
Exploiting Structured Human Interactions to Enhance
Estimation Accuracy in Cyber-physical Systems

Yunlong Gao1, Shaohan Hu1, Renato Mancuso1, Hongwei Wang1, Minje Kim1,

PoLiang Wu1, Lu Su2, Lui Sha1, and Tarek Abdelzaher1

1University of Illinois at Urbana-Champaign, 2State University of New York at Buffalo

ABSTRACT
In this paper, we describe a general methodology for enhanc-
ing measurement accuracy in cyber-physical systems that
involve structured human interactions with a noisy physical
environment. We define structured human interactions as
those that follow a domain-specific workflow. The idea of
the paper is simple: we exploit knowledge of the workflow
to correct unreliable sensor data. The intellectual contribu-
tion lies in an algorithm for joint estimation of the current
state of the workflow together with correction of noisy sen-
sor measurements, given only the noisy measurements and
an overall workflow description. We demonstrate through
simulations and a physical implementation the degree to
which knowledge of workflow can increase sensing accuracy.
As a specific instantiation of this idea, we present a novel
situation-awareness tool called the Emergency Transcriber
designed to automatically document operational procedures
followed by teams of first responders in emergency-response
scenarios. Evaluation shows that our system provides a sig-
nificant fidelity enhancement over the state of the art, ef-
fectively coping with the noisy environment of emergency
teams.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes; J.3
[Life and Medical Sciences]: Medical information sys-
tems

General Terms
Algorithms, Design
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1. INTRODUCTION
Our work is motivated by enhancing situation awareness

in cyber-physical systems that involve structured interac-
tions between human teams and noisy physical environments.
Situation awareness is fundamental in domains, where un-
derstanding the state of the environment is crucial to the
execution of the task at hand. We focus on those envi-
ronments where the task is critical and failure may entail
damage or loss of life. Common examples include military
command and control [29], industrial plant operation [10],
and emergency services [22] such as resuscitation [24] and
fire-fighting [13].

In operation domains, where human risk is involved, well-
established protocols typically exist that define rules of en-
gagement, operational procedures, and contingency man-
agement. These protocols exist for at least two reasons.
First, handling dangerous situations is stressful. Having
well-established rules on what exactly to do alleviates the
cognitive burden on the individuals involved, when they
need to make decisions under pressure. Second, since un-
favorable outcomes are not uncommon, rules are needed to
clearly exonerate individuals from blame as long as a proper
process is followed. The paper explores whether the ex-
istence of such well-established processes to structure hu-
man interactions can help improve quality of sensor mea-
surements.

In this work, we assume that human interactions with
the cyber-physical system evolve according to a predefined
workflow model. This model can be obtained, for exam-
ple, from an operations manual. Each state of the workflow
is associated with actions that team members are allowed
to perform. These actions have sensory signatures. Hence,
a different expectation for sensor values exists in different
states. It therefore becomes possible to use the sequence
of received sensor measurements to jointly estimate both (i)
the state transitions experienced by individuals following the
workflow, and (ii) the most likely measured values given the
obtained noisy measurements and the expected state-specific
ground-truth value distribution. We show how the prob-
lem can be formulated using an extended Hidden Markov
Model (HMM) [20], and investigate the impact of the re-
sulting HMM on reducing noise in sensor measurements.

The above problem is cyber-physical in that it offers a
novel example of how knowledge of physical processes (in
this case, knowledge of structured human interactions with
a cyber-physical system) can enhance computational pro-
cesses (in this case, sensing accuracy). As a concrete appli-
cation of this idea, we develop a novel situation awareness
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tool for teams of first responders, called the emergency tran-
scriber . It constitutes an audio interface for reliably record-
ing and disseminating situation progress as extracted from
the team’s audio communications. As noted above, such
teams typically follow predefined collaborative workflow as
dictated by the relevant engagement protocols, specifying
their roles and communications. Given the critical nature of
the situation, the vocabulary used is often constrained and
dependent on the current stage of the workflow being exe-
cuted. The emergency transcriber documents the sequence
of procedural steps executed by the team, as well as their pa-
rameters, if any (e.g., dosage of medications administered).
The service can help with (i) early detection of procedu-
ral mistakes, (ii) accurate logging of events for future refer-
ence, or (iii) improved interactions among emergency team
members thanks to a more consistent joint understanding of
followed steps in the procedural workflow.

We first explore the advantages and limitations of workflow-
based enhancement of sensor data through simulations, where
abstract workflow states are associated with sets of possible
measurable values in the physical world, and a noisy sensor
is used to determine which values were emitted. In this pa-
per, we focus on discrete values. We also conduct a physical
experiment involving a medical scenario based on the adult
cardiac arrest workflow [2]. This workflow is followed in
emergency rooms when patients with serious trauma arrive.
Our evaluation demonstrates that we are able to achieve
80% accuracy in workflow state identification, when rely-
ing on an acoustic sensor of only a 40% accuracy to detect
emitted values (in this case, spoken instructions by physi-
cians). When the accuracy of the underlying acoustic sensor
grows to 77%, our state estimation becomes 100% correct.
This result speaks to the utility of the analytic framework
described in this paper.

