the example depicted in Figure 4, only one schedule
changing point exists at Tck = 1.5.
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To compute the list of schedule changing points Ps, we first define a list
CPs of candidate schedule changing points:

CPs = {Mi/Ci |Mi > Ci, i = 1, . . . , n}. (3)

The list of candidates CPs may be larger than Ps because not necessarily a
job reordering takes place when the computation time of a job Ji reaches the
value of Mi. In fact, it may happen that the precedence relations imposed
by Equation (1) remain unchanged, meaning that Ji is already in its “right
position” with the current ordering. In this case, Mi/Ci does not represent a
schedule changing point.

The list Ps can be identified starting from CPs as described in Algorithm 1.
The algorithm takes as input the task-set T and returns two pieces of infor-
mation. First, it provides the list of schedule changing points Ps ordered ac-
cording to their occurrence as the clock period is scaled in (0+,+∞). Second,
the algorithm generates a list of schedules S. Each element of S corresponds
to the schedule that minimizes the makespan for all values t of clock period
in the interval [Ps,i,Ps,i+1). In other words, it always holds that Si = σ̂t for
Ps,i ≤ t < Ps,i+1.

Algorithm 1 Computation of the lists Ps and S

1: procedure SchedulePoints(T )
2: B ← DSort(T , key = Ci)
3: E ← ASort(T , key = Mi)
4: SW ← ASort(T , key = Mi/Ci)
5: L← Array(size = n, value = null)
6: S ← B; Ps ← {0}; f ← −1
7: for j = 1 to n do
8: r ← SWj .M/SWj .C
9: k ← IndexOf(SWj , E)

10: Lk ← SWj

11: B ← Remove(SWj , B)
12: L′ ← Filter(L, value = null)
13: σcurr ← Concat(L′, B)
14: if σcurr 6= Last(S) then
15: Ps ← Append(r,Ps)
16: S ← Append(σcurr, S)
17: if f = −1 and r ≥ 1 then
18: f ← r
19: end if
20: end if
21: end for
22: {Ps, S} ← Reinit(Ps, S, f)
23: return {Ps, S}
24: end procedure

Algorithm 1 first constructs the beginning and ending optimal schedules
for values of Tck ranging in (0+,+∞). According to Equation (1), when the
computation time Ci of each job is shorter than its corresponding memory-
access time Mi, the optimal schedule is obtained by sorting the jobs by Ci
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in descending order. Thus, this schedule is the initial one for Tck ≈ 0+, and
is calculated as B at line 2, and also stored as first element of S at line 6.
Similarly, for Tck ≈ +∞, the jobs are sorted in ascending order of Mi. This
sequence is calculated and stored into E at line 3. The key idea to find the
schedule changing points is to observe that each candidate is associated to
a single job, and, by Johnson’s rule, if a schedule changing point occurs at
Tck = t, only the associated job will swap position from σ̂t

−
to σ̂t. Intuitively,

this is because when a schedule changing point for job Ji is reached, the result
of the comparison in Equation (1) may change, thereby determining a new
position of Ji within the schedule, as depicted in Figures 2(b) and 2(c). Hence,
by sorting the candidate changing points in ascending order, we can build a
list of possibly swapping jobs SW (line 4).

It also follows from Johnson’s rule that any job that has passed its own
schedule changing point (i.e., whose C-phase has become longer than its M -
phase) will appear in the schedule before any job that has not passed it. In
fact, consider a job Ji that has passed its schedule changing point. A second
job Jj can only appear before Ji in the schedule σ̂t if Mj < Mi. However,
if Cj < Mj , then τj will be computation-dominated and always scheduled
after Ji. Therefore, the for loop at lines 7-21 scans all the jobs in the schedule
distinguishing between jobs that have passed their schedule changing point
and jobs that have not. It is then enough to sort the former class in ascending
order of Mi and the latter class in descending order of Ci. The concatenation
of the two sets will represent the optimal schedule at Tck = t. More in detail,
at line 8, r stores the jth job in the list SW of candidate changing points.
Also, the array L, initialized at line 5, progressively stores the jobs that have
passed their schedule changing point. To prevent reordering at every step, jobs
are positioned in L at the same index they have in the final sequence E and
they are removed from B (lines 9-11). The filtering on L at line 12 is needed
to remove placeholder null objects and construct a valid candidate schedule.
Maintaining empty slots (null) for all the jobs that have not reached their
respective schedule changing point allows preserving the relative ordering and
thus avoiding additional sorting operations.

At line 13, the current schedule σcurr is updated as the concatenation of
the filtered array L′ and the remaining elements in B. If the schedule σcurr
obtained at line 13 is different from the previously generated one, i.e., Last(S),
it follows that r indeed represents a schedule changing point. This check is
performed at line 14. If the check is passed, the lists Ps and S are updated by
appending r to Ps and σcurr to S. (lines 15 and 16). Finally, since we are only
interested in the changing points within [1,+∞), all points below 1 should be
discarded. Therefore, the check at line 17 verifies whether the first changing
point greater or equal than 1 is encountered. If so, f is updated with the
current value of r (line 18). At line 22, when the full list of schedule changing
points has been constructed, the function Reinit filters the points, based on
the value previously stored in f . In particular, the function Reinit should
set 1 as first element of Ps (if not already present in the list) and update S
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accordingly (i.e., possibly eliminating from S the jobs whose schedule changing
point is smaller than 1).

Finally, the algorithm returns as output the two lists at line 23.

Crossover changing points Since a job reordering occurs only in correspon-
dence of schedule changing points, the optimal schedule never changes between
pairs of adjacent schedule changing points. Then, to characterize FC(t), it is
necessary to find the crossover changing points falling between each pair of
adjacent elements in Ps, i.e., in any interval of the form [Ps,i,Ps,i+1)8. The
challenging task is then to predict in which order the gaps in the processor
usage are filled as the clock period is scaled. Indeed, the number of crossover
changing points strictly depends on the order in which the gaps are filled.
If they are filled in order, starting from the last job in the schedule, distinct
crossover changing points are generated, because the slope of FC(t) increases
when each of the gaps is filled. If they are filled out of order, a crossover chang-
ing point may be generated only when the first of the considered jobs becomes
the crossover job.

