
PROCEEDINGS OF

OSPERT 2022
The 15th Annual Workshop on

Operating Systems Platforms for
Embedded Real-Time Applications

July 5th, 2022 in Modena, Italy

in conjunction with

The 34th Euromicro Conference on Real-Time Systems
July 5–8, 2022, Modena, Italy

Editors:
Daniel LOHMANN
Renato MANCUSO

https://sra.uni-hannover.de/ospert22/
https://www.ecrts.org/2022/

Contents

Message from the Chairs 3

Program Committee 3

Keynote Talk 5

Session: Broadening RTOS Understanding 7
RTOS-Independent Interaction Analysis in ARA

G. Entrup, J. Neugebauer, D. Lohmann . 7
Supporting Multiprocessor Resource Synchronization Protocols in RTEMS

J. Shi, J. Pham, M. Münch, J. Hafemeister, J. Chen, K. Chen 15
Cabas: Real-Time for the Masses

T. Smejkal, J. Bierbaum, M. von Oltersdorff-Kalettka, M. Roitzsch 21
On the Interplay of Computation and Memory Regulation in Multicore Real-Time Systems

D. Hoornaert, G. Ghaemi, A. Bastoni, R. Mancuso, M. Caccamo, G. Corradi 29

Session: Use Your Data, Trust Your System 33
Can we trust our energy measurements? A study on the Odroid-XU4i

J. Roeder, S. Altmeyer, C. Grelck . 33
Revisiting Migration Overheads in Real-Time Systems: One Look at Not-So-Uniform Platforms

P. Raffeck, W. Schröder-Preikschat, P. Ulbrich . 41
X-RIPE: A Modern, Cross-Platform Runtime Intrusion Prevention Evaluator

G Serra, S. Di Leonardi, A. Biondi . 49
Work in Progress: Real-Time GRB Localization for the Advanced Particle-astrophysics Telescope

M. Sudvarg, J. Buhler, R. Chamberlain, C. Gill, J. Buckley 57

Program 63

© Copyright 2022 Leibniz Universität Hannover.
All rights reserved. The copyright of this collection is with Leibniz Universität Hannover. The copyright of the
individual articles remains with their authors.

Message from the Chairs

Welcome to OSPERT’22, the 16th annual workshop on Operating Systems Platforms for Embedded Real-Time
Applications. After two years of pandemic silence, we invite you to join us in participating in a workshop of
lively discussions, exchanging ideas about systems issues related to real-time and embedded systems.

The workshop will open with a keynote by Konrad Schwarz, discussing hardware partitioning options and
issues on RISC-V and telling from his decade-long experience working on real-time and mixed-criticality system
software in industrial settings.

OSPERT’22 received 12 submissions from which 8 were selected by the program commitee to be presented
at the workshop. Each paper received three individual reviews. Our special thanks go to the program committee,
a team of ten experts for volunteering their time and effort to provide useful feedback to the authors, and of
course to all the authors for their contributions and hard work.

OSPERT’22 would not have been possible without the support of many people. The first thanks are due to
Sebastian Altmeyer, Benjamin Rouxel, Marko Bertogna and the whole ECRTS organizing team for entrusting
us with organizing OSPERT, and for their continued support of the workshop. We would also like to thank the
chairs of prior editions of the workshop who shaped OSPERT and let it grow into the successful event that it is
today.

Last, but not least, we thank you, the audience, for your participation. Through your stimulating questions
and lively interest you help to define and improve OSPERT. We hope you will enjoy this day.

The Workshop Chairs,

Daniel Lohmann Renato Mancuso
Leibniz Universität Hannover Boston University
Germany USA

Program Committee

Wolfgang Mauerer, OTH Regensburg
Richard West, Boston University
Hyoseung Kim, University of California Riverside
Mohamed Hassan, McMaster University
Rudolfo Pellizzoni, University of Waterloo
Michal Sojka, Czech Technical University in Prague
Bryan Ward, MIT Lincoln Lab

3

Keynote Talk

Mixed Criticality on RISC-V: Experiences from Porting a Partitioning Hypervisor

Konrad Schwarz
Senior Engineer, Siemens Corporate Technology

RISC-V is an emerging open-source and greenfield ISA designed to be minimalistic
and modular, yet scalable from embedded to data center. One of the first extensions
added to the base architecture is support for hypervisors. Jailhouse is a small
hypervisor designed to statically partition embedded multi-core systems to enable
consolidation of mixed-criticality systems onto a single hardware platform.

In the talk, I describe my experiences with porting Jailhouse, originally designed for
x86 and later to ARM, to RISC-V. This proved to be surprisingly long-winded; some
of the traps and pitfalls will be discussed, as well as some of the shortcomings of the
current hardware state of the art and how RISC-V plans to address these in future.

Konrad Schwarz has degrees in Computer Science and Mathematics from the Technical University of Vienna.
After short stints at Accenture and Motorola, he has been at Siemens Corporate Technology for over 20 years,
working with business units such as Semiconductors (now Infineon), Automotive (now Continental), Mobility
(train control systems), and industrial automation and motion control.

5

RTOS-Independent Interaction Analysis in ARA
Gerion Entrup, Jan Neugebauer, Daniel Lohmann

Leibniz Universität Hannover
{entrup, lohmann}@sra.uni-hannover.de, jan.neugebauer@stud.uni-hannover.de

Abstract—ARA is an RTOS-aware whole-system compiler for
embedded applications that takes RTOS semantics into account
for interprocedural analysis and optimization. To be applicable
for a multitude of RTOS interfaces and semantics, ARAs analysis
steps shall operate on an abstract RTOS model as far as possible,
while still providing means to exploit OS-specific particularities.
In this paper, we describe the design of such a model and its
utilization with two static analysis algorithms for AUTOSAR,
FreeRTOS, Zephyr and a subset of POSIX.

I. INTRODUCTION

Embedded systems typically come as whole systems: All
code that will eventually run on the device is known in advance.
For the compilation process, this lays the foundation for inter-
procedural whole-system optimization, which is well-explored
on the language level [15], [23], [18]. Taking also the real-
time operating system (OS) into account [21], [2], [8] enables
further aggressive optimizations by tailoring the OS to the
actual application implementation.

One approach to achieve whole-system optimization is
model-based generation, that is, generating the system including
the application from an abstract language description [29],
[1]. However, in practice, embedded applications are written
against a classical system-call interface, employing OSs such
as FreeRTOS or Zephyr mainly as a helper library or markup-
language to describe event- and control-flow interactions at
run time.

With the Automatic Real-time System Analyzer (ARA)1, we
are building a whole-system compiler (based on LLVM) for
embedded systems written against such common OS interfaces.
ARA is then able to compile the application with additional
optimizations based on the actual interactions between the OS
and the application code. Examples include the transformation
of dynamic into static initialization [13], folding of pre-known
scheduling decisions [9], or elision of never taken locks in
multi-core settings (not yet published).

For genericity, ARA shall support multiple OSs without
having to change the underlying analysis algorithms. However,
these analyses need, by design, OS-specific knowledge in
some parts. We, therefore, split them into an OS-agnostic
core and summarize all OS-specific parts in an analysis
independent OS model that serves as a unified interface between
all algorithms and OSs. Figure 1 visualizes the separation
and an overview of the ARA toolchain (we present details in
Section III).

This work was partly supported by the German Research Foundation (DFG)
under grant no. LO 1719/4-1

1https://github.com/luhsra/ara

Application code

Preprocessing Analysis Synthesis

Application imageOS interface

OS model

FreeRTOS AUTOSAR Zephyr POSIXARA

uses

OS-specific
steps

Fig. 1: Overview over the ARA toolchain. ARA processes
the application code with various steps and finally emits an
image. The model encapsulate all OS specific knowledge. It
(optionally) triggers OS-specific preprocessing steps and is
used by the main analyses for syscall interpretation.

In this paper, we describe our findings from designing this
model and implementing it for four very different syscall
interfaces: AUTOSAR, Zephyr, FreeRTOS, and a subset of
POSIX. In particular, we claim the following contributions:

• An abstract OS model with implementations for
FreeRTOS, AUTOSAR, Zephyr, and POSIX.

• The possibility to analyze and (partly) optimize real-world
systems for all these OSs.

II. SYSTEM MODEL AND IMPLEMENTATION

For our OS model, we target embedded real-time systems.
The concrete OS semantics and types of system objects have
no further constraints. However, the model requires that all
communication between application and OS takes place via
explicit syscalls or interrupts.

The current implementation in ARA imposes some further
constraints: As a toolset for static analysis and optimization,
its algorithms rely on a closed-world assumption, that is, all
code is known in advance. Late binding via function pointers
is supported and sound, but excessive use may impact the
strictness of analysis results. We furthermore assume a defined
application starting point, which, however, can also be given
by the OS model according to the OS-defined scheduling
strategy. Technically, ARA operates on the LLVM intermediate
representation (IR) and expects a single file in this format. We
implemented the model for FreeRTOS, AUTOSAR, Zephyr,
and POSIX; Figure 2 shows a minimal application example
for each of them. While semantically equivalent, the system
mostly differs in the way system objects (threads, events, ...) are
instantiated: AUTOSAR is completely static, all instances of OS

7

TaskHandle_t t1, t2;

QueueHandle_t q1;

struct Message {...};

int main() {

t1 = xTaskCreate(task_1, 1);

t2 = xTaskCreate(task_2, 2);

q1 = xQueueCreate(5,

sizeof(Message));

vTaskStartScheduler(); }

task_1 {

while(true) {

Message m = produce();

xQueueSend(q1, m); } }

task_2 {

Message m;

while(true) {

xQueueReceive(q1, &m);

consume(m); } }

.cpp

(a) FreeRTOS

char* Message = "{...}";

int pipe_fds[2];

pthread_t t1;

pthread_t t2;

thread_1() {

write(pipe_fds[WRITE_FD], Message);

}

thread_2() {

read(pipe_fds[READ_FD], received_msg);

}

int main() {

pipe(pipe_fds);

pthread_create(t1, thread_1);

pthread_create(t2, thread_2);

pthread_join(t1);

pthread_join(t2);

}

.cpp

(b) POSIX
struct Message {...};

K_FIFO_DEFINE(q1);

t1_action() {

Message m = produce();

k_fifo_put(&q1, &m);

}

t2_action() {

Message* m =

k_fifo_get(&q1, K_FOREVER);

consume(m);

}

K_THREAD_DEFINE(t1, t1_action, 1);

k_thread t2;

int main() {

k_thread_create(t2, t2_action, 2);

}

.cpp

(c) Zephyr

TASK T1:

CPU = 1;

PRIORITY = 2;

SCHEDULE = FULL;

AUTOSTART = TRUE;

TASK T2:

CPU = 2;

PRIORITY = 1;

SCHEDULE = FULL;

EVENT e1:

TASK = T2;

.oil Message m;

TASK(T1) {

m = produce();

SetEvent(T2);

}

TASK(T2) {

WaitEvent();

consume(m);

}

.cpp

(d) AUTOSAR

Fig. 2: Examples for OS interfaces: Two threads implement a
producer–consumer scheme. In FreeRTOS, POSIX, and Zephyr
via a queue; in AUTOSAR, which misses a queue abstraction,
an event (condition variable) is employed. AUTOSAR specifies
its OS objects in an extra configuration file (.oil).

Listing 1: The SIA algorithm (sketched)
def SIA(entry) -> InstanceGraph:

instance_graph = InstanceGraph()

for call in CFG:

if model.is_syscall(call):

for call_context in all_call_contexts(entry, call)

instance_graph.update(model.interpret(call,

call_context))

return instance_graph

objects are specified in a configuration file and typically created
at compile time. In contrast, FreeRTOS and POSIX (except
static mutexes) require dynamic OS object creation by syscalls
at run time. Zephyr supports both, static (via preprocessor
macros) and dynamic (via syscalls) instantiation.

III. OS MODEL DESIGN

Our model is based on two fundamental ideas: (1) The least
common ground of all operating systems are syscalls, which
modify the state of OS objects (such as threads or mutexes).
(2) The model shall always serve the most detailed information
possible about a specific syscall and its resulting state changes.
Thereby, the model supports the most detailed analysis while
others can just throw away the unneeded details.

For the initial design of the OS model, we target mainly
two analyses, the static instance analysis (SIA) [13], which is

Listing 2: The SSE algorithm (sketched)
def system_semantic(state) -> List[State]:

if model.is_syscall(state.abb):

new_states = model.interpret(state)

return model.schedule(new_states)

else:

return follow_control_flow(state)

def SSE(entry) -> SSTG:

sstg = SSTG()

stack = model.get_initial_os_state()

while stack:

state = stack.pop()

new_states = system_semantic(state)

sstg.add_nodes(new_states)

sstg.connect(new_states, state)

stack.push(new_states)

a flow-insensitive analysis, and the system-state enumeration
(SSE) [7], as an example of a flow-sensitive analysis. To better
understand the underlying requirements for the model design,
we briefly introduce them here.

A. SIA

The SIA retrieves all system-object instances (and interac-
tions) that are created over the whole lifetime of the system
and captures them in the instance graph. Its nodes represent
the instances, its edges the interactions. Listing 1 sketches
the algorithm. First, it iterates all syscalls. After that, the
analysis calculates the call context of each syscall to enable
a call-context–aware analysis of the argument values. The
call together with its context is then given to the model which
calculates the OS-specific effect on the instance graph. From the
model point of view, the analysis mainly needs this information:

• Which call is a syscall and what is its category?
• What is the effect of the syscall on the instance graph?

B. SSE

The SSE at its core is designed as a symbolic execution
on the OS level. It defines an abstract system state (the OS
relevant state of the whole system), extracts the starting state of
the system, and traverses the control flow from this point while
capturing the effect of each instruction as a new state. Listing 2
sketches the SSE algorithm. The analysis starts by retrieving
an OS-specific initial state that it pushes onto a stack. Then,
for each state, it first retrieves the effects of the current control
flow onto the state (it interprets the semantics of the system),
which it captures in a set of new states. After that, it connects
the new states with the old one thus forming a graph, the static
state-transition graph (SSTG). The system semantic function
is divided into two parts: If the state represents a syscall, the
model needs to interpret and schedule it. Otherwise, the analysis
calculates the new states by following the normal control flow.
As part of this, it also triggers all currently active interrupts
whose handling is part of the model again (not sketched).

8

Listing 3: The model interface
class OSBase:

public:

get_special_steps() -> List[Step]

get_initial_state(cfg, instances: Graph) -> State

get_interrupts(instances: Graph) -> List[int]

handle_irq(state, cpu_id: int, irq: int) -> State

handle_exit(state, cpu_id: int) -> List[State]

interpret(state, cpu_id: int,

categories=All) -> List[State]

schedule(state, cpus=None) -> List[State]

private:

List[Syscall] syscalls

From the model point of view, the SSE needs the following
information:

• Which call is a syscall?
• What is the effect of the syscall on the abstract state?
• In which abstract state does the system start?
• The possibility to schedule an abstract state.
• Which interrupts can occur in which state and how they

are handled?

C. A generic OS model

Additionally, to be more generic, our model should fulfill
also the following requirements: (1) It should be able to support
multi-core applications. In particular, this means, that the
model must be able to calculate the effect of a syscall on
a specific CPU. (2) Furthermore, it should not restrict the OS
initialization and setup process. The presented OS all have
different configuration mechanisms, which shall be supported.
(3) Finally, the model should allow other future analyses of
different precision.

All this results in the definition of an OS interpreter that
acts on abstract system states (AbSSs), that is, the model
implements a function for each syscall that takes an AbSS,
interprets the effect of a syscall on this state, and outputs one
or multiple follow-up states:

AbSSa,n+1,AbSSb,n+1, · · · = interpret(AbSSn)

Conceptually, this is pretty close to the SSE algorithm. The
AbSS, however, is extended. Figure 3 presents such an AbSS.
First, it includes a reference to the instance graph, a data
structure whose elements are immutable and to which only
can be added. Furthermore, it holds all system-object instance
contexts, which represents all changeable parts of an OS object
instantiation, for example, the current thread status. The exact
content of the context is OS specific and therefore not part of
the generic interface. Finally, it holds the current execution
context for each CPU, that is, each execution unit in the system.
This consists of the current instruction pointer, a call path to
specify the calling context, the current interrupt state, and the
currently executed instance. To summarize, the state consists of
OS-specific parts, the objects and their contexts, and hardware-
specific parts, the execution contexts.

With that, each OS model implements a generic interface
that uses the AbSSs. Listing 3 shows the (simplified) interface.
The list of syscalls contains most of the information. Each
syscall is an object with four properties: the name, its signature,
a category and an interpret function. The name serves as
unique identifier to dispatch to the correct syscall interpretation
function. The category is used to fasten the analysis when used
as a filter. The signature is necessary for the extraction of the
syscall arguments, which in turn is necessary for the correct
interpretation of the syscall. Finally, the interpret function gets
an abstract state as input and outputs a list of new states which
represents the effects of this specific syscall.

To ease the development, we use a Python decorator that
turns a function into a syscall object and adds the necessary
value-analysis code to each interpret function. Each argument
in the signature can be annotated with extra information for
the value analysis. The interpret function gets the results of
the value analysis via the args argument. The syscall name is
extracted from the function name. With that, for example, the
implementation for SetEvent in AUTOSAR looks as follows:

@syscall(categories={SyscallCategory.comm},

signature=(Arg("task", ty=Task, hint=SigType.instance),

Arg("event_mask")))

def SetEvent(cfg, state, cpu_id, args, va):

task_ctx = state.context[args.task]

set the task ready if it already waits

if task_ctx.status == TaskStatus.blocked and \

event_mask & task_ctx.waited_events != 0:

task_ctx.status = TaskStatus.ready

task_ctx.waited_events = 0

set the event

if task_ctx.status != TaskStatus.suspended:

task_ctx.received_events |= event_mask

update the instance graph

cur_task = state.cpus[cpu_id].instance

for event in get_events(args.event_mask):

state.instances.add_edge(cur_task, event)

return state

All the effects of SetEvent are captured: First, it wakes up the
potentially waiting task. Then, it updates the task’s event mask
and finally marks the interaction within the instance graph.

The rest of the interface provides the necessary functions
for initialization, interrupt handling, and interpretation:

• get_special_steps gives the OS-specific preprocessing
steps and get_initial_state returns the first abstract
system state.

• get_interrupts returns a list of interrupts that are trig-
gered by the analysis if needed and can be handled via
handle_irq on which the irq argument describes the
interrupt to be handled. handle_exit outputs a new state
which represents all effects that result from an interrupt
exit.

• interpret and schedule are the actual transition functions
for abstract states to simulate a syscall interpretation and
a reschedule. Both functions return a list of follow-up
states.

9

t1

t2

q1

InstanceGraph

k_fifo_put

k_fifo_get

CPU 0
IRQ: on
Instance: t1
IP: ABB 5 (line 5)
Call Path: t1_action
Status: syscall

. . .

t1 context
Status: running
IP: ABB 5 (line 5)
Call Path: t1_action

t2 context
Status: suspended
IP: ABB 10 (line 10)
Call Path: t2_action

q1 context
Elements: 4

AbSS 15

Fig. 3: Representation of the AbSS. It contains a reference to
the instance graph, a list of OS-object-specific contexts, and a
list of CPUs. The values match the Zephyr example application
(Figure 2c).

To support multi-core systems, most functions also get an
additional cpu_id argument to specify the (abstract) CPU on
which the action should take place. The analysis has to take
care of invoking the in reality happening parallel actions in a
sequential manner.

Figure 1 gives an overview of embedding the model into
ARA. The application code that is written against a specific
OS interface is preprocessed by ARA to extract control flow
and data flow. At this stage, the model can request additional
steps, like the parsing of extra system configuration files. After
that, the main analyses run, which use the model interface for
all OS-specific parts.

Mapping the SSE onto the generic model is trivial. The
model interface basically provides all necessary functions for
direct SSE support.

For using the model with the SIA, we have to slightly
modify the algorithm. Since the model applies the instance-
graph specific effects only as part of an overall state change,
the SIA has to craft a fake state to fit the model functions. For
that, it combines the current instance graph, constructs a fake
CPU and empty OS-object contexts. The fake CPU contains the
current instruction pointer, call context and active OS-object.
The model interprets this state and returns an updated state.
From that, the SIA can extract the updated instance graph and
continue.

IV. EXPERIMENTAL VALIDATION

To validate the model, we apply the SIA and the SSE to
several applications (see Table I for details). The SSE, which
enumerates all system states, depends on a strictly bounded set
of system objects and interactions. Currently, only AUTOSAR
ensures this. On the other OSs, the application might, for
instance, create system objects in an unbounded loop.

A. FreeRTOS
For FreeRTOS, we verified the model with the GPSLogger2,

an embedded application for logging GPS positional data on an

2https://github.com/grafalex82/GPSLogger, Git commit: 8808b922

handheld device and the LibrePilot CopterControl3 firmware
as a safety-critical real-time application for the flight controller
of a quadcopter.

Doing so for the GPSLogger results in 6 tasks, 3 queues and
1 mutex which a manual verification proofs as complete. The
SIA fails to resolve 3 interactions between tasks and mutexes
(out of 15 interactions in total) due to restrictions in the value
analysis, which fails the correct syscall argument retrieval to
get the involved mutex instance. Especially for mutexes, the
GPSLogger uses a C++ wrapper class which forces the value
analyzer to resolve two indirections.

For the LibrePilot the SIA finds 17 tasks, 15 queues and
9 mutexes which are correct. Additionally, it can determine
12 interactions, while it ignores 22 invocations of interaction
syscalls due to restrictions in the value analyzer.

B. Zephyr

For Zephyr,4 we were not able to obtain any implemented
real-world application. Hence, we decided to choose two of
the bigger benchmarks from their test suite as applications:
sys_kernel and app_kernel.

The app_kernel application creates all OS objects statically,
for which we use a special preprocessing step. It detects 2
threads, 6 kernel semaphores, 4 message queues, 3 pipes and
1 mutex, which a manual check verifies as correct.

The OS objects are connected with 60 interactions. ARA
fails to determine the arguments of 2 interactions. They belong
to a pipe interaction in which the pipes are stored dynamically
in an array and therefore are not found by the value analyzer.

The sys_kernel benchmark creates its instances dynamically
of which ARA detects 22 threads, 14 queues, 6 kernel
semaphores, and 6 stacks. Additionally, ARA finds 274
interactions. A manual check confirms these results.

The sys_kernel application reassigns its OS objects to the
same memory location. This makes it impossible for a flow-
insensitive analysis like the SIA to retrieve a correct mapping
between OS object creation and its usage. Our model, therefore,
marks these objects as duplicated and cannot distinguish
interactions that lead to them. We plan to extend the SIA
in the future to become flow-sensitive for exactly those parts.

C. AUTOSAR

For AUTOSAR, we use the I4Copter [25], a safety-critical
embedded real-time control system (quadrotor helicopter), as
a test application. Due to its static nature, both the SIA and
SSE work with AUTOSAR.

Applying the SIA to the I4Copter results in 78 interactions.
They happen on 30 OS objects which are defined statically in
the configuration file that ARA parses in a preprocessing step.

Applying the SSE to the I4Copter results in an SSTG with
648 479 states and 2 032 326 transitions. We also ported the
SSE unit tests from dOSEK [9] to ARA and manually verified
all resulting SSTGs.

3https://www.librepilot.org/, Version 16.0.9
4https://www.zephyrproject.org/ Commit: c2a0b0f50b

10

FreeRTOS Zephyr AUTOSAR POSIX
GPSLogger LibrePilot app_kernel sys_kernel i4copter libmicrohttpd

Lines of code 79 573 78 787 1603 1206 591 45 322
Number of basic blocks 11 268 19 974 1 152 688 148 41 698
Number of functions 1 311 3 028 212 95 30 2 755
Number of calls 118 919 49 34 0 129
Number of syscalls 37 187 56 91 48 88
Maximal call path depth 16 5 5 3 1 8

TABLE I: Code statistics of the benchmark applications.

D. POSIX

POSIX defines more than a thousand syscalls. A huge part
of them (e.g. strcmp) does not need the operating system or
defines concepts that are unusual in embedded systems (e.g.
fork). We therefore restricted our POSIX model to the subset
of calls5 that is likely to be employed in an embedded context.

We evaluated the model with libmicrohttpd,6 an HTTP server
library, which is well suited for embedded controllers due to
its small memory footprint. To make use of the library, we
decided for fileserver_example_dirs as an application, which
libmicrohttpd includes as an example. We built and analyzed
the library in conjunction with the musl libc7 as implementation
of the POSIX standard for the user space.

We found that libmicrohttpd on its own was too dynamic
to be useful for ARA. Therefore, we modified libmicrohttpd
to reduce its complexity, make the data more static, and
focus on the features that are supported by the model. The
demo application is runnable on our modified version of
libmicrohttpd.

The generated instance graph consists of 4 threads, 1 pipe,
19 files, and 64 mutexes. ARA was able to find 123 interactions.
For 46 invocations of interaction syscalls, it fails to determine
the belonging OS object due to dynamic calculations or a
complicated data flow. While ARA detects nearly all created
objects correctly one static mutex is missing since libmicrohttpd
typedef the standard mutex type which our preprocessing step
cannot resolve.

ARA finds 18 different call contexts for fopen and one call
to opendir which it tracks as files. However, this does not
reflect all loaded files at runtime since libmicrohttpd opens
all files in the current directory, which is inherently dynamic
information.

Overall, while we were not able to always find all OS object
instantiations and interactions this is not a restriction of the
model but of the value analyzer and the analysis algorithms.

V. DISCUSSION

Implementing the model for the four OSs shows the general
applicability of the approach, but also uncovers some practical
challenges:

5pthread_create, pthread_mutex_init, PTHREAD_MUTEX_INITIALIZER,
sem_init, pthread_cond_init, PTHREAD_COND_INITIALIZER, pipe, pause,
nanosleep, read, readv, sigaction, open, pthread_join, pthread_detach,
pthread_cancel, pthread_mutex_lock, pthread_mutex_unlock, sem_wait,
sem_post, pthread_cond_wait, pthread_cond_signal, pthread_cond_broadcast,
write, writev

6https://www.gnu.org/software/libmicrohttpd/ v0.9.73, Commit: 64e91ef6
7http://musl.libc.org/

Value analysis. The semantics of a concrete syscall is also
determined via its arguments. To statically extract their values,
we leverage a sophisticated value analyzer based on the Static
Value-Flow (SVF) [24] framework, which, however, is still
not able to find all value-flows in real-world C/C++ code.
Especially constant values that are passed around via (nested)
structs appear to be difficult to resolve.

Dynamic object creation. A general problem of static
analysis is the possibility to create new system objects at
run time. While most real-time applications behave well in
this respect in that they create and initialize all system objects
before entering the application’s main loop, the OS interface
does not enforce this. Luckily, the SIA is able to detect this
in a reliable manner [13].

The most analysis friendly system in these respects is
AUTOSAR, as all system-object instances and also some of
their possible interactions (e.g., which task may take which
resource) must be declared ahead of time in the configuration
file. FreeRTOS, Zephyr, and POSIX are less nicely. While
Zephyr, at least, supports static system object definition, POSIX
and FreeRTOS basically rely on dynamic object creation only.

Scheduling determinism. For the state change, the schedul-
ing policy is taken into account. Again, AUTOSAR specifies
a fixed priority scheduling (partitioned on multi core) which
requires no additional information in the state. FreeRTOS
allows tasks with the same priority that are scheduled in a
round-robin fashion via a timer interrupt which has to be
tracked in the state. Zephyr supports multi core but does not
really specify how tasks are scheduled on different cores.

Semantically uncompleted syscalls. Especially POSIX
defines syscalls that are not conclusive with respect to their
effect on the system state. Thread creation is a good example
here: To specify the exact behavior of threads, the developer
may optionally provide thread attributes, which need to be
created and modified by a sequence of syscalls before the actual
pthread_create call that puts the new thread into existence.
This may result in complex dependency chains, defined by the
control flow, rendering a flow-insensitive analysis like the SIA
impossible. In the future, we plan to extend the SIA to switch
to a flow-sensitive analysis for exactly these parts of the code.

OS/library interface ambiguities. The POSIX standard does
not distinguish between syscalls (like read()) and utility library
functions (e. g. strcmp()). Both of them are implemented within
the same libc. We tackle this by splitting the libc conceptually in
syscalls and user functions and analyzing only the former. This
can also be implementation-defined, so it might be required to
adopt the POSIX model for the concrete OS.