The rest of the paper is organized as follows. In Section 2,
we describe our system model and the present terminology
used. In Section 3, we offer a formal problem formulation
and an optimal solution. We comment on the limitations
of our scheme in Section 5, and discuss our case study in
Section 6. Related work is covered in Section 7. We conclude
this paper in Section 8.

2. PROBLEM DESCRIPTION AND SYSTEM
MODEL OVERVIEW

In this section, we give a detailed description of the general
problem we target, and introduce our system model.

2.1 Problem Description
Our goal is to develop an algorithm for workflow-assisted

data cleaning in cyber-physical systems that feature struc-
tured human interactions with a physical environment. Fig-
ure 1 offers a simple abstract example. The figure shows a
simplified workflow topology of some emergency procedure.
(Perhaps it represents a medical procedure or a fire-fighting
drill.) The nodes represent states (or stages) of the pro-
cedure defined in the workflow. Each state is associated
with a probability of emitting certain ground-truth data
objects. For example, when inspecting a person’s airway,
physicians might utter words such as “air”, “breath”, “lung”,
“airway”, “obstructed”, “clear” and “no”. These words cor-
respond to the ground truth objects emitted in the afore-
mentioned state. A noisy sensor is used to detect the values
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Figure 1: An example workflow

emitted. As the example suggests, we focus on discrete data.
Hence, we cast the challenge as a classification problem.

To improve the quality of classification we utilize knowl-
edge of workflow topology. Specifically, the directed edges in
the workflow indicate transition probabilities among states.
For instance, at State1, Object1 and Object2 are the po-
tential measurements for the sensor(s). Upon completion of
State1, the workflow transitions to State2 or State3, with
probability 1/3 or 2/3, respectively. Our goal is to correctly
classify emitted data objects, and identify the sequence of
states traversed, given the string of noisy measurements and
the topology of the underlying workflow.

2.2 System Model Overview
We describe our workflow as a directed graph with a set

of states, s = {s1, ..., sN}, where N is the total number
of states. State transitions take place in accordance with a
Hidden Markov Model [20]. HMMs have been widely used in
modeling workflows and the emission procedures in machine-
aided human translation [7], cryptanalysis [12], and time
series [28]. Given the workflow, the transition probability is
ti,j = p(zt+1 = sj |zt = si). We use z = (z1, ..., zT ) to denote
the state transition sequence for the time t = 1, ..., T , as the
circles in Fig. 2 show.

zk-2 zk-1 zk

xk-2

yk-2

xk-1 xk

yk-1 yk

Figure 2: System Model

Note that, in practice, most states will have self-loops,
since the team might take a long time executing one step
of the original workflow. During that time, multiple mea-
surements will be emitted. The probability associated with
self-loops therefore will depend on the expected length of
residence in the same state.
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Note also that, in HMM terminology, we call our workflow
states hidden, because state transitions cannot be directly
observed, even though the actual state transition diagram
and its parameters may be known. Instead, transitions are
inferred indirectly from noisy sensor measurements. At each
state, an observation of the object associated with that spe-
cific state is acquired, denoted as yi, where i = 1, 2, ..., T ,
as represented by the rounded rectangles in the figure. Note
that, due to noise, those observations may not correctly rep-
resent the true object values. The relationship between the
true object values and sensor observations is captured by a
confusion matrix, which we explain in detail in the next sec-
tion. The total number of possible true objects is limited,
and the true object space is denoted by x = {x1, ..., xT }.
The probability that a true object xt is observed at state sj is
called emission probability, denoted by ej,t = p(xt|zt = sj).
Note that, to account for ground truth objects not included
in the above limited set, one can add an object called“other”
to indicate “everything else”. Clearly, recognizing a mea-
surement as “other” merely says that it has not really been
recognized.

We use confusion probability, denoted ci,j = p(yi|xj), to
model the correspondence between sensory observations and
the true object set. The confusion probability ci,j deter-
mines the precision of the sensor, which is defined as the

ratio

∑
True Positive∑

True Positive +
∑

False Positive
.

As we assume the state transitions to follow the Markov
model, the current state only depends upon the most recent
previous state, thus we have:

p(zt+1|zt, zt−1, ..., z1) = p(zt+1|zt) (1)

and the emission probability satisfies:

p(xt|zt, zt−1, ..., z1) = p(xt|zt) (2)

3. MATHEMATICAL FORMULATION
The solution to the problem mentioned in the previous

section lies in finding the sequence of states (represented by
the state vector z) and the sequence of objects (represented
by the object set x) that maximize the posterior probability
p(zx|y), based on inaccurate measurement of y. Mathemat-
ically, we write this as follows:

ẑx = arg max
zx

p(zx|y) (3)

In general, solving this equation would involve an exhaus-
tive search for all possible state sequences and object sets,
which would rapidly become intractable due to exponential
complexity. Thus, we propose the following method to re-
duce computational effort. Based on Bayes’ theorem, the
posterior probability could be expressed as:

p(zx|y) =
p(zxy)

p(y)
(4)