We provide some intuition of the problem by means of a simple example.
Consider a task-set composed of three tasks, with the following parameters:
τ1 = (M1, C1) = (2, 3), τ2 = (4, 6) and τ3 = (7, 8). The job ordering that
minimizes the makespan with Tck = 1 is illustrated in Figure 5(a). In the initial
configuration, J3 is the crossover job, hence it is the only one that contributes
to the makespan rate with its computation time. However, when Tck reaches
the value M3/C2 = 1.17 (Figure 6(b)), J2 becomes the crossover job, hence
1.17 is a crossover changing point of FC(t). Finally, when Tck becomes equal
to M2/C1 = 1.33 (Figure 5(c)), the slope of FC(t) is further increased, because
also J1 starts affecting the makespan increase rate, becoming the crossover job.
Therefore, also 1.33 can be classified as a crossover changing point of FC(t).
In this scenario, two crossover changing points are found because the gap in
the processor usage relative to C2 is filled before the one relative to C1.

However, if we change the computation time of τ2 to be 4 instead of 6, as in
Figure 6(a), we observe that when Tck reaches M2/C1 = 1.33 (Figure 6(b)), the
gap corresponding to C1 is filled, but no crossover changing point is generated,
because the makespan increase rate is not affected by the aggregation between
the two jobs. Indeed, before and after 1.33 only J3 contributes to increase
the makespan rate with its computation time. Finally, when Tck = (M2 +
M3)/(C1 + C2) = 1.57, a single crossover changing point is generated, as J1
becomes the crossover job and all three jobs start contributing to increase the
slope of FC(t) with their computation times, as in Figure 6(c).

This example shows that the number of crossover changing points strictly
depends on the order in which the gaps in the processor usage are filled. In the
example of Figure 5, the two gaps are filled in sequence (in order), because
M3/C2 > M2/C1. In this case, two distinct changing points are generated,
because the slope of FC(t) increases when each of the two gaps is filled. In the

8 For the last element of Ps, we consider the interval [Ps,i,+∞).
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a)
M1 M2 M3

C1 C2 C3

b)

c)

M1 M2 M3

C1 C2 C3

M1 M2 M3

C1 C2 C3

Fig. 5: Example of a task-set composed of three tasks with parameters τ1 =
(2, 3), τ2 = (4, 6), τ3 = (7, 8). The three insets illustrate the optimal schedule
when a) Tck = 1; b) Tck = 1.17; c) Tck = 1.33.

a)
M1 M2 M3

C1 C2 C3

b)

c)

M1 M2 M3

C1 C2 C3

M1 M2 M3

C1 C2 C3

Fig. 6: Example of a task-set composed of three tasks with parameters τ1 =
(2, 3), τ2 = (4, 4), τ3 = (7, 8). The three insets illustrate the optimal schedule
when a) Tck = 1; b) Tck = 1.33; c) Tck = 1.57.

second case, instead, M3/C2 < M2/C1, implying that the gaps are filled out
of order : first, the gap relative to C1 is closed, and then the makespan starts
increasing at a higher rate when C1 + C2 becomes equal to M2 + M3, i.e., in
correspondence of the (unique) changing point at Tck = 1.57.

Relying on these observations, Algorithm 2 derives the sublist of crossover
changing points falling inside any interval [Ps,i,Ps,i+1). The algorithm takes
as input the initial task-set T , the list Ps, the index therein representing the
left endpoint of the interval, and the list of optimal schedules S. It produces in
output a structure ρ of crossover changing points, where the field ρ.ck stores
their values, while the field ρ.x contains the index of the crossover job in
the optimal schedule. As explained in Section 5.3, this is needed to efficiently
compute the value of FC(t) once the list of changing points is known.

At line 2, t stores the value of Ps,i, the list ρ of crossover changing point is
initialized to the empty set, and σ̂t stores the ith schedule Si. Then, at line 3,
the gaps in the processor usage are computed by the function AdjacentJobs,
which initializes the structure Z as follows. The field Z.jobs stores the groups
of jobs whose C-phases are executed consecutively in the optimal schedule,
with the exception of the last group, which may not give rise to a gap in the
processor usage (e.g., C3 in Figure 2(a)). The field Z.ck stores instead the
values of clock period at which the gaps are closed. Each of such values Zj .ck

can be computed as
M(Zj .jobs)
C(Zj .jobs)

, where the operators M(J) and C(J) take as
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Algorithm 2 Crossover changing points in [Ps,i,Ps,i+1)

1: procedure CrossoverPoints(T , Ps, i, S)
2: t← Ps,i; ρ← ∅; σ̂t ← Si

3: Z ← AdjacentJobs(T , σ̂t); D ← 0; N ← 0
4: for j = Size(Z) to 1 do
5: if j 6= Size(Z) and t · Zj .ck > ϕ.ck then
6: if i == Size(Ps) or ϕ.ck < Ps,i+1 then
7: ρ← Append(ϕ, ρ)
8: end if
9: D ← 0; N ← 0

10: end if
11: D ← D + C(Zj .jobs)
12: N ← N +M(Zj .jobs)
13: ϕ.ck = t · (N/D); ϕ.x← Zj .jobs1
14: end for
15: if i == Size(Ps) or ϕ.ck < Ps,i+1 then
16: ρ← Append(ϕ, ρ)
17: end if
18: return ρ
19: end procedure

input a group J of s adjacent jobs in σ̂t of the form J = {σ̂tk, . . . , σ̂tk+s−1} and
are defined as follows:

C(J) =

k+s−1∑
h=k

Cσ̂t
h
; (4)

M(J) =

k+s−1∑
h=k

Mσ̂t
h+1

. (5)

Note that the index shift in Equation (5) (i.e., σ̂th+1 instead of σ̂th) complies
with the notion of crossover changing point given in Definition 5.2.

As an example, the function AdjacentJobs applied to the input task-set
in Figure 2(a) returns: Z.jobs = {{1, 2}} and Z.ck = {(M2+M3)/(C1+C2)} =
{1.33}. Applied to the task-set in Figure 5(a), the result is: Z.jobs = {{1}, {2}}
and Z.ck = {M2/C1,M3/C2} = {1.33, 1.17}.

The variable N (resp., D) is used to compute the numerator (resp., de-
nominator) of the partially computed changing point, stored in ϕ.ck, while
ϕ.x keeps track of the current index of the crossover job. In the for loop at
lines 4-14, the structure Z of adjacent jobs is walked backward. If the cur-
rently examined group Zj is not the last one, and its value of clock period
is greater than ϕ.ck (line 5), it means that the gap corresponding to Zj will
be filled later than the one relative to ϕ (i.e., in order), and the two groups
of jobs will give rise to two distinct crossover changing points. Hence, ϕ is
appended to ρ, provided that the check at line 6 is passed. This check ensures
that the newly computed changing point does not exceed the right endpoint of
the interval Ps,i+1. The check is trivially passed if the last schedule changing
point is considered (i == Size(Ps), line 6), because the right endpoint of the
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interval is +∞. In any case, at line 9, the temporary variables can be reset to
start creating a new group of jobs.