11

Overall, our findings show that ARA is able to extract OS-
interaction knowledge regardless of the specific OS. The remain-
ing implementation challenges mostly result from idiomatic
anachronisms of the respective OS interfaces and programming
models (e.g., POSIX, FreeRTOS) and underspecification of its
semantics (e.g., multi-core scheduling), which naturally limits
static analysis. Note, however, that ARA still behaves sound
in these cases, even though it yields less tight analysis results.

VI. RELATED WORK

To the best of our knowledge, no other compiler exists that
tailors OSs while supporting multiple of them. However, there
do exist other usages of operating system models and compilers
for different purposes.

First, dOSEK [16] is a whole system compiler and able
to tailor applications written for the OSEK OS standard, the
predecessor of AUTOSAR. As part of its implementation, it
contains an abstract OSEK interpreter. In contrast to the OS
model of ARA, this interpreter is for OSEK only which includes
the restriction to single-core applications. However, ARA is
influenced by dOSEK and shares concepts and code with it.

SWAN [22] is a whole-system WCET analyzer that also
builds an SSTG to calculate tighter bounds for a better WCET.
While SWAN also operates on FreeRTOS, it does not use a
model of it but analyzes the internal syscall implementation to
calculate a tighter WCET bound.

With the RTSC, a whole system compiler exists that was
written to automatically convert event-driven real-time systems
(written for OSEK) into time-driven real-time systems (written
for OSEKTime) [20]. As an extension, it supports the mapping
on multi core and into a POSIX program [14]. The RTSC,
therefore, uses a system model for OSEKTime and POSIX but
aims for system generation only.

Another common use of operating system models is formal
verification or conformance checking. Brekling et. al. define a
precise operating system specification based on timed automata
[3]. With the help of UPAAL, the automata can both be
converted to running code and theoretically verified. The model
here, however, can be seen as another OS implementation and
does not try to unify and abstract existing OSs.

For the OSEK and AUTOSAR standard, several works exist
to convert the specification into a formal model to verify
the system like checking for schedulability or generating
conformance tests [4], [17], [27], [28], [26], [10], [11]. Similar
works try to formalize parts of FreeRTOS [5], [19], [6] or
Zephyr [12]. All of these works use models that are not used
to optimize the system but proof the real-time capabilities.
Furthermore, in contrast to ARA, no unifying model is
formulated.

VII. CONCLUSION

In this paper, we presented a generic interface to model OS
behavior for usage in static analysis. Thereby, we were able to
reduce the constraints for an OS to a minimum: The system
must communicate with a syscall interface.

We implemented the interface for the four OSs FreeRTOS,
AUTOSAR, Zephyr, and POSIX and evaluated all targets

with at least one test application. The results prove the
working of the model. While experiencing limitations, we can
assign them either to the analysis algorithm or inaccuracies in
the value analysis, not the OS model itself. We discussed
the characteristics of different OSs and their potential for
optimization.

REFERENCES

[1] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: A tool for schedulability analysis and code generation
of real-time systems. In Formal Modeling and Analysis of Timed Systems.
Springer Berlin Heidelberg, 2004.

[2] Ramon Bertran, Marisa Gil, Javier Cabezas, Victor Jimenez, Lluis
Vilanova, Enric Morancho, and Nacho Navarro. Building a global system
view for optimization purposes. In 2nd Work. on the Interaction between
Operating Systems and Computer Architecture (WIOSCA ’06). IEEE
Computer Society Press, 2006.

[3] Aske Brekling, Michael R. Hansen, and Jan Madsen. Models and formal
verification of multiprocessor system-on-chips. The Journal of Logic
and Algebraic Programming, 77(1), 2008. The 16th Nordic Work. on
the Prgramming Theory (NWPT 2006).

[4] Jiang Chen and Toshiaki Aoki. Conformance testing for OSEK/VDX
operating system using model checking. In 18th Asia-Pacific Software
Engineering Conf. (APSEC 2011). IEEE Computer Society Press, 2011.

[5] Nathan Chong and Bart Jacobs. Formally verifying FreeRTOS’ interpro-
cess communication mechanism. In Embedded World Exhibition and
Conf., 2021.

[6] David Déharbe, Stephenson Galvao, and Anamaria Martins Moreira.
Formalizing FreeRTOS: First steps. In Brazilian Symp. on Formal
Methods. Springer, 2009.

[7] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Cross-kernel
control-flow-graph analysis for event-driven real-time systems. In 2015
ACM SIGPLAN/SIGBED Conf. on Languages, Compilers and Tools for
Embedded Systems (LCTES ’15). ACM Press, 2015.

[8] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Global
optimization of fixed-priority real-time systems by RTOS-aware control-
flow analysis. ACM Trans. on Embedded Computing Systems, 16(2),
2017.

[9] Christian Dietrich and Daniel Lohmann. OSEK-V: Application-specific
RTOS instantiation in hardware. In 2017 ACM SIGPLAN/SIGBED Conf.
on Languages, Compilers and Tools for Embedded Systems (LCTES ’17).
ACM Press, 2017.

[10] Timothee Durand, Katalin Fazekas, Georg Weissenbacher, and Jakob
Zwirchmayr. Model checking AUTOSAR components with CBMC. In
2021 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2021.

[11] Ling Fang, Takashi Kitamura, Thi Bich Ngoc Do, and Hitoshi Ohsaki.
Formal model-based test for AUTOSAR multicore RTOS. In 2012 IEEE
Fifth Intl. Conf. on Software Testing, Verification and Validation. IEEE,
2012.

[12] Zhang Feng, Zhao Yongwang, Ma Dianfu, and Niu Wensheng. Fine-
grained formal specification and analysis of buddy memory allocation in
Zephyr RTOS. In 2019 IEEE 22nd Intl. Symp. on Real-Time Distributed
Computing (ISORC), 2019.

[13] Björn Fiedler, Gerion Entrup, Christian Dietrich, and Daniel Lohmann.
ARA: Static initialization of dynamically-created system objects. In
27th IEEE Real-Time and Embedded Technology and Applications Symp.
(RTAS’21), 2021.

[14] Florian Franzmann, Tobias Klaus, Peter Ulbrich, Patrick Deinhardt,
Benjamin Steffes, Fabian Scheler, and Wolfgang Schröder-Preikschat.
From intent to effect: Tool-based generation of time-triggered real-time
systems on multi-core processors. In 19th IEEE Intl. Symp. on Object-
Oriented Real-Time Distributed Computing (ISORC ’16). IEEE Computer
Society Press, 2016.

[15] T. Glek and Jan Hubicka. Optimizing real world applications with GCC
link time optimization. CoRR, abs/1010.2196, 2010.

[16] Martin Hoffmann, Christian Dietrich, and Daniel Lohmann. dOSEK:
A dependable RTOS for automotive applications. In 19th Intl. Symp.
on Dependable Computing (PRDC ’13). IEEE Computer Society Press,
2013. Fast abstract.

[17] Yanhong Huang, Yongxin Zhao, Longfei Zhu, Qin Li, Huibiao Zhu, and
Jianqi Shi. Modeling and verifying the code-level osek/vdx operating
system with csp. In 5th Intl. Symp. on Theoretical Aspects of Software
Engineering (TASE’11). IEEE Computer Society Press, 2011.

12

[18] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
Bolt: a practical binary optimizer for data centers and beyond. In 2019
IEEE/ACM Intl. Symp. on Code Generation and Optimization (CGO).
IEEE, 2019.

[19] David Sanán, Liu Yang, Zhao Yongwang, Xing Zhenchang, and Mike
Hinchey. Verifying FreeRTOS’ cyclic doubly linked list implementation:
From abstract specification to machine code. In 2015 20th Intl. Conf.
on Engineering of Complex Computer Systems (ICECCS). IEEE, 2015.

[20] Fabian Scheler and Wolfgang Schröder-Preikschat. The RTSC: Leverag-
ing the migration from event-triggered to time-triggered systems. In 13th
IEEE Intl. Symp. on Object-Oriented Real-Time Distributed Computing
(ISORC ’10). IEEE Computer Society Press, 2010.

[21] Horst Schirmeier, Matthias Bahne, Jochen Streicher, and Olaf Spinczyk.
Towards eCos autoconfiguration by static application analysis. In 1st
Intl. Work. on Automated Configuration and Tailoring of Applications
(ACoTA ’10), CEUR Work. Proceedings. CEUR-WS.org, 2010.

[22] Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-
Preikschat. Proving real-time capability of generic operating systems by
system-aware timing analysis. In 2019 IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS), 2019.

[23] Amitabh Srivastava and David W. Wall. Link-time optimization of
address calculation on a 64-bit architecture. 29(6), 1994.

[24] Yulei Sui and Jingling Xue. SVF: Interprocedural static value-flow
analysis in LLVM. In 25th Intl. Conf. on Compiler Construction, CC
2016. Association for Computing Machinery, 2016.

[25] Peter Ulbrich, Rüdiger Kapitza, Christian Harkort, Reiner Schmid, and
Wolfgang Schröder-Preikschat. I4Copter: An adaptable and modular
quadrotor platform. In 26th ACM Symp. on Applied Computing (SAC

’11). ACM Press, 2011.
[26] Dieu-Huong Vu, Yuki Chiba, Kenro Yatake, and Toshiaki Aoki. Verifying

OSEK/VDX OS design using its formal specification. In Proc. TASE’16.
IEEE Computer Society, 2016.

[27] Haitao Zhang, Toshiaki Aoki, and Yuki Chiba. Yes! you can use your
model checker to verify OSEK/VDX applications. In 8th IEEE Intl.
Conf. on Software Testing, Verification and Validation, ICST 2015, Graz,
Austria, April 13-17, 2015, 2015.

[28] Min Zhang, Yunja Choi, and Kazuhiro Ogata. A formal semantics
of the OSEK/VDX standard in K framework and its applications. In
Proc. WRLA’14. Springer, 2014.

[29] Ming-Yuan Zhu, Lei Luo, and Guang-Ze Xiong. The minimal model of
operating systems. SIGOPS Oper. Syst. Rev., 2001.

13

Supporting Multiprocessor Resource
Synchronization Protocols in RTEMS

Junjie Shi∗, Jan Duy Thien Pham∗, Malte Münch∗, Jan Viktor Hafemeister∗, Jian-Jia Chen∗ and Kuan-Hsun Chen†
∗Department of Computer Science, Technische Universitat Dortmund, Germany

†Department of Electrical Engineering, Mathematics and Computer Science, University of Twente, the Netherlands
E-mail: {junjie.shi, jan.pham, malte.muench, jan.hafemeister, jian-jia.chen}@tu-dortmund.de, k.h.chen@utwente.nl

Abstract—When considering recurrent tasks in real-time sys-
tems, concurrent access to shared resources can cause race con-
ditions or data corruption. Such a problem has been extensively
studied since the 1990s, and numerous resource synchroniza-
tion protocols have been developed for both uni-processor and
multiprocessor real-time systems, with the assumption that the
operating overheads are negligible. However, such overheads may
also impact the performance of different protocols depending on
the practical implementation, e.g., resources are accessed locally
or remotely, and tasks spin or suspend themselves when the
requested resources are not available. In this paper, to show
the applicability of different protocols in real-world systems, we
detail the implementation of several state-of-the-art multipro-
cessor resource synchronization protocols in RTEMS. To study
the impact of the implementation overheads, we deploy these
implemented protocols on a real platform with synthetic task
sets. The measured results illustrate that the developed resource
synchronization protocols in RTEMS are comparable to the
officially supported protocol, i.e., MrsP.

I. INTRODUCTION

In multi-tasking real-time systems, the accesses to shared
resources, e.g., file, memory cell, etc., are mutually exclusive,
to prevent race conditions or data corruptions. A code segment
that a task accesses to the shared resource(s) is called a critical
section, which is protected by using binary semaphores or
mutex locks. That is, a task must finish its execution of the
critical section before another task can access the same re-
source. However, the mutually exclusive executions of critical
sections may cause other problems, i.e., priority inversion and
deadlock, which could jeopardize the predictability of the real-
time system. In order to guarantee the timeliness of a real-time
system, a lot of resource synchronization protocols have been
developed and analyzed since 1990s for both uni-processor
and multiprocessor real-time systems.

In uni-processor real-time systems, the Priority Inheritance
Protocol (PIP) and the Priority Ceiling Protocol (PCP) by
Sha et al. [20], as well as the Stack Resource Policy (SRP)
by Baker [4] have been widely studied. Since PIP may
potentially lead to a deadlock requiring additional verification
to avoid [13], PCP has been relatively common and its
performance has been widely accepted. Specifically, a variant
of PCP has been implemented in Ada (named Ceiling locking)
and in POSIX (named Priority Protect Protocol).

Because of the increasing demand of computational power
of real-time systems, multiprocessor platforms have been

widely used. A lot of multiprocessor resource synchronization
protocols have been proposed and extensively studied in
the domain, such as the Distributed Priority Ceiling Proto-
col (DPCP) [19], the Multiprocessor Priority Ceiling Proto-
col (MPCP) [18], the Multiprocessor Stack Resource Policy
(MSRP) [14], the Flexible Multiprocessor Locking Protocol
(FMLP) [5], the O(m) Locking Protocol (OMLP) [7], the
Multiprocessor Bandwidth Inheritance (M-BWI) [12], gEDF-
vpr [2], LP-EE-vpr [3], the Multiprocessor resource sharing
Protocol (MrsP) [8], the Resource-Oriented Partitioned PCP
(ROP-PCP) [17], the Dependency Graph Approach (DGA) for
frame-based task set [11], and its extension for periodic task
set (HDGA) [25].

Although the protocols above provide the timing guarantees
by bounding the worst-case response time of tasks, most of
them rely on the assumption that the overheads invoked by
the implementation are negligible. However, rethinking of the
assumption is in fact needed. Depending on their settings, e.g.,
local or remote execution of critical sections, multiprocessor
scheduling paradigm, and the tasks’ waiting semantics, the
performance of different protocols is highly relevant to the
implementation. For example, under a suspension-based syn-
chronization protocol, tasks that are waiting for access to a
shared resource (i.e., the resource is locked by another task)
are suspended. This strategy frees the processor so that it can
be used by other ready tasks, which exploits the utilization of
processor, but also increases the context switch overhead due
to extra en-queue and de-queue operations for each suspension.
In contract, under a spin-based synchronization protocol, the
task does not give up its privilege on the processor and has
to wait by spinning on the processor until it can access the
requested resource and starts its critical section, which is
efficient when the critical sections are short [16].

In fact, there are only a few of the protocols have been offi-
cially supported, and there are two real-time operating systems
popular in the domain: the Linux Testbed for Multiprocessor
Scheduling in Real-Time Systems (LITMUSRT) [9], and Real-
Time Executive for Multiprocessor Systems (RTEMS) [1].
LITMUSRTis an experimental platform for timing analysis
mainly for academic usages. Brandenburg et al. implemented
DPCP, MPCP, and FMLP [6], Catellani et al. implemented
MrsP [10], and Shi et al. solidate the implementation of
MrsP [23]. In addition, the recently developed DGA and its

15

extension for periodic tasks HDGA have been implemented
by Shi et al. in [21], [22]. Alternatively, RTEMS is an
open-source real-time operating system which is popular for
industrial applications. RTEMS has been widely used in many
fields, e.g., space flight, medical, networking, etc. However, in
RTEMS, only MrsP implemented by Catellani et al. in [10],
is officially supported in the upstream repository.

Therefore, we believe it is beneficial to provide comprehen-
sively support on RTEMS with resource synchronization pro-
tocols for the related researches. Afterwards, the performance
of resource synchronization protocols might be clarified by
system designers, and the optimizations of implementation can
also be discussed. In this work, we focus on the resource syn-
chronization protocols which are based on (semi-) partitioned
scheduling, detailed as follows:

• Partitioned Schedule: Each task is assigned on a dedi-
cated processor, each processor maintains its own ready
queue and scheduler. Tasks are not allowed to migrate
among processors, e.g., MPCP.

• Semi-partitioned Schedule: Unlike the pure partitioned
schedule, semi-partitioned schedule allows tasks to mi-
grate to other processors under certain conditions. For
example, in DPCP and ROP-PCP, shared resources are
assigned on processors, the critical sections have to be
executed on the corresponding processors, where may not
be the same as the original partition of a task.

Our Contribution in a nutshell: We enhance the RTEMS
with the aforementioned multiprocessor resource synchroniza-
tion protocols and discuss how to revise the kernel with
RTEMS Symmetric Multiprocessing (SMP) support.

• To harden the open source development, we review the
SMP support of RTEMS and point out the potential
pitfalls during the implementation, so that the insights
can be reused on any other platforms (see Section III).

• We detail the development of three multiprocessor re-
source synchronization protocols, i.e., MPCP, DPCP, and
FMLP, and their variants in RTEMS (see Section IV).

• To study the impact of the implementation overheads, we
deploy our implementations on a real platform with syn-
thetic task sets (see Section V). The measured overheads
show that our implementation overheads are comparable
to the existed implementation of MrsP, in RTEMS, which
illustrates the applicability of our implementations.

The patches have been released under MIT license in [24] for
RTEMS 4.12. Please note that this release branch was planned
to be the latest release, but significant changes warranted to
bump the major number from 4 to 5. To apply our patches to
RTEMS 5, a certain adaption is additionally needed.

II. SYSTEM MODEL

We consider a task set T consists of n recurrent tasks to
be scheduled on M symmetric and identical (homogeneous)
processors. All tasks can have multiple (non-nested) critical
sections, each critical section accesses one of the Z shared
resources, denoted as sz Each task τi is described by a tuple
(Ci, µi, Ti, Di, qi), where:

rtems semaphore obtain

SEM Seize

SEM Get owner

owner
==

NULL

SEM Wait For
ownership

Ao

Enqueue task using
TQ functions of the
semaphore variant

Wait

SEM Claim
Ownership

Bo

Lock

YN

Fig. 1. Workflow of the lock directive. Block Ao and Bo are specified
according to the adopted protocols.

• Ci is the worst-case execution time (WCET) of task τi,
i.e., Ci > 0.

• µi is the set of resource(s) that τi requests.
• Ti is the period of task τi, i.e., Ti > 0.
• Di is the relative deadline of the task τi. To fulfill its

timing requirements a job of τi released at time t must
finish its execution before its absolute deadline t+Di. We
consider constrained-deadline task systems, i.e., Di ≤ Ti
for every task τi ∈ T.

• qi is the priority of task τi.

III. SYMMETRIC MULTIPROCESSING SUPPORT IN RTEMS

RTEMS allows users to implement new resource synchro-
nization protocols by strictly following the RTEMS API.
To create a new semaphore, SEM_Initialize function
is called to define the specified attributes for each resource
synchronization protocol. Besides the creation of semaphore,
which is defined by different protocols, some common com-
ponents that are similar for all the protocols, i.e., lock and
unlock directives, configuration for applications, and migration
mechanism, are introduced in this section.

A. Lock and Unlock Directives

The workflow of the lock directive is shown in Fig. 1. Once
a task τi requests a shared resource, it will try to lock the
corresponding semaphore. After selecting the right semaphore,
denoted as SEM, τi calls the _SEM_Seize function. Then,
the ownership of the semaphore is checked by getting the
owner of the Thread queue Control. If the semaphore is locked
by another task, τi has to wait for the owner to release the
semaphore. The detailed operations in block Ao are specified
according to the design of different protocols. If there is no
owner yet, τi is set as the owner of the semaphore, and starts
the execution of its critical section. The operations in block Bo

can be different depending on the specified design of protocols.
The workflow of the unlock directive is shown in Fig. 2.

It will be called when task τi has finished the execution of
its critical section and releases the lock of the semaphore. The
unlock directive selects the right _SEM_Surrender function

16

rtems semaphore release

SEM Surrender

SEM Get owner

owner !=
executing

Not owner

Ar

UnlockY

N

Fig. 2. Workflow of the unlock directive. Block Ar is specified according to
the adopted protocols.

to check whether the τi is the current owner of the semaphore.
If τi is not the owner, the semaphore cannot be unlocked.
Otherwise, τi can unlock the semaphore by executing the
commands in block Ar. The main function in Ar is to find
the next owner for the semaphore if (at least) one task that
is waiting for the semaphore. If there is no waiting task, the
owner will be set to NULL accordingly. The details of the
functions in Ar will be discussed in the corresponding sections
for different protocols.

B. Application Configuration

In order to support semi-partitioned schedule in RTEMS,
the flow for configuration in Fig. 3 has to be followed.
Firstly, processors have to be bound to specific scheduler
instances by using macro _RTEMS_SCHEDULER_ASSIGN
supported in RTEMS by default. After that, each task
is partitioned to a scheduler instance by using the
rtems_task_set_scheduler directive. Each task can
only be executed on the processor of the corresponding
scheduler instance.

Processor Scheduler Instance Tasks
Step 1 Step 2

Fig. 3. The steps to configure

When a RTEMS application is configured with SMP support
by following the work flow in Fig. 3, some new functions
have to be implemented. In Step 1, an initial task has to be
defined, which is executed in the beginning of the RTEMS
application. The binding of scheduler instances to processor
is based of the guide in the official c-user guide. The dedicated
schedule algorithm for the scheduler instances has to be
selected at first. In this paper, the Deterministic Priority SMP
Scheduler supported in RTEMS by default is selected for
all the protocols, which is the same as Fixed-Priority (FP)
scheduler in the literature. Please note that, the instances have
to be defined for all the available processors in the system, in
order to support the semi-partitioned schedule, i.e., tasks may
migrate to other processors by changing their scheduler nodes,
details can be found in next subsection.

Task τi
Executing on CPU#0

S1(255) [CPU#1]
BLOCKED

S0(7) [CPU#0]
SCHEDULED

S2(255) [CPU#2]
BLOCKED

Task τi
Migrated to CPU#1

S1(2) [CPU#1]
SCHEDULED

S0(7) [CPU#0]
BLOCKED

S2(255) [CPU#2]
BLOCKED

(1)

(2)

Fig. 4. Scheduler Node management: (1) Before migration, (2) After
migration. Dashed blocks and lines represent that τi has no access to the
respective scheduler instances, whereas green block is the currently used one.

C. Migration Mechanism

The migration mechanism by using arbitrary processor
affinity in [15] is not supported in the current version of
RTEMS. Therefore, a new migration mechanism has to be ap-
plied for those distributed-based protocols, e.g., DPCP. In our
implementation, the scheduler node is modified during the run
time in order to realize the task migration. When a task needs
to migrate to another processor, the scheduler node of the task
in its original scheduler instance is blocked, and the scheduler
node of the task in its destination processor is unblocked.
An additional function named _Scheduler_Migrate_To
is implemented in schedulerimpl.h, which contains the
task information block, the target processor, and the priority of
the task in the target processor. In addition, in order to guar-
antee the correctness of the migration, thread-dispatch
is disabled during the migration operation.

Fig. 4 demonstrates an example of the implemented task
migration. In Fig. 4 (1), task τi has a scheduler node for every
scheduler instance in the system. τi is currently executing on
CPU#0 with a priority of 7 by using scheduler node S0, which
is indicated by the the node with green background. Other
two nodes with grey background are blocked, since τi has no
access their respective scheduler instances, denoted as dashed
line. In Fig. 4 (2), task τi performs migration to CPU#1.
τi blocks itself on its original scheduler by using the block
function of the scheduler instance on S0. After that, it adds
S1 to the list of its active scheduler nodes and modifies the
priority of S1 accordingly. It unblocks S1 by using the unblock
function of the corresponding scheduler instance. Migrating
back to the original processor works similarly, i.e., Fig. 4 (1)
is restored by using the same unblock/block function of the
scheduler instances.

IV. MULTIPROCESSOR RESOURCE SYNCHRONIZATION

In this section, the implementation details of three protocols
and corresponding variants are explained and discussed. Please
note, we only consider non-nested resource accesses in our
implementation, i.e., only one shared resource is requested
during the execution of one critical section.

A. Multiprocessor Priority Ceiling Protocol

The Multiprocessor Priority Ceiling Protocol (MPCP) is a
typical protocol that is based on a partitioned fixed priority (P-

17

Algorithm 1 MPCP implementation
Input: Task τi, and ceiling_priority of related semaphore;

Function mpcp lock():
1: if semaphore_owner is NULL then
2: semaphore_owner ← τi;
3: τi.priority ← ceiling_priority;
4: τi starts the execution of its critical section;
5: else
6: Add τi to the corresponding wait_queue;
7: end if

Function mpcp unlock():
8: τi releases the semaphore lock;
9: Next task τnext ← the head of the wait_queue;

10: if τnext is NULL then
11: semaphore_owner ← NULL;
12: else
13: semaphore_owner ← τnext;
14: τnext starts the execution of its critical section;
15: end if

FP) scheduler. That is, each task has a pre-defined priority, and
the execution of a task is bound on a pre-defined processor,
i.e., no migration is allowed. The main features of MPCP are:
1) a task will suspend itself if the resource is not available. 2)
if a task is granted to access a shared resource, the priority of
the task will be boosted to the ceiling priority, which equals
to the highest priority of these tasks that request that resource.

The self-suspension feature is supported in RTEMS by
default. In order to implement the ceiling priority boosting,
one new semaphore structure is created. Besides these normal
components, e.g., semaphore lock, wait queue, and current
semaphore owner, one variable named ceiling_priority
is added. Please note that, in our implementation the ceiling
priority is defined by users instead of being calculated by the
system dynamically. The pseudo code provided in Algo. 1
shows two main functions in our implementation, which fits
the lock and unlock directive in Section III-A. The details
are as follows: Once a task τi requests a shared resource,
the ownership of the shared resource (semaphore) will be
checked. If the owner of the requested shared resource is
NULL, τi becomes the owner, and the priority of τi is boosted
to the ceiling priority on the corresponding scheduler instance
(operations in block Bo in Fig. 1). Otherwise, τi will be
added into a wait queue, which is sorted by tasks’ original
priorities, i.e., task with higher priority will get earlier position
(operations in block Ao in Fig. 1). Once the task τi finishes
the execution of critical section, it will release the semaphore.
The first task of the wait queue is checked, i.e., the task with
the highest priority in the wait queue. If there is no task in
the wait queue, the semaphore owner will be set to NULL.
Otherwise, the first task of the wait queue will be set as the
semaphore owner (operations in block Ar in Fig. 2).

B. Distributed Priority Ceiling Protocol

The Distributed Priority Ceiling Protocol (DPCP) is based
on semi-partitioned fixed priority schedule. In DPCP, tasks

and shared resources are assigned on different processors sep-
arately, i.e., these processors that are assigned for the execution
of non-critical sections are called application processors, and
processors for the execution of critical sections are called syn-
chronization processors. Once a task τi tries to access a shared
resource, it will migrate to the corresponding synchronization
processor where the shared resource is assigned on, before
trying to lock the corresponding semaphore. Afterwards, these
tasks on the same synchronization processor operate follow
the uni-processor PCP, which been supported in RTEMS by
default, i.e., Immediate Ceiling Priority Protocol (ICPP). When
a task τi finished its execution of critical section, it will
migrate back to the original application processor to continue
the execution of its non-critical section, if it exists.

Hence, the main challenge of the implementation of DPCP
is to allow task migrations among processors. In RTEMS, task
partitioning is realized by the scheduler node in the scheduler
function, i.e., scheduler node defines the original partition for
each task before the execution, and stays the same during the
run time. Details have been explained in Section III-C.

C. Flexible Multiprocessor Locking Protocol

In Flexible Multiprocessor Locking Protocol (FMLP), re-
quests of shared resources are divided into two groups, i.e.,
long and short, according to the length of the execution time
of corresponding critical section. When the requested resource
is not available, a task will suspend itself if it is a long
request, and a task will spin on the correspond processor if it
is a short request. However, there is no conclusion regarding
to how to divide requests to obtain a better schedulability.
Therefore, we divided our implementation into FMLP-L which
only supports long requests, and FMLP-S which only supports
short requests. Please note, to simplify the implementation, all
the tasks in one task set all belong to either long group or short
group, no mixed division of these two groups is allowed.