=
p(y|xz)p(zx)

p(y)
(5)

=
p(y|x)p(x|z)p(z)

p(y)
(6)

The emission probability, which, by using the indepen-
dence characteristics of the object set is written as follows:

p(x|z) = p(x1, ..., xT |z1, ..., zT ) (7)

= p(x1|z1)p(x2|z2)...p(xT |zT ) (8)

=
T∏

i=1

p(xi|zi) (9)

Similarly, the probability of sequence of state transition
z is given by considering the Markov property, shown as
below:

p(z) = p(z1, z2, ..., zT ) (10)

= p(zT |zT−1, ..., z1)...p(z1|z0)p(z0) (11)

=
T∏

i=1

p(zi|zi−1)p(z0) (12)

where p(z0) is the initial probability given as prior knowl-
edge.

Furthermore, based on the confusion probability discussed
in Section 2, the conditional probability for the objects that
are measured is:

p(y|x) = p(y1, y2, ..., yT |x1, x2, ..., xT ) (13)

= p(y1|x1, ..., xT )...p(yT |x1, ..., xT ) (14)

=
T∏

i=1

p(yi|x1, ..., xT ) (15)

With the above in mind, and given the fact that the pos-
terior probability is proportional to its numerator, ẑx in
Eqn. (3) could be written as follows:

arg max
zx

[

T∏
i=1

p(xi|zi)
T∏

i=1

p(zi|zi−1)

T∏
i=1

p(yi|x1, ..., xT )p(z0)]

We denote the final result of the above equation as µT (zT , xT ),
thus we can rewrite it as:

µT (zT , xT ) = arg max
z1:T ,x1:T

[

T∏
i=1

p(xi|zi)p(zi|zi−1)p(yi|x)p(z0)]

= arg max
z1:T ,x1:T

[

T−1∏
i=1

p(xi|zi)p(zi|zi−1)p(yi|x)p(z0)

p(xT |zT )p(zT |zT−1)p(yT |x)]

= arg max
z1:T ,x1:T

[µT−1(zT−1, xT−1)p(xT |zT )

p(zT |zT−1)p(yT |x)]

Based on the above analysis, we propose Algorithm 1 to
find the optimal state transition sequence as well as the ob-
jects that maximize the posterior probability. The algorithm
takes the observations of objects obs, the state space s, the
object space o, the workflow information containing transi-
tion probability matrix T and the emission probability ma-
trix E, as well as the confusion matrix C of the sensor as
input, where ti,j , ei,j and ci,j are the transition probability,
emission probability and confusion probability, respectively.
It also needs the start probability of each state start based
on domain knowledge for initialization. The output of the
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algorithm is the optimal state-transition sequence z and the
optimal emitted objects x. In the following pseudo codes,
V [t][i] stores the maximum cumulative probability of reach-
ing state i at time t. B[t][i] stores the previous state that
transmits to the current state i, and X[t][i] stores the cor-
responding object emitted at state i.

Algorithm 1 find optimal z and x

RecoverNTrack(obs, s, o, start, T, E, C):(z x)

1: for si ∈ s do
2: initialize V [1][i], B[1][i], X[1][i]
3: end for
4: for obst ∈ obs, t← 2, 3, ..., T do
5: for si ∈ s do
6: initialize pmax, smax, vobj
7: for om ∈ o do
8: for sj ∈ s do
9: p← V [t− 1][j]× ti,j × em,i × ct,m

10: if p > pmax then
11: pmax ← p
12: smax ← j
13: vobj ← om
14: end if
15: end for
16: end for
17: V [t][i]← pmax

18: B[t][i]← smax

19: X[t][i]← vobj
20: end for
21: end for
22: pmax ← arg maxsi∈s V [T ][i]
23: sn ← n such that V [T ][n] = pmax

24: z[T ]← sn
25: x[T ]← X[T ][n]
26: for i← T − 1, ..., 1 do
27: z[i]← B[i+ 1][z[i+ 1]]
28: x[i]← X[i][z[i]]
29: end for

The algorithm first initializes V [t][i], B[t][i] and X[t][i]
based on the start probability start, confusion probability
matrix C and the actual observation of objects obs. Line
4-21 is our main loop for keeping record of the maximum
cumulative probability of reaching each state and its corre-
sponding emitted object. The outer-most for loop iterates
through each observation of objects. Starting from the loop
at Line 5, we start iterating each state to find the optimal
state-transition sequence. Notice that T here stands for the
total number of objects observed. We set three intermediate
variables, namely pmax, smax and vobj , to keep the tempo-
rary maximum cumulative probability, temporary previous
state and temporary corresponding object. At Line 7, the
function iterates each object in the space of o to get the con-
fusion probability ct,m. And finally, in the inner loop from
Line 8 to Line 15, the function loops through each previous
state to lookup for transition probability ti,j and compute
the joint probability p. Via the inner two loops, it finds
the maximum cumulative joint probability and update the
corresponding entries in the matrices of V , B and X. Line
22-29 find the optimal workflow path and object sequence in
a backward way. That is to say, it first finds the maximum
joint probability at time T among all the states, as well as
its corresponding state and object. It then starts from the

second last entry of matrix B and X to look up the overall
sequences of states and objects.