If the check at line 5 fails, it means that the processor gap corresponding to
Zj will be filled before the one relative to ϕ, hence the two groups of jobs will
generate a single changing point. At lines 11-13, the intermediate values of D
and N are updated using the operators C(J) and M(J), and the new value of
ϕ.ck is computed. The ratio N/D is scaled by t to account for the inflation of
computation times occurred in the interval [1,Ps,i), as the crossover changing
points in each interval are initially computed with respect to Ps,i. Also, ϕ.x
is updated with the new index of the crossover job, given by the first element
of Zj .jobs. After the for loop, the last crossover changing point is appended
to ρ (subject to the same check performed at line 6), which is finally returned
as output.

5.2 Complete algorithm

We now describe the complete algorithm to derive the list P of changing points
of FC(t). First, the list Ps is computed by Algorithm 1, then Algorithm 2 is
iteratively invoked to derive the crossover changing points in each interval
[Ps,i,Ps,i+1).

Algorithm 3 Computation of the list P
1: procedure ChangingPoints(T )
2: {Ps, S} ← SchedulePoints(T ); P ← Ps,1

3: P ← Append(CrossoverPoints(T ,Ps, 1, S),P)
4: for i = 2 to Size(Ps) do
5: P ← Append(Ps,i,P)
6: T ′ ← ScaleJobs(T ,Ps,i)
7: P ← Append(CrossoverPoints(T ′,Ps, i, S),P)
8: end for
9: return P

10: end procedure

The pseudo-code is shown in Algorithm 3. At line 2, Algorithm 1 is invoked
to compute the list of schedule changing points Ps, and P is initialized with its
first value (we recall that by construction Ps,1 = 1). Then, at line 3, Algorithm
2 is initially invoked with i = 1, and then the for loop at lines 4-8 iterates on
the subsequent schedule changing points. At each iteration, the i-th point in
Ps is appended to P, and a new task-set T ′ is obtained by scaling the original
computation time of each task by the value of Ps,i, to account for the inflation
occurred in the previous interval (line 6). Then, the crossover changing points
in [Ps,i,Ps,i+1) are computed and appended to P, which is finally returned as
output.

Since FC(t) is a piecewise linear function, it can be completely specified by
computing its value in correspondence of all changing points, and determining
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the slope of the last piece. As the optimal job ordering is known for all values of
Tck (it only changes in correspondence of schedule changing points), Equation
(2) can be applied to find the value of FC(t) for each changing point. The slope
of the last piece is simply given by

∑n
i=1 Ci, because, in the final schedule, the

computation times of all jobs contribute to the makespan (e.g., see Figure
2(d)).

The value of clock period for which FC(t) = D (i.e., the intersection point
between the function FC(t) and the horizontal line corresponding to the rel-
ative deadline of the task-set) gives the minimum processor speed (i.e., the
maximum clock period) that optimizes power usage while ensuring the schedu-
lability of the considered task-set. In the special case of discrete processing fre-
quencies, the obtained value of clock period needs to be rounded down to the
closest possible clock period among the available ones, that is, the immediately
higher processing frequency should be chosen as the optimal one.

5.3 Complexity

We now derive bounds on the maximum number of changing points of FC(t)
(equivalently, FM (t)).

Lemma 5.4 FC(t) contains at most n− 1 schedule changing points.

Proof The number of schedule changing points is maximized when the max-
imum number of swaps between jobs is necessary to reach the final schedule,
where M -phases are sorted in ascending order. Such a worst-case configura-
tion corresponds to the one where: (i) for any job Ji, Ci < Mi, i.e., in the
initial optimal schedule, all jobs are computation-dominated (hence sorted by
decreasing Ci), and (ii) M -phases are also sorted in descending order. In this
case, it is immediate to see that n− 1 moves are necessary to reorder the jobs
as in the final schedule, proving the lemma.

Lemma 5.5 Between any two adjacent schedule changing points of FC(t),
there are at most n− 1 crossover changing points.

Proof The worst-case scenario that maximizes the number of crossover chang-
ing points in any interval [Ps,i,Ps,i+1) is given by the situation in which there
are n − 1 gaps in the processor usage that are closed in order. The last job
is excluded (leading to a bound of n − 1 instead of n) because, as previously
observed, it may not give rise to a gap in the processor usage.

By combining the two lemmas above, it follows that the number of changing
points is quadratic in the number of jobs. A bound on the time complexity
of the complete algorithm is then given by O(n2). Indeed, the complexity of
Algorithm 1, which finds the list Ps, is O(n2), because the for loop at lines
7-21 iterates n times, and at each iteration the cost of filtering the array L at
line 12, also linear in the number of tasks, dominates over the other operations.
The cost of finding the crossover changing points is also quadratic, because



Optimizing Resource Speed for Two-Stage Real-Time Tasks 23

Algorithm 3 invokes n− 1 times Algorithm 2, which in turn has a linear cost,
since the for loop at lines 4-14 iterates n times and each iteration has a constant
complexity. Note that the operations at lines 11 and 12 do not increase the
complexity of the algorithm, because the operators C(J) and M(J) are applied
to disjoint sets that have an aggregate cardinality n− 1.

Note also that since Algorithm 2 keeps track of the index of the crossover
job for each crossover changing point, it is then sufficient to compute the value
of the optimal makespan µt only in correspondence of the schedule changing
points (which can be done in O(n2)), and then update its value for each
crossover point (based on the knowledge of the crossover job), which requires
O(n2) overall. In this way, the complexity remains quadratic in the task-set
size.

While our algorithm derives the function FC(t) (or, equivalently, FM (t))
analytically, a näıve approach would be to perform a binary search on the
clock period domain, trying to find the optimal value of Tck that guarantees
the schedulability. Such an approach would require to select a quantization
step and to run Johnson’s algorithm at each point. Beside having a high com-
putational cost, this solution could imply some technical difficulties, mainly
due to the non-convexity of the functions. Also, this method would only be
able to identify the optimal solution up to the size of the quantization step.