In both FMLP-L and FMLP-S, the wait queue in the
semaphore structure is in a FIFO order, rather than sorting by
priorities like MPCP and DPCP. The operations in block Bo

in Fig. 1 are as follows: In FMLP-L, we maintain a ceiling
priority dynamically for each resource, which equals to the
highest priority of these tasks that are currently waiting for
the resource, i.e., tasks in the corresponding wait queue. The
priority of the semaphore owner will be boosted to the ceiling
priority if the original priority is lower than the ceiling priority,
when it starts the execution of its critical section. In FMLP-
S, the owner of the semaphore gets priority boosted to the
highest possible priority in the system, so that the execution
of its critical section is the non-preemptive. The operations in
block Ao in Fig. 1 are the same for both FMLP-L and FMLP-
S, i.e., add task τi in the end of the corresponding wait queue.
The unlock operations in block Ar in Fig. 2 are also the same,
i.e., try to find the next owner for the semaphore by checking
the first task in the wait queue, if it exists.

Additionally, we implemented a distributed version of
FMLP, denoted as DFLP, where all the requests are treated as
long requests. The main difference between FMLP and DFLP

18

TABLE I
PROCESSOR ALLOCATION OF THE TEST APPLICATION.

CPU#0
Application

CPU#1
Application

CPU#2
Application

CPU#3
Synchronization

L (s1) L (s2) L (s3) -
ML (s2) ML (s3) ML (s1) -
M (s3) M (s1) M (s2) -
MH (s2) MH (s3) MH (s1) -
H (s3) H (s1) H (s2) -

is when a task requests a shared resource, it will migrate to
the corresponding synchronization processor, which is similar
to DPCP. The mechanism how we implement the migration
has been explained in Section III-C. After the migration,
critical sections are executed by following the FMLP-L on
the corresponding synchronization processor(s).

V. EVALUATION AND DISCUSSION

In this section, we introduce the setup of experiments for
overheads evaluation at first. Afterwards, the measured over-
heads are reported and analyzed. At the end, we discuss the
need of formal verification over the implementation generally.

A. Experimental Setup

We evaluated the overheads of our implementations on
the following platform: a NXP QorIQ T4240 RDB reference
design board, which is the same as used in [10]. It has 6
GB DDR3 memory with 1866 MT/s data rate, 128 MB NOR
flash(16-bit), and 2 GB SLC NAND flash. The processor
T4240 contains 24-virtual-core (12 physical cores) with the
PowerPC Architecture, and is running on 1.67 GHz.

To measure the overheads of our implemented protocols,
timestamps are added before and after the function of our
implementations. The obtain and release functions of the
semaphore are measured, denoted as lock and unlock respec-
tively. We consider a multi-processor system consists of four
processors, i.e., M = 4, including three application processors
and one synchronization processor. The total number of tasks
n = 15, and the number of available shared resources Z = 3,
i.e., µi ∈ {s1, s2, s3}. On each application processor, there are
five tasks with five different priority levels, i.e., qi ∈ {High
(H), Medium-High (MH), Medium (M), Medium-Low (ML)
and Low (L)}. Each task requests one of these three shared
resources. Details can be found in Table I.

B. Overheads Evaluation

The overheads for different protocols are reported in Fig-
ure 5, based on more than 9,000 instances of lock and unlock
operations. These distributed-based protocols, i.e., DPCP and
DFLP have higher overheads than others, due to the task
migrations. DFLP has the highest average overheads, since it
also maintains the dynamic ceiling priority update. MrsP also
has relative high overheads, since it has the help mechanism
requiring task migration (however, help mechanism may not be
activated all the time). Our results related to MrsP are similar

as reported in [10], i.e., 5376 ns for lock and 5514 ns for
unlock on average. FMLP-L has the lowest overheads, due
to the simplest mechanism. Overall, the overheads for all the
protocols are relatively low and acceptable. For distributed-
based protocols, we can observe that there are quite a few
outliers. In fact, a similar observation has been reported
in [23]. One reason could be that the behavior of cache
memories kicks in to introduced operation overheads, but we
have no sufficient data to pinpoint the exact cause here.

The migration overheads are measured separately, and re-
ported in the left side of Figure 5. The results show that
the overheads of task migration are significant, which might
substantially affect those distributed-base protocols, i.e., DPCP
and DFLP. Interestingly, we also notice that the overhead of
a task to migrate to the synchronization processor is faster
than migrating back to the application processor. The reason is
that, normally there are more tasks running on the application
processors than synchronization processors, which causes a
task has to wait for longer time to obtain the scheduler instance
lock on average. That is why the unlock overheads of DPCP
and DFLP are higher than the lock overheads.

Although our evaluated overheads on RTEMS are similar to
these protocols that are implemented on LITMUSRT [10], [25],
implementations of protocols on RTEMS and LITMUSRTare
not directly comparable due to the difference of purposes
and architectures in two operating systems. Please note that
RTEMS is a self-contained RTOS for real-world applications,
whilst LITMUSRTis a Linux-based testbed, which is mainly
used for functional validation. It might be interesting to
investigate which protocol is preferable on which operating
systems, but it is considered out of scope here.

C. Validation and Formal Verification

To validate the correctness of our implementation, at first we
test over the official coverage tests provided by RTEMS, i.e.,
the SMP test suites (https://github.com/RTEMS/rtems/tree/
master/testsuites/smptests) especially, on the PowerPC device
and also the QEMU emulator for ARM RealView Platform
realview-pbx-a9, and conclude that the SMP related
peripheries in RTEMS are not affected at all. Moreover, we
further design several dedicated corner cases for each protocol
and ensure that the designated tasks execute as the expected
behaviors, which are treated as the additional coverage test for
the future integration.

We note that such case-based validation may not be suf-
ficient, since it is not possible to test over every case ex-
haustively. One possible way is to adopt software model
checkers as proposed in [13] to detect potential data races
and deadlocks in the implementation of PIP with nested locks
in RTEMS. However, such searching approaches may not scale
well for multiprocessor protocols unless an effective pruning
strategy can be found beforehand. How to validate or formally
verify an existing implementation of synchronization protocols
is still an unsolved problem but out of the scope.

19

mig_to mig_bk mrsp_lk mrsp_ulk mpcp_lk mpcp_ulk dpcp_lk dpcp_ulk fmlps_lk fmlps_ulk fmlpl_lk fmlpl_ulk dflpl_lk dflpl_ulk
0

2000

4000

6000

8000

10000

12000

14000

Ov
er

he
ad

s i
n

ns

Fig. 5. Overheads of protocols in RTEMS (lock operation is ended by _lk and unlock operation is ended by _ulkl)). The measurement of migrating a
task to the synchronization processor (denoted as mig_to) and back to the application processor (denoted as mig_bk).

VI. CONCLUSION

Over the decades, quite a few number of resource syn-
chronization protocols have been extensively studied for uni-
processor and especially multiprocessor real-time systems. In
this work, we reviewed the SMP support in one popular real-
time operating system RTEMS and detailed how we develop
three state-of-the-art multiprocessor resource synchronization
protocols, i.e., MPCP, DPCP, and FMLP, and their variants.
With extensive synthetic experiments, the measured results
showed that our implementations are comparable to MrsP,
which is officially supported in RTEMS. Considering the real
system overhead, the performance of resource synchronization
protocols might be clarified and decidable by system designers.

Although several dedicated tests are provided to verify the
correctness of the implementation, formal model checking is
still desirable to prevent the system from potential deadlock,
data races, and priority inversions. In the future work, we plan
to explore on nested resource synchronization and support the
arbitrary processor affinity in RTEMS to improve the gener-
ality and the efficiency. An ongoing effort is also provided to
support for the latest version of RTEMS.

ACKNOWLEDGEMENT

This paper is supported by DFG, as part of the Col-
laborative Research Center SFB876, subproject A1 and A3
(http://sfb876.tu-dortmund.de/).

REFERENCES

[1] RTEMs. http://www.rtems.org/.
[2] B. Andersson and A. Easwaran. Provably good multiprocessor schedul-

ing with resource sharing. Real-Time Systems, 46(2):153–159, 2010.
[3] B. Andersson and G. Raravi. Real-time scheduling with resource sharing

on heterogeneous multiprocessors. Real-Time Systems, 50(2):270–314,
2014.

[4] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, 1991.

[5] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In RTCSA, pages 47–56,
2007.

[6] B. B. Brandenburg and J. H. Anderson. An implementation of the pcp,
srp, d-pcp, m-pcp, and FMLP real-time synchronization protocols in
litmusrt. In RTCSA, pages 185–194, 2008.

[7] B. B. Brandenburg and J. H. Anderson. Optimality results for multipro-
cessor real-time locking. In RTSS, pages 49–60, 2010.

[8] A. Burns and A. J. Wellings. A schedulability compatible multiprocessor
resource sharing protocol - MrsP. In ECRTS, pages 282–291, 2013.

[9] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUSRT : A testbed for empirically comparing real-time
multiprocessor schedulers. In RTSS, pages 111–126, 2006.

[10] S. Catellani, L. Bonato, S. Huber, and E. Mezzetti. Challenges in the
implementation of mrsp. In Ada-Europe, pages 179–195, 2015.

[11] J.-J. Chen, G. von der Brüggen, J. Shi, and N. Ueter. Dependency
graph approach for multiprocessor real-time synchronization. In IEEE
Real-Time Systems Symposium, RTSS, pages 434–446, 2018.

[12] D. Faggioli, G. Lipari, and T. Cucinotta. The multiprocessor bandwidth
inheritance protocol. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 90–99, 2010.

[13] S. Gadia, C. Artho, and G. Bloom. Verifying nested lock priority
inheritance in RTEMS with java pathfinder. In K. Ogata, M. Lawford,
and S. Liu, editors, ICFEM, pages 417–432, 2016.

[14] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization of
real-time task sets in single and multi-processor systems-on-a-chip. In
Real-Time Systems Symposium (RTSS), pages 73–83, 2001.

[15] A. Gujarati, F. Cerqueira, and B. B. Brandenburg. Multiprocessor real-
time scheduling with arbitrary processor affinities: from practice to
theory. Real-Time Systems, 51(4):440–483, 2015.

[16] G. Han, H. Zeng, M. Natale, X. Liu, and W. Dou. Experimental
evaluation and selection of data consistency mechanisms for hard
real-time applications on multicore platforms. IEEE Transactions on
Industrial Informatics, 10(2):903–918, 2014.

[17] W.-H. Huang, M. Yang, and J.-J. Chen. Resource-oriented partitioned
scheduling in multiprocessor systems: How to partition and how to
share? In Real-Time Systems Symposium (RTSS), pages 111–122, 2016.

[18] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. In Proceedings.,10th International Conference on
Distributed Computing Systems, pages 116 – 123, 1990.

[19] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Proceedings of the 9th IEEE Real-
Time Systems Symposium (RTSS ’88), pages 259–269, 1988.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Trans. Computers,
39(9):1175–1185, 1990.

[21] J. Shi. DGA-LITMUS-RT. https://github.com/Strange369/
Dependency-Graph-Approaches-for-LITMUS-RT, 2018.

[22] J. Shi. HDGA-LITMUS-RT. https://github.com/Strange369/
Dependency-Graph-Approach-for-Periodic-Tasks, 2019.

[23] J. Shi, K.-H. Chen, S. Zhao, W.-H. Huang, J.-J. Chen, and A. Wellings.
Implementation and evaluation of multiprocessor resource synchroniza-
tion protocol (mrsp) on litmusrt. In OSPERT, 2017.

[24] J. Shi, J. D. T. Pham, K.-H. Chen, M. Münch, J. V. Hafemeis-
ter, and J.-J. Chen. Supporting Multiprocessor Resource Syn-
chronization Protocols in RTEMS. https://github.com/Strange369/
RTEMS-Resource-Synchronization-Protocols, 2020.

[25] J. Shi, N. Ueter, G. von der Brüggen, and J.-J. Chen. Multiprocessor
synchronization of periodic real-time tasks using dependency graphs. In
RTAS, pages 279–292, 2019.

20

CABAS: Real-Time for the Masses
Till Smejkal
TU Dresden

Jan Bierbaum
TU Dresden

Manuel von Oltersdorff-Kalettka
TU Dresden

Michael Roitzsch
Barkhausen Institut

Abstract—Although the real-time community has produced
impressive research results, real-time methodology has not
gained traction in commodity application development. Only
in specialized niches, like avionics and automotive, solid real-time
methods are applied because of regulatory requirements and safety
concerns. Outside those niches, best-effort-style programming is
the norm. We strife to bridge this gap by exposing approachable
interfaces to everyday programmers.

In this paper, we present CABAS, a user-level framework that
traces the execution times of jobs online and, based on these
data, automatically adapts the parameters of the CBS real-time
scheduler inside the Linux kernel. With this approach, we hope
to align soft real-time programming with current development
methods by freeing the developer from the burden of manually
deriving appropriate soft real-time scheduling parameters.

I. INTRODUCTION

The real-time community has accumulated an impressive
body of knowledge on task models and schedulability analysis.
However, developing a real-time application according to these
teachings is a complex undertaking in practice. Therefore,
proper real-time methodology is only applied in niches, where
regulatory requirements demand a safety certification. From
cloud interactive apps to IoT robots and drones, many areas
would benefit from solid real-time solutions.

In this work, we present CABAS, a user-level frontend to the
constant bandwidth server (CBS) implementation inside the
Linux kernel. Offline timing analysis of applications is replaced
by automatic online tracing of job runtimes, paired with
machine learning to predict execution times. CABAS is inspired
by ATLAS [1], which has demonstrated a scheduler design
based on tracing of execution times and machine learning
to replace worst-case analysis. ATLAS therefore addresses
our design goal of simplifying the development of real-time
applications, but is limited to single core systems, lacks an
approachable programming interface, and requires an in-kernel
scheduling component.

After we provide a short overview of CBS and ATLAS,
we discuss our framework (Section III). We use synthetic
benchmarks and a video player (Section IV) to demonstrate
that CABAS is not only able to provide appropriate parameters
to the CBS scheduler but also to automatically adapt these
parameters when the application’s demands change at runtime.

II. BACKGROUND

A. ATLAS Runtime and Kernel Scheduler
ATLAS as described by Roitzsch et al. [1] consists of two

parts. First there are a runtime and programming framework
that accept soft real-time jobs from applications and deliver
them to the second part, a dedicated soft real-time scheduler.

One key aspect of the ATLAS runtime is that programmers do
not need to make a complicated execution time analysis of their
applications, but only have to specify a relative deadline. The
execution time of the application is automatically trained by the
runtime using machine learning. This training can be assisted
by the programmer by attaching workload metrics to individual
jobs which will be considered by the runtime to predict the
job’s execution time. Thanks to these runtime abstractions,
programmers can stay in their respective domains and only
have to know which application-specific metrics correlate best
with their application’s execution time.

However, a significant problem of the ATLAS runtime and
scheduler is, that the in-kernel soft real-time scheduler is not
part of the mainline Linux kernel. Hence, maintenance of
the scheduler is a significant burden, as the Linux scheduling
interfaces change regularly. In addition to that, ATLAS cannot
simply be used in a plug-and-play fashion, but instead requires
a special Linux kernel with the ATLAS soft real-time scheduler
built into. Accordingly, although the programming interface
and runtime are beneficial for a wide-spread usage of soft real-
time, an integration of ATLAS into any system for a normal
audience — no kernel developers — is difficult.

B. Real-Time in the Linux Kernel

Priority 100

Priority 99

Priority 2

Priority 1

Priority 0

...

Nice 0

Nice 1

Nice 20

...

SCHED_DEADLINE

SCHED_RR
SCHED_FIFO

SCHED_NORMAL
SCHED_BATCH
SCHED_IDLE

CBS

Posix RT

CFS

Figure 1: Schedulers of the Linux kernel and their priorities.

The wide variety of use-cases for the Linux kernel and
thereby the huge amount of different requirements on the
system, resulted in a number of diverse schedulers co-existing
within the kernel, as shown in Figure 1. The majority of
processes are scheduled using the Completely Fair Sched-
uler (CFS). CFS handles processes that have no real-time
requirements and are thus scheduled with the SCHED_NORMAL
priority. So-called nice-levels can be used to instruct the sched-
uler to prefer some processes over others, but no guarantees
about execution times or when a process is executed are given.

21

If one strives for more control about a process’ execution, the
Linux kernel also provides the SCHED_FIFO and SCHED_RR
priorities. Both of them are further separated into 99 sub-
priorities and are guaranteed to never be preempted by a process
running in a lower priority within SCHED_FIFO, SCHED_RR,
or any process being scheduled by CFS. Although many
consider the SCHED_FIFO and SCHED_RR schedulers already
as real-time schedulers, no guarantees among the processes are
given by the scheduler regarding, for example, the process’ time
to finish. Instead, processes are just executed in the order in
which they were presented to the scheduler. However, the Linux
kernel also supports yet another scheduling priority, namely
SCHED_DEADLINE. Processes in this priority are handled by
a Constant-Bandwidth-Server-like scheduler and are always
executed with a priority above any other scheduler in the
system.

Constant Bandwidth Server (CBS) [2] is a scheduling algo-
rithm that handles hard and soft real-time tasks simultaneously,
guaranteeing deadlines for hard real-time jobs and a constant
bandwidth for the soft real-time ones. The CBS implementation
in Linux supports hard and soft real-time tasks. In both
cases, a task τi is defined by its inter-arrival time Ti and
its execution time Qi. For hard real-time tasks, Ti and Qi refer
to the minimum inter-arrival time and the worst case execution
time (WCET), whereas for soft real-time tasks the parameters
are just considered mean values. CBS will schedule its workload
using Earliest Deadline First (EDF). For hard real-time tasks
the inter-arrival time Ti is used as the deadline of individual
jobs. For soft real-time tasks the Constant Bandwidth Server
protocol is used to manage the jobs and calculate their per-job
deadlines. Every Constant Bandwidth Server maintains a budget
qi that is expended when a corresponding job executes. Once
the budget reaches 0, the deadline of the server is increased
by Ti of the soft real-time task that the server manages.

In order to integrate CBS in the Linux kernel, various
changes to its behavior were proposed and implemented [3, 4].
Whereas in the original CBS description the budget of a server
depleted equally to the executed time of the corresponding job,
the implementation in the Linux kernel uses a varying rate
based on the state of the server and the overall utilization of
the system. Furthermore, Linux distinguishes between active
servers — servers that have pending jobs — and inactive ones —
servers without pending or running jobs. This state of a server
influences the overall utilization of the system and hence the
rate at which servers decrease their budget. In addition, the
Linux implementation of CBS always leaves some space in
its real-time schedule to let other processes that are scheduled
with lower priorities to also execute on the CPU.

C. Soft vs. Hard Real-Time

The design of the ATLAS scheduler and framework is
tailored towards soft real-time applications. CBS on the
other hand supports both hard and soft real-time applications.
The nature of ATLAS with its predictor, that might estimate
incorrect execution times is an inherent problem for hard
real-time applications, which are usually used in mission-

critical systems where missing a deadline would lead to a
potentially catastrophic failure. For soft real-time applications
a deadline miss is usually not critical but just not favorable.
Typically, with soft real-time applications the usability of a
result decreases the later the job finishes and hence might result
in unwanted glitches or visible artifacts. Yet, normally soft
real-time applications can still continue even after a deadline
miss. Hence, our work CABAS focuses on making the creation
of soft real-time applications easier since moving the time-
consuming execution time analysis of an application into an
online-trained predictor is acceptable. Deadline misses, which
might occur especially at the beginning of the predictor training,
can be tolerated by the application. However, for hard real-time
applications CABAS is probably not suited, although the used
Linux CBS scheduler is capable of managing such scenarios
as well.

III. IMPLEMENTATION

A. Using Linux CBS

As described in Section II-B the Linux kernel scheduler
comprises multiple different schedulers that work together, each
handling a different scheduling priority. In order to run real soft
or hard real-time applications on a Linux system one has to
instruct the kernel to use the SCHED_DEADLINE scheduler for
this particular application via the sched_setattr system
call. To define and possibly change the task parameters such
as its WCET or its deadline one has to use the additional
sched_setparam system call.

As the Linux schedulers always schedule individual threads
(struct task_struct within the kernel), it is even pos-
sible to compose an application of normal threads managed
by CFS and real-time threads managed by the Linux CBS
scheduler. However, this thread-based management within the
kernel makes the integration of the task- and job-based model
of real-time applications difficult. Especially in a soft real-
time scenario, where there are multiple possibly independent
jobs, the mapping to separate threads can be burdensome. Our
framework CABAS addresses this problem and provides the
programmer with an easy-to-use interface that abstracts thread
creation, configuration, and management away.

B. The CABAS Framework

Application

CABAS Framework

Create Tasks
τi(Ti)

1

Submit Jobs
ji(ci)

3

Tr1 Tr2

Create & Initialize Threads
Tri for Task τi

2

Linux CBS

PredictorPredict ci
4

Qi 5

Schedule Tri(Qi, Ti)

6
Admission 7

Figure 2: The architecture of the CABAS framework.

22

The architecture of CABAS is visualized in Figure 2. In
general CABAS consists of the framework, which handles the
interaction with the kernel’s CBS scheduler as well as manages
all the necessary state, and the estimator, which is used to
predict missing information such as a job’s execution time
based on workload metrics provided by the application. In order
to run a real-time workload using CABAS, the programmer
first has to create tasks τ with an expected inter-arrival time
Ti

1 . For each task CABAS will create a corresponding thread
and initialize the thread such that it can be run with the Linux
CBS scheduler 2 . This initialization includes, for example, the
calls to sched_setattr and sched_setparam with the
correct parameters. Later, when the application submits actual
jobs to the framework, it can optionally augment them with
metrics ci that correlate positively with the jobs’ runtime 3 .
CABAS uses the workload metrics — if provided — to predict
the execution time Qi of the job based on observations of
previous job executions 4 & 5 . We use the linear least-squares
auto-regressive predictor presented by Roitzsch et al. [1], which
we found to work reasonably well for a set of synthetic
benchmarks and a video player; further discussed in Section IV.
As shown in the figure, the predictor is not tightly integrated
into the CABAS framework and can thus be substituted by the
programmer with a specialized implementation. The prediction
step can also be omitted when the programmer provides the
expected execution time with the job submission. Providing an
upper bound from a worst-case execution time analysis allows
hard real-time operation, but this is not the focus of our work.

In any case, CABAS will then schedule the thread correspond-
ing to the job’s task with the specified parameters on the ker-
nel’s CBS scheduler 6 . In the case that the predictor determined
different parameters then for the previous run, CABAS will
update the scheduling parameters via the sched_setparam
system call and the kernel’s CBS scheduler will rerun its

admission test 7 in order to prevent over-utilization of the
system. When this admission should fail, the framework will
receive an error upon which further steps need to be taken by
the programmer. Ignoring the error and running the task with the
old parameters might be a valid option, but overload handling
can be application-specific and is orthogonal to our solution.
If multiple jobs are submitted for one task, the framework will
internally queue them and start them either at a specified point
in time or as soon as possible.

C. Programming with CABAS

1 int create_task(int period, void (*execute)(void *), int
exec_time);

2 int create_task_pred(int period, void (*execute)(void *),
struct metrics (*generate)(void *));

3 void add_job_to_task(int task, void *arg);
4 void join_task(int task);

Listing 1: The C Interface of the CABAS Framework

CABAS itself is an open-source C/C++ framework1 and
can thus be used by many existing applications. Even in-
tegrating it into modern programming languages like Rust
is easily doable as foreign function calls to C libraries are
usually supported. Listing 1 shows the C-interface of CABAS,
which consist of mainly three important functions. There are
create_task_pred and create_task to submit new
tasks to the framework. Whereas the former version will instruct
the framework to use the estimator, the latter follows the more
traditional task model for CBS where a median execution
time and inter-arrival time for a task’s jobs are specified at
creation time. When the predictor is used, CABAS will call the
generate function before every job execution. That function
should return the workload metrics for the given job, which are
then used by the framework to predict the job’s execution time.
Since this function can be specified by the programmer, various
techniques are possible for generating the metrics. To run the
actual job, the framework will call the execute function
specified at the task creation and provide it the corresponding
arguments for the job. CABAS assumes that a task can be
represented by one function. Each job incarnation is a call to
this function with varying arguments. Accordingly, the third
function that the framework provides (add_job_to_task)
adds new jobs to a task by specifying the arguments with
which the execute function should be called. The interface
function join_task will wait for the completion of all jobs
of one task.

D. CABAS vs. Traditional CBS

One significant difference between CABAS and traditional
CBS is that CABAS dynamically adjusts the scheduling param-
eters during the execution of the application. In a traditional
CBS soft real-time application, a programmer would use offline
analysis to determine the mean execution time and the mean
inter-arrival time of a task and provide these values to the
scheduler. Whereas CBS itself is designed to handle variations
within the execution times of the jobs, significant changes
in the behavior of jobs, as they can happen with phased
applications, can lead to a significant tardiness (see Section IV
for an example). CABAS however can alleviate such effects
by dynamically adjusting the CBS scheduling parameters at
runtime and is thereby able to react to changing application
behavior. For example, if an application enters a phase where
jobs take longer than usual, CABAS will automatically increase
the budget for the corresponding CBS Server, reserving more
CPU time for the job.

This dynamic parameter adaptation is also beneficial when
an application is ported to new hardware. With traditional CBS
one either has to do a new analysis to calculate the mean
execution times of the application on the new hardware, or
use the previously calculated values and accept a potentially
significant job tardiness. With CABAS and its predictor no
analysis is necessary as the system will automatically learn the
mean execution times and use them accordingly.

1https://github.com/TUD-OS/Cabas

23

IV. EVALUATION

We evaluate CABAS with two different applications: a
synthetic benchmark and an elementary video player. All
experiments were performed on a machine with an Intel
Core i7-4790 (4 cores, 2 threads each) and 8GiB RAM
running Ubuntu 21.10 with Linux 5.13. For collecting runtime
data, we used the low-overhead Linux Trace Toolkit: next
generation (LTTng) to set a tracepoint to the end of a job and
calculated its tardiness. The time CABAS requires for training
and estimation is accounted as part of a job’s execution time.

A. Synthetic Benchmark

A synthetic soft real-time workload comprises multiple tasks,
each with a target mean inter-arrival time and mean execution
time. The values for individual jobs use a standard distribution
with the chosen mean value and a standard deviation of 10%.
Within this range the values are uniformly distributed.

To acquire representative and reliable results, we generated
1000 workloads for each integer utilisation in the range between
50% and 200% using the UUniFast algorithm [5]. Each
workload comprises five tasks with at least five jobs each,
capping the inter-arrival time at 10 000 µs. The minimum inter-
arrival time is set to 200 µs. Workloads run for at least 50 000 µs
on either one or two cores. Utilisation above 100% were only
run in the two-core scenario as CBS is not expected to handle
overload situations. A dedicated thread in SCHED_FIFO
submits the real-time jobs to the CABAS framework, which
then executes them on Linux CBS. The jobs themselves consist
of a busy loop consuming the job’s appointed runtime.

Figure 3 shows the mean tardiness of a job across the 1000
workloads for a specific system utilisation. CBS is statically
configured with the target mean inter-arrival time and mean
execution time of a workload. Note, that in a real-world scenario
the application developer would need to determine and provide
this information. CABAS, on the other hand, is given only the
mean inter-arrival time and automatically derives the expected
runtime using its predictor (see Section III).

The tardiness of jobs increases up to 100 µs to 250 µs when
scheduled with CABAS. The overall behaviour is similar for
the dual core scenario. Considering the simplistic nature of the
synthetic real-time jobs, the only possible metric is the target
runtime itself. Knowing these values, however, would allow to
directly use CBS and thus defeat the purpose of CABAS, so
we did not use any metrics.

B. Video Player

A typical application that can profit from soft real-time is a
media player that wants to provide smooth playback even in the
presence of high system load. Unfortunately, adopting real-time
scheduling is complex and no major media player makes use of
it. To evaluate this interesting scenario anyway, we developed
an elementary video player based on FFmpeg. The player reads
a media file, extracts the video stream, decodes the individual
video frames, and renders them using SDL2. Any other media
streams (audio, subtitles, . . .) are discarded.

The player maintains three processing tasks: (read and)
decode frames, scale the frame to the expected output size and
colour format, and render the frame at the right point in time. In
contrast to regular video players, ours never drops late frames
to highlight the effect of such delays. For the evaluation, we
used the animated short film “Big Buck Bunny”2. This video
is encoded with H.264, has a resolution of 1920× 1080 pixels,
and a frame rate of 60Hz. We played the first 3 minutes of the
video, i.e. 10 800 frames. Given the target frame rate, all tasks
have a period of 1

60 s. A dedicated management thread, pinned
to one core, issues new jobs to the aforementioned tasks and
forwards data whenever appropriate. Processing jobs are free
to use any of the remaining hardware threads.