We now analyse the computational complexity of Algo-
rithm 1. We use N to denote the size of the overall state
space, T the number of objects observed, and Nobj the size
of the object space. Therefore, it is quite obvious that the
space complexity is O(N × T ), and the time complexity is
O(N2 × T × Nobj), as dominated by the main for loop in
the algorithm. Note that this is significantly better than
exhaustive search which takes O((N ×Nobj)

T ) time.

4. PRACTICAL ISSUES
In this section, we discuss some practical issues that may

arise when using our algorithm in real application scenarios,
as well as extensions to address them.

4.1 Missing Measurements
In applications where some form of event-driven sensing is

used, a common problem might be missing measurements.
For example, a microphone might not register some words
due to a low signal-to-noise ratio. The algorithm, therefore,
must account for the possibility that missing items exist in
the noisy measurement string.

Most of the time, missing measurements will not affect the
algorithm, although such measurements will remain missing
from the final output. This is because, as we noted earlier,
in most practical workflows, states will have self-loops. That
is to say, most of the time, human teams will emit multiple
objects in the same state. Given that this a Markov model,
the odds of another self-loop do not change with the number
of times the loop was previously taken. Hence, missing one
object (and one loop) does not affect future predictions.

Occasionally, however, the existence of missing measure-
ments impacts transition probabilities between different states
of the workflow. Take Figure 1 as an example, in which
State1 transits to State3 with probability 50%, but State1
cannot transit to State4 directly. Suppose it was known
that the previous state was State1, and Object1 was emit-
ted and recognized. Suppose the operation moved to State3,
and an object has been emitted (e.g., object5) but missed by
the sensor. The workflow then reaches State4, where one of
the objects, say Object6, is emitted and classified correctly
by the sensor. Therefore, the overall output from sensor is:
Object1 followed by Object6; implying that State1 transits
to State4 directly, which is impossible according to the pre-
defined workflow. If we use the basic algorithm alone, it
considers measurement of Object6 to be an error and tries
to match it to objects in State3, according to the confu-
sion matrix, thereby giving an erroneous classification re-
sult. Hence, we augment our solution by preprocessing the
transition probability before running the basic algorithm to
include the probability of missing objects.

Suppose the probability that a word is missing from the
measured workflow is p. Assume that p is small enough that
higher powers can be ignored. The transition probability
can thus be modified according to the following equation:

t
′
i,j = ti,j − ti,jp+

∑
m∈M

ti,mptm,j (16)

where t
′
i,j represents the updated transition probability, and

M stands for the set of source nodes of all the incoming edges
of node j. ti,j indicates the traditional transition probability
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from state i to j based on the original protocol, which is prior
knowledge. ti,jp indicates the probability that the workflow
transits from i to j without receiving a word associated with
j. The last term indicates the probability that i transits to
m but the word associated m is missing at the previous
round, and then m transits to j at the current round, where
m has direct transition link to j. After updating the tran-
sition probability matrix as Eqn. (16), we combine it with
our basic algorithm to handle situations where occasional
missing measurements occur.

It remains to show how to handle situations of multiple
consequent missing measurements. Here, a few issues are
worth noting. First, since most states have self-loops, the
odds that missing measurement result in skipping two states
are low. It is likely that only one transition among different
states will be missed and this case has already been handled
above. If two such transitions were missed, it usually means
that something unexpected has happened. We handle this
situation by employing a timeout. If no input is recorded
and the timeout expires, the history of previous states is ig-
nored. The algorithm starts over, with no assumption on
current state (or, equivalently some default prior distribu-
tion of probabilities of states).

4.2 Deviations from Workflow
Knowledge of human workflow helps only if team mem-

bers generally adhere to the workflow. If they do not, then
this knowledge is more of a hindrance since it may lead the
system to disbelieve a true measurement because it violates
what it knows of the workflow. In reality, the measure-
ment could be correct albeit not compliant with the work-
flow. Such deviations can be accommodated by adding low-
probability transitions between pairs of states where tran-
sitions are disallowed. The probability of these transitions
will be equal to the probability of deviations from the orig-
inal workflow. This probability represents a trade-off be-
tween optimality and robustness. A high probability of de-
viation will cause the original workflow topology to become
less useful in correcting measurement errors. This is be-
cause it offers an alternative explanation, where unexpected
measurements are attributed to deviations from the work-
flow and not to measurement errors. Sensor performance
will be suboptimal, but the system will be robust to actual
deviations.

On the other hand, a low probability of workflow devia-
tion will maximize the benefit gained from workflow topol-
ogy in improving accuracy of sensing. However, should ac-
tual deviations occur, they may cause error chains as cor-
rect measurements are repeatedly viewed as misclassifica-
tions and replaced with others according to the confusion
matrix, causing an incorrect interpretation of current state,
and hence, an incorrect interpretation of future input. As
a safety check, when the system detects many misclassifi-
cations and low-probability transitions in a row, it assumes
that its current knowledge of state may have grown inaccu-
rate and resets by ignoring the history of previous states. Es-
timation starts over, with no assumption on current state.