A final remark concerns the applicability of our method also when con-
sidering systems having a small number k << n of speeds. In this case, the
computation of the schedule changing points would require O(n log(n)) for
the sorting at line 4 of Algorithm 1, which dominates the cost of the filtering
at line 12, given by O(nk), as it should be performed only k times. The com-
putation of crossover changing points should be performed only once, i.e., for
the interval [Ps,i,Ps,i+1) that delimits the optimum. Hence, the complexity
would be comparable to running Johnson’s algorithm k times, but without
any dependence on the number of available speeds.

6 Multiple Resource Optimization

In this section, we demonstrate how the proposed algorithm can be adapted
to optimize the speed of the first resource (memory) with respect to power
and schedulability constraints (Section 6.1). Furthermore, we extend our re-
sults to jointly optimize the speed of both resources to minimize the total
instantaneous power usage (Section 6.2).

6.1 Scaling the speed of the first resource

We now consider variations in the speed of the first resource, that is, we seek to
find the function FM (t), assuming a fixed CPU speed while varying the DMA
speed. This function can be simply derived once the list P = {p1, . . . , p`} of



24 Alessandra Melani et al.

changing points of FC(t) is known9. Thus, we adapt the original system as
follows.

First, we establish the initial parameters corresponding to the configuration
Tck = 1. Since we are interested in scaling memory-access times, we set the
computation time C ′i of each job Ji by imposing a fixed CPU speed β ≥ 1,
such that C ′i = β ·Ci. Next, we select the starting point for the DMA speed as
a fraction α of the original value, with 0 < α ≤ 1, such that M ′i = α ·Mi. In
this new setting, computation times are kept constant, while memory-access
times are scaled as M ′i · t for any value of Tck = t.

The following theorem proves that the changing points in P ′ can be simply
found as the reciprocal of those in P, up to a multiplicative factor given by
the choice of the initial parameters.

Theorem 6.1 The list of changing points of FM (t) is given by P ′ = {p′1, . . . , p′`},
whose generic element p′k is equal to:

p′k =
1

p`−k+1
· β
α
.

Proof In correspondence of a generic changing point p′k of FM (t), the optimal
makespan is given by:

µp
′
k =

n
max
i=1

 i∑
j=1

Mj · p′k +

n∑
j=i

Cj

 .

By factorizing out the value of p′k, it becomes:

µp
′
k = p′k ·

n
max
i=1

 i∑
j=1

Mj +

n∑
j=i

Cj/p
′
k

 . (6)

Equation (6) indicates that the optimal makespan obtained when the speed
of the first resource is increased by p′k is the same as the one obtained if the
initial parameters are scaled by a factor p′k and the speed of the second resource
is decreased by a factor 1/p′k. Therefore, since the values of the changing
points are in the form of ratios between task parameters, this means that if
p′k is a changing point for FM (t), then 1/p′k is a changing point for FC(t).
This proves that the changing points of FM (t) can be simply found as the
reciprocal of those of FC(t), up to the scaling factor β/α applied to the initial
task parameters. ut

Note that the points in P ′ are indexed in reverse order with respect to P. It
is then necessary to discard all points < 1 from P ′ to restrict the domain of the
function to the interval [1,+∞). As before, Equation (2) can be used to find

9 Here, we refer to the complete list of changing points of FC(t), i.e., including all changing
points in the interval Tck ∈ (0+,+∞). This means that, when running Algorithm 1, the
function Reinit at line 22 should not be executed.
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the value of FM (t) in correspondence of each changing point. Symmetrically,
the slope of its last piece is given by

∑n
i=1Mi.

An interesting observation that directly descends from Theorem 6.1 is that
computing changing points in P ′ as the reciprocals of those in P is equivalent
to exchanging the roles of the two resources and applying directly Algorithm 3.
Indeed, the values in P ′ can be also obtained by running Algorithm 3 where
computation times are relabeled as memory access times and vice versa.

6.2 Scaling the speed of both resources

This section discusses a possible strategy to optimize the speed of the two re-
sources jointly. Specifically, we seek to find the optimal values of clock speed10

s∗M and s∗C for the two resources that minimize the maximum power usage

P (sM , sC) = PM (sM ) + PC(sC).

We recall that PM (s) and PC(s) represent the memory access power profile
and the computation power profile, respectively. Also, in Section 3 we assumed
that PM (s) is a linear function with slope α, while PC(s) is a monotonically
increasing convex function.

Figure 7 reports an illustrative example of functions PM (s) and PC(s)
respecting the assumptions discussed above.

In principle, if we are allowed to freely select the speed of both resources,
there are infinite combinations of clock speeds that can produce a particular
value of makespan. Among those, we are interested in all the combinations that
produce an optimal makespan equal to the relative deadline D, because the
minimum power usage will certainly be produced by one of those combinations.
More formally, the total power usage will be minimized by a pair of clock
periods (TM , TC) that verifies:

D =
n

max
i=1

TM · i∑
j=1

Mj + TC ·
n∑
j=i

Cj

 . (7)

In order to find the optimal pair (T ∗M , T ∗C) that satisfies Equation (7) while
minimizing power usage, we propose to approximate PC(s) as a piecewise linear
function, which can be efficiently done by standard techniques [9, 30, 16]. Any
desired level of accuracy can be met by simply increasing the total number
of segments, which we denote by S. Each linear segment δj , j = {1, . . . , S},
is defined by a triple (aj , bj , βj), where (aj , bj ] is the considered interval and
βj > 0 is its slope. By the assumptions on PC(sC), the slopes of the different
pieces must be strictly increasing, i.e., β1 < β2 < . . . < βS (see Figure 7 for
an intuitive explanation).

10 In this section, we reason in terms of clock speed instead of clock period for ease of
understanding, and assume s ∈ (0, 1].
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Fig. 7: Considered power profiles PM (s) and PC(s) for first (memory) and
second (CPU) resource respectively.

In this setting, the optimal pair (T ∗M , T ∗C) can be found by an iterative
procedure that takes into account the shape of the two power profiles in order
to find the combination of speeds that leads to the minimum power usage.
Algorithm 4 summarizes this procedure. The algorithm assumes the knowledge
of the function F ∗C(t), obtained by applying Algorithm 3 where the input
argument is given by the original task-set where the minimum value of clock
period is assumed for the first resource. Also, it takes as inputs the relative
deadline D of the task-set, the slope α of PM (s) and the list of triples ∆ =
{δ1, . . . , δS} defining the S linear pieces that approximate PC(s).