CABAS allows to provide application-specific metrics with
a new job, which are then used to improve the runtime
prediction (see Section III). Whereas scaling and rendering have
a homogeneous workload and take a fixed amount of time, this
is different for the decoding task. Due to the nature of modern
video codecs, frames might have to be decoded out of order:
Decoding a B frame (bidirectional coded picture) requires that
its successor has been decoded. Thus, the execution time for
decoding the chronologically next frame can vary depending
on that frame’s type and we use this frame type as a metric for
CABAS. To give the scheduler more leeway in compensating for
deviations, we established a buffering scheme that allows up to
8 scale jobs and 8 render jobs to exists in the system. In contrast
to the synthetic benchmark, the mean job runtimes for the video
player tasks were not known. We determined these times in
an initial run of the player in CFS on an unloaded system.
The decoding time for each frame is depicted in Figure 4. To
simplify the player’s implementation, we also pre-determined
the frame type during this initial run.

Users of a media player care about smooth playback, i.e.
the timely rendering of frames. Figure 5 shows mean tardiness
for each individual frame when using different schedulers.
On a lightly loaded system CFS shows no tardiness at all,
which also demonstrates that the CPU is capable to decode all
frames fast enough to maintain the target frame rate. However,
with heavy load, CFS finishes with the video playback almost
9 seconds late. A heavily loaded system for CFS was simulated
by running in parallel to the video player as many stress3

benchmarks as the system has CPUs.
CBS, configured with the mean value of all execution times

for each specific task, accumulates a delay of 18 seconds over
the 3 minute runtime of the video. Further tests showed that
long-running decode jobs may leave the scale task without
work and thereby depleting the scale task queue eventually.
Since the scale task has a very stable runtime, its budget is
just enough to complete one job per period. Therefore, the
scale task can never catch up with the refilled queue once it
was initially delayed. Unfortunately, this creates a downstream
effect as the following render task will also eventually deplete
its queue and be limited by the throughput of the scale task.

2https://peach.blender.org/download/
3https://github.com/resurrecting-open-source-projects/stress

24

50 60 70 80 90 100
0

100

200

300

400

500

Utilisation in %

Ta
rd

in
es

s
in

µ
s

CBS
CABAS

(a) Real-time tasks on a single core

60 80 100 120 140 160 180 200
0

100

200

300

400

500

Utilisation in %

Ta
rd

in
es

s
in

µ
s

CBS
CABAS

(b) Real-time tasks on two cores

Figure 3: Mean tardiness of a job depending on the workload’s utilisation.

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000
0

50

100

Frame number

E
xe

cu
tio

n
tim

e
in

m
s

m
ea

n

Figure 4: Execution times of the decode task in low-load CFS. The black line shows the mean value used for CBS (8.268ms).

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000 10 000
0

3

6

9

12

15

18

Frame number

Ta
rd

in
es

s
in

s

CFS (low load)
CFS (high load)
CBS
CABAS

Figure 5: Tardiness of the render task for individual frames.

The main problem is that the Linux CBS implementation is not
work conserving in contrast to when the player runs in CFS.
Further measurements showed that overbudgeting the scale
task (e.g. giving it twice the budget) can remedy this situation
to some degree, but would not add any additional insight to
the comparison of the schedulers. Such a decision is, once
again, on the programmer of the application. In addition we
found out, that the rendering of the video in the SDL2 player
window done by the X-server also introduces some push back
on the render task. The main problem is that the X-server itself
is not scheduled using real-time priorities. This mismatch of
scheduling priorities between the render task and the X-server

creates unpredictable additional delay in the render task as the
task waits for the acknowledgment of the window manager that
the window was updated before it renders another frame. We
could verify with additional measurements that not drawing
the frame on the X-server window but just in an internal frame
buffer reduces the delay of the video playback when run with
CBS. When this drawing just to an internal frame buffer is
combined with the aforementioned overbudgeting of the scale
task, the video player is even able to catch up with the playback
eventually after a delay happened and will thus finish with a
lower or even no delay in contrast to what is shown in Figure 5
for CBS

25

When running the player with CABAS tardiness increases,
too, but less drastically than with CBS. Adjusting the scheduling
parameters by learning and estimating the execution times with
CABAS’ predictor can better compensate for the long-term
variation in execution times. CABAS will temporarily give, for
example, the scale tasks more budget when a long-running
decode occurs in the decode task, which causes a delay of
the scale task. The scale task is thus able to catch up with
the refilling queue eventually. When the scale task catches
up with the new load and has a stable execution time again,
CABAS will reduce the budget accordingly. To sum it up, due
to the execution time predictor, CABAS can react to changes
in the application behavior which otherwise have to be done
manually by the programmer. Additional measurements with
CABAS where we disabled the rendering of the frame in the
X-server window, similar to the scenario for CBS, resulted
in a tardiness of 0 s and show that our framework is able
to smoothly play back a video even without any additional
scheduling-specific knowledge (e.g. fine-tuning of scheduling
parameters) from the programmer.

V. RELATED WORK

CABAS intends to make real-time scheduling more acces-
sible for developers. A considerable expertise barrier exists
when application developers implement problems amenable
to real-time scheduling, which has also been observed by
Brandenburg [6]. Other works share our goal of lowering this
barrier, approaching it either using reservation-based methods
or the fair-share schedulers present in commodity systems.

a) Reservation Approaches: The original CBS [7] wraps
tasks with varying execution times in a server to make
scheduling behavior more robust if task parameters are not
exact. To improve quality of service for a soft real-time load,
later work added dynamic changes to the allocated server
bandwidth [8] and slack reclaiming mechanisms [9]. CBS-
based schedulers have also been demonstrated on multicore
systems [10] and within frameworks for quality of service
control [11].

At their core, all reservation-based mechanisms require the
developer to report an execution time or bandwidth requirement
to the scheduler. Such information is difficult to obtain for
highly workload-dependent tasks that end-users run on a
variety of hardware platforms with different speeds. The added
adaptivity features, however, enable CBS to tolerate over- as
well as underspecification. In return, CBS provides timeliness
guarantees and is suitable for hard real-time. CABAS relieves
the developer from determining execution times entirely, but
is not suitable for hard real-time. A common trait of CBS’es
adaptive reservations and CABAS is the use of a per-task
execution time estimator. However, the estimator presented
for CBS [8] extrapolates by using only past execution times.
CABAS leverages workload metrics to improve estimations and
transparently communicates execution time information to the
CBS scheduler without involving the developer.

b) Fair Processor Sharing: Fair-share schedulers allow
limited control over scheduling behavior by providing a priority
interface like the Unix nice levels. However, a developer cannot
determine the correct priority level for an application without
a complete overview of all other applications in the system.
Borrowed Virtual Time [12] expresses task priorities with a
concept called warp time, but assigning these parameters still
requires global system knowledge, because warp times are not
intrinsic to one application. CABAS, CBS, and all other EDF-
based schedulers employ deadlines which are parameters from
the problem domain of the application. They can be specified
without global knowledge.

VI. CONCLUSION

We present CABAS, an easy-to-use user-level frontend
to the CBS real-time scheduler. CABAS mediates between
application and scheduler, enabling developers to spawn new
work items with individual execution behavior by way of
a single function call. Developers need to reflect only on
application-local behavior and CABAS only asks for parameters
from the application domain: Periodic deadlines express latency
requirements, workload metrics describe jobs. CABAS uses
these values and execution time information it gathers in the
background to derive scheduling parameters for CBS.

We have demonstrated, using synthetic benchmarks and
video playback, that CABAS can properly handle common use
cases. Not only can it derive suitable CBS parameters, but also
automatically adjust them to changing application demands at
runtime. Our framework, thus, makes soft real-time scheduling
readily available to the average developer.

As a next step we plan to look more closely into why CBS
has such a devastating behavior for the video player example
and whether we can improve CABAS and Linux’ CBS in general
to closer match the CFS low load performance. Furthermore,
we want to investigate other applications and areas where
CABAS can be applied. One interesting aspect would be to
use the real-time-specific information such as deadline and
estimated execution time for more energy-aware scheduling.

REFERENCES

[1] M. Roitzsch et al., “ATLAS: Look-ahead scheduling using
workload metrics,” in Proceedings of the 19th IEEE real-
time and embedded technology and applications symposium,
ser. RTAS, Philadelphia, PA, USA: IEEE, Apr. 2013, pp. 1–10,
ISBN: 978-1-4799-0184-5. DOI: http://dx.doi.org/10.1109/
RTAS.2013.6531074. [Online]. Available: http:/ /os. inf. tu-
dresden.de/papers_ps/rtas2013-mroi-atlas.pdf.

[2] L. Abeni and G. Buttazzo, “Integrating multimedia applications
in hard real-time systems,” in Proceedings 19th IEEE real-
time systems symposium (cat. no. 98CB36279), IEEE, 1998,
pp. 4–13.

[3] L. Abeni et al., “Greedy CPU reclaiming for
SCHED_DEADLINE,” in Proceedings of the real-time
Linux workshop (RTLWS), dusseldorf, germany, 2014.

[4] J. Lelli et al., “Deadline scheduling in the Linux kernel,”
Software: practice and experience, vol. 46, no. 6, pp. 821–839,
2016.

[5] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-time systems, vol. 30, no. 1, pp. 129–
154, May 2005. DOI: 10.1007/s11241-005-0507-9.

26

[6] B. B. Brandenburg, “The case for an opinionated, theory-
oriented real-time operating system,” in 1st international
workshop on next-generation operating systems for cyber-
physical systems, ser. NGOSCPS, Montreal, Canada, Apr. 2019.
[Online]. Available: https : / / www. cse . wustl . edu / ~cdgill /
ngoscps2019/papers/NGOSCPS2019_Brandenburg.pdf.

[7] L. Abeni and G. Buttazzo, “Integrating multimedia applications
in hard real-time systems,” in Proceedings of the 19th IEEE
real-time systems symposium, ser. RTSS, Madrid, Spain: IEEE,
Dec. 1998, pp. 4–13, ISBN: 0-8186-9212-X. DOI: http://dx.
doi .org/10.1109/REAL.1998.739726. [Online]. Available:
http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf.

[8] L. Abeni et al., “QoS management through adaptive reserva-
tions,” Real-time systems, vol. 29, no. 2, pp. 131–155, Mar.
2005, ISSN: 0922-6443. DOI: http://dx.doi.org/10.1007/s11241-
005-6882-0. [Online]. Available: http://retis.sssup.it/~lipari/
papers / real _ time _ systems _ cucinotta _ palopoli _ adaptive _
reservations.pdf.

[9] L. Palopoli et al., “Weighted feedback reclaiming for multime-
dia applications,” in Proceedings of the 2008 IEEE/ACM/IFIP
workshop on embedded systems for real-time multimedia,
ser. ESTImedia, Atlanta, GA, USA: IEEE, Oct. 2008, pp. 121–
126, ISBN: 978-1-4244-2612-6. DOI: http://dx.doi.org/10.1109/
ESTMED.2008.4697009. [Online]. Available: http://disi.unitn.
it/~palopoli/publications/estimedia08.pdf.

[10] S. Kato et al., “AIRS: Supporting interactive real-time ap-
plications on multicore platforms,” in Proceedings of the
22nd euromicro conference on real-time systems, ser. ECRTS,
Brussels, Belgium: IEEE, Jul. 2010, pp. 47–56, ISBN: 978-0-
7695-4111-2. DOI: http://dx.doi.org/10.1109/ECRTS.2010.33.
[Online]. Available: http://ertl.jp/~shinpei/papers/ecrts10.pdf.

[11] T. Cucinotta et al., “On the integration of application level
and resource level QoS control for real-time applications,”
IEEE transactions on industrial informatics, vol. 6, no. 4,
pp. 479–491, Nov. 2010, ISSN: 1551-3203. DOI: http://dx.doi.
org/10.1109/TII.2010.2072962. [Online]. Available: https:
//scholar.google.com/scholar?cluster=5484267806271076788.

[12] K. J. Duda and D. R. Cheriton, “Borrowed-Virtual-Time (BVT)
scheduling: Supporting latency-sensitive threads in a general-
purpose scheduler,” in Proceedings of the 17th ACM symposium
on operating systems principles, ser. SOSP, Charleston, SC,
USA: ACM, Dec. 1999, pp. 261–276, ISBN: 1-58113-140-2.
DOI: http://doi.acm.org/10.1145/319151.319169. [Online].
Available: http://gregorio.stanford.edu/bvt/bvt.ps.

27

On the Interplay of Computation and Memory
Regulation in Multicore Real-Time Systems

Denis Hoornaert∗, Golsana Ghaemi†, Andrea Bastoni∗, Renato Mancuso†, Marco Caccamo∗, and Giulio Corradi‡
∗Technical University of Munich †Boston University ‡Xilinx

∗{denis.hoornaert, andrea.bastoni, mcaccamo}@tum.de, †{golsana, rmancuso}@bu.edu, ‡giulioc@xilinx.com

Abstract—The ever-increasing demand for high-performance
in the time-critical embedded domain has pushed the adop-
tion of powerful yet unpredictable heterogeneous Systems-on-
a-Chip. The shared memory subsystem, which is known to be
a major source of unpredictability, has been extensively studied,
and many mitigation techniques have been proposed. Among
them, performance-counter-based regulation techniques have
seen widespread adoption. However, the problem of combining
performance-based regulation with time-domain isolation has not
received enough attention.

In this article, we discuss our current work-in-progress on
SHCReg (Software Hardware Co-design Regulator). First, we
assess the limitations and benefits of combined CPU and memory
budgeting. Next, we outline a full-stack hardware/software co-
design architecture that aims at improving the interplay between
CPU and memory isolation for mixed-criticality tasks running on
the same core.

Index Terms—Criticalities, Real-time, Hypervisor, Budget-
based Regulation

I. INTRODUCTION

The real-time community has proposed many successful
techniques to mitigate the impact of inter-core memory inter-
ference (e.g., [6], [7]). Notably, performance counter (PMC)
based techniques such as Memguard [7] have received signifi-
cant attention due to their practicality. In fact, PMC-regulation
techniques are used to establish temporal isolation by mitigat-
ing the problem of non-arbitrated memory bandwidth sharing
between cores. In the embedded and real-time domain, these
techniques are often implemented within a partitioning hyper-
visor (e.g., Jailhouse [2]) when the consolidation of multiple
RTOSs onto the same multicore system-on-a-chip (MPSoC)
is required. At the same time, when consolidating complex
applications with mixed-criticality requirements onto MPSoCs
with rich OSs like Linux, CPU provisioning still remains a
fundamental dimension. Here, server abstractions —e.g., the
Constant Bandwidth Server (CBS) [1]— are well known and
widely used, with the SCHED_DEADLINE [5] policy being
the most popular example.

Despite combining CBS-based CPU scheduling and PMC-
regulation to achieve isolation in both time and memory

The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant number CCF-2008799.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views
of the NSF. Marco Caccamo was supported by an Alexander von Humboldt
Professorship endowed by the German Federal Ministry of Education and
Research.

domains being a logical choice, the effective integration proves
to be challenging. The need to enact CBS scheduling at the
task level (i.e., in the OS) and PMC-regulation at the CPU level
(and hence in the hypervisor) results in a lack of coordination
between the two mechanisms. This leaves the system incapable
of handling what we refer to as memory overload conditions.
These correspond to all the cases where high-critical tasks are
still eligible for scheduling in the OS, but unable to use the
necessary memory bandwidth because they are being throttled
via PMC-regulation at the hypervisor level.

Fig. 1 illustrates a scenario where such an overload occurs.
The considered system is composed of one low- and one
high-criticality task (respectively τ0 and τ1) scheduled using
CBS to absorb execution variations. The common PMC-
budget assigned is determined beforehand via profiling and the
addition of a fixed safety margin, which is common practice
in industrial applications. While in Fig. 1a, τ1 is able to
complete on time, in Fig. 1b it experiences extra blocking
due to the lack of sufficient memory budget caused by an
increased memory consumption from τ0. Such an increase can
be due to changing computational needs that require additional
memory accesses (for example, consider the case of object
detection or object tracking in an almost empty street vs. at
a crowded intersection). We note that such an increase in
memory consumption cannot be determined apriori without
resorting to very pessimistic over-estimations.

Our proposed Software Hardware Co-design Regulator
architecture (SHCReg) precisely tackles this issue. Under
SHCReg (Fig. 1c), when an overload is detected, the critical
memory accesses of τ1 are prioritized at the hardware level by
switching the policy of the interconnect to the main memory
from a fair round-robin to a priority-based one. Consequently,
τ1 can further execute and meet its deadline. Priorities are
assigned depending on the criticality of the tasks running on
each core. The idea is to facilitate τ1’s completion (possibly at
the expanses of other cores) and quickly restore the standard
isolation property of the system.

We envision implementing SHCReg on the Xilinx ZCU102
development board leveraging available tools including Linux,
Memguard on Jailhouse,1 and SchIM [4]. The envisioned
hardware/software co-design architecture and the strategy em-
ployed are outlined in this work-in-progress.

1https://github.com/rntmancuso/jailhouse-rt

29

(a) Standard PMC-regulation, normal case. (b) Standard PMC-regulation, memory
budget depletion.

(c) SHCReg regulation, with interconnect
policy switch.

Fig. 1: Example scenario of a PMC-regulated core, where an increased memory consumption causes τ1 to miss its deadline.

II. PROPOSED REGULATION POLICY

Due to an early depletion of the memory budget Ak on
CPUk (see Fig. 1b), CPUk could suffer a memory overload.
Formally, a memory overload occurs if a critical task τi,
running on CPUk under server- and PMC-regulation, is un-
expectedly stalled because its memory budget Ak is depleted,
while the associated server Si is still eligible for execution.

The key insight in the design of our SHCReg mitigation
strategy is the following. When a given CPUk experiences a
memory overload, the memory traffic from CPUk is priori-
tized over that of other cores, as detailed below.

1) By default, the interconnect is configured to use a
fair policy (i.e., akin to round-robin), and each CPUk

memory budget accounting is done following standard
PMC-regulation rules.

2) When CPUk exhausts its memory budget Ak, it is
stalled until Ak is replenished unless: i) the criticality
of the running task τi is high, or ii) a high critical
task is released while CPUk is stalled (i.e., before
the next replenishment period). In these cases, the core
experiences a memory overload.

3) Upon a memory overload, the interconnect policy π is
switched to fixed-priority (FP), and each CPUk’s bus
priority is set according to the criticality of the executed
task. (We assume a finite set of task’s criticalities.)

4) A CPUk leaves the memory overload state when the
high critical task has completed or when the memory
budget Ak is replenished. When all CPUs have left a
memory overload, the interconnect policy is set to Fair.

5) Each CPUk with leftover memory budget always con-
tinues its memory budget accounting until budget de-
pletion is reached. Only critical tasks τi can execute
even when the memory budget is depleted thanks to the
memory overload policy.

Interestingly, when considered alone, the individual regulation
mechanisms employed by SHCReg are insufficient to achieve
the same degree of isolation and flexibility. 1) Perhaps the
most straightforward solution would be to over-provision the
per-CPU memory bandwidth. However, unfortunately, the safe
(conservative) usage of PMC-regulation alone inevitably leads
to the under-utilization of the already scarce memory band-
width. 2) On the other hand, statically prioritizing CPUs when

Fig. 2: SHCReg layered architecture

they access main memory (e.g., [4]) might lead to starvation
for the low-priority CPUs and prevent them from running
non-critical memory-intensive tasks entirely. 3) Dynamically
switching the bus priority depending on the criticality level
of the running tasks defeats the isolation properties of PMC-
regulation and might prevent low-critical tasks from running
when the system is not subject to memory overload.

III. ARCHITECTURE

We target systems that consolidate different RTOSs on top
of (lightweight) partitioning hypervisors. SHCReg implements
therefore a layered architecture such as the one depicted in
Fig. 2. CPU regulation is completely implemented in software
at the operating system level, while memory regulation re-
quires a hardware/software co-design, and its implementation
is distributed across the hypervisor software level and the
hardware-based control of the data link to the main memory
(see red arrows in Fig. 2). Furthermore, lightweight commu-
nication between layers is required to propagate, for example,
information on the criticality of the currently executing tasks
(see black arrows in Fig. 2).

The target platform for SHCReg is the Xilinx ZCU102
UltraScale+ development board,2 a Linux and Hypervisor
capable embedded platform associating a tightly integrated
programmable fabric (referred to as PL-side) with a traditional
Processing System composed of a CPU cluster (referred to as
PS-side).

2Any PS-PL platform being hypervisor and Linux capable is eligible.

30

A. CPU Regulation

Real-time tasks execute at the application level on top of an
OS with real-time capabilities. The OS supports a server-based
scheduling policy (e.g., [3]) that provides isolation among the
tasks. We use Linux as OS to prototype our architecture. In
Linux, the SCHED_DEADLINE scheduling policy [5] realizes
a Constant Bandwidth Server. We associate each task to a
server and define its maximum utilization. Each server is
statically assigned to one of the CPUs.

B. Memory Regulation

The memory regulation is the most complex part of our
architecture and consists of two layers, one implemented at the
hypervisor level and one implemented at the hardware level,
as depicted in Fig. 2.

1) PMC-regulation and Memory Overload Detection: The
hypervisor implements a PMC-regulation mechanism limit-
ing the maximum number of memory transactions towards
the main memory the cores can issue. Implementing PMC-
regulation at the hypervisor level makes the PMC-regulation
transparent to the OS level, and it allows using potentially
different OSs while ensuring adequate memory bandwidth
control. In addition, the proposed architecture allows different
OSs to use different types of CPU server regulations. The
belief is that separating the PMC-regulation level from the
CPU regulation level is a clean and sensible architectural
choice.

2) Dynamic FP/Fair Interconnect Policy: The lowest-layer
memory regulation technique leveraged by SHCReg is imple-
mented in hardware extending the architecture of the Scheduler
in-the-Middle (SchIM) [4].3

The SchIM module is implemented on the PL-side and
acts as an intermediate step on the data path between cores
and DRAM. Similarly to [4], all CPU-originated memory
transactions are redirected to the PL-side and to the SchIM.
As shown in Fig. 2, each core is associated with a queue
storing the memory transactions directed to DRAM. Fig. 2
illustrates that CPU-originated transactions are split into two
input links, each being shared by two CPUs. Under heavy
traffic, the queuing of the transactions enables the SchIM
to schedule them as desired by the system. Scheduling is
enacted by deciding which queue’s content is forwarded
to the target memory and is orchestrated by the hardware
transaction schedulers (depicted as FP & Aging Sched. and
multiplexer modules in Fig. 2). The scheduler module defines
a set of hardware schedulers (e.g., Fixed-Priority, TDMA)
implemented at design time and statically available on the PL
at system boot. A scheduler can be selected by operating on
a set of registers accessible by the whole system through a
memory-mapped configuration port. We extended the original
SchIM by enabling the dynamic choice of a specific scheduler
at run-time and by adding the Fair scheduling policy.

3https://github.com/denishoornaert/MemorEDF

C. Design Choices

The synchronization and the communication between the
layers constitute a critical performance hurdle of our architec-
ture. It is particularly the case regarding the interplay between
the memory budget and the CPU budget (respectively enforced
at the hypervisor- level and OS-level).

Considering rules (2) and (4) in Sec. II, the release of a
critical task while a CPU is stalled and dynamically switch-
ing the priority of the interconnect when a critical task is
completed requires careful synchronization between the OS
and the hypervisor. For example, while a hypercall can be
used by the operating system to signal the completion of
a critical task, synchronizing the complex high-resolution
timers in Linux with the PMC-regulation logic (at hypervisor
level) to detect the release of a high-critical task during a
memory-regulation phase is more complex. Either direction
introduces foreseeable run-time overheads that might limit the
potential benefits of the proposed architecture. Furthermore,
the implementation of PMC-regulation in hypervisors such as
Jailhouse-RT4 is realized with interrupt-nesting in hypervisor-
context. Therefore, its synchronization with the expiration
of Linux’s hrtimers is particularly challenging and might
require considerable hypervisor changes. Nonetheless, while
slow, hypercalls completion times can be bounded. On the
other hand, not using a hypervisor would automatically prevent
the consolidation of independent partitions combining different
OSs and RTOSs.

IV. CONCLUSION AND FUTURE WORK

We presented our work-in-progress on SHCReg, a hard-
ware/software co-design that aims at solving the memory
overload problems of real-time workloads with variable mem-
ory requirements on architectures that feature both CPU and
PMC-based regulations. Our targets are real-world systems
that consolidate multiple different RTOSs on a single MPSoC
leveraging on hypervisor technologies.

Despite the technical challenges on the design side, we
believe that, by exploiting the ability to dynamically change
the policy of the interconnect, SHCReg could provide real-
time and performance benefits for a wide class of workloads.

REFERENCES

[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in
hard real-time systems. In Proceedings 19th IEEE Real-Time Systems
Symposium (Cat. No.98CB36279), pages 4–13, 1998.

[2] Siemens AG. Jailhouse hypervisor. https://github.com/siemens/. Ac-
cessed: 2021-02-08.

[3] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series).
Springer-Verlag, 2011.

[4] Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso. A Memory
Scheduling Infrastructure for Multi-Core Systems with Re-Programmable
Logic. In Björn B. Brandenburg, editor, 33rd Euromicro Conference on
Real-Time Systems (ECRTS 2021), volume 196 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 2:1–2:22, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https:
//drops.dagstuhl.de/opus/volltexte/2021/13933.

4https://github.com/rntmancuso/jailhouse-rt

31

[5] Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline
scheduling in the Linux kernel. Software: Practice and Experience,
46(6):821–839, 2016.

[6] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-time cache management framework for multi-core archi-
tectures. In 2013 IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS), page 45–54, 2013.

[7] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
Bandwidth Management for Efficient Performance Isolation in Multi-Core
Platforms. IEEE Transactions on Computers, 65(2):562–576, 2016.

32

Can we trust our energy measurements?
A study on the Odroid-XU4.

Julius Roeder
University of Amsterdam

Amsterdam, The Netherlands
Email: j.roeder@uva.nl

Sebastian Altmeyer
University of Augsburg

Augsburg, Germany
Email: altmeyer@es-augsburg.de

Clemens Grelck
University of Amsterdam

Amsterdam, The Netherlands
Email: c.grelck@uva.nl

Abstract—IoT devices, edge devices and embedded devices, in
general, are ubiquitous. The energy consumption of such devices
is important both due to the total number of devices deployed and
because such devices are often battery-powered. Hence, improv-
ing the energy efficiency of such high-performance embedded
systems is crucial. The first step to decreasing energy consump-
tion is to accurately measure it, as we base our conclusions and
decisions on the measurements. Given the importance of the
measurements, it surprised us that most publications dedicate
little space and effort to the description of their experimental
setup.

One variable of importance of the measurement system is
the sampling frequency, e.g. how often the continuous signal’s
voltage and current are measured per second. In this paper, we
systematically explore the impact of the sampling frequency on
the accuracy of the measurement system. We measure the energy
consumption of a Hardkernel Odroid-XU4 board executing nine
Rodinia benchmarks with a wide range of runtimes and options
at 4kHz, which is the standard sampling frequency of our
measurement system. We show that one needs to measure at
least at 350Hz to achieve equivalent results in comparison to
the original power traces. Sampling at 1Hz (e.g. Hardkernel
SmartPower2) results in a maximum error of 80%.

I. INTRODUCTION

Energy consumption is one of the most important design
criteria for battery-powered systems. Thus, it is not surprising
that decreasing energy consumption from the software side is
an important topic in various research fields such as IoT, edge
computing, cyber-physical systems and embedded systems
(e.g. [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]; for a survey
see [11]).

A crucial part of energy related research is measuring the
energy consumption in order to show tangible improvements
on real hardware. To measure the energy consumption of a
device we need to measure voltage and current, two continuous
signals. Continuous signals are measured in discrete intervals
at a given sampling rate. From a theoretical point of view we
need to measure at twice the highest frequency desired to be
measured (Nyquist rate [12]) otherwise the time series might
be distorted. However, from a practical point of view it is
unclear what the highest desired frequency in this case is.

In general we find that authors and reviewers place little
importance on the measurement setup, as papers do not report
the setup or lack details on the devices and methods used,
e.g. [3], [4], [5], [6], [7], [13]. Publications that do report
the measurement system used, do not investigate or consider

the impact of the measurement setup on the accuracy of the
measurements. For example, [9] naturally used the energy
measurement system (SmartPower21) provided by the manu-
facturer of their target board (Odroid-XU4). According to the
publication the SmartPower2 measures at 1Hz. Additionally,
we could not find any studies on the measurement error of the
SmartPower2. In this paper we raise strong doubts about the
reliability of low frequency measurements. As a community,
that makes decisions based on energy consumption, we must
know that our experimental setups are reliable.

