CV
Research Assistant Professor Image and Video Computing Group Department of Computer Science Boston University Research Interests Computer Vision and Machine Learning Office Location MCS 207, Department of Computer Science 111 Cummington Mall, Boston, MA, 02215 Quote "Positivity makes you awesome, makes your team awesome; it is contagious :)" -- Sarah Adel Bargal |
Current Research Explainable AI Neural-Backed Decision Trees |
Current Teaching Machine Learning CS 542 |
Contact Info sbargal@bu.edu |
Simulated Adversarial Testing[Paper, CVPR]  pdfN. Ruiz, A. Kortylewski, W. Qiu, C. Xie, S. A. Bargal, A. Yuille, S. Sclaroff. "Simulated Adversarial Testing." CVPR, 2022. |
Zero-Waste: Towards Automated Waste Recycling[Paper, CVPR]  pdf  project pageD. Bashkirova, M. Abdelfattah, Z. Zhu, J. Akl, F. Alladkani, P. Hu, V. Ablavsky, B. Calli, S.A. Bargal, K. Saenko. "Zero-Waste: Towards Automated Waste Recycling." CVPR, 2022. |
NBDT: Neural-Backed Decision Trees[Paper, ICLR]  pdf  project page  code  demoA. Wan, L. Dunlap*, D. Ho*, J. Yin, S. Lee, H. Jin, S. Petryk, S. A. Bargal, J. E. Gonzalez. "NBDT: Neural-Backed Decision Trees." ICLR, 2021. |
Excitation Dropout