5. SIMULATION
In this section, we evaluate the performance of the schemes

proposed in the paper. We first introduce our experiment
settings, and then present the results.

5.1 Simulation Settings
We consider two types of workflow in our simulation study,

namely, random directed graph and directed tree, as they
represent two distinct types of graphs with very different
characteristics. A random graph represents a workflow where
loops could be possible. In medical applications, two exam-
ples are the intubation and airway management workflow [3],
and the adult cardiac arrest workflow [2]. Some workflows,
however, could be abstracted as directed trees, such as the
workflow for ventricular failure with cardiogenic shock [8],
and the bradycardia workflow [8].

In our study, we randomly generate these two types of
workflow topologies. We simulate the behaviours of sensors,
which are represented by confusion matrices. By controlling
the recall and the intra-state object similarity, which will be
introduced in the later paragraph, we change the behaviors
of the simulated sensors. For the convenience of description,
‘sensor(s)’ is short for ‘simulated sensor(s)’ in the following
paragraphs. Each state of a workflow, as represented by a
node in the graph, is associated with some objects, whose
values were sensed by sensors.

For each topology of the workflow, a path with associ-
ated objects is randomly selected as the ground truth work-
flow path. The ground truth objects are randomly selected
along the ground truth path. As mentioned in the above
section, the confusion matrix of sensors captures the rela-
tionship between the observations and true objects. In the
simulation, the confusion matrix is generated in the follow-
ing way. Suppose the recall, which is defined as the ratio,∑

True Positive∑
True Positive +

∑
False Negative

, of each object is r.

We assume that, for a single simulation setting, the recall is
the same. Therefore, the diagonal of the confusion matrix is
identical, and it represents the accuracy of the sensor. The
remaining entries of the same row of the matrix are con-
trolled by another factor called intra-state object similarity.
It captures the total probability that an object, say Object1
is classified as another object, say Object2 that is associated
with the same state as Object1 does. For instance, one sen-
sor has the recall of 0.6, and the intra-state object similarity
is 0.3. Therefore, the total probability Object1 could be
classified by another Object2, which is not within the same
state of Object1 is 0.1. For a given ground truth object,
the simulated sensor returns the classified result in accor-
dance with its confusion matrix. The result is fed into our
scheme, and the corrected objects and state-tracking results
are computed.

To evaluate our scheme, we compute fidelity, which indi-
cates the percentage of correctly classified objects, and can

be expressed as

∑
Correctly Classified Objects∑

Total Objects
. We plot

three quantities in the following figures. They represent fi-
delity of Raw measurements, Workflow-aware estimates of
objects, and Workflow-aware estimates of states. The fi-
delity of Raw measurements represents the native sensor fi-
delity prior to using our correction scheme. Workflow-aware
estimates of objects represent the fidelity of object classifica-
tion when our scheme is applied. Workflow-aware estimates
of states represents the state classification fidelity of our
scheme. Usually, it goes hand-in-hand with the workflow-
aware object fidelity.

Unless otherwise stated, the default parameters are set as
follows. The random graph has 30 nodes for the workflow,

64



and average incoming and outgoing degree of the graph is
3, the object per node is 5, the path length is 8, and the
recall of the confusion matrix is 0.6. For the directed tree,
the default parameters are set are follows. The order of the
tree is 3, the height of the tree is 5, the object per node is 5,
and the path length is 6, and the recall is 0.6. We make the
entries other than the diagonal of the confusion matrix have
uniform distribution with the probability of 1−r

Nobj−1
, where

Nobj is the total number of objects. The detailed simulation
results is presented in the following section.

5.2 Simulation Results
Random Graph based Workflows: We first study the
fidelity result for random graphs. We study the system per-
formance from four different aspects: impact of raw sensor
classification reliability, impact of traversed path length in
the task workflow, impact of the average node degree in the
graph and the impact of intra-state object similarity.
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Figure 3: Impact of sensor classification reliability on system
performance under graph based workflows

First, we take a look at how the reliability of raw sensors
affects system performance, where we use the classification
recall as a measure of raw sensor reliability. The results are
shown in Fig 3. First and foremost, more reliable sensors
lead to better system performance, as expected. We also
observe that our proposed approach of taking advantage of
workflow information brings consistent improvement across
all sensor reliability settings. This improvement is up to
20%. Evidently, our approach would have a hard time im-
proving system performance when the raw sensor reliability
is too low (e.g., with only about 10% recall) or too high
(e.g., sensors are perfectly reliable). We do, however, argue
that in reality, “perfect”sensors rarely exist, and that system
practitioners would normally not utilize completely unreli-
able sensors either, when building systems. Therefore, our
proposed method will bring meaningful benefits to sensing
systems in practice.