To the best of our knowledge no prior paper has investigated
the correlation between sampling frequency and accuracy of
energy measurement systems for high-performance embedded
systems. Thus, in this paper we systematically investigate the
impact of the sampling frequency on the energy measurement
accuracy. More specifically we measure the energy consump-
tion of an Odroid-XU4 executing a variety of benchmarks. The
measurement system used samples at a high rate; the original
power-traces can then be downsampled. We then compare the
downsampled traces against the original traces. That way we
can alter the sampling frequency of the voltage and current
measurements, while keeping all other variables equal.

The paper is organised as follows. In Section II we provide
background information and detail our methodology. Sec-
tion III covers our results and discussion. Then in Section IV
we discuss related work. Finally, we present our conclusion in
Section V.

II. BACKGROUND & METHODOLOGY

In order to investigate the importance of sampling frequency
we need a measurement system, a target system, programs to
measure and a way to compare different sampling frequencies.
In this section we start with a short discussion about power
measurements in general. We then dive into the importance of
sampling frequency. Next we introduce our experimental setup
and the benchmarks used. Lastly, we detail the statistical tests
needed.

A. Power Measurements

Power measurements can be done at the AC source or at
the DC source. Discussing and comparing the advantages of

1https://www.hardkernel.com/?s=smartpower2&post type=product&lang=
en

33

either method is beyond the scope of this paper. However, in
general the AC-DC converter (i.e. power supply) will have
some inefficiencies, and measuring after the converter (i.e. at
DC) disregards the loss. Furthermore, the loss can fluctuate
with the load, i.e. power supplies are most efficient at a
given load and have lower efficiencies at lower/higher loads.
An additional reason to measure after the converter is that
the energy consumption is most crucial for battery powered
systems, which use DC.

For an overview of different DC measurement methods see
[14] and [15]. In this paper we consider the shunt resistor
method which observes the voltage drop across a resistor as
it is widely used. We place the resistor in series with the
load. And as we know the resistor value, Ohm’s law can be
applied to calculate the current of the load. Furthermore, we
can place the resistor before the load (high side) or after the
load (low side). Low side sensing is cheaper as the amplifier
is simpler but has some disadvantages in comparison to high
side. More specifically low side sensing is sensitive to ground
disturbances and (in this case less importantly) cannot detect
fault conditions. Hence, it is mostly used in mass production
systems [16]. Therefore, we will focus on high side sensing.

The resistive current sensing method can be deployed
directly on a target board, i.e. the board comes with an
integrated power measurement function (e.g. Odroid-XU+E2

used in [13]). Or the method can be deployed on a separate
device such as the SmartPower2 or Qoitech Otii3. Onboard
sensors are polled from the target system itself and can be
polled at different frequencies. Additionally, onboard sensors
are intrusive as the polling of the sensors impacts the energy
consumption of the target.

The voltage drop across the resistor is amplified and then
converted using an Analogue-Digital-Converter (ADC). Cur-
rent sense amplifiers such as the TI INA2504 can be used
in combination with an ADC. The ADC then digitises the
information for further analysis.

Once we obtained the voltage and current readings we can
calculate the power (Watt). Multiple power readings result in a
power trace and as we know the time between different power
readings we can calculate the area under the trace, resulting
in the energy consumption (Joule).

B. Sampling Frequency

Continuous signals cannot be converted to digital informa-
tion continuously, instead we have to measure them at discrete
intervals. The accuracy of the measurements heavily depends
on the sampling frequency. In theory to reproduce an (AC)
power signal one needs to measure voltage and current at four
times of the highest sinusoidal frequency [17]. However, the
DC consumption is not sinusoidal and instead alternates with
requirements of the load. In the case of a micro-controller the
current requirements change with for example the Dynamic
Voltage and Frequency Scaling (DVFS) settings, instructions

2https://www.hardkernel.com/shop/odroid-xue/
3https://www.qoitech.com/otii/
4https://www.ti.com/product/INA250

Otii

Odroid-XU4 Fan PSU

PC

Legend:

Data

Power

PSU

PC

Fig. 1. Measurement setup including: Qoitech Otii, Odroid-XU4, Fan power
supply, and PC

per clock and the actual instructions being executed [18]. Thus,
the required sampling frequency depends on the length of the
program being executed and the instruction mix.

C. Setup and Target system

High-performance embedded systems like the Odroid-XU4
and the NVidia Jetson Nano are all relatively similar with
respect to the clock frequency and CPU architecture. In this
paper we use the Odroid-XU4 board [19] as an example target
system. It is an octa-core system with 4 big cores (Cortex-
A15), 4 LITTLE cores (Cortex-A7) and a Mali-GPU (T628
MP6). The two separate core clusters and the GPU all form
individual voltage islands (i.e. 3 voltage islands). The voltage
and the frequency can be set separately for each voltage island.
The Odroid-XU4 runs an RT-patched Linux.

The Odroid-XU4 is accompanied by an energy measurement
system called the SmartPower2. However, due to the low
sampling frequency (1Hz) we decided to not use the system.
Instead, we measure the energy consumption of the Odroid-
XU4 with the Qoitech Otii on the high side. The Otii has a
maximum measurement error of 0.1% + 150µA (i.e. at higher
currents the error is approaching 0.1%) and has a sampling
frequency up to 4kHz. The main criticism of the shunt resistor
method is that a single shunt is only useful in a limited current
range [20], [15]. The Otii has multiple shunts to measure very
low currents (10 µA with 0.6% error) up to 5A peaks. It
measures across all shunts at the same time, thus switching
current range (i.e. between shunts) does not result in any lost
data points.

Figure 1 shows our setup. The Odroid-XU4 receives its
power from the Otii and is at the same time connected via the
UART pins to the Otii. This means that the power measure-
ments can be directly linked to messages sent by the Odroid-
XU4. The fan of the Odroid-XU4 is powered via a separate
circuit, and thus does not affect the power measurements of the
Odroid-XU4. Before each set of measurements, we calibrate
the Otii. Additionally, we warm up all connected components
by executing the heartwall benchmark 50 times.

D. Downsampling

The Otii samples at 4kHz. Instead of either forcing a lower
sampling rate or using a device with a lower sampling rate we
downsample the results. That means if we sample at 4kHz but
want a sampling rate of 2kHz we only take into account every

34

second measurement. Thus, sampling unrelated factors do not
play a role (e.g. different measurement error on a different
measurement device). In this paper we investigate 22 sampling
rates (in Hz: 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 150, 200,
250, 300, 350, 400, 500, 600, 800, 1000, 2000, 4000).

E. Benchmarks

We use the Rodinia benchmark suite [21] as target pro-
grams/tasks. The suite offers a range of targets (C, OpenCL,
Cuda), different algorithms & workloads and is widely used.
The suite’s benchmark selection was inspired by Berkeley’s
dwarf taxonomy [22]. Each benchmark can further be adjusted
via its input parameters. This leads to a large range of run-
times and processor loads.

We use nine benchmarks (backpropagation, BFS, Heartwall,
Hotspot, Kmeans, LU-Decomposition, Nearest Neighbour,
NW, SRAD) out of the suite as they can be executed on the
Odroid-XU4 with minimal adaptations. The other benchmarks
would have required significant changes to the code. Besides
the input parameters we also vary the target DVFS settings and
the target core. We measure all benchmarks on the LITTLE
cores, on the big cores and on the GPU (i.e. OpenCL version).
However, there are two benchmarks (BFS and SRAD) which
were only measured on the big and on the LITTLE cores be-
cause the OpenCL versions did not work on the Odroid-XU4.
This leads to a total of 842 unique benchmark/target/DVFS
combinations. For each combination we collected 50 power
traces, thus, in total we collected 42100 power traces.

The resulting dataset is available for download 5[23]. Addi-
tionally, the repository containing the analysis scripts is also
available 6.

F. Statistical equivalence testing

We measure a non-deterministic system (out-of-order
pipeline etc.). Additionally, the measurement system is not per-
fect and contains some noise. Thus, we repeat measurements
for each combination, as there is not a single ”correct“ value.
That also means that downsampling a single time-series and
then calculating the error will give an indication of how much
worse a lower frequency is. However, this approach does not
offer a statistical indication. Therefore, we need to analyse all
sets and their downsampled counterparts with statistical tests.

In a regular two-sided t-test we test if two samples are
different. The null hypothesis is that there is no difference
(µD) between two samples (Equation (1)).

H0 : µD = 0 (1)
H1 : µD! = 0 (2)

If the t-test indicates a significant difference (e.g. p-value
smaller than 0.05) then we can reject the null hypothesis and
accept the alternative hypothesis that the two samples are
different (Equation (2)). Thus, a t-test offers evidence in favour
of the alternative hypothesis at a given confidence level (e.g.

5https://doi.org/10.21942/uva.19665564.v1
6https://bitbucket.org/uva-sne/energymeasurementanalysis/

μD=0

μD=0

H1

H0

H1

H1 H02H01

-M M

Two-sided t-test

TOST

Fig. 2. Comparison of a two-sided t-test and a TOST.

99%). If the t-test is not significant, this is often counted as
support for the null hypothesis, i.e. that there is no difference
between the samples or that there is no effect. However, often
a non-significant test result is the result of limited statistical
power. Thus, it is impossible to know whether a non-significant
result indicates equivalence (absence of an effect) or only false
equivalence and is lacking statistical power [24].

Instead of proving the absence of an effect, we can show
that the likelihood of an effect being smaller than a given
(low) value to be significant, this is called equivalence testing.
To test for equivalence between two samples we use a method
called Two One Sided T-tests (TOST) [24]. As a TOST consists
of two tests, it has two null hypotheses (Equation (3)) and
(Equation (4)). The first test is used to determine if the
difference between the two samples (µD) is smaller than the
accepted lower bound (−M). The second one tests if the
difference is larger than the upper bound M .

H01 : µD < −M (3)
H02 : µD > M (4)

Combining both test results in the alternative hypothesis
(Equation (5)) that µD falls between −M and M . Thus, if both
t-tests are rejected, we have support for the alternative hypoth-
esis that the difference between the two samples is smaller than
a chosen M [25]. Figure 2 visualises the difference between
a normal t-test and a TOST.

H1 : −M < µD < M (5)

The majority of our 842 measurement sets are not normally
distributed (76.0%) according to both the Shapiro-Wilk test
[26] and D’Agostino-Pearson’s test [27]. Therefore, we use a
non-parametric TOST based on Wilcoxon’s Signed Rank test
[28]. We do all tests at a 99.9% confidence (α = 0.1%).

One major difference between a standard t-test and an
equivalence test is that one needs to determine what (low)
difference (M) is acceptable (i.e. considered to be less than
a noteworthy effect). We analyse the impact of 8 ”acceptable
error“ levels (20%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%) and

35

what sampling level is required to achieve equivalence at that
level across all 842 experiment combinations.

III. RESULTS & DISCUSSION

The 42100 power trace time-series can be analysed in
multiple different ways. Table I summarises basic statistics of
all power traces and shows that our benchmarks/target/DVFS
combinations cover a wide range of run times and power.
Overall we observe that the downsampled traces mostly re-
sulted in a power consumption underestimation (98.9% of the
cases) and in very few cases of overestimation (1.1%).

TABLE I
SUMMARY STATISTICS FOR ALL BENCHMARK EXECUTIONS.

Runtime (s) Power (W)
Mean 9.87 2.99
Min 0.90 1.82
Max 48.15 8.44

Figures 3 and 4 show one of the power traces. Figure 3
shows the original power trace at the full sampling frequency
of 4kHz and Figure 4 shows two downsampled versions.
The solid blue line in Figure 4 shows how the power trace
looks like if we had sampled at 1Hz. In comparison to the
original trace we can see that it misses a majority of the data.
Furthermore, it also misses data on the last second completely,
as the execution time was 3.98 seconds. It is possible to
make up for the last missed measurement by either taking
the measurement at second 4 or by using the last known
measurement. Either method will still lead to a significant
error. The dashed red line shows the same power trace but
downsampled to 10Hz. It already has a lot more detail than
the 1HZ line but still misses a significant part of the signal.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

2.0

2.5

3.0

3.5

4.0

4.5

Po
we

r (
W

)

Fig. 3. Original power trace sampled at 4000Hz.

Figure 5 shows the maximum percentage error between the
original energy measurement and the downsampled measure-
ment for each frequency. Thus, the maximum error observed
across all 842 combinations at 1Hz is 80%. The maximum
error only drops below 0.5% at a sampling frequency of
500Hz.

The maximum error only represents a single measurement
and does not carry any statistical meaning, which is the reason

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

2.0

2.5

3.0

3.5

4.0

4.5

Po
we

r (
W

)

1Hz Sampling Frequency
10Hz Sampling Frequency

Fig. 4. Downsampled power traces.

0 250 500 750 1000 1250 1500 1750 2000
Target Frequency (Hz)

0

10

20

30

40

50

60

70

80

M
ax

. E
rro

r (
%

)

Error > 0.5%
Error <= 0.5%

Fig. 5. Maximum error rate at each artificial frequency across all 842
experiment sets.

to employ equivalence testing. Figure 6 shows the minimum
frequency required to achieve equivalent results for all 842
combinations in comparison to the full sampling frequency.
Thus, if a measurement error of up to 20% is acceptable then
a 30Hz sampling rate would lead to an equivalent result for
all experimental combinations. At an acceptable error of 0.5%,
600Hz results in an equivalent result. Thus, at a similar level
as indicated in Figure 5.

20.0 10.0 8.0 6.0 4.0 2.0 1.0 0.5
Accepted Error (%)

0

100

200

300

400

500

600

Re
qu

ire
d

Fr
eq

ue
nc

y
(H

z)

Fig. 6. Frequency required to reach equivalence given an acceptable error.

36

Lastly, in Figures 7 and 8 we investigate the relation
between the error, benchmark run-time and the sampling
frequency. Interpreting the 3D graph showing the relation
between all three is not straightforward as the resulting graph
contains a lot of non-continuous data points (Figure 7). To
ease the interpretation, we smooth the data and the relation
between the three variables using a polynomial, multi-variable
regression based on a Multi-Layer-Perceptron (Scikit-learn:
default parameters, hidden layer size = (64, 128, 256, 512)).
This also allows us to interpolate the error to other sampling
frequencies and run-times. We use 80% of the data for training.
The mean absolute error on the test set is 0.0065.

Fig. 7. Relation between the error, benchmark run-time and the sampling
frequency for all power traces downsampled to between 1Hz and 140Hz.

We use the regression to predict the error of a measure-
ment given a sampling frequency and run-time. Plotting the
regression for the sampling frequency range 1Hz to 140Hz
and run-times between 0.5 and 40 seconds results in Figure 8.
The figure clearly shows that low sampling frequencies lead to
poor results for the selected benchmarks even for longer run-
times. That means that the selected long running benchmarks
contained a significant amount of faster peaks that were missed
at a low sampling rate. The error for short tasks remains
higher even with higher sampling frequencies. As such the
results obtained with a SmartPower2 are of limited use in an
academic setting.

For this set of benchmarks, input parameters, target platform
and DVFS settings a sampling frequency between 350Hz
and 600Hz is sufficient (given an error of 1% and below).
However, much shorter programs might need significantly
higher sampling rates or one will have to measure the target
task in a different way. For example, measuring a very short
task (a few CPU cycles) will be missed even at a sampling
frequency of 4kHz, thus, artificially inflating the task could
work (e.g. a loop).

IV. RELATED WORK

Cloutier et. al demonstrate that decreasing the sampling
frequency from 100Hz to 1Hz results in significant loss of

Runtim
e (s)

0510152025303540Sampling Frequency (Hz)
0 20 40 60 80 100 120 140

Er
ro

r (
%

)

10

20

30

40

50

60

70

Fig. 8. Regression analysis of the error with respect to the benchmark run-
time and the sampling frequency.

the power trace detail [1]. However, they do not further inves-
tigate the impact of this decrease on the energy measurement
accuracy. Additionally, we can show that the accuracy of
measurements at 100Hz is significantly lower than at 4kHz.

Diouri et. al investigate different energy measurement sys-
tems for servers [29]. They conclude that higher sampling
rates are not necessarily good as they can introduce noise that
could mask other trends. However, only because a signal is
more noisy doesn’t mean that the noise is erroneous and can
thus be disregarded for energy measurements. One can always
downsample a trace or smooth it to investigate possible hidden
trends. Furthermore, server measurements could already be
more noisy than high performance embedded systems due to
architectural reasons, different target applications and short
background tasks. Looking at Figure 3 we cannot confirm that
a high sampling rate masks the trends of an application. Lastly,
Diouri et. al do not investigate if the downsampled traces lead
to equivalent energy measurements.

Djupdal et. al [30] develop a high-performance embedded
system oriented energy measurement systems. And in [31]
the authors describe two high-sampling frequency power mea-
surement methods (up to 500kHz) for servers and for server
components. However, they do not analyse the importance of
the sampling frequency and if lower sampling frequencies can
achieve similar results.

Buschoff et. al [20] and Jiang et. al [32] developed measure-
ment techniques for low-powered embedded systems. They
target devices with long sleep times that only consume energy
in a few fast bursts. In contrast we focus on high-performance
embedded systems that carry out computationally demanding
tasks.

Nakutis et. al [14] and Hergenröder et. al [15] summarise
the different power measurement methods and highlight the
importance of the sampling frequency. However, neither paper
empirically shows the resulting error.

37

V. CONCLUSION

Research into reducing energy consumption of embedded
systems is popular. Hence, we need to measure the energy
consumption of embedded systems. However, researchers and
reviewers alike often pay little attention and consideration to
how to measure energy consumption. One crucial aspect of
energy measurements for high-performance embedded systems
is the sampling frequency of the analogue signal.

In this paper we show that for a wide range of Rodinia
benchmarks executed on the Odroid-XU4 the minimum sam-
pling rate is 350Hz if a 1% measurement error is acceptable.
Measuring at 1Hz results in errors as high as 80%. Thus,
showing that systems such as the Hardkernel SmartPower2
(measurement system accompanying the Odroid-XU4) cannot
be used to draw conclusions and that measurement methods
with low sampling rates are only of limited use in an aca-
demic setting. Some papers in the area of reducing energy
consumption of high-performance embedded systems should
be re-evaluated.

If we want to reliably research and investigate methods
for reducing energy consumption we must measure energy
consumption accurately. That means that we need to pay
more attention to our experimental setup and report our setup
accurately. Careless experimental setups lead to two problems:
First, we potentially focus too much on the wrong methods
(false positive conclusion). Second, we discard methods that
do not look promising but are in reality a good option (false
negative conclusion).

In the future we would like to establish theoretical minimum
requirements for sampling rate. And work on a community
based set of guidelines for energy measurements in the high-
performance embedded systems area to avoid such problems
and confusion henceforth.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their time and feed-
back. This work is supported and partly funded by the HiPEAC
project which has received funding by the European Union
Horizon-2020 research and innovation programme under grant
agreement No. 871174 (HiPEAC6 Network). Additionally, this
work is partially supported by the European Union Horizon-
2020 research and innovation programmes TeamPlay (grant
agreement No. 779882) and ADMORPH (grant agreement No.
871259). Lastly, this work is partially supported by CERCI-
RAS COST Action CA19135 funded by COST Association.

REFERENCES

[1] M. F. Cloutier, C. Paradis, and V. M. Weaver, “A raspberry pi cluster
instrumented for fine-grained power measurement,” Electronics, vol. 5,
no. 4, p. 61, 2016.

[2] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck, “Energy-aware
scheduling of multi-version tasks on heterogeneous real-time systems,”
in SAC, 2021, pp. 501–510.

[3] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N. Guan,
“Energy-efficient real-time scheduling of dags on clustered multi-core
platforms,” in RTAS. IEEE, 2019, pp. 156–168.

[4] D. Liu, J. Spasic, G. Chen, and T. Stefanov, “Energy-efficient mapping
of real-time streaming applications on cluster heterogeneous mpsocs,”
in ESTIMedia. IEEE, 2015, pp. 1–10.

[5] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and
S. Vishin, “Power-performance modeling on asymmetric multi-cores,”
in CASES. IEEE, 2013, pp. 1–10.

[6] A. Balsini, L. Pannocchi, and T. Cucinotta, “Modeling and simulation of
power consumption and execution times for real-time tasks on embedded
heterogeneous architectures,” ACM SIGBED Review, vol. 16, no. 3, pp.
51–56, 2019.

[7] G. Zeng, T. Yokoyama, H. Tomiyama, and H. Takada, “Practical energy-
aware scheduling for real-time multiprocessor systems,” in RTCSA.
IEEE, 2009, pp. 383–392.

[8] U. Odyurt, J. Roeder, A. D. Pimentel, I. G. Alonso, and C. de Laat,
“Power passports for fault tolerance: anomaly detection in industrial
cps using electrical efb,” in ICPS. IEEE, 2021, pp. 152–157.

[9] S. Isuwa, S. Dey, A. K. Singh, and K. McDonald-Maier, “Teem:
Online thermal-and energy-efficiency management on cpu-gpu mpsocs,”
in DATE. IEEE, 2019, pp. 438–443.

[10] N. Brouwers, M. Zuniga, and K. Langendoen, “Neat: A novel energy
analysis toolkit for free-roaming smartphones,” in SenSys, 2014, pp.
16–30.

[11] A. Z. Sheikh and M. A. Pasha, “Energy-efficient multicore scheduling
for hard real-time systems: A survey,” TECS, vol. 17, no. 6, pp. 1–26,
2018.

[12] A. V. Oppenheim, J. R. Buck, and R. W. Schafer, Discrete-time signal
processing. Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2001.

[13] C. Imes, D. H. Kim, M. Maggio, and H. Hoffmann, “Poet: a portable
approach to minimizing energy under soft real-time constraints,” in
RTAS. IEEE, 2015, pp. 75–86.

[14] Z. Nakutis, “Embedded systems power consumption measurement meth-
ods overview,” MATAVIMAI, vol. 2, no. 44, pp. 29–35, 2009.

[15] A. Hergenröder and J. Furthmüller, “On energy measurement methods
in wireless networks,” in ICC. IEEE, 2012, pp. 6268–6272.

[16] S. Arar, “Resistive current sensing: Low-side vs.
high-side sensing,” Accessed on 21.04.2022. [On-
line]. Available: https://www.allaboutcircuits.com/technical-articles/
resistive-current-sensing-low-side-versus-high-side-sensing/

[17] R. S. Turgel, Sampling Techniques for Electric Power Measurement.
US Department of Commerce, National Bureau of Standards, 1975, vol.
870.

[18] E. Vasilakis, I. Sourdis, V. Papaefstathiou, A. Psathakis, and M. Kateve-
nis, “Modeling energy-performance tradeoffs in arm big. little architec-
tures,” in PATMOS. IEEE, 2017, pp. 1–8.

[19] Hardkernel Co., Ltd. Odroid-XU4. https://wiki.odroid.com/odroid-xu4/
odroid-xu4. Accessed: 2019-09-06.

[20] M. Buschhoff, C. Günter, and O. Spinczyk, “Mimosa, a highly sensitive
and accurate power measurement technique for low-power systems,” in
Real-World Wireless Sensor Networks. Springer, 2014, pp. 139–151.

[21] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC. Ieee, 2009, pp. 44–54.

[22] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
berkeley,” 2006.

[23] J. Roeder, S. Altmeyer, and C. Grelck, “Energy
Measurements of 9 Rodinia Benchmarks executed
on the Odroid-XU4.” 6 2022. [Online]. Available:
https://uvaauas.figshare.com/articles/dataset/Energy Measurements
of 9 Rodinia Benchmarks executed on the Odroid-XU4 /19665564

[24] E. Quertemont, “How to statistically show the absence of an effect,”
Psychologica Belgica, vol. 51, no. 2, pp. 109–127, 2011.

[25] NCSS, LLC, “NCSS 2022 Statistical Software,” 2022, Kaysville, Utah,
USA, ncss.com/software/ncss.

[26] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[27] R. D’Agostino and E. S. Pearson, “Tests for departure from normality.
empirical results for the distributions of b2and

√
b1,” Biometrika,

vol. 60, no. 3, pp. 613–622, 1973.
[28] F. Wilcoxon, “Individual comparisons by ranking methods,” in

Breakthroughs in statistics. Springer, 1992, pp. 196–202.
[29] M. E. M. Diouri, M. F. Dolz, O. Glück, L. Lefèvre, P. Alonso, S. Catalán,

R. Mayo, and E. S. Quintana-Ortı́, “Solving some mysteries in power
monitoring of servers: Take care of your wattmeters!” in EE-LSDS.
Springer, 2013, pp. 3–18.

38

[30] A. Djupdal, B. Gottschall, F. Ghasemi, and M. Jahre, “Lynsyn and
lynsynlite: The sthem power measurement units,” in Towards Ubiquitous
Low-power Image Processing Platforms. Springer, 2021, pp. 93–114.

[31] T. Ilsche, D. Hackenberg, S. Graul, R. Schöne, and J. Schuchart, “Power
measurements for compute nodes: Improving sampling rates, granularity
and accuracy,” in IGSC. IEEE, 2015, pp. 1–8.

[32] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro power meter for
energy monitoring of wireless sensor networks at scale,” in IPSN. IEEE,
2007, pp. 186–195.

39

Revisiting Migration Overheads in Real-Time
Systems: One Look at Not-So-Uniform Platforms

Phillip Raffeck, Wolfgang Schröder-Preikschat
Friedrich-Alexander-Universität Erlangen-Nürnberg

raffeck@cs.fau.de, wosch@cs.fau.de

Peter Ulbrich
Technische Universität Dortmund

peter.ulbrich@tu-dortmund.de

Abstract—Dynamic migration of tasks between cores is nowa-
days one of the standard mechanisms of operating systems to
exploit multi-core systems. However, migration is practically not
used in real-time settings. This is due to the unpredictability of the
associated costs and the resulting pessimistic overapproximations.
Existing approaches typically rely either on a predictable, static
partitioning of tasks or assume uniform costs for all cores;
conceptually, migration does not differ from preemption in
the latter. However, non-unified memory architecture (NUMA)
and NUMA-like embedded hardware platforms are increasingly
widespread. Here, intuitively, migration should be more costly
than preemption, but the degree is uncertain.

This paper aims to shed more light on two key influencing
factors: (1) the variance of the elementary costs of the hardware
and (2) the type and scope of the affected data of a task at the
time of migration, the working set. We approach this challenge by
deeper investigating application benchmarks, revisiting existing
cost experiments, and bringing them to new platforms with
not-so-uniform memory architectures. Our results indicate that
migration differs from preemption in many relevant cases and
thus requires special consideration to incorporate the associated
overheads precisely into worst-case analyses.

I. INTRODUCTION

A static allocation of workloads to cores can lead to
the well-known Dhall effect [1] and is therefore generally
considered detrimental to utilization in multi-core settings.
Nowadays, we are used to dynamically distributing work-
loads conveniently between cores in a multi-core system,
for example, by migrating processes, containers, or even
complete virtual machines. The operating system’s primary
challenge is to provide transparent and efficient migration
mechanisms that foster CPU utilization. However, things are
significantly more complicated in the domain of (hard) real-
time systems. For example, although scheduling theorists have
embraced transparent task migration at the instruction level,
it is rarely put into practice in real-world applications. The
primary reason for this is that the effects on the temporal
behavior are much more complex to predict—a decades-
old problem [2]. The worst-case execution times (WCET) of
application, and operating system functionality are decisive for
verifiable scheduling and typically inferred by static analysis
techniques. However, the ease and difficulty of such timing
analysis are dictated by the given hardware and software’s
predictability (and their analyzability). Even slight variabilities
in execution costs can cause excessive pessimism in WCET
estimates and thus jeopardize schedulability and the desired

improvement in overall utilization. Conceptually, two main
influencing factors can be distinguished: (1) Variable execution
costs of the elementary operations caused by memory-access
related latencies, i.e., the WCET varies with core allocation.
(2) Migration overheads induced by the program structure of
the task to be migrated. In particular, these are determined by
the working set, i.e., the live part of a program’s resident set,
which must be transferred between cores.