Then, the for loop at lines 3-16 iterates over the list ∆, computing for
each segment (aj , bj ], j ∈ {1, . . . , S}, the ratio r = βj/α (i.e., the ratio be-
tween PC(s) and PM (s) in the considered interval) at line 4. Then, the value
of the optimal makespan in correspondence of Tck = r is computed. Specifi-
cally, the procedure ComputeMakespan at line 5 returns the value of F ∗C(t)
when Tck = r. Next, the procedure calculates the scaling factor fj that can be
applied to the makespan in order to reach the desired value D. In other words,
fj represents the scaling factor that can be applied to the clock period of both
resources (lines 7-8) to find a valid combination of speeds that yields the max-
imum value of makespan that guarantees the schedulability (i.e., that satisfies
Equation (7)). However, we must consider this combination of speeds as valid
only if the obtained clock period for the second resource falls in the considered
range (aj , bj ], otherwise the linear approximation cannot be considered valid
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(if statement at line 9). For any valid combination, we can calculate the power
level based on the knowledge of the two power profiles PM (s) and PC(s), and
update the total power P only if the sum PM (sM ) + PC(sC) is smaller than
the current value of P .

After all segments have been scanned, the optimal values of clock periods
for the two resources (previously stored in T ∗M and T ∗C) can be returned as
output, as well as the the minimum power level stored in P .

Algorithm 4 Power optimization considering both resources

1: procedure PowerOpt(D, α, ∆ = {δ1, . . . , δS})
2: P ← +∞
3: for j = 1 to S do
4: r ← βj/α
5: µr ← ComputeMakespan(r)
6: fj ← D/µr

7: sM ← fj
8: sC ← r · fj
9: if sC > aj and sC ≤ bj then

10: if PM (sM ) + PC(sC) < P then
11: P ← PM (sM ) + PC(sC)
12: T ∗M ← 1/sM
13: T ∗C ← 1/sC
14: end if
15: end if
16: end for
17: return P, T ∗M , T ∗C
18: end procedure

Clearly, assuming the knowledge of F ∗C(t), which can be computed in O(n2)
(Section 5.3), Algorithm 4 has a time complexity that is linear in the number
of segments approximating PC(s), hence the total complexity is O(n2)+O(S).

7 Further Extensions

In this section, we discuss possible generalizations for our methodology. Specif-
ically, Section 7.1 transforms the presented algorithm into an heuristic that
can be used on a multiprocessor system to perform deadline-constrained speed
optimization. Additionally, we provide the intuition about how our approach
can be reused when energy consumption represents the main optimization
objective (Section 7.2).

7.1 Heuristic approach for partitioned multiprocessor systems

We now briefly discuss how the proposed approach for speed selection can be
reused in a multiprocessor scenario where tasks are statically partitioned to
cores. Specifically, we assume a system composed of m identical cores that can
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be operated at the same speed, and a single DMA engine that is in charge of
loading the task image from the main memory (shared among the cores) to
the local memory of each core. We denote as Tk the set of tasks assigned to
the k-th CPU.

This scenario corresponds to a two-stage flow-shop scheduling problem
where a single resource unit is available for the first stage, and m identical
copies of the second resource are available for the second stage. As previ-
ously observed, the flow-shop scheduling problem has been demonstrated to be
strongly NP-hard when two or more resources are available for some stage [15],
hence no efficient algorithm exists to identify an optimal schedule.

Therefore, we reuse the approach presented in Section 5.1 to heuristically
determine the speed at which to operate the memory and the m CPUs to
minimize the maximum power usage, as defined in Section 6.2.

Similarly as in Section 6.2, we derive the function F ∗C,k(t) for each core
k = {1, . . . ,m}, which assumes the minimum value of clock period for the first
resource. This can be done by the following steps, which must be executed for
each of the k CPUs:

1. Compute the set Pks of schedule changing points by applying Algorithm 1
passing as input the complete task-set T =

⋃m
k=1 Tk, given by the union of

all tasks in the system11;
2. For each interval [Pks,i,Pks,i+1) of adjacent points found at the previous step,

find the crossover changing points by applying Algorithm 2 on a modified
task-set T ′k , constructed by setting to zero the computation time of tasks
not assigned to the k-th CPU. More formally, the input task-set T ′k is
constructed as follows:

T ′k = Tk ∪
⋃
{τ ′j | τj /∈ Tk and τ ′j = (Mj , 0)}.

Intuitively, the set T ′k is considered as input because the tasks not allocated
to the k-th CPU only interfere with their memory access times, as the DMA
engine is shared among all CPUs;

3. Identify the complete set of changing points Pk as the union of changing
points found at the previous two steps;

4. Use Equation (2) to calculate the makespan in correspondence of each
changing point, considering as input the modified task-set T ′k .

The above procedure outputs a piecewise linear function F ∗C,k(t) that rep-
resents the minimum makespan as a function of Tck for each of the m CPUs.
Finally, in order to perform speed estimation, we compute F ∗C(t) as the point-
wise maximum of the m curves. Considering that each curve has at most
O(n2) changing points (equivalently, O(n2) segments), this can be done in

11 Note that the set Pk
s constructed in this way is a superset of the actual schedule changing

points of Tk, hence the slope of F ∗C,k(t) does not necessarily change for all points in Pk
s . As we

will see next, this simplification makes our results directly applicable to the multiprocessor
case with no modifications.



Optimizing Resource Speed for Two-Stage Real-Time Tasks 29

O(mn2 · α(mn2)), where α(mn2) represents the inverse of the Ackermann’s
function [12].

Using the upper-envelope computed above, the approach discussed in Sec-
tion 6.2 can be applied with no modifications to compute the speed of the two
types of resources.

In Section 9.3, the proposed heuristic approach is quantitatively evaluated
in comparison to the theoretical optimum and other heuristics.

7.2 Energy consumption minimization

It has been shown that power usage as a function of CPU speed increases
with a super-linear law [11]. A similar trend is observed for other classes of
resources: for instance, the power usage of DRAM memories as a function of
operating frequency and bandwidth follows a super-linear trend as well [32].
Conversely, the power usage of networking devices as a function of the number
of processed packets per second follows a more linear law [21].

So far, we considered our optimization objective to be the minimization of
instantaneous power usage. As shown in Section 6.2, this can be achieved by
identifying the pair of speeds (s∗M , s∗C) that minimize the aggregated power us-
age (i.e., the function P (sM , sC) = PM (sM ) +PC(sC)) and match the relative
deadline D of the task-set. The proposed algorithm assumes the knowledge of
the power profiles of both resources (see Figure 7).