Next, we study how system behaves when we vary the
node degree in the graph. The results are shown in Fig 4.
Clearly, the performance in the baseline sensor remains the
same around 60% (it is unaffected by how the workflow
structure changes because it does not use the worfflow).
On the other hand, our proposed workflow-aware method
achieves a good advantage. We do see that, as the node de-
gree increases, the effectiveness of our method drops. This
is understandable because a high node degree means higher
connectivity in the graph, which in turn leads to less task
progression constraints. This means that knowing the work-
flow gives less information. An extreme case would be a fully
connected graph, which effectively provides no meaningful
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Figure 4: Impact of graph node degree on system performance
under graph based workflows

information to assist with sensor data correction.
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Figure 5: Impact of task path length on system performance
under graph based workflows

We also look at how our method performs when varying
the traversed path length under the same workflow topology.
The results are shown in Fig 5. We observe that our scheme
performs better than the baseline, as expected. Tasks cor-
responding to longer paths in the workflow topology tend
to benefit more from our approach. This is because more
confidence is developed over time in current state estimates,
when tasks last longer under a workflow, leading to a higher
error correction power from our method.
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Figure 6: Impact of intra-state object similarity on system
performance under graph based workflows

To test the impact of intra-state object similarity on sys-
tem performance, we vary this parameter when generat-
ing the confusion matrix. The results are shown in Fig 6.
As intra-state object similarity increases, it is much easier
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to confuse different objects within the same state. Hence,
workflow-aware estimates of objects become less accurate.
Another interesting point to mention here is that the workflow-
aware estimates of states increase slightly as the intra-state
object similarity goes up. This is understandable because
when objects have an increasing chance of being misclassi-
fied for other objects in the same state, the probability that
object misclassification results in state misclassification de-
creases.
Tree based Workflows: We also study the sensing fidelity
results for workflows with tree topologies. We investigate the
impact of sensor reliability, the path length, the number of
objects per node as well as the intra-state object similarity.
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Figure 7: Impact of sensor classification reliability on system
performance under tree based workflows

We first look at how the reliability of raw sensors affects
system performance. The results are shown in Fig 7. The
general trends of system behavior are similar to the previous
graph-based experiment, as shown in Fig 3. Note that our
scheme performs better in tree topologies, which is expected
since there are no cycles in a tree structure, and the workflow
naturally prunes impractical transitions, thus increases the
fidelity.
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Figure 8: Impact of task path length on system performance
under tree based workflows

Fig. 8 shows the results of how traversed path lengths af-
fects system performance. We see that Fig. 8 is quite similar
to the previously discussed graph-based experiment (Fig. 5),
but with larger improvement.

Fig. 9 shows the results of how the number of objects per
tree node affects system performance. We see that Fig. 9
is quite different from the previously discussed graph based
experiments (Fig. 5). One important conclusion we can draw
from the simulation result is that the number of objects per
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Figure 9: Impact of task object per node on system performance
under tree based workflows

tree node does not have an important impact on sensing
performance. Moreover, it is quite apparent that our scheme
constantly outperforms the standalone sensors. Therefore,
there are always a difference between the ‘Workflow-aware
estimation fidelity’ and the ‘raw measurements fidelity’.
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Figure 10: Impact of intra-state object similarity on system
performance under tree based workflows

We also test the impact of intra-state object similarity on
tree topologies. The results are shown in Fig 10. It is similar
to Fig 6 that as intra-state object similarity increases, the
workflow-aware estimates of objects become less accurate
and the workflow-aware estimates of states increases slightly.

6. CASE STUDY EVALUATION
In this section, we apply our proposed scheme to develop a

situation awareness tool, called the Emergency Transcriber ,
for teams of first responders and emergency personnel. The
emergency transcriber is a workflow recording device for
teams operating in emergency scenarios. It uses a simple
microphone to record words uttered by team members and
exploits knowledge of operation workflow to jointly improve
word classification accuracy as well as keeping track of the
operation state flow. Below, we evaluate the accuracy of this
tool.

6.1 Experimental Settings
Workflow Information: We chose adult cardiac arrest

[19] as our case of study. It strictly follows the emergency
reaction algorithm shown in the Fig. 11. In realistic settings,
when a patient is subject to cardiac arrest, multiple physi-
cians and nurses operate around the patient at the same
time, and medical orders are vocally communicated. The
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entire environment is noisy and chaotic. General-purpose
standalone voice recognition software often performs poorly
in such an environment.

Figure 11: This illustration, from [27], demonstrates adult
cardiac arrest algorithm used for resuscitation.

System implementation: Our system consists of two
major components. The first component is a standalone
automatic speech recognizer (ASR), which we implemented
using Google Speech API [4]. It acts as an audio interface for
carrying out the initial recognition of medical team’s audio
communications, as indicated by R1 in Fig. 12. Since the
ASR does not have workflow information, it tries to use a
general language model and an acoustic model to match the
signal it hears, which leads to errors in recognition in noisy
environments. R1 is then fed to our emergency transcriber,
which consists of two modules; a keyword matching module
and a word recovery and state tracking module.