We first tackled the second factor by static analysis of
tasks to determine their resident (RSS) and working-set sizes
(WSS) in previous works [3], [4]. As a result, we could reduce
analysis pessimism by identifying particularly advantageous
migration points with low maximum cost. Furthermore, by
compiler-supported slicing of the tasks at these points, we
obtained smaller jobs that are easier to allocate and schedule,
fostering predictable multi-core scheduling.

Challenges and Contribution

Our previous and ongoing work is based on two key
assumptions: First, the working-set size varies within the
program execution so that there are beneficial migration points
to identify. Second, we assume that the hardware exhibits vari-
able access and thus elementary costs on different cores. While
we could demonstrate these basic assumptions for a static
allocation using core-local memories [3], the generalizability
remained an open question.

On the one hand, this issue relates to the evolution of the
size of the resident and working set over time in typical
applications. Does its size vary within programs and during
their execution?

On the other hand, the more challenging question is the
variable execution cost on hardware platforms with advanced
memory architectures. For example, in their study of preemp-
tion and migration delays, Bastoni et al. [5] found these con-
verged with a task sufficiently long preempted. However, they
ran their experiments on a unified memory architecture (UMA)
machine. Because the memory access latencies are equal to
all cores, the cache state (i.e., hotness) determines the access
latencies. The situation is unclear in systems with less uniform
memory characteristics (e.g., non-unified memory architecture,
NUMA), where certain memory regions may not be accessible
from all cores or only with significant overhead. Because of
potential data transfers or memory-access overheads for the

41

migrated task, migration should intuitively be more costly than
preemption, but the degree is uncertain.

This paper aims to shed more light on these questions
by deeper investigating application benchmarks, revisiting
existing cost experiments, and bringing them to new platforms.
This will enable us to identify potential scenarios where con-
sideration of migration overhead is beneficial or necessary and
clear up misconceptions or uncertainties about the overhead
associated with migration.

The paper provides the following contributions: (1) A
compile-time analysis of working-set sizes of different bench-
marks typical for the domain of real-time systems. (2) The
reproduction of previously published results for preemption
and migration delays in real-time systems on UMA platforms.
(3) Bringing these experiments to a broader spectrum of plat-
forms and memory architectures, namely two x86 platforms
with 4 and 8 NUMA domains. (4) A more detailed insight
into embedded systems with NUMA-like characteristics by
comparable measurements on a typical real-time platform.

II. APPROACH

We aim to augment the existing data on migration overheads
in a two-pronged fashion. First, we investigate the influence of
migration on target platforms both with and without NUMA
characteristics. Starting with a reproduction of previous re-
sults [5], our study provides a more in-depth evaluation of
migration delays. Further, we analyze benchmarks at compile
time to get a better understanding of how WSSs grow and
shrink over the lifetime of a task.

A. Measurements

To obtain a broad overview of the costs and implications
of migration, we observed task execution and memory access
behavior on a range of platforms. Depending on the platform,
we used different observation methods, which we briefly
summarize in the following:

On all platforms, we measured memory overheads in a
direct approach by recording memory access times to different
memory regions and NUMA domains.

On platforms where PREEMPT_RT Linux [6] is readily
available, we additionally employed an indirect method to ob-
serve migration overheads. Using the ftrace [7] functionality of
the Linux kernel, we examined the runtime of a measurement
task1 embedded in specifically crafted task systems consisting
of an interference task and multiple blocker tasks. By tuning
the period and execution time of the interference task, we were
able to trigger preemptions and migrations in the measurement
task, which become visible as scheduling events in the ftrace
output. The measurement task’s execution times derived from
these scheduling events subsequentially allowed us to conclude
the overhead of preemptions and migrations.

On the embedded platform, we additionally observed the
overhead incurred by placing a task’s data (e.g., its stack,
relevant parts of data sections) in different domains in the

1The measurement task is the subject of the measurement. However, in
some experiments, it is also instrumented for measuring execution time.

Name CPU Cores NUMA Domains
M1 Intel i7-2600 4 1
M2 AMD Opteron 6180 48 8
M3 Intel Xenon E7-4830 48 4

Table I: Overview of the x86 machines used for measurements.

memory hierarchy. This setup mimics the loss of core locality
due to migration, which enabled us to study two strategies:
control-flow-only migration (i.e., data resides in core-local
memories) and storing data in shared memory only. We then
assessed the potential impacts of such strategies on task
execution from the observed overheads.

B. Analysis Approach

To better understand the variation of the WSS of tasks
over their lifetime, we employed a variation of the analysis
routine described in [3]. Using a custom LLVM-based [8]
compiler [9], [10], we determined the live-data set at each
instruction for our benchmarks during compilation. Contrary
to our previous work, we were not interested in identifying
beneficial points in close vicinity of a target WCET, but
instead in the distribution and evolution of the WSS at all
points in the execution of the task.

This approach allowed us to evaluate the impact of worst-
case WSS estimates on the task execution, as we gained
an overview of how often these worst cases actually occur.
This, in turn, provided insight into the degree of overap-
proximation that is introduced by pessimistic worst-case es-
timates of migration-induced overheads. As our analysis is
performed during the compilation stage, the size estimates are
based on LLVM data types in the granularity of single bits.
Currently, the analysis only considers stack-based dynamic
memory allocation, which we deem sufficient for the target
domain of (hard) real-time systems. Even though analyzing
the representative benchmarks used in our evaluation did not
require it, an extension to heap-based memory management is
feasible with restrictions on idiomatic C (alias problem) [11]–
[13]. In sum, our approach provided valuable information to
assess the impact of migration overheads.

III. OBSERVATION OF NUMA-EFFECTS

We performed experiments on various platforms to cover
the characteristics of different memory architectures and their
influence on migration overheads. First, as a powerful embed-
ded platform representative, we opted for the Infineon AURIX
platform, which is widely used in safety-critical automotive
applications (e.g., engine and body control, collision avoidance
systems). Specifically, we used the 6-core AURIX TriCore
TC397XE [14] for our experiments. The platform features
a diverse memory hierarchy, including core-local scratchpads
and multiple levels of CPU-local (DLMUx) and domain-
local memory (LMUx), as well as global extended memory
(EMEM). The shared memory regions are mirrored to two
different address ranges to allow cached and non-cached ac-
cess. The core-local scratchpads are accessible from all cores,
albeit at the cost of higher latencies. Cores 0-3 and 4-5, as well

42

Local Memory
(DLMU0)

64KB

Local Memory
(DLMU1)

64KB

Local Memory
(DLMU2)

64KB

Local Memory
(DLMU3)

64KB

Local Memory
(DLMU4)

64KB

Local Memory
(DLMU5)

64KB

Local Memory
(LMU1)
256KB

Local Memory
(LMU2)
256KB

Local Memory
(LMU0)
256KB

Extension
Memory
(EMEM)
4096 KB

Bridge BridgeXBAR0 XBAR1XBAR2

CPU0
Scratchpad: 400KB

Cache: 48KB

CPU1
Scratchpad: 400KB

Cache: 48KB

CPU2
Scratchpad: 160KB

Cache: 48KB

CPU3
Scratchpad: 160KB

Cache: 48KB

CPU4
Scratchpad: 160KB

Cache: 48KB

CPU5
Scratchpad: 160KB

Cache: 48KB

SRI Domains 0 12

Figure 1: Block diagram of the TC3X microcontroller memory architecture. It features multiple levels with varying access
latencies: from core-local scratchpad, over (domain) local memory (DLMU, LMU) up to extended memory (EMEM). Domains
are marked by color, linked by the system resource interconnect (SRI, i.e., crossbar), and accessible via bridges.

as the extended memory, are connected to different crossbars
(XBARx), called system resource interconnect (SRI), con-
stituting dedicated memory domains. Figure 1 outlines the
components of the memory hierarchy relevant to this work.

In the following, we first discuss the results on the AURIX
platform before moving on to the second class of systems:
three x86 machines with different core counts and NUMA
characteristics, ranging from common desktop CPUs to many-
core platforms. Table I provides an overview of the respective
hardware details of the used CPUs.

A. AURIX embedded platform experimental results

Experiments were performed on an Infineon AURIX
TC397XE [14] platform with the help of a Lauterbach Pow-
erDebug [15]. Using this hardware debugger allowed us to
record instruction traces in a non-intrusive manner by on-chip
tracing. One limitation of this, however, is that the measure-
ments are limited by the 1MB trace buffer. By recording just
the start and end times of the relevant code sections for the
experiments, we ensured that the length of the benchmarks did
not become an issue of said limited buffer size.

In the first experiment, we examined access times from
one core into different parts of the memory hierarchy of the
TC397XE platform. All memory regions, including scratch-
pads of other cores, are accessible from all cores, albeit with
different latencies. To quantify these, we captured execution
traces for transferring a total of 1KiB, 8KiB, 16KiB and
32KiB of memory to core 0 from the different memory
regions and domains to cover all the various possible access
routes through the memory interconnects showcased in Fig-
ure 1. The transfer was performed at word granularity, with
the next word to transfer chosen randomly to avoid prefetching
effects of linear memory accesses. In particular, we evaluated
accesses from four memory regions: First, the core-local
scratchpad of core 0 as the typical storage for task data.

Additionally, one of the shared domain-local memory regions
close to core 0, which is (D)LMU0 in Figure 1, in both
the cached (LMU0) and non-cached (LMU0 NC) variant. We
conducted all measurements with the later, as this research is
concerned with the latencies of the memory hierarchy’s levels
and not the cache coherence (for which there is no HW support
in the AURIX). Lastly, we used the scratchpad of core 4 as
a remote memory region, constituting the worst-case scenario
as it is only accessible for core 0 through the crossbar bridge
and subsequently via core 4’s interface.

Figure 2 gives a box plot of the determined latencies
normalized to access times per word (i.e., 32 bit). Median
values are marked by circles, outliers by diamonds. There are
three distinct groups visible: (1) core-local and cached access
to shared memory, (2) non-cached access to shared memory,
and (3) access to the scratchpad of a remote core.

The measurements suggest that the execution time of a task
may vary significantly on an embedded platform with NUMA-
like characteristics depending on where exactly the required
data resides. Especially the near doubling of access times
between core-local and remote scratchpad accesses stuck out.

Considering these numbers with migration in mind, they
indicate potentially significant overheads, either because the
WSS of a task has to be transferred or because the execution
time of a task changed due to the higher access times of
memory accesses, which became remote accesses after the mi-
gration. Depending on the cache-coherency requirements and
available (HW) mechanisms, moving data to shared memory
is a no viable solution, as indicated by the increased access
times for non-cached access to shared memory.

For the second experiment, we evaluated the execution
times of tasks derived from the TACLeBench benchmark
suite [16] in a simulated migration scenario. We mapped
the stack and data regions used by the examined task to
different memory regions during linking. On the one hand,

43

Figure 2: Access times for different parts of the memory map

Figure 3: Runtimes for TacleBench benchmarks with their data
residing in different parts of the memory map

this simulated a complete task execution after a migration to a
different core. On the other hand, this allowed us to compare
further the effects of attempts to circumvent problems coming
with migration by moving data to global shared memory.

Figure 3 showcases execution times of several benchmarks
in three different memory configurations as a boxplot. The data
used by the tasks lay either in the scratchpad of core 0 (normal
case), in the non-cached shared memory (global-nc), or in
the scratchpad of core 4 (remote). The median values of the
measurements are marked by a circle (normal), a cross (global-
nc), and a star (remote), respectively. For easier comparison,
the execution times are normalized to the standard case.

Again, we noticed significant differences in the execution
times depending on where the task data resides in memory.
These are more or less pronounced depending on the specific
benchmark, its memory footprint, and WSS access patterns.

Two conclusions can be drawn from the results, albeit still
depending on the concrete nature of the tasks:

(1) Operating entirely in shared memory may come with
significant overheads. This signifies the reality of scenarios
where migration is beneficial or necessary.

Figure 4: Memory access times from different NUMA domains
on M2. Benchmark run on domain 0.

Figure 5: Memory access times from different NUMA domains
on M3. Benchmark run on domain 0.

(2) Depending on the target core, migration comes with
substantial costs. Thus, we mandate predictable migration with
precise WSS estimation to manage the overhead.

B. x86 NUMA platforms experimental results

On the three PC platforms, we evaluated memory access
times by performing 4096 reads and writes at random indices
of an increasingly larger array and controlling the memory
allocation of the said array via numactl2. Figures 4 and 5
display the measured access times as boxplots. For better
readability, only 4 of the 8 NUMA domains of M2 are
displayed, as the results are equivalent for the other domains.
We can see larger access times across NUMA domains for
larger array sizes on both machines.

Additionally, we ran PREEMPT_RT Linux [6] to leverage
the Linux tracing functionality [7]. For a finer resolution of
the results, we splitted the existing sched_switch event
in two, sched_switch_on and sched_switch_off.
Evaluations were performed using the nop tracer, the TSC as
the clock source, and with only our scheduling events enabled.
Real-time throttling was disabled during the measurements.

The task system under observation comprised one high-
priority measurement task and one interference task for each
processor core, which all perpetually accessed a WSS the

2https://github.com/numactl/numactl

44

0.
0-

0.
1

0.
1-

0.
2

0.
2-

0.
3

0.
3-

0.
4

0.
4-

0.
5

0.
5-

0.
6

0.
6-

0.
7

0.
7-

0.
8

0.
8-

0.
9

0.
9-

1.
0

normalized WSS

st
binarysearch

iir
prime

complex_updates
filterbank

matrix1
insertsort

lms
minver
fir2dim

countnegative
bsort

petrinet
jfdctint 0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
fre

qu
en

cy

Figure 6: WSS distribution of TACLeBench benchmarks

same size. We experimented with two selected microbench-
marks as measurement tasks: one processor-bound (CPU) and
one memory-bound benchmark (MEM). The processor-bound
benchmark calculates primes up to two alternating limits.
The memory-bound benchmark moves sequentially through a
working set of predefined size reading bytes with a step width
of 32B, each read immediately followed by a write to the
following byte. We use 2KiB as a small, 32KiB as a medium,
and 786KiB as a large WSS. Compared to the results of
our analysis of embedded benchmarks (see Section IV), these
constitute rather large WSS. To activate worst-case behavior,
the measurement task switched CPU every few iterations as
indicated by the different colors in Figures 8 to 12.

The traced execution times of the measurement task during
these experiments are displayed in Figures 8 to 11. We
identified two execution-time clusters for the CPU benchmark
on all machines, which fit the code’s behavior. M3 shows a
pattern of execution time spikes followed by regions of lower
execution times. The effect is better observable in a zoomed-
in comparison (see Figure 12): For the MEM benchmark,
higher costs are visible at switches to a new processor,
followed by faster executions as the caches warm up. At the
beginning and the crossing of NUMA domains, distinct spikes
are seeable, indicating higher overheads for crossing NUMA
domains. The comparison with the execution times of the CPU
benchmark shows that memory access latencies are responsible
for the observed pattern. Additionally, we evaluated a WSS of
8MiB for M3 as the size the access experiments (Figure 5)
where NUMA effects become more prevalent. In comparison
with Figures 11c and 12b, we can identify higher cost after
switching NUMA domains but not after switching cores,
indicating that the influence of caches declines at such huge
WSSs, while the NUMA influence remains. For M1, no clear
effect distinguishes preemption and migration, reaffirming the
observations of Bastoni et al. [5]. The effect is less prevalent
on M2, indicating that NUMA architectures do not necessarily
come with detrimental overheads.

In summary, these results suggest that dissimilarities be-
tween preemption and migration are likely more prevalent
in NUMA systems, requiring the explicit consideration of

Figure 7: WSS distribution over an exemplary trace of the
benchmark st

migration for sound and precise WCET estimates.

IV. DISTRIBUTION OF WORKING-SET SIZES

The results of Section III imply that restricting migration to
smaller WSSs is beneficial. Thus, we studied the evolution of
WSSs over the lifetime of a task and applied our analysis (cf.
Section II-B) on TACLeBench benchmarks [16], which serve
us as representatives for typical application patterns.

Figure 6 shows a heat map of the resulting WSS distribution.
For easier comparison, the results are normalized twice: first,
for each benchmark (i.e., each row), the WSS is normalized
to the interval of its minimum and maximum size. Second,
the occurrence frequency is normalized in the same way. Each
column represents a tenth of the WSS interval, while the color
of each field indicates how many of the observed WSSs for
the benchmark lie within the interval of the column; darker
colors denote a higher frequency. By our analysis, we found all
working sets in absolute numbers to be smaller than 10KiB.

The distribution shows no clear trend across all bench-
marks but rather a high degree of variation. While some
benchmarks (e.g., filterbank, jfdctint, petrinet) exhibit a WSS
equivalent to near the worst-case estimate most of the time,
others (e.g., prime, st) show a wider distribution and several
peaks over different WSS ranges.

As an example, Figure 7 shows the progression of the WSS
over one possible execution trace of the st benchmark. Every
bar represents the WSS at one instruction. Instructions are
ordered from left to right by their time of occurrence in
the trace. Note that the selected trace does not necessarily
represent the worst-case execution but rather just one potential
execution. As the figure shows, there are notable differences
in the WSS throughout the execution, indicating that the data
to be transferred in the case of migration strongly depends on
the exact time the migration takes place.

Two conclusions can be drawn from these analysis: (1)
Whether the worst-case WSS is representative of a task
execution strongly depends on the nature of the task, as it
may as well access only a far smaller WSS most of its time.
(2) Predictable migration is essential to improve worst-case
analyses by avoiding unnecessary pessimistic WSS estimates.

45

100000

120000

140000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0

M1 cpu

(a) M1

40000

50000

60000

70000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0
1

2
3

4
5

6
7

M2 cpu

(b) M2

50000

60000

70000

80000

90000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 cpu

(c) M3

Figure 8: Trace results for CPU.

15000

17500

20000

22500

25000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0

M1 2k

(a) M1

25000

50000

75000

100000

125000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0
1

2
3

4
5

6
7

M2 2k

(b) M2

10000

15000

20000

25000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 2k

(c) M3

Figure 9: Trace results for MEM with a WSS of 2k.

40000

50000

60000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0

M1 32k

(a) M1

5e+04

1e+05

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0
1

2
3

4
5

6
7

M2 32k

(b) M2

30000

40000

50000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 32k

(c) M3

Figure 10: Trace results for MEM with a WSS of 32k.

550000

600000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0

M1 786k

(a) M1

10000

20000

30000

40000

50000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0
1

2
3

4
5

6
7

M2 786k

(b) M2

400000

450000

500000

550000

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 786k

(c) M3

Figure 11: Trace results for MEM with a WSS of 786k.

46

60000

70000

80000

0 25 50 75 100 125
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0 1

M3 cpu

(a) CPU

375000

400000

425000

450000

475000

0 25 50 75 100 125
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0 1

M3 786k

(b) MEM 786k

Figure 12: Zoomed version of the trace results on M3.

4e+06

5e+06

6e+06

7e+06

8e+06

0 100 200 300 400 500
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0 1 2 3

M3 8M

(a) Trace results.

4e+06

5e+06

6e+06

7e+06

8e+06

0 25 50 75 100 125
Execution Iteration

E
xe

cu
tio

n
T

im
e

(T
S

C
 c

yc
le

s)

Numa Domain 0 1

M3 8M

(b) Zoomed version of the trace results.

Figure 13: Trace results for MEM with a WSS of 8M on M3.

Knowledge of the exact point in time a migration happens
facilitates precise WSS and, hence, overhead estimation.

V. RELATED WORK

Since the beginning of multitasking, working-set estimation
has been a research topic with a large body of work [17]–
[19], especially in (virtual) memory management. Brown et
al. [20] presented a technique for working-set prediction to
make thread migration more efficient. They highlight the need
to precisely identify the actual current working set to prevent
unnecessary data transfers. In real-time systems, Calandrino et
al. [21] and Bastoni et al. [5] identified the WSSs to impact
the worst-case timing analysis significantly. Beyond these
general investigations, we have studied the specific properties
of typical application benchmarks in this work.

Likewise, preemption and migration costs are a vast area
of research. For example, Bastoni et al. [5] measured pre-
emption and migration delays on a 24-core UMA machine.
They observed no significant differences between preemptions
and migrations in systems under load, as with increasing
preemption length, cache affinity is lost either way completely.
Contrary, in a comparable experiment, Calandrino et al. [21]
observed worst-case migration costs to be higher due to
forced data invalidation and cache-coherency overheads. Work
on cache-related preemption delays (CRPD) [22], [23] aims
to determine the effects of preemption more accurately or

minimize them systematically. However, we are not aware of
any work that considers migration between NUMA domains.

VI. CONCLUSION & OUTLOOK

Using the tracing capabilities of PREEMPT_RT Linux,
we were able to validate previous results for preemption
and migration overheads and extend them to the broader
range of NUMA and embedded NUMA-like platforms. Our
results substantiate the general intuition that migration and
preemption deserve nuanced consideration in such scenarios,
as the former is associated with more uncertainties and costs.

Further, static analysis of representative application bench-
marks indicates that the (worst-case) resident set is an exten-
sive overapproximation of the actual working set for most of
the execution. Migration at predictable points in the execution,
thus, helps to avoid unnecessary pessimism, as the WSS can
be determined more precisely section by section.

Overall, we conclude that, generally, migration cannot be
treated like preemption. Especially on NUMA-like systems,
migration requires special consideration to precisely determine
and incorporate overheads in the system design.

In previous work [4], we outlined possible approaches to
enable predictable migration with known overheads by static
and dynamic scheduling. The results presented in this paper
will help us to refine these approaches and put them into
practice.

47

ACKNOWLEDGMENT

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project numbers 146371743;198891422.

REFERENCES

[1] S. K. Dhall and C. L. Liu, “On a Real-time Scheduling Problem,”
Operations Research, vol. 26, no. 1, pp. 127–140, 1978.

[2] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou,
“Process migration,” ACM Computing Surveys, vol. 32, no. 3, pp. 241–
299, 2000.

[3] T. Klaus, P. Ulbrich, P. Raffeck, B. Frank, L. Wernet, M. R. von
Onciul, and W. Schröder-Preikschat, “Boosting Job-Level Migration by
Static Analysis (Best Paper Award),” in Proc. of the 15th Intl. Work.
on Operating Systems Platforms for Embedded Real-Time Applications,
2019, pp. 33–44.

[4] P. Raffeck, P. Ulbrich, and W. Schröder-Preikschat, “Work-in-progress:
Migration hints in real-time operating systems,” in Proc. of the 40th

IEEE Intl. Real-Time Systems Symp. IEEE, 2019, pp. 528–531.
[5] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related Preemp-

tion and Migration Delays: Empirical Approximation and Impact on
Schedulability,” in Proc. of the 6th Intl. Work. on Operating Systems
Platforms for Embedded Real-Time Applications, 2010, pp. 17–22.

[6] Real-time linux. [Online]. Available: https://wiki.linuxfoundation.org/r
ealtime/start

[7] Ftrace - function tracer. [Online]. Available: https://www.kernel.org/doc
/Documentation/trace/ftrace.txt

[8] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. of the Intl. Symp. on Code
Generation and Optimization, Washington, DC, USA, 2004, pp. 75–86.

[9] F. Scheler and W. Schröder-Preikschat, “The Real-time Systems Com-
piler: Migrating Event-triggered Systems to Time-triggered Systems,”
Software: Practice and Experience, vol. 41, no. 12, pp. 1491–1515,
2011.

[10] F. Franzmann, T. Klaus, P. Ulbrich, P. Deinhardt, B. Steffes, F. Scheler,
and W. Schröder-Preikschat, “From intent to effect: Tool-based gen-
eration of time-triggered real-time systems on multi-core processors,”
in Proc. of the 19th IEEE Intl. Symp. on OO Real-Time Distributed
Computing. Washington, DC, USA: IEEE, May 2016, pp. 134–141.

[11] M. Stilkerich, J. Schedel, P. Ulbrich, W. Schröder-Preikschat, and
D. Lohmann, “Escaping the bonds of the legacy: Step-wise migration
to a type-safe language in safety-critical embedded systems,” in Proc.
of the 14th IEEE Intl. Symp. on OO Real-Time Distributed Computing,

G. Karsai, A. Polze, D.-H. Kim, and W. Steiner, Eds. IEEE, Mar. 2011,
pp. 163–170.

[12] I. Stilkerich, C. Lang, C. Erhardt, and M. Stilkerich, “A practical get-
away: Applications of escape analysis in embedded real-time systems,”
in Proc. of the 14th ACM SIGPLAN/SIGBED Conf. on Languages,
Compilers and Tools for Embedded Systems, 2015, pp. 1–11.

[13] C. Lang and I. Stilkerich, “Design and implementation of an escape
analysis in the context of safety-critical embedded systems,” ACM Trans.
on Embedded Computing Systems, vol. 19, no. 1, 2020.

[14] Aurix Tc3xx User Manual Part 1, Infineon, 2020, v1.6.0.
[Online]. Available: https://www.infineon.com/dgdl/Infineon-
AURIX_TC3xx_Part1-UserManual-v01_00-EN.pdf?fileId=
5546d462712ef9b701717d3605221d96

[15] Lauterbach power debug interface usb3. [Online]. Available: https:
//www.lauterbach.com/powerdebugusb3.html

[16] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A Benchmark Collection to Support Worst-Case Ex-
ecution Time Research,” in Proc. of the 16th Intl. Work. on Worst-
Case Execution Time Analysis, ser. OpenAccess Series in Informatics
(OASIcs), M. Schoeberl, Ed., vol. 55. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1–2:10.

[17] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
10th ed. John Wiley & Sons, 2012.

[18] P. Denning, “Working sets past and present,” IEEE Trans. on Software
Engineering, vol. SE-6, no. 1, pp. 64–84, 1980.

[19] P. Bryant, “Predicting working set sizes,” IBM Journal of Research and
Development, vol. 19, no. 3, pp. 221–229, 1975.

[20] J. A. Brown, L. Porter, and D. M. Tullsen, “Fast thread migration
via cache working set prediction,” in IEEE 17th Intl. Symp. on High
Performance Computer Architecture, 2011, pp. 193–204.

[21] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSˆRT : A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers,” in Proc. of the 27th IEEE Intl. Real-
Time Systems Symp., Dec. 2006, pp. 111–126.

[22] L. Ju, S. Chakraborty, and A. Roychoudhury, “Accounting for cache-
related preemption delay in dynamic priority schedulability analysis,”
in 2007 Design, Automation Test in Europe Conf. Exhibition, 2007, pp.
1–6.

[23] R. Mancuso, H. Yun, and I. Puaut, “Impact of DM-LRU on WCET:
a Static Analysis Approach,” in 31th Euromicro Conf. on Real-Time
Systems, ser. Leibniz Intl. Proc. in Informatics (LIPIcs), S. Quinton,
Ed., vol. 107. Stuttgart, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019, conference, pp. 17:1–17:25.

48

X-RIPE: A Modern, Cross-Platform Runtime
Intrusion Prevention Evaluator

Gabriele Serra
Scuola Superiore Sant’Anna

Pisa, Italy
gabriele.serra@santannapisa.it

Sandro Di Leonardi
Scuola Superiore Sant’Anna

Pisa, Italy
sandro.dileonardi@santannapisa.it

Alessandro Biondi
Scuola Superiore Sant’Anna

Pisa, Italy
alessandro.biondi@santannapisa.it

Abstract—The complexity of modern software systems, the
integration of several software components, and the increasing
exposure to public networks are making systems more and more
susceptible to cyber-attacks. Operating systems and drivers are
typically written in C or C++, which are known to be memory-
unsafe languages. As a matter of fact, buffer overflows are still
a plague in modern software. Despite the consistent amount of
research carried out to counteract cyber-attacks, it is still not
straightforward to evaluate the worthiness of a specific counter-
measure or to identify the appropriate configuration for existing
protection tools. In this paper, we present X-RIPE, a modern
and cross-platform version of the Wilander and Kamkar’s RIPE
testbed. The objective of X-RIPE is to evaluate how a given
countermeasure behaves against buffer overflow threats. We
tested X-RIPE against modern memory-corruption protection
techniques supported by GCC and Clang/LLVM compilers such
as Stack Protector, ASan, and ARM’s Pointer Authentication.