Minimizing power usage, however, is not always the main goal of power-
aware embedded real-time systems. In fact, many embedded devices are battery-
operated and therefore have a limited energy supply. In such cases, the total
energy consumed by a set of tasks during their execution represents the main
objective function to minimize.

In this paper, we consider batches of two-stage jobs, where each stage re-
quires to be executed on a specific resource. We assume that the time required
to execute a task stage decreases linearly as the speed of the corresponding
resource is linearly increased.

Additionally, in Section 6.2, we have assumed for the first resource a linear
power model with a certain offset, and a (monotonically increasing) convex
speed/power relation for the second resource. Therefore, the optimal speed in
terms of energy consumption for the first stage is simply given by the maximal
one, due to the presence of the offset. Without offset, the speed would not make
a difference in terms of energy, thus, even in this case, it would be advisable
to select the maximal speed for the first resource. This choice in fact provides
the highest degree of freedom for selecting the speed of the second resource,
which can be identified based on the knowledge of its energy profile.

Typically, the power profile of CPUs does not follow a linear trend [11]. In
the literature, there is a consistent body of work showing that, with a convex
power/speed relation, the minimal energy consumption is given by the lowest
CPU frequency (e.g., [17]). In this case, the optimal speed allocation in terms
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of overall energy is given by: (i) highest speed for the first stage, and (ii) lowest
speed that just allows meeting the deadline for the second stage12.

Other works [10, 18] show that, when leakage power is considered, there is
a critical speed (generally different from minimum and maximum values) that
optimizes energy consumption. Lowering the processor frequency below this
threshold can have negative effects on the system-wide energy consumption,
as it increases the contribution of the cumulative leakage power (i.e., leakage
energy). More in detail, the typical situation is the following:

– low CPU speeds determine a long execution time and lead to high energy
consumption;

– as the CPU speed increases linearly, a linear speed-up in the execution
time of the task can be observed until a critical speed scrit is reached;

– beyond this value, the increase in dynamic power reduces the performance
gain. Hence, further increases in CPU speed produce marginally decreasing
performance benefits, which in turn determine increasing values of energy
consumption.

Hence, there is a major trade-off between increasing leakage power and de-
creasing dynamic power, which leads to a convex speed/energy profile. In this
case, the optimal CPU speed that minimizes energy consumption falls some-
where in between minimum and maximum values. Concretely, our approach
to power usage minimization can be adapted to minimize energy consumption
as follows:

1. Select the highest speed smaxM for the first resource;
2. Apply Algorithm 3 to derive the minimum speed s̄ = T̄−1ck for the second

resource such that the collection of jobs completes within the deadline,
being s̄ ∈ [sminC , smaxC ];

3. Follow the energy profile to select the operating speed s∗C for the second
resource that minimizes energy consumption, such that s̄ ≤ s∗C ≤ smaxC .
Specifically, if scrit ≥ s̄, then s∗C = scrit; otherwise, s∗C = s̄.

Therefore, the pair of speeds (smaxM , s∗C) is the one that minimizes the
overall energy consumption.

Intuitively, at step 3. above, if scrit < s̄, then s∗C is set to s̄, because this
is the lowest possible speed value that allows meeting the deadline. In this
case, the completion time of the collection of job just matches the deadline.
If instead scrit ≥ s̄, s∗C is set to scrit, which determines a non-null slack time
before the deadline. Dynamic Power Management (DPM) techniques [6] aim
at reducing energy consumption by allowing a selective resource shutdown
during inactivity intervals. As a part of our future work, we plan to extend
our system to support DPM techinques by considering a number of additional
parameters, such as the overheads associated with shutdown and wakeups, the
transition times to and from low-power states, etc.

12 This value can be found by applying Algorithm 3 with no modifications.
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8 Complexity of flow-shop with intermediate deadlines

In Section 3, we have restricted our system model to task-sets that are subject
to the same temporal constraints, that is, all tasks share the same relative
deadline D and period T , being D ≤ T . For any task-set complying with this
assumption, an optimal schedule can be derived by exploiting the result in [20].
In this section, we show that the problem of deriving an optimal schedule for
a set of tasks sharing the same period but with different deadlines is NP-
complete. Hereby, we assume that a generic task τi, i = 1, . . . , n, is expressed
as a triple (Mi, Ci, Di), where Di is the relative deadline of task τi, and Di ≤ T
for any such task.

First, we need to prove that the considered problem is in NP, and then
that a problem that is already known to be NP-complete can be reduced to
our problem. Our result is proven via reduction from the three-stage flow-shop
scheduling problem, which has been demonstrated to be NP-complete in [14].

Lemma 8.1 The two-stage flow-shop scheduling problem with intermediate
deadlines is in NP.

Proof We must show that there exists an efficient (polynomial-time) verifier
such that for any yes instance of our problem (any feasible task-set in our case),
there exists a certificate that the verifier will accept, and for any no instance
(any unfeasible task-set in our case), there is no such certificate. For a feasible
instance of our problem, the certificate is a feasible schedule σ = {σ1, . . . , σn}.
Given such a job ordering σ, the verifier can check in linear time whether each
job Ji, i = 1, . . . , n, is feasibly scheduled to complete within Di time units.
Clearly, for any no instance of the problem, the verifier cannot accept any
schedule as a valid certificate. ut

Theorem 8.1 The problem of deriving an optimal schedule for a set of n
two-stage flow-shop tasks with intermediate deadlines is NP-complete.

Proof The proof is via reduction from the three-stage flow-shop scheduling
problem where the third resource is non-exclusive, i.e., there are infinitely
many copies of the third type of resource. An instance of this latter problem
is expressed as a set of n tasks specified as triples (α, βi, γi) that represent
the execution times on the three resources, and a common relative deadline
D ≤ T . We can construct an instance of our problem by defining a set of
two-stage jobs such that task τi has a relative deadline equal to D − γi and
the execution time on the first two resources remains the same. This is clearly
a polynomial-time transformation. It remains to prove that the two problems
are indeed equivalent.

First, suppose that a set of three-stage tasks can be feasibly scheduled to
complete within D time units. Then, there exists a schedule σ such that the
completion time of all jobs in σ is smaller than or equal to D. Given that
infinite copies of the third resource exist in the system, any such job can start
executing its last stage as soon as the second stage has completed. Therefore,
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if the third stage of each job completes within D time units, it must be that
the second stage completes within D−γi time units, hence our algorithm must
return yes.