The keyword matching module first applies keyword match-
ing to match ASR output to the most similarly sounding
keywords in our workflow. This is equivalent to finding
the keyword that has the maximum number of overlapping
phoneme characters with the sentence transcribed by the
ASR. This is a convolution operation. Since both R1 and
the keywords are in the form of English text, we convert
R1 and all the keywords into their phoneme representations
using a text synthesis software [14], and then calculate the
convolution using Algorithm 2.

Next, R2 is fed to the word recovery and state tracking
module, where state-aware correction takes place, as de-
scribed in Section 3. As an approximation, instead of train-
ing the ASR and getting it the classification confusion ma-
trix (which is a very lengthy process), we apply Eqn. (17)

Web Speech Client

Em
ergency Transcriber

Medical Recording

R1

UDP Sender & 

Encoder

R2

Corrected States & Keywords

Keyword Matching

Word Recovery & State Tracking

Google

Web Speech

Backend

UDP Receiver & Decoder

R1

Web Speech API

R3

Figure 12: This illustration demonstrates the system component
consisting of three major modules.

to calculate each element in the confusion matrix:

sim(yi|xj) = (1− LDi,j

max(length(yi), length(xj)))
)conv(yi, xj)

(17)
where sim(yi|xj) represents the similarity between the ob-
servation word yj and the true keyword xi. Note that,
LDi,j represents the Levensthein distance [18] between the
phoneme representation of yi and xj . length(yi) and length(xj)
represent their phoneme length, respectively. conv(yi, xj)
represents the convolution of their phoneme representations,
which captures sub-phoneme overlapping between yi and xj .
It is calculated according to algorithm 2. We then aim to
recover the actual words spoken, and reveal the actual states
traversed.

6.2 Experimental Results
We invited seven people (of whom 4 are non-native En-

glish speakers) to record the script of a medical episode
involving simulated emergency treatment of adult cardiac
arrest that follows the workflow presented in Fig. 11. This
script was designed by medical personnel from our local hos-
pital [1] as part of a demonstration scenario of novel medical
technologies. The script contained 21 sentences spoken dur-
ing the simulated emergency. The script was re-enacted and
the resulting audio was fed to the first component of our
system.

A screen-shot of our user interface is shown in Fig. 13.
Notice that the leftmost text area shows the initial results
R1 coming out of ASR. The dynamic graph in the middle
tracks and visualizes the state-transition sequence in real
time, with recovered keywords shown on the right side. The
red circle indicates the current state and the blue circles
indicate states that have been traversed in the workflow.
We then added noise of different amplitudes to the original
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Algorithm 2 find maximum number of overlapping char-
acter between sentence x and keyword y

1: lenSrc← x.length
2: lenDst← y.length
3: step← lenSrc+ lenDst− 2
4: retval← 0
5: for i = 0; i < step; i← i+ 1 do
6: convIndex← 0
7: startSrc← max(0, lenSrc− 1)
8: startDst← max(0, i− lenSrc− 1)
9: while startSrc < lenSrc and startDst < lenDst do

10: if x.substring(startSrc, startSrc +
1).equals(y.substring(startDst, startDst + 1))
then

11: convIndex← convIndex+ 1
12: end if
13: startSrc← startSrc+ 1
14: startDst← startDst+ 1
15: end while
16: if convIndex > retval then
17: retval← convIndex
18: end if
19: end for

audio file, and sent it through the same pipeline. The result
with average accuracy and standard deviation is shown in
Fig. 14.

Figure 13: This graph shows the user interface of our system.

As can be seen from the result, when noise-free, the accu-
racy of the standalone speech recognizer is 76.69%. Keyword
matching increases this accuracy by comparing this output
to the entire workflow vocabulary at any stage of the work-
flow. Moreover, with the workflow topology information
accounted for, the word recognition accuracy increased to
95.24%, accompanied by 100% state recognition accuracy,
which bolsters the claim that workflow knowledge can en-
hance sensing accuracy. When noise (Gaussian white noise)
is added to the original voice signals with a SNR (Signal-to-
Noise Ratio) of 40dB, the accuracies of the word recognition
of R1, R2, and R3 decrease, but similar trends are observed.
The situation is similar when the signal to noise ratio goes
up to 33dB. These results show that the emergency tran-
scriber is a useful aid in recording emergency procedures in
a range of noisy environments.

7. RELATED WORK
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Figure 14: This graph shows the case study results on different
noise levels.

Classification techniques in sensing have been widely stud-
ied. For instance, [5] studies data classification problem
in wireless sensor networks. It proposed a classification ap-
proach in combining local classifier to form a global classifier
to achieve high accuracy. [25, 26] proposed hierarchical ag-
gregate classification methods to achieve high accuracy in
lack of energy and label information, and the authors tested
their scheme in the wild to classify bird species. Our work
differs from the exiting work in the sense that it takes the
workflow information into consideration to increase the sens-
ing accuracy in the face of unreliable sensors and environ-
mental noise. What is more important is that it also keeps
track of the states that have been traversed in the workflow.