Index Terms—security, evaluator, stack-overflow, ripe

I. INTRODUCTION

Software security is a primary requirement for modern
systems. Operating systems, especially those developed for
embedded systems, are typically written in C or C++. Un-
doubtedly, these languages offer flexibility and high perfor-
mance, and, in many cases, they are often the only language
supported by the toolchain provided by hardware manufactures
for the target platform. However, C and C++ are known to be
memory-unsafe languages. Application and operating systems
written using memory-unsafe languages could be the target of
memory error exploitations [1]. Historically, the adoption of
memory protection support mechanisms (MPU) and memory
virtualization support mechanisms (MMU) has allowed operat-
ing systems to counter several attacks, especially those target-
ing code injection through memory corruption. Nonetheless,
buffer overflows are still present in modern software. Even
considering classic buffer overflows only, this class of memory
corruption has kept its position on the podium of the Common
Weakness Enumeration (CWE) SANS top 25 most dangerous
software errors for years. In 2022, Improper Restriction of
Operations within the Bounds of a Memory Buffer laid again
at the first place of the CWE SANS ranking [2]. The latest em-
inent example dates back to January 2022 and was discovered
by Qualys Security Advisory [3]. Briefly, they found a buffer-
overflow in the C arguments support used by Polkit (formerly
PolicyKit) that leads to a local privilege escalation from any

user to root. Polkit is a component for controlling system-
wide privileges in Unix-like operating systems and is installed
by default on all major Linux distributions. Interestingly,
this recently-discovered vulnerability is technically a memory
corruption exploitable since 2009 and has remained latent
until 2022. The preceding example demonstrates that buffer
overflows and memory-corruption vulnerabilities are still alive
and that the induced problem is far from resolved. As a matter
of fact, academic and industrial security researchers are still
focused on creating countermeasures that can eventually be
implemented at the production level. While most of today’s
defense methods can be seamlessly evaluated from the point of
view of run-time overhead, there is no standard benchmark that
allows assessing the robustness of a countermeasure. Hence,
researchers often resort to qualitative security analysis for a
specific technique. In 2003, Wilander and Kamkar [4] devel-
oped an elementary tool used to perform a comparative evalua-
tion on run-time buffer overflows targeting 20 different attack
combinations. In 2011, Nikiforakis, together with Wilander,
leveraged that original idea to develop Runtime Intrusion
Prevention Evaluator (RIPE), a testbed suite comprising more
than 800 buffer overflow combinations. The embryonic tool
from 2003 and the subsequent RIPE were used to demonstrate
the effectiveness of several tools and techniques, including [5]
[6] [7] [8] [9]. RIPE was released under the MIT license in
an attempt to standardize the comparison between different
countermeasures; however, it targets only the i386 proces-
sor architecture. Practically, there is no benchmark targeting
different architectures that allows evaluating countermeasures
with the same yardstick and targeting different architectures
or environments. In this paper we present X-RIPE, a modern
cross-platform Runtime Intrusion Prevention Evaluator. X-
RIPE is a revamp of the early RIPE project, and it is designed
to target multiple processor architectures. X-RIPE already
supports i386, x86-64 and aarch64. The main objective
of X-RIPE is to provide a quantitative evaluation of the protec-
tion coverage offered by a specific mechanism against buffer
overflows. The tool is released under the GPL license, with the
hope to serve as the foundations for a future comprehensive
standard penetration test against memory corruption. To test X-
RIPE, we applied it against a few modern memory-corruption
protection techniques supported by GCC and Clang/LLVM
compilers, such as Stack Protector, Address Sanitizer (ASan),

49

and ARM’s Pointer Authentication.
Contribution. In summary, this work makes the following
contributions:

• It presents X-RIPE, a cross-platform testbed to quanti-
tatively and systematically evaluate the robustness of a
buffer-overflow prevention technique.

• It reports on an experimental evaluation that was
conducted by applying X-RIPE against anti-memory-
corruption techniques supported by the widely-used com-
pilers GCC and Clang/LLVM, specifically: Stack Protec-
tor, ASan, and ARM’s Pointer Authentication.

Paper structure. The remainder of this paper is organized
as follows. Section II reviews the related work. Section III
presents an overview of the X-RIPE’s architecture. Section IV
lists the countermeasures we tested against X-RIPE and their
working principles. Section V states results of our experimen-
tal evaluation and Section VI concludes the paper.

II. RELATED WORK

Software systems are growing in size and complexity,
hence the number of bugs. Memory corruption vulnerabilities
are among the most frequent potential problems. Dangling
pointers, heap meta-data overwrites, uninitialized reads, and
invalid or double frees are all examples of these problems.
As a result, researchers designed several kinds of protection
techniques. Consequently, together with databases of vulnera-
bilities, testbeds were also developed over the years to measure
the effectiveness of those defense techniques.

Among others, SARD (Software Assurance Reference
Dataset) [10] is a growing database maintained by NIST (The
National Institute of Standards and Technology) of approxi-
mately 170 000 programs with a set of known security flaws.
These test cases are designs, source code, and binaries from
all the phases of the software life cycle: they are mainly
written in C, C++, Java, PHP, and C# and cover over 150
vulnerabilities. The dataset includes production, synthetic and
academic test cases. The dataset intends to encompass various
possible vulnerabilities, languages, platforms, and compilers.
Users can view test cases and test suites via the SARD online
interface or search for test cases by vulnerability kind, name,
size, description words, and other parameters. Many cases
include comparable good cases to test for false positives, in
which flaws are rectified. In SARD, each test case is described
by employing metadata, which encompasses most information
regarding the specific flaw or defect. Weaknesses are classified
using the Common Weakness Enumeration (CWE) ID and
name. The SARD database is archival, which means that once
a case is added, it cannot be modified or removed. However,
if there are issues with a case, it may be tagged as deprecated
and a replacement added. Because most defects are stored in
metadata, the findings may be reviewed semi-automatically,
displaying the kind of bugs that a tool finds and the false
positive rate.

Besides test databases, other research teams tried to stan-
dardize test benchmarks for emerging platforms. The lead-
ing example is RIPE-ARM, an implementation of the RIPE

benchmark targeting ARM v7 (32 bit) platforms [11] devel-
oped in 2020. In their work, Zhou and Chen performed an
experiment using their RIPE-ARM against a Raspberry Pi
emulated employing QEMU. Unfortunately, their RIPE-ARM
was not publicly released; hence, it has been impossible to take
advantage of their implementation. In 2022, Calatayud and
Meany worked on a comparative analysis of buffer overflow
vulnerabilities in high-end IoT devices. Their analysis still
targets 32-bit operating systems [12]. The authors modified
the original RIPE by replacing the shellcode for code injection
attacks and made that shellcode available to the community.
Their work, however, is not a full-fledged benchmark platform,
but it is tightly coupled with their analysis; thus, it cannot
be generalized. Furthermore, it still targets the ARM v7
architecture. Finally, it is worth mentioning RetTag [13], a
hardware-assisted hijacking defense method addressing RISC-
V platforms. RetTag leverages the ARM’s Pointer Authenti-
cation design to enforce pointers’ integrity. To perform the
security analysis of their technique, they wrote a port of RIPE
for RISC-V based platforms. Still, the code is not publicly
available.

On the opposite side, several works tried to standardize
evaluation methods for defenses from a qualitative point of
view. A notable example is [14]. In the mentioned work,
the author tried to formalize the general requirements that a
protection technique shall implement, such as interoperability
with legacy software, scalability, and low-performance over-
head. Then, the set of derived requirements was applied to
widespread protection techniques. Analyzing 24 various buffer
overflow protection strategies using the proposed qualitative
methodology, the work outputs a report that summarizes the
pros and cons of each of these mechanisms.

III. X-RIPE

X-RIPE is structured as two-layer software, the frontend
and the backend. Unlike its predecessor, the backend is inde-
pendent of the underlying architecture. The internal structure
is organized using the facade design pattern, thus unifying the
architecture-dependent components under a standard API. The
backend logic lies on top of a hardware abstraction layer in
substance. The X-RIPE backend has an attack generator that
builds the attack payload and performs the attack on itself.
The backend, indeed, contains vulnerable buffers, gadgets and
all the logic to calculate offsets. The X-RIPE benchmark is
released under the GPL license and available on Github1. The
original repository was forked to keep the history of the initial
benchmark and incorporate the necessary code to realize the
hardware abstraction layer.

A. Tool frontend

The tool frontend is written in Python and consists of a
script that iterates all different kinds of attacks. In principle,
the frontend allows running all the possible attack forms. The
script must be invoked by specifying the available overflow

1https://github.com/gabriserra/RIPE

50

technique among direct, indirect or both. Furthermore, the
number of times each attack should be launched and which
compiler to target (GCC or Clang) can be specified. The last
parameter is optional and is used to control the output format.

ripe_tester.py
<direct|indirect|both>
<num of repetitions>
<gcc|clang|both>
[verbose-options]

For each test performed, the result log is marked with
one possible outcome: OK when the attack was executed
successfully, FAILED when the attack encounters an error
before running to completion, PARTIAL when attacks did
not succeed in each round, or NOT POSSIBLE, when the
attack is not practically possible (e.g., a direct attack on a stack
buffer targeting a global pointer). The frontend is instructed
to explore all the attack space available in the backend.

B. Tool backend

The tool backend is written in C and consists of an attack
generator. Briefly, it can prepare a malicious payload and
perform the attack on itself. The tool is self-contained; namely,
it contains both the code to prepare malicious payload and
the required vulnerable buffers and gadgets. The attack space
has five different dimensions; hence all the possible kinds of
attacks generated by the tool are vectors of five components.
The exploration of all the attack space combined with the
two available techniques (direct and indirect) gives over 2000
various possible attacks.

The dimensions of the attack space are I) the overflow
technique, II) the attack code, III) the target code pointer, IV)
the memory location, and V) the vulnerable function.

C. Overflow location

The attack location describes the memory section in which
the target buffer is located. RIPE supports attacks on the stack,
heap, data, and BSS sections.

D. Target function

There are ten vulnerable functions available as attack vec-
tors: str(n)cpy, str(n)cat, s(n)printf, memcpy,
homebrew, sscanf, fscanf.

The C library string functions allow copying part of a
string from a source buffer to a destination buffer without any
control on the destination buffer limit. X-RIPE uses them to
overflow the destination buffer. The n-version of the C string
functions, such as strncpy, instead requires to specify of
the destination buffer’s size. However, it is up to the developer
to provide the destination buffer size. Most of the time, that
size is calculated dynamically. Therefore, an error in the size
computation can frustrate the limit check offered by those
functions. The same is true for functions that require the string
format. Indeed, an error in providing the format can let the
overflow happens. Concluding, in the list of functions, there is

also homebrew, a loop-based equivalent version of memcpy,
implemented originally in the previous version of RIPE.

E. Attack code

The attack code represents the kind of shellcode used when
the attack occurs. Differently from the original RIPE, our
version offers only a shellcode that spawns a shell through
execv syscall. However, the shellcode is provided in three
different flavors.

• Plain shellcode: A shellcode that spawns a shell using
execv syscall

• Shellcode with NOP sled: The plain shellcode is padded
using NOP instructions

• Shellcode with polymorphic NOP sled: The basic shell-
code is padded using instructions that are equivalent
to NOP instructions. The polymorphic sled has been
generated using the Metasploit framework [15].

Furthermore, X-RIPE offers an additional way of spawning
the system shell that does not depend on the provided shell-
code avoiding injecting code. The supplementary attack codes
started to be carried out after countermeasures such as Data
Execution Prevention (DEP) became popular.

• Return-to-libc: Instead of injecting a shellcode, X-RIPE
tries to jump to existing libc function, such as system

• Return Oriented Programming: X-RIPE uses some in-
structions already available in the program (gadgets) and
combine them to spawn a shell

These last two attack vectors are advanced and more chal-
lenging to implement. Therefore, X-RIPE can determine the
addresses of libc functions and, additionally, it uses gadgets
placed on purpose in the program code.

F. Target code pointer

The target code pointer represents the address exploited
by the specific attack. It transfers the control flow to the
appropriate offset to trigger the shellcode.

• Previous frame pointer: The address of the frame pointer
pushed into the stack, which is used to reference function
arguments and local variables.

• Function return address: The return address pointer
pushed into the stack is used to jump back to the caller
function when the callee terminates

• Longjump buffer: The buffer used to store the current
instruction pointer when calling setjmp.

• Function pointer: A variable that contains the address of
a function callable dynamically.

• Structure with function pointer: A function pointer part
of a structure laying adjacent to a buffer.

Clearly, ’Previous frame pointer’ and ’Function return ad-
dress’ are stack specific, and this means that they can be
used as a target code pointer only when the attack location
is the stack. All other targets instead can be allocated in each
location.

51

IV. TESTED DEFENSES

The buffer overflow issue became known and was publicly
disclosed in early 1972 by the Computer Security Technology
Planning Study [16]. The ability to gain the control of a
process by overwriting data, however, received worldwide
attention thanks to the Morris worm in 1988 [17]. Since
then, defending from buffer overflows attacks has been part of
security research and several techniques have been developed.
For the reasons stated in Section I, C and C++ are notably
the most used languages used to develop operating systems
and drivers. One aspect that makes those languages flexible
is the lack of a (rich) runtime environment. Accordingly,
standard versions of C and C++ do not have any memory-
bound checking. This design choice is the basis of the
portability of the language but, on the other hand, made
buffer overflow attacks possible. Consequently, most defense
techniques developed over the years can be categorized under
two groups, (i) mechanisms that introduce bound checking and
(ii) mechanisms that prevent the consequences the exploitation.
Among others, production-ready systems tend to mostly use
only those techniques that, during the years, were seamlessly
integrated with popular OSes such as Linux and compilers
such as GCC or Clang/LLVM. Therefore, we chose to evaluate
X-RIPE against the common techniques supported by GCC
and Clang/LLVM, namely: Stack Guard, ASan, and ARM’s
Pointer Authentication. In this section, we are providing a brief
analysis of each technique.

A. Stack Protector

At the beginning of the 2000s, Etoh et al. from IBM [18]
suggested a modification to the GCC compiler to protect
against stack overflows. The main idea was to place a
randomly-generated integer, named canary, between any
stack-allocated buffers and the return address saved on the
stack. The name ‘stack canaries’ is due to their analogy to coal
mine canaries, given that they are used to detect whether it is
safe to carry on the program execution. GCC Stack Protector
inserts stack canaries on the stack of certain functions and is
still used today due to its simplicity and the low overhead
introduced at runtime. As illustrated in Figure 1, the canary is
placed right after local variables in the current implementation,
protecting both the old base pointer and the return addresses
from direct overflows. Furthermore, the mechanism arranges
the local stack variables to ensure that char buffers are always
allocated next to the canary. The latter assumption prevents a
direct overflow to corrupt any other local variable.

B. AddressSanitizer (ASan)

The AddressSanitizer (also known as ASan) is an open-
source memory error detector originally introduced by Sere-
bryany et al. from Google [19]. ASan works as a compiler
instrumentation module and is currently implemented in Clang
(starting from version 3.1 [20]) and GCC (starting from
version 4.8 [21]). ASan targets the most common architectures,
including x86 and ARM (both 32- and 64-bit versions of
architectures). The tool consists of a compiler pass and the

Saved PC

Saved FP

Canary

Local
variables

….
….

Higher
addresses

Lower
addresses

Stack grows
downwards

Fig. 1. Conventional layout of a stack frame when stack protector is enabled.

related runtime library. It was designed to find and catch
memory errors such as use after free, heap/stack/bss overflows,
use after return or scope, etc.

The basic idea of ASan is to divide the virtual address space
into two disjoint classes, the main application memory Mem
and the shadow memory Shadow. The regular application
code uses the main application memory. On the other hand,
the shadow memory consists of a memory area hidden from
the application and used to record information about the main
memory. The shadow memory contains the shadow values,
namely a set of shadow bytes. Shadow bytes, indeed, are
mapped to one or more bytes in the main memory. ASan
maps 8 bytes of the application memory into 1 byte of the
shadow memory. Therefore, the two classes of memory have
a correspondence that is built in such a way that computing
the shadow memory mapping mem_to_shadow is fast. ASan
also introduced the idea of poisoned bytes. Poisoned bytes (or
redzones) are memory areas that cannot be referenced. ASan
runtime library can detect accesses to redzones; hence the
wider the redzone, the larger the overflows or underflows that
will be detected. Poisoning a byte of the memory will result
in a particular value written into the corresponding shadow
memory.

During the compiler pass, functions such as malloc and
free are replaced with a customized implementation that
allocates extra poisoned bytes around the allocated memory
region. Furthermore, each memory access that involves a
reference to the pointer is transformed. The memory around
the area accessed is poisoned too. To make a simple example,
suppose that the program accesses a pointer as follows:

*address = ...; // or: ... = *address;

If the same program is instrumented by means of ASan, the
compiled code would result in:

52

shadow_addr = mem_to_shadow(address);

if (shadow_is_poisoned(shadow_addr))
{

reportError(address);
}

*address = ...; // or: ... = *address;

That instrumentation causes a runtime error report when the
accessed address is not legal.

C. ARM’s Pointer Authentication

The relevance of security in modern operating systems
pushed chip designers to introduce several security-related
hardware facilities in their processors. A relevant example is
the feature included by ARM in version 8.3 of their ARMv8
processor architecture named Pointer Authentication (PA).
Another relevant example is the ARM’s Branch Target Indi-
cator (BTI) feature, introduced since version 8.4 of ARMv8.
ARM is not the only manufacturer that has invested in this
direction. In recent years, Intel has proposed a similar ar-
chitectural extension called Control-flow Enforcement (CET).
The facilities introduced by ARM and Intel can be used to
realize robust control-flow integrity enforcement. Almost all
CFI techniques watch over a program execution to ensure that
the target of an indirect branch is the intended instruction.
Among others, they verify that the control comes back to the
calling function at each function. Since control-flow hijacking
is essential in many exploits (e.g., including those based
on buffer overflows), independently of the exploited vulner-
ability [22], CFI techniques proved to be effective against
several widespread attacks and are considered among the most
advanced security countermeasures. In a nutshell, ARM’s PA
works by cryptographically authenticating the content of a
register before using it. Indeed, it is conceived as a protection
against modification of code pointers such as return addresses
stored in memory. For instance, PA represents a valuable
protection mechanism to ensure that functions only return
to legal locations as expected by the program according to
the CFG, hence preventing stack overflow attacks. The BTI
mechanism can secure indirect branches, enforcing that the
destination location of the branch contains only instructions
of an acceptable list. Combining both instruments allows for
a complete forward-backwards control-flow integrity, reducing
the possibility of an attacker hijacking the execution flow to
execute arbitrary code.

V. EVALUATION RESULTS

This section presents an evaluation campaign performed
on modern compiler-supported techniques. The evaluation
campaign was carried out with mainly two purposes. The first
objective was to understand if our X-RIPE implementation
could provide some working attack on a modern OS. Then,

the second objective was to understand how the latest pro-
tection techniques available on the market, such as ARM’s
Pointer Authentication, behave compared to well-established
methods. Production-ready systems commonly use protection
schemes integrated with popular OSes and compilers such
as GCC. Therefore, to test X-RIPE, we applied it against
memory-corruption protection techniques supported by GCC
and Clang/LLVM compilers, namely: Stack Protector, ASan,
and ARM’s Pointer Authentication presented in the Section
IV. Our evaluation was made using Ubuntu 20.04, the long-
term support Ubuntu distribution released in April 2020. The
distribution was equipped with version 5.13 of the vanilla
kernel, compiled with the support for Pointer Authentication,
hence enabling the CONFIG_ARM64_PTR_AUTH flag in the
configuration. ARM’s Pointer Authentication support is avail-
able only for processors adopting the ARMv8.3-A architecture
version (and above). At the time of writing, there are no
COTS development boards available on the market today.
Therefore, our evaluation campaign was performed using
QEMU v6, enabling the TCG (full-software) emulation of the
FEAT_PAuth architectural feature. The evaluation campaign
does not consider time performance; hence, using a virtual ma-
chine does not influence our results. To evaluate the protection
degree of each specific technique, X-RIPE is compiled, by de-
fault, without stack protector (-fno-stack-protector)
and with executable stack (-z execstack). In the following
subsections, the results obtained with each technique are
analyzed. The results are summarized in Table 1.

A. Stack protector: results

The stack protector mechanism, both in the version offered
by GCC and Clang, is focused on protecting the stack. Stack
canaries provide detection of a stack buffer overflow before
dangerous code is executed. Results show that both the imple-
mentation provided by GCC and Clang/LLVM successfully
prevent each kind of stack overflow. Thanks to local variable
re-ordering, stack protector works in preventing both direct
and indirect attacks. On the order hand, the majority of attacks
targeting BSS, heap or data segment are not counteracted.

B. ASan: results

ASan is a runtime address sanitizer designed to detect mem-
ory errors. Being composed of both compiler instrumentation
and a runtime library, ASan is a powerful technique. ASan was
intended to prevent out-of-bounds access to the heap, stack,
and global objects. Our results show that ASan can detect
the most significant part of the overflows, direct and indirect,
targeting BSS, data segment, stack and heap. However, some
overflows are still not detected, and they are those regarding
generic function pointers laying in structures. When a buffer in
a structure adjacent to a generic function pointer is overflown,
the pointer can be corrupted, replacing its content with,
for instance, an address of a different function. Regarding
ASan, adjacent buffers in structures are not protected from
overflow to avoid backward compatibility issues. It is common,
especially in the oldest version of C, to use a structure as an

53

TABLE I
OVERALL EFFECTIVENESS OF PROTECTION TECHNIQUES FOR BUFFER OVERFLOWS

Setup Overall effectivness Successful attacks Failed attacks
Ubuntu 20.04 (GCC, no protection) 62% 1084 1770
Ubuntu 20.04 (Clang, no protection) 61% 1109 1745
Stack protector (GCC) 86% 409 2445
Stack protector (Clang) 84% 470 2384
ASan (GCC) 98% 49 2805
ASan (Clang) 98% 49 2805
Pointer Authentication (GCC) 87% 372 2482
Pointer Authentication (Clang) 83% 477 2377
All protections (GCC) 99% 28 2854
All protections (Clang) 99% 28 2854

array of bytes, independently of declared types of structure
members. Furthermore, using ASan to protect a program
does not come for free; the typical slowdown introduced by
AddressSanitizer is 2x [23].

C. ARM’s Pointer Authentication: results

ARM’s Pointer Authentication is an architectural feature
that comprises a set of instructions and facilities offered by the
processor to sign and authenticate pointers. That architectural
feature, referred to as FEAT_PAuth in Linux, was introduced
in 2017 with ARM v8.3-A architecture. ARM’s Pointer Au-
thentication support can be used to sign and authenticate any
pointer. However, given the relatively recent introduction, the
support offered by GCC and Clang/LLVM it is still unripe.
So far, Pointer Authentication is used only to authenticate the
return address before taking the return branch to the caller.
Our results show that the current support is comparable to
stack protector in terms of effectiveness; thus, the community’s
effort must focus on improving the current support available
for this outstanding instrument.

D. All protections

When using all protections together, the number of attacks
performed with success is nearly null. However, it is still
different from zero. In addition, the overhead introduced by
that techniques is non-negligible, and, often, not all protection
schemes are put in place together. That means all the current
protection techniques are still not perfect, and a buffer over-
flow can still attack a modern OS.

VI. CONCLUSIONS & FUTURE DIRECTIONS

Buffer overflows represent a security threat for applications
and operating systems, especially for the embedded systems,
where the usage of C and C++ is a common choice. Since
the ’90s, many countermeasures have been designed and im-
plemented. However, recent exploited vulnerabilities suggest
that deliberate memory corruption is still an open problem. In
this article, we presented X-RIPE, a cross-platform Runtime
Intrusion Prevention Evaluator designed to evaluate, in a
quantitative manner, protection coverage offered by a specific
mechanism against buffer overflows. We analyzed modern
compiler-supported protections against X-RIPE to compare
their coverage. X-RIPE attempts to be the basis for a standard

way to evaluate a defense technique’s robustness; however,
it is currently more of a proof-of-concept. In the future, we
are willing to extend this work by providing even more, attack
vectors to execute several reasonable real-world attacks, which
will help quantify the coverage of a specific technique.

REFERENCES

[1] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos, “Memory
Errors: The Past, the Present, and the Future,” in Research in Attacks,
Intrusions, and Defenses, D. Balzarotti, S. J. Stolfo, and M. Cova, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 86–106.

[2] S. Institute, “Cwe/sans top 25 most dangerous software errors,” 2022.
[Online]. Available: https://www.sans.org/top25-software-errors/

[3] Q. S. Advisory, “pwnkit: Local Privilege Escalation in polkit’s
pkexec (CVE-2021-4034),” 2022. [Online]. Available: https://seclists.
org/oss-sec/2022/q1/80

[4] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime intrusion prevention evaluator,” in In Proceedings of
the 27th Annual Computer Security Applications Conference, ACSAC.
ACM, 2011.

[5] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng,
“Adaptive call-site sensitive control flow integrity,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS P), 2019.

[6] R. K. Shrivastava, K. J. Concessao, and C. Hota, “Code tamper-proofing
using dynamic canaries,” in 2019 25th Asia-Pacific Conference on
Communications (APCC), 2019, pp. 238–243.

[7] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, ser. OSDI ’06. USA: USENIX
Association, 2006, p. 147–160.

[8] O. Ruwase and M. Lam, “A practical dynamic buffer overflow detector,”
in In Proceedings of The 11th Annual Network and Distributed System
Security Symposium, 2004.

[9] N. Tuck, B. Calder, and G. Varghese, “Hardware and binary modification
support for code pointer protection from buffer overflow,” in 37th
International Symposium on Microarchitecture (MICRO-37’04), 2004,
pp. 209–220.

[10] P. E. Black et al., “Sard: A software assurance reference dataset,” in
Anonymous Cybersecurity Innovation Forum.(), 2017.

[11] S. Zhou and J. Chen, “Experimental evaluation of the defense capa-
bility of arm-based systems against buffer overflow attacks in wireless
networks,” in 2020 IEEE 10th International Conference on Electronics
Information and Emergency Communication (ICEIEC), 2020, pp. 375–
378.

[12] B. M. Calatayud and L. Meany, “A comparative analysis of buffer over-
flow vulnerabilities in high-end iot devices,” in 2022 IEEE 12th Annual
Computing and Communication Workshop and Conference (CCWC),
2022, pp. 0694–0701.

[13] Y. Wang, J. Wu, T. Yue, Z. Ning, and F. Zhang, “Rettag: Hardware-
assisted return address integrity on risc-v,” in Proceedings of the 15th
European Workshop on Systems Security, ser. EuroSec ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 50–56.
[Online]. Available: https://doi.org/10.1145/3517208.3523758

54

[14] N. R. Kisore, “A qualitative framework for evaluating buffer
overflow protection mechanisms,” Int. J. Inf. Comput. Secur.,
vol. 8, no. 3, p. 272–307, jan 2016. [Online]. Available: https:
//doi.org/10.1504/IJICS.2016.079187

[15] Rapid7, “Metasploit: Penetration Testing Software.” [Online]. Available:
https://www.metasploit.com/

[16] J. P. Anderson, “Computer security technology planning study,” U.S.
Air Force Electronic Systems Division Tech., Tech. Rep., 1972.

[17] E. H. Spafford, “The internet worm program: An analysis,” SIGCOMM
Comput. Commun. Rev., vol. 19, no. 1, p. 17–57, jan 1989. [Online].
Available: https://doi.org/10.1145/66093.66095

[18] H. Etoh, “GCC extension for protecting applications from stack-
smashing attacks,” IBM Research Group, Tech. Rep., 01 2004.

[19] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in 2012
USENIX Annual Technical Conference (USENIX ATC 12). Boston,
MA: USENIX Association, Jun. 2012, pp. 309–318. [Online].
Available: https://www.usenix.org/conference/atc12/technical-sessions/
presentation/serebryany

[20] L. Team, “LLVM 3.1 Release Notes,” 2012. [Online]. Available:
https://releases.llvm.org/3.1/docs/ReleaseNotes.html

[21] G. Team, “GCC 4.8 Release Changes,” 2014. [Online]. Available:
https://gcc.gnu.org/gcc-4.8/changes.html

[22] J. Pincus and B. Baker, “Beyond stack smashing: recent advances in
exploiting buffer overruns,” IEEE Security Privacy, vol. 2, no. 4, pp.
20–27, 2004.