Finally, assume that a set of two-stage tasks with intermediate dead-
lines can be feasibly scheduled such that all deadlines are met, and let D =
maxni=1Di. Equivalently, each job completes its second stage within Di time
units. Then, the three-stage scheduling problem where the jobs execute for
D −Di time units on the third resource has a feasible solution, because each
job completes its execution on the third resource within Di + (D −Di) = D
time units. ut

9 Evaluation

In this section, we quantitatively evaluate the performance of our approach to
speed optimization. In Section 9.1, we describe representative examples show-
ing the power and energy savings that can be achieved when our algorithm
is used to determine the optimal operating speed of the CPU, in compari-
son with simple heuristic strategies. Then, by means of extensive simulations,
we quantify the schedulability advantage of the proposed scheduling strategy
over heuristic solutions, both in the single-core case (Section 9.2) and the
partitioned multi-core setting (Section 9.3).

9.1 Power and energy optimization

The first experiment has been performed assuming specific energy and power
models. Such models have been empirically derived using an embedded plat-
form and a realistic image processing benchmark. Since we are focusing on the
optimization of power usage and energy consumption for the second resource
(CPU), we first derive the power/energy profile of the considered benchmark
on the hardware platform. Next, we assume that a generic synthetic task-set
exhibits the same power/energy profiles. This approach allows us to reason
on a realistic power-frequency relationship while presenting results that have
nicer mathematical properties.

More in detail, we have considered an image processing benchmark, called
Disparity, from the San Diego Vision Benchmark Suite [31]. The Disparity
benchmark represents a data-intensive application that processes two images
taken from different locations and extracts depth information to construct the
position of objects depicted in the input images. For the measurements, we
have used a Odroid-U3 embedded platform. The system features a Samsung
Exynos 4412 processor with four ARM Cortex-A9 cores. Although the nominal
maximum speed is 1.7 GHz, the CPU can be overclocked up to a frequency of
2 GHz. Moreover, the power management circuitry allows a minimum oper-
ating frequency of 200 MHz, with a scaling granularity of 100 MHz. Thereby,
20 different levels of frequency scaling can be selected. In our experiments, for
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each available scaling frequency, we execute the aforementioned benchmark
and record: (a) the current I flowing to the system; and (b) the execution
time R of the benchmark under analysis. Finally, we derive the consumed
power as: P = I · V (see Figure 8), where V is the fixed system voltage.
Moreover, we derive energy consumption as: E = P · R (see Figure 9). Not
surprisingly, our findings are in line with the usual trend for power/energy ob-
served in literature [10, 18, 11]. In order to acquire energy and power traces to
construct the presented trends, the considered platform has been configured as
follows. First, no external peripheral is plugged in. Next, on-board peripherals
(e.g. Ethernet) are powered-off or configured in sleep mode. Since we study
a single-core system, 3 out of 4 cores are switched off. The observed execu-
tion time of each task is recorded using cycle-accurate on-board performance
counters13. As the task under analysis executes, the power consumed by the
platform is recorded using an oscilloscope. Specifically, we measure the voltage
drop across a small (1 ohm) resistor placed in series with the Odroid board.
Since the size of the resistor is known, current and finally power are derived.

In order to exemplify how the proposed algorithm can be used to optimize
power usage, we consider a specific task-set consisting of five tasks with the
following parameters: τ1 = (24, 4), τ2 = (14, 2), τ3 = (2, 4), τ4 = (60, 10),
τ5 = (12, 3). The relative deadline of the task-set is D = 135. To determine the
operating frequency of the CPU, we compare our optimal algorithm, referred
to as OPT, against three simple heuristic scheduling strategies:

– M-asc: tasks are scheduled by ascending values of Mi;
– C-desc: tasks are scheduled by descending values of Ci;
– MC-asc: tasks are scheduled by ascending values of Mi/Ci.

Figure 8 shows how the makespan varies as a function of the clock period for
each of the considered scheduling strategies. The adopted power model is also
reported in the same figure. The optimal operating frequency of the CPU can
be identified as the value of clock period where the function OPT intersects
the horizontal line corresponding to the relative deadline of the task-set, i.e.,
Tck = 3.842. According to our power model, this value corresponds to a power
consumption of about 1520 mW. Instead, the heuristic scheduling strategies
identify much lower clock period values for the CPU (3.27 for C-desc, 3.08
for MC-asc, 2.3 for M-asc), which correspond to a significantly higher power
levels (1614 mW, 1636 mW, and 1760 mW, respectively).

The performance benefit of our algorithm is also evident whenever the
energy consumption is the optimization objective. Consider an example task-
set consisting of five tasks with D = 26 and the following parameters: τ1 =
(4, 2), τ2 = (4, 1), τ3 = (8, 2), τ4 = (6, 5), τ5 = (3, 1.5). In our model, the
energy consumption has a convex shape, and reaches its global minimum (0.48
J) in correspondence of Tck ≈ 2 (see Figure 9). For this value, the task-set is
schedulable according to our optimal scheduling strategy, and also by MC-
asc, as the two functions coincide until Tck = 2. However, the other heuristic

13 ARM Cortex-A9 CPUs implement a clock cycle counter that is accessible on a dedicated
per-core register [3].
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Fig. 8: Power minimization for a task-set composed of five tasks with param-
eters τ1 = (24, 4), τ2 = (14, 2), τ3 = (2, 4), τ4 = (60, 10), τ5 = (12, 3) and
relative deadline D = 135.

solutions do not allow selecting the optimal operating frequency, because that
value would render the task-set unschedulable. Hence, M-asc and C-desc would
require to select a lower value of clock period (1.75 and 1.66, respectively),
determining a much higher energy consumption.

9.2 Schedulability in the single-core setting

We now evaluate the schedulability advantage attainable with an optimal
scheduling strategy with respect to the simple heuristic approaches mentioned
above. In this set of experiments, we generated 10000 task-sets in total; for
each task-set, the number of tasks is chosen in the interval n ∈ [2, 10]. The
task parameters are selected as follows: first, Ci is uniformly chosen in [1, 10],
and then Mi is selected in the interval [Ci, Ci ·50]. In this way, we ensure that,
for Tck = 1, computation times are smaller than the respective memory-access
times, which represents the most general configuration. By varying the clock
period Tck in the interval [1, 20], we measure for each scheduling strategy its
average schedulability advantage, defined as the average ratio∑n

i=1Mi + t ·
∑n
i=1 Ci

µalgt
,
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Fig. 9: Energy minimization for a task-set composed of five tasks with param-
eters τ1 = (4, 2), τ2 = (4, 1), τ3 = (8, 2), τ4 = (6, 5), τ5 = (3, 1.5) and relative
deadline D = 26.

where µalgt represents the value of the makespan at Tck = t when alg is the
adopted scheduling strategy. Intuitively, this quantity represents how much
the considered scheduling strategy is able to gain over a sequential execution.
The results are shown in Figure 10. As expected, the curve corresponding
to OPT dominates the other ones for all values of Tck. The schedulability
advantage of OPT is much more evident for larger values of Tck, where all
heuristic strategies show a significant performance degradation. Notably, the
performance of C-desc exhibits the worst performance, since for large value of
Tck the optimal ordering is achieved by sorting the jobs in ascending order of
Mi.