We utilized the Hidden Markov Model (HMM) [20] to
model the state transition and the relationship between each
sensing object and its associated state. Our scheme is dif-
ferent from traditional HMM because the observations that
the sensing system acquired is not accurate. In order to take
that into consideration, we combine the confusion matrix of
the sensor with the HMM layer and find the optimal sens-
ing object as well as the hidden states as a whole. HMM
is also widely used in the area of speech recognition, such
as [9, 11, 30]. However, traditional HMM models the state
transition between different phonemes as Hidden Markov
Process. We took on a different approach where we treat
the state transition behind the sensing procedure as Hidden
Markov Process. For the case study specifically, the hidden
states refer to the stage where physicians have been working
on.

We apply our scheme in the area of speech recognition [6,
15] under medical environment. There are several com-
mercialized speech recognition software available for med-
ical practice purposes. For example, Nuance Dragon Medi-
cal [17] is a speech recognition package specifically for physi-
cian practices. [23] is another industrial grade speech recog-
nition system used in the healthcare sector. Our scheme is
complementary to the above-mentioned automatic speech
recognizers (ASRs) because it includes the effect of work-
flow when doing the speech recognition. And the workflow
information is free from sensor errors and environment noise,
which makes our scheme perform better. It can act as a
light-weight wrapper outside the ASRs for any specific use
case, thus our scheme has the advantage of good compati-
bility and portability. Topic pertained to dialogue modeling
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(DM), which uses different classification models to explore
a variety of features of the dialogues, have been researched
by the community of speech recognition [16, 21]. However,
the main focus of DM is to predict user intention and then
generate responses to interact with user, whereas our sys-
tem uses the external workflow information to increase the
accuracy of speech recognition results.

8. CONCLUSION
In this paper, we describe a general methodology for en-

hancing measurement accuracy in cyber-physical systems
that involve structured human interactions with a noisy phys-
ical environment. We propose a scheme which can find the
optimal sensing measurements and state transition sequence
by exploiting workflow information and the confusion prop-
erty of the sensors. Simulation results show that our scheme
can bring performance improvement compared with stan-
dalone sensors. We instantiate our idea by carrying out a
user study in emergency environment and demonstrate that
our scheme can improve the speech recognition accuracy and
achieve high state tracking accuracy.
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[16] Jośl ↪e Lopes, Maxine Eskenazi, and Isabel Trancoso.
Incorporating asr information in spoken dialog system
confidence score.

[17] Dragon Medical. http://goo.gl/st0rrW.

[18] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, March
2001.

[19] Mary Ann Peberdy, Clifton W Callaway, Robert W
Neumar, Romergryko G Geocadin, Janice L
Zimmerman, Michael Donnino, Andrea Gabrielli,
Scott M Silvers, Arno L Zaritsky, Raina Merchant,
et al. Part 9: Post–cardiac arrest care 2010 american
heart association guidelines for cardiopulmonary
resuscitation and emergency cardiovascular care.
Circulation, 122(18 suppl 3):S768–S786, 2010.

[20] Lawrence Rabiner. A tutorial on hidden markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[21] Er I. Rudnicky. Predicting tasks in goal-oriented
spoken dialog systems using semantic knowledge bases.

[22] Christian Sell and Iris Braun. Using a workflow
management system to manage emergency plans. In
Proceedings of the 6th International ISCRAM
Conference, volume 41. Citeseer, 2009.

[23] SpeechMagic. http://goo.gl/d9a5E6.

[24] Stanley. healthcare workflow. http://goo.gl/8te7Qo.

[25] Lu Su, Jing Gao, Yong Yang, Tarek F Abdelzaher,
Bolin Ding, and Jiawei Han. Hierarchical aggregate
classification with limited supervision for data
reduction in wireless sensor networks. In SenSys.
ACM, 2011.

[26] Lu Su, Shaohan Hu, Shen Li, Feng Liang, Jing Gao,
Tarek F. Abdelzaher, and Jiawei Han. Quality of
information based data selection and transmission in
wireless sensor networks. In Proceedings of the 2012
IEEE 33rd Real-Time Systems Symposium, RTSS ’12,
2012.

[27] uwhealth.org. Acls algorithm. http://goo.gl/r6plc0.

[28] Ingmar Visser, Maartje E. J. Raijmakers, and Han
L. J. van der Maas. Hidden Markov Models for
Individual Time Series. Springer US, 2009.

[29] Wei Wang, Haining Luo, and Huiyu Deng. Research
on data and workflow security of electronic military
systems. In ICICIP, pages 705–709. IEEE, 2013.

[30] Steve Young. Hmms and related speech recognition
technologies. In Springer Handbook of Speech
Processing, pages 539–558. Springer, 2008.

69

http://http://www.carle.org/
http://goo.gl/RRy8PG
http://goo.gl/64VHz5
https://www.acls.net/aclsalg.html/
http://goo.gl/poev4p
http://espeak.sourceforge.net/
http://goo.gl/st0rrW
http://goo.gl/d9a5E6
http://goo.gl/8te7Qo
http://goo.gl/r6plc0