[23] L. Team, “Clang 15.0.0 documentation: AddressSanitizer.” [Online].
Available: https://clang.llvm.org/docs/AddressSanitizer.html

55

Work in Progress: Real-Time GRB Localization for
the Advanced Particle-astrophysics Telescope

Marion Sudvarg∗, Jeremy Buhler†, Roger Chamberlain‡, Chris Gill§
Department of Computer Science & Engineering

Washington University in St. Louis
St. Louis, Missouri

∗msudvarg@wustl.edu, †jbuhler@wustl.edu, ‡roger@wustl.edu, §cdgill@wustl.edu

James Buckley
Department of Physics

Washington University in St. Louis
St. Louis, Missouri
buckley@wustl.edu

Abstract—The Advanced Particle-astrophysics Telescope is a
planned mission to perform real-time gamma-ray burst (GRB)
detection and localization using SWaP-constrained embedded
hardware aboard an orbiting platform. Due to the dynamic
and uncertain nature of GRBs, the parallel localization task
is dynamic in both workload and deadline. This implies the
need for an adaptable framework that adjusts CPU utilization
to accommodate overload. To this end, we propose an elastic
framework over the workloads of constituent subtasks that allows
both continuous and discrete state spaces. Instead of compressing
according to constant weights, it instead uses a nonlinear cost
function based on the expected angular error in the localized
source direction of observed events.

I. INTRODUCTION

To study the nature of dark matter and to understand the
physics of neutron-star mergers, orbiting gamma-ray tele-
scopes observe gamma-ray bursts (GRBs), collecting and
transmitting data for later ground-based analysis. Newly
emerging areas of astrophysics seek to perform follow-up ob-
servations, enabling the study of GRB emissions across several
modalities (e.g., X-rays, visible light, radio and microwaves,
cosmic rays, and gravitational waves). However, GRBs are
transient events; hence, long delays from initial detection of
a GRB’s light to ground-based computation of its location in
the sky (which is nontrivial to infer from the incoming gamma
rays but is necessary to physically aim follow-up instruments)
cause lost opportunities for observation.

The Advanced Particle-astrophysics Telescope (APT) [1]
(Fig. 1) is a planned space-based observatory that will be de-
ployed at the Sun-Earth Lagrange L2 orbit, affording it a nearly
full-sky field of view. It will fly with onboard computational
hardware to detect and localize GRBs in real time [2]; this will
enable prompt communication and follow-up observations in
multiple spectral bands. We characterize APT’s localization
as a subtask of multiple other tasks: APT can be considered
as just one component of a distributed system with multiple
cyberphysical follow-up devices that couple computation (e.g.,
a telemetry system to receive the location of a GRB detected
by APT) and actuation (the repositioning of a telescope). Each
such device is associated with a deadline, after which it can no
longer collect useful data. Given the worst-case latency of the
associated communication, device computation, and actuation,

The research presented in this paper was supported in part by NSF grants
CSR-1814739 and CNS-17653503 and NASA grant 80NSSC21K1741.

Fig. 1: A Rendering of the APT Instrument

a subdeadline associated with each follow-up device can be
assigned to the task of localizing a GRB on APT.

Modeling the GRB detection computation is complicated,
since there is no canonical GRB emission spectrum; each
GRB is uniquely characterized by how its energy spectrum and
brightness evolves over time, which defines the instant after
which observing a given band is no longer useful, informing
a set of deadlines which are not known a priori. The rate at
which data enters APT’s onboard computer, as a function of
the rate and energies at which photons enter the telescope, is
not constant. Further, different physical processes in the de-
tector must be reconstructed by different algorithms [2], [3] in
proportions also defined by the spectrum’s parameters. Thus,
our computational platform must adapt to dynamic deadlines
and changing workloads to guarantee real-time localization on
orbiting hardware with tight SWaP constraints.

To address these problems, we are developing an elastic
framework for CPU utilization that aims to estimate workload
and deadline constraints based on an initial profile (generated
in real time) of a detected GRB. It will then adapt to ex-
pected or detected overload first by dedicating CPU resources
appropriately to the various interdependent subtasks of pair
reconstruction, Compton reconstruction, and localization. If
necessary, it will degrade reconstruction accuracy by sampling
or dropping a subset of data and reducing refinement iterations
(involving elasticity over both continuous and discrete state
spaces). Unlike the original elastic scheduling framework,
which compresses task utilizations according to proportional
weights [4], [5], our framework will need to consider nonlinear
weighting over the cost function defined by angular error in
source localization. Our framework will target parallel tasks
executing on candidate hardware platforms that include both
heterogeneous and identical-multiprocessor architectures and
will consider compression over each constituent subtask.

57

II. BACKGROUND AND RELATED WORK

The Fermi [6], [7] Gamma-Ray Space Telescope is an
existing orbiting observatory with a large field of view (FoV).
However, it occupies a low Earth orbit (LEO) and there-
fore lacks a full-sky FoV. Fermi does not perform onboard
GRB localization; while it has produced extensive catalogs of
GRBs [8], [9], this limits its ability to contribute to multi-
messenger observations of transient astrophysical phenomena.
Future planned missions such as Glowbug [10] suffer from
similar limitations. APT, however, will be deployed at the
Sun-Earth Lagrange L2 orbit, where the obscuration of the
sky by the earth is minimized and the benefit of the large
(nearly 4π-steradian) FoV can be exploited [1]. APT seeks
to support efforts in multi-wavelength and multi-messenger
astrophysics, allowing follow-up instruments to study detected
GRBs across a broad range of emission modalities [11]–
[13]. Many such instruments have narrow apertures (often
sub-1◦) and so must point at the GRB source; APT will
perform onboard detection and localization of GRBs in real-
time, enabling prompt communication of the source direction.

We have demonstrated that reconstruction of photon tra-
jectories from multiple Compton scattering and subsequent
localization of a representative “bright” GRB (i.e., one pro-
ducing a high volume of data) can be performed in < 200ms
on a Raspberry Pi Model 3 B+ (which has a 4-core Cortex-
A53) [2]. We built upon the approach in [14] — which
reconstructs the path of individual gamma-ray photons by
considering all possible orderings of interaction coordinates
within a multi-layer detector (Fig. 2 Top) — by instead using
a tree search with pruning to provide a deterministic WCET
for each photon, then using iterative multilateration over the
set of reconstructed photons to estimate a source direction. We
extended analysis to heterogeneous platforms [15], with local-
ization implemented in CUDA, achieving estimated < 80ms
localization on an NVIDIA Jetson Xavier NX board. In the
same work, an FPGA-based approach to infer interaction
coordinates consistently completed in 68 cycles (0.23 µs) per
event on a Xilinx Alveo U250 accelerator card, which includes
an UltraScale+ architecture FPGA.

Our prior work is, however, limited. Evaluation was over
a single representative GRB spectrum and did not consider
the entire domain of energy spectra and brightness that we
desire to detect. All photons were in the Compton regime,
and therefore other detection modes (Fig. 2 Bottom) were
not considered. Reconstruction was performed over a set of
interaction centroids already in a static region of memory
when the computation started; realistically, reconstruction will
be performed concurrently with data streaming into memory.
Finally, the work aimed to minimize execution time but did
not consider the various deadlines imposed by the follow-up
instruments; therefore, the handling of overload conditions was
not considered.

Elastic scheduling [4], [5] provides a framework for dealing
with overload by linearly compressing the effective utilizations
of individual tasks over a continuous space according to

CsI

WLS
Fibers

WLS
Fibers

Tracker
Fibers

TR
Foam

6ROLG:RUNV�(GXFDWLRQDO�(GLWLRQ�
�)RU�,QVWUXFWLRQDO�8VH�2QO\�

�

e±

6ROLG:RUNV�(GXFDWLRQDO�(GLWLRQ�
�)RU�,QVWUXFWLRQDO�8VH�2QO\�

e±

6ROLG:RUNV�(GXFDWLRQDO�(GLWLRQ�
�)RU�,QVWUXFWLRQDO�8VH�2QO\�

�

�

e±

(a) Pair production. (b) Transition radiation. (c) Compton scattering.

Fig. 2: Top: APT in Falcon-9 faring. Bottom: Detection modes. [1]

weights assigned to each task. It has been reformulated as
a quadratic optimization problem [16], [17] and has been
extended to federated scheduling of parallel tasks [18], [19]
including those tasks constrained to discrete utilization val-
ues [20]. Unlike in prior work, our system will need to
compress subtasks individually, assigning weights to each
according to a nonlinear cost function, while keeping overhead
induced by the framework low such that state transitions do
not significantly contribute to system overload. In [21], we
demonstrated a quasilinear-time solution and a linear admis-
sion control algorithm for elastic scheduling on a uniprocessor,
and in [22], we demonstrated pseudopolynomial heuristics to
assign processors to integer-valued parallel tasks. Similarly
efficient methods will need to be developed for more complex
elastic scheduling of parallel tasks.

III. SYSTEM MODEL

Computation Pipeline: We represent the proposed system as
a pipeline consisting of several stages diagrammed in Fig. 3.
APT’s detector has layers of optical fiber arrays; each fiber
is read by a photodetector coupled with an analog-pipeline
waveform digitizer ASIC [23]. Each layer array is multiplexed
by a single FPGA (e.g., a rad-hard Microchip RT PolarFire),
which receives a trigger notification when a constituent ASIC
detects signal indicative of a GRB event. The FPGA receives,
demultiplexes, and time-integrates signal intensities, then per-
forms centroiding (data reduction to infer the coordinates and
energies associated with a photon’s interactions in the detector)
for each detected photon. The FPGA sends data to the CPU’s
main memory (e.g., over a time-sensitive network handling
transmissions from as many as 40 FPGAs).

58

Detector
ASIC
Array

FPGA
CPUGbE

Time
Integration Centroid

Process
Identification Reconstruct Estimate

Uncertainty
Each Photon

Source
Localization

FPGA

Fig. 3: APT Computation Pipeline

Photon Energy

Re
la

tiv
e

Co
un

t

Epeak

Time

E pe
ak

D

Emax

Emin

D’

Fig. 4: Left: A GRB spectrum. Right: D, D′ from Epeak(t), Emin, Emax

The CPU must combine the received data for each detected
photon, then identify the physical process (currently, Compton
scattering or pair production) that generated the observed
signals. It uses the corresponding algorithm to reconstruct the
photon and estimate the uncertainty of the associated result.
These are propagated to the source localization stage, which
combines data from multiple incident photons. Localization
must be completed in time to guarantee the end-to-end dead-
line requirements for pointing secondary instruments. For now,
we assume a sufficient memory buffer such that throughput for
processing data transmitted from the FPGA is not a concern;
consideration of memory constraints is deferred to future work.

End-to-End Deadline: We define a collection of follow-up
instruments I = {Ii}, each sensitive to a spectral range
[Emin

i , Emax
i]. At a given instant t, a GRB emits a spectrum

characterized, among other parameters, by its peak energy
Epeak(t); the spectrum evolves over time, and the function
is unique to each GRB. We define t = 0 as the time at which
photons emitted by the GRB first enter the detector, tmin

i

as the time where Epeak = Emax
i and similarly for tmax

i .
For now, we assume that Epeak is monotonically decreasing
in the region [Emin

i , Emax
i], as in Fig. 4; study of GRB

catalogs is ongoing to verify monotonicity and to identify other
properties of Epeak (e.g., concavity). Peak times imply a soft
deadline Di = tmax

i , after which the GRB begins to emit fewer
photons in the observable spectrum of Ii, and a firm deadline
D′

i = tmin
i , after which Ii cannot make useful observations.

Each instrument is associated with a latency δi that includes
delivery of the burst alert (speed-of-light from L2 orbit to
Earth is ≈ 5s, though some instruments may also be in an
L2 orbit or even on board APT itself) and the time to repoint
the instrument. We additionally assume a worst-case latency
δCPU between a gamma-ray photon’s arrival in the detector
and the associated data’s arrival in memory. This allows us
to define a subdeadline D for event reconstruction and source
localization on the CPU as min {Di − δi} − δCPU. We expect
D to be subsecond for fast GRBs, though it may be on the
order of several seconds for slow events.

Reconstruction
of

Sample

Derive
and

Compress Reconstruction Approximation

… …

Refinement

… … …

x iterations

Fig. 5: DAG representation of the parallel CPU execution task.

Overload: Individual photon processing (which includes pro-
cess identification, reconstruction, and propagation of un-
certainty) depends on its associated physical process; we
define WCETs Cc for Compton-scattering and Cp for pair-
production. The expected fraction r(t) of Compton-scattering
photons (a function of the emission spectrum) allows us to
define an average WCET C = r(t)(Cc−Cp)+Cp per photon.
The rate of photon arrival, R, is a function of the brightness
of the GRB.

The function Epeak(t) is not known a priori. However, given
an initial sample of nfit photons, Epeak(0) can be fit to a Band
function [24] and matched against known GRB data (e.g., from
the Fermi catalogs in [8], [9]) to estimate Epeak(t) and derive
the deadline and WCET for reconstruction and propagation
of uncertainty. For simplicity, we use a constant WCET Cr

derived from the worst-case estimated r(t). The derivation
subtask has WCET Cfit and is released at time δCPU + nfit/R.

Given a sufficiently large D, a streaming execution model
can be used, where all data is reconstructed as it is collected;
then, once data stops arriving (or the arrival rate slows sig-
nificantly), the source localization stage runs. However, if D
cannot be met, the system is considered overloaded. In this
case, we model computation on the CPU as the parallel DAG
task illustrated in Fig. 5 and elastically compress its constituent
subtasks by solving the following optimization problem, which
seeks to minimize the expected error in source localization
while meeting the deadline constraint:

min: error(n, na, x) (1)
s.t.: Cr · n/m+ Cfit + Cl(n, na, x) ≤ D (2)

n ≤ R · (D − Cl(n, na, x)) (3)
na ≤ n (4)
x ∈ N (5)

Expected error (1) is a nonlinear, monotonically increasing
function of three variables: n, the number of photons selected
for trajectory reconstruction; na, the number of reconstructed
photons sampled for an initial approximation of the GRB’s
location; and x, the number of subsequent refinement iterations
to improve the location estimate (the localization algorithm is
detailed in [2]). Similarly to Epeak, error is not known a
priori. Using simulations of known GRBs from the catalogs,
we can estimate error functions offline. This allows the online
compression framework to select an error according to the
Band function fit from the initial sample of photons.

Because of the highly parallelizable nature of several stages
of the pipeline, latency can be characterized according to the

59

expression on the left side of (2). This constraint guarantees
that the time between photon arrival in the instrument and
associated data arrival in main memory, plus total reconstruc-
tion time (parallelized over the CPU’s m cores), fitting, and
localization WCET Cl does not exceed the deadline. Cl is
polynomial in n, na, x and is characterized by the following
equation (described in [2]), where each ai is constant:

x(a0 · n2 + a1 · n) + a2 · n+ a3 · na + a4 (6)

In (3), the photons selected for reconstruction are con-
strained by the number that have become available before
localization must begin. Equation (4) constrains the photons
sampled for initial approximation to those that have been
reconstructed. The values n and na are expected to be large
enough to approximate a continuous space, but (5) restricts x
to the natural numbers.

Solving this optimization problem is the topic of ongoing
work. While the functions error and Cl have not yet been
fully characterized, we suspect the nonlinearity will make
it too computationally intensive to solve online. Generating
an offline solution for each representation GRB spectrum
from the catalog would reduce the execution time for online
compression. However, neither R nor I are known a priori: the
collection of available instruments changes as ground-based
telescopes may be out-of-view due to Earth’s rotation, and
instruments may be occupied or taken offline. However, as this
is not a hard real-time problem, approximate solutions should
be sufficient. An offline solution might be given as a function
of R (or for a set of discrete values of R). Further, we might
define a few sets of available instruments depending on the
time of day, which would allow a deadline D to be assigned to
each representative GRB from the catalog, similarly to Epeak

and error. We are also considering fast methods to search
for an approximate solution online, e.g., by using a genetic
algorithm [25].

IV. CPU AND OS REQUIREMENTS

Our task pipeline will run atop SWaP-constrained embedded
hardware onboard an orbiting platform. We have tested several
of its algorithms on a Raspberry Pi Model 3B+ ([2], [15]). A
suborbital demonstration mission, in which a smaller version
of the APT instrument will fly on a high-altitude balloon, is
currently being designed with an Intel Atom-based single-
board computer. APT, however, will fly at the L2 Lagrange
point, which presents the additional challenge of radiation
hardening.

The current APT architecture requires an FPGA per detector
layer; at 40 layers, sufficient networking capabilities, including
possible support for a TSN protocol, will be required. The
CPU’s board will need a high-bandwidth (e.g., gigabit) net-
work adapter with DMA capabilities, requiring OS and driver
support. It will additionally need to communicate burst alerts,
requiring additional support for telemetry equipment (which
will likely be accessed over a serial bus).

Execution of the CPU stages of our pipeline (process
identification, photon trajectory reconstruction, estimation of

uncertainty, and localization) can execute as a single binary
which can also encode the logic for both determining and
implementing task compression. As such, a targeted unikernel
compile of Linux [26] that integrates all necessary drivers
and the GRB source localization program might be ideal for
our purposes. However, other processes may need to execute
concurrently, including real-time mission-critical instrument
control tasks. For such task sets, the target operating system
may need to provide both priority-based scheduling and strong
temporal isolation. For example, CPU reservations (such as
those provided by cgroups and real-time group scheduling
in Linux) can be used to enforce the target utilization of
the localization task and prevent overruns from affecting
other tasks on the system. Furthermore, mechanisms such as
scCaps in seL4 [27] can, in addition to providing bandwidth
constraints, enable a system to switch criticality modes in the
event of overruns.

V. CONCLUSION

We have presented an elastic model for compressing task
utilization by reducing individual subtask workloads according
to a nonlinear cost function. Characterization of representative
GRB spectra, their evolution in time, and the corresponding
parameters of the optimization problem presented in Sec. III
are ongoing through simulations, measurements, and study
of GRB catalogs. However, we suspect the problem will
be computationally intensive to solve online as part of the
onboard localization pipeline. But because this is a soft real-
time problem, we intend to instead find an approximate
solution (either by precomputing a set of compression modes
from which the closest one can be selected, or with online
approximation using a fast search technique such as a genetic
algorithm). Overrun might result in missed opportunities for
follow-up observations but will not cause system failure. Time
remaining before the deadline can be used to reconstruct
additional photons, then perform additional refinement over
the larger set of data.

Our model has room for further refinement. As other tasks
may run concurrently, we need to consider how this affects
schedulability of the parallel localization task. Under federated
scheduling, our pipeline would be assigned dedicated cores,
but with only 4 cores on the considered hardware platforms,
this may result in unnecessary resource waste. Alternative
analytical frameworks, such as semi-federated scheduling,
could reduce resource waste but would further complicate
the proposed elastic scheduling model. Additionally, mem-
ory constraints must be considered: to avoid dropping data
transmitted from the FPGA (which must additionally be saved
to secondary storage), a buffer must be allocated according
to the maximum expected data volume and rate and the
reconstruction throughput, which itself is elastic. A suitable
OS, such as a real-time microkernel (e.g. seL4 [27]) or a
targeted unikernel compile of Linux [26], is still being sought.
We welcome suggestions and feedback from the community.

60

REFERENCES

[1] J. Buckley, S. Alnussirat, C. Altomare et al., “The Advanced Particle-
astrophysics Telescope (APT) Project Status,” in Proc. of 37th Interna-
tional Cosmic Ray Conference — PoS(ICRC2021), vol. 395, Jul. 2021,
pp. 655:1–655:9.

[2] M. Sudvarg, J. Buhler, J. H. Buckley, W. Chen et al., “A Fast GRB
Source Localization Pipeline for the Advanced Particle-astrophysics
Telescope,” in Proc. of 37th International Cosmic Ray Conference —
PoS(ICRC2021), vol. 395, Jul. 2021, pp. 588:1–588:9.

[3] W. Chen, J. Buckley, S. Alnussirat et al., “The Advanced Particle-
astrophysics Telescope: Simulation of the Instrument Performance for
Gamma-Ray Detection,” in Proc. of 37th Int’l Cosmic Ray Conference
— PoS(ICRC2021), vol. 395, 2021, pp. 590:1–590:9.

[4] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” in IEEE Real-Time Systems Symposium, 1998.

[5] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions on
Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002. [Online]. Available:
http://dx.doi.org/10.1109/12.990127

[6] C. Meegan, G. Lichti, P. N. Bhat et al., “The Fermi gamma-ray burst
monitor,” The Astrophysical Journal, vol. 702, no. 1, pp. 791–804,
aug 2009. [Online]. Available: https://doi.org/10.1088%2F0004-637x%
2F702%2F1%2F791

[7] W. B. Atwood, A. A. Abdo, M. Ackermann et al., “The large area
telescope on the Fermi gamma-ray space telescope mission,” The
Astrophysical Journal, vol. 697, no. 2, pp. 1071–1102, may 2009.
[Online]. Available: https://doi.org/10.1088%2F0004-637x%2F697%
2F2%2F1071

[8] M. Ackermann, M. Ajello, K. Asano et al., “The first Fermi LAT
gamma-ray burst catalog,” The Astrophysical Journal Supplement
Series, vol. 209, no. 1, p. 11, oct 2013. [Online]. Available:
https://doi.org/10.1088%2F0067-0049%2F209%2F1%2F11

[9] M. Ajello, M. Arimoto, M. Axelsson et al., “A decade of gamma-ray
bursts observed by Fermi-LAT: The second GRB catalog,” The
Astrophysical Journal, vol. 878, no. 1, p. 52, jun 2019. [Online].
Available: https://doi.org/10.3847/1538-4357/ab1d4e

[10] J. E. Grove, C. C. Cheung, M. Kerr et al., “Glowbug, a low-cost,
high-sensitivity gamma-ray burst telescope,” 2020. [Online]. Available:
https://arxiv.org/abs/2009.11959

[11] I. Bartos and M. Kowalski, Multimessenger Astronomy, ser. 2399-2891.
IOP Publishing, 2017. [Online]. Available: https://dx.doi.org/10.1088/
978-0-7503-1369-8

[12] A. Neronov, “Introduction to multi-messenger astronomy,” in Journal of
Physics: Conference Series, vol. 1263, no. 1. IOP Publishing, 2019, p.
012001.

[13] P. Mészáros, D. B. Fox, C. Hanna, and K. Murase, “Multi-messenger
astrophysics,” Nature Reviews Physics, vol. 1, no. 10, pp. 585–599, 2019.

[14] S. Boggs and P. Jean, “Event reconstruction in high resolution Compton
telescopes,” Astronomy and Astrophys. Supp. Series, vol. 145, no. 2, pp.
311–321, 2000.

[15] J. Wheelock, W. Kanu, M. Sudvarg et al., “Supporting multi-messenger
astrophysics with fast gamma-ray burst localization,” in Proc. of
IEEE/ACM HPC for Urgent Decision Making Workshop (UrgentHPC),
Nov. 2021.

[16] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic
scheduling,” in IEEE International Real-Time Systems Symposium, 2006.

[17] ——, “Generalized elastic scheduling for real-time tasks,” IEEE Trans-
actions on Computers, vol. 58, no. 4, pp. 480–495, April 2009.

[18] J. Orr, C. Gill, K. Agrawal, S. Baruah et al., “Elasticity of
workloads and periods of parallel real-time tasks,” in Proceedings
of the 26th International Conference on Real-Time Networks and
Systems, ser. RTNS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 61–71. [Online]. Available:
https://doi.org/10.1145/3273905.3273915

[19] J. Orr and S. Baruah, “Multiprocessor scheduling of elastic tasks,”
in Proceedings of the 27th International Conference on Real-Time
Networks and Systems, ser. RTNS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 133–142. [Online].
Available: https://doi.org/10.1145/3356401.3356403

[20] J. Orr, J. C. Uribe, C. Gill, S. Baruah et al., “Elastic scheduling
of parallel real-time tasks with discrete utilizations,” in Proceedings
of the 28th International Conference on Real-Time Networks and
Systems, ser. RTNS 2020. New York, NY, USA: Association

for Computing Machinery, 2020, pp. 117–127. [Online]. Available:
https://doi.org/10.1145/3394810.3394824

[21] M. Sudvarg, C. Gill, and S. Baruah, “Linear-time admission control for
elastic scheduling,” Real-Time Systems, vol. 57, no. 4, pp. 485–490, Oct
2021. [Online]. Available: https://doi.org/10.1007/s11241-021-09373-4

[22] M. Sudvarg and C. Gill, “Analysis of federated scheduling for
integer-valued workloads,” in Proceedings of the 30th International
Conference on Real-Time Networks and Systems, ser. RTNS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, pp.
12–23. [Online]. Available: https://doi.org/10.1145/3534879.3534892

[23] K. Bechtol, S. Funk, A. Okumura, L. Ruckman, A. Simons, H. Tajima,
J. Vandenbroucke, and G. Varner, “TARGET: A multi-channel digitizer
chip for very-high-energy gamma-ray telescopes,” Astroparticle Physics,
vol. 36, no. 1, pp. 156–165, 2012.

[24] D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden,
T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouve-
liotou, C. Meegan, R. Wilson, and P. Lestrade, “BATSE observations of
gamma-ray burst spectra. I. spectral diversity,” Astrophys. J., vol. 413,
p. 281, Aug. 1993.

[25] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems.” Ph.D. dissertation, University of Michigan, USA,
1975, aAI7609381.

[26] A. Raza, P. Sohal, J. Cadden, J. Appavoo, U. Drepper, R. Jones,
O. Krieger, R. Mancuso, and L. Woodman, “Unikernels: The next
stage of linux’s dominance,” in Proceedings of the Workshop on
Hot Topics in Operating Systems, ser. HotOS ’19. New York, NY,
USA: Association for Computing Machinery, 2019, pp. 7–13. [Online].
Available: https://doi.org/10.1145/3317550.3321445

[27] “The sel4 microkernel,” https://docs.sel4.systems/projects/sel4/, seL4
Foundation, accessed: January 23, 2022.

61

Notes

OSPERT 2022 Program

Tuesday, July 5 2022
8:00 – 9:30 Registration
8:30 – 10:00 Welcome

Session 1: Keynote

Mixed Criticality on RISC-V: Experiences from Porting a Partitioning Hypervisor
Konrad Schwarz, Siemens Coprorate Technology

10:00 – 10:30 Coffee Break

10:30 – 12:00 Session 2: Broadening RTOS Understanding

RTOS-Independent Interaction Analysis in ARA
G. Entrup, J. Neugebauer, D. Lohmann

Supporting Multiprocessor Resource Synchronization Protocols in RTEMS
J. Shi, J. Pham, M. Münch, J. Hafemeister, J. Chen, K. Chen

Cabas: Real-Time for the Masses
T. Smejkal, J. Bierbaum, M. von Oltersdorff-Kalettka, M. Roitzsch

On the Interplay of Computation and Memory Regulation in Multicore Real-Time
Systems

D. Hoornaert, G. Ghaemi, A. Bastoni, R. Mancuso, M. Caccamo, G. Corradi

12:00 – 13:30 Lunch

13:30 – 15:00 Session 3: Use Your Data, Trust Your System

Can we trust our energy measurements? A study on the Odroid-XU4i
J. Roeder, S. Altmeyer, C. Grelck

Revisiting Migration Overheads in Real-Time Systems:
One Look at Not-So-Uniform Platforms

P. Raffeck, W. Schröder-Preikschat, P. Ulbrich

X-RIPE: A Modern, Cross-Platform Runtime Intrusion Prevention Evaluator
G Serra, S. Di Leonardi, A. Biondi

Work in Progress:
Real-Time GRB Localization for the Advanced Particle-astrophysics Telescope

M. Sudvarg, J. Buhler, R. Chamberlain, C. Gill, J. Buckley

Closing

15:00 – 16:00 After-Workshop Coffee Break

Wednesday, July 6th – Friday, July 8th 2022
ECRTS main conference.

© 2022 Leibniz Universität Hannover. All rights reserved.

	Message from the Chairs
	Program Committee
	Keynote Talk
	Session: Broadening RTOS Understanding
	RTOS-Independent Interaction Analysis in ARA
	Supporting Multiprocessor Resource Synchronization Protocols in RTEMS
	Cabas: Real-Time for the Masses
	On the Interplay of Computation and Memory Regulation in Multicore Real-Time Systems

	Session: Use Your Data, Trust Your System
	Can we trust our energy measurements? A study on the Odroid-XU4i
	Revisiting Migration Overheads in Real-Time Systems: One Look at Not-So-Uniform Platforms
	X-RIPE: A Modern, Cross-Platform Runtime Intrusion Prevention Evaluator
	Work in Progress: Real-Time GRB Localization for the Advanced Particle-astrophysics Telescope

	Program