9.3 Schedulability in the partitioned multi-core setting

Although the scheduling strategy described in Section 7.1 for the partitioned
multi-core scenario yields sub-optimal solutions, it is interesting to study its
performance with respect to the theoretical optimum and other heuristics.
Hence, we briefly study the schedulability properties of our heuristic, based
on the Johnson’s scheduling strategy (referred to as JOHN ), with respect to
(i) the theoretical optimum, computed by brute-force search, and (ii) a simple
heuristic, namely MC, that schedules jobs by sorting them in ascending order
of the ratio Mi/Ci.
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Fig. 10: Average schedulability advantage of the optimal scheduling strategy
in comparison to heuristic approaches.

Figure 11 reports the obtained results as a function of the number m of
cores available. In this set of experiments, 10000 task-sets have been gener-
ated for each value of m ∈ [1, 10]; for each task-set, the number of tasks is
uniformly chosen as n ∈ [4, 9]. Then, computation times Ci are uniformly se-
lected as integers in the interval [1, 10]. Finally, memory-access times Mi are
uniformly selected in the interval [Mmin,Mmax], whose values are reported
in the figure captions. For each experiment, we recorded (i) the percentage of
suboptimal schedules of JOHN and MC w.r.t. the theoretical optimum (Sub-
optimal sched.), and (ii) the average additional makespan length in percentage
for suboptimal schedules (Sched. loss).

The results show that when the memory-access time of each task is smaller
than its corresponding Ci (Mi ∈ [0.3 ·Ci, Ci], Figure 11(a)), the JOHN heuris-
tic detects more suboptimal schedules than MC, although the schedulability
loss remains always below 10% for both strategies. However, when memory-
access times are selected in a wider interval (Figures 11(b) and 11(c)), the
results show the opposite trend, i.e., in average our heuristic JOHN outper-
forms MC for all values of m. The improvement of JOHN over MC is even
magnified when memory-access times are greater than their respective compu-
tation times (Figure 11(d)). In the latter case, JOHN detects <5% suboptimal
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(a) Mi ∈ [0.3 · Ci, Ci] (b) Mi ∈ [0.3 · Ci, 2 · Ci]

(c) Mi ∈ [0.3 · Ci, 3 · Ci] (d) Mi ∈ [Ci, 3 · Ci]

Fig. 11: Scheduling performance of JOHN and MC multicore heuristics with
respect to theoretical optimum: percentage of task-sets with suboptimal sched-
ule with respect to the total number of generated task-sets (suboptimal sched.);
average additional length of makespan in percentage for suboptimal schedules
(sched. loss).

schedules, with a negligible schedulability loss. Conversely, MC detects ∼40%
suboptimal schedules, with a schedulability loss of around 5%.

To explain this trend, Figure 12 depicts an example of a task-set for which
the MC heuristic performs better than our heuristic.

The task-set is composed of five tasks with the following parameters: τ1 =
(8, 14), τ2 = (2, 2), τ3 = (7, 12), τ4 = (4, 8), τ5 = (1, 2). Tasks τ2, τ3 and τ5
are assigned to CPU 1, while tasks τ1 and τ4 are assigned to CPU 2. It can
be noted that JOHN optimizes the overlapping between computation and
memory operations, achieving an overlapping of 24 time units. Unfortunately,
it does not optimize the overlapping of computation performed on different
CPUs, which results in 5 time units of CPU-to-CPU overlapping. Conversely,
the MC heuristic, despite the lower memory-computation parallelism (21 time
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Fig. 12: Example of a task-set for which MC (inset (b)) produces a better
schedule than the proposed JOHN heuristic (inset (a)).

units), achieves a CPU-to-CPU parallelism of 9 time units, yielding a smaller
makespan.

Intuitively, when memory-access times are smaller than computation times,
as in the example above, the JOHN heuristic simply orders jobs in ascending
order of Mi, without considering the CPU-to-CPU overlapping. Vice versa,
the MC heuristic achieves better performance because, considering the ratio
Mi/Ci, the resulting schedule is generally more balanced in terms of CPU-
to-CPU overlapping. This situation exemplifies the trend observed in Fig-
ure 11(a). When Mi is selected in a wider interval (Figures 11(b) and (c)), or
is greater than its respective Ci (Figure 11(d)), our heuristic achieves better
performance, because Johnson’s algorithm considers the value of Ci to order
jobs whenever Mi > Ci (i.e., it sorts them in descending order of Ci), typically
producing a larger CPU-to-CPU overlapping than MC.

10 Conclusion and Future Work

Co-scheduling algorithms are increasingly being developed to exploit the great
potential of modern architectures, and particularly to coordinate the access
to memory and computing resources. In this paper, we considered a system
composed of DMA-CPU tasks executing sequentially on the two resources. We
developed an algorithm that optimally determines the speed of one or both
resources with the objective of minimizing power usage while ensuring the
schedulability of a given task-set. The algorithm leverages the seminal results
on flow-shop scheduling to propose an exact solution for the problem. The
proposed algorithm is shown to have a quadratic complexity in the task-set
size, hence it can be efficiently applied for both offline and online operations.
Moreover, we proved that the two-stage flow-shop problem in the more general
setting with intermediate deadlines is NP-complete. In addition, applications
to multiprocessor systems and energy minimization were considered. Finally, a
quantitative evaluation of the proposed approaches in comparison to common
heuristics showed that a significant performance gain can be achieved in terms
of both schedulability and power/energy savings.

As future work, we intend to perform a more extensive evaluation of the
proposed methodologies using a commercially-available hardware platform.
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Additionally, we plan to study the two-resource scheduling problem under
more generic settings. This includes task models that represent parallel work-
load with precedence constraints by means of a directed acyclic graph (DAG).
Finally, we envision that by introducing additional assumptions or constraints
to the problem, the time complexity of our algorithm could be further im-
proved.
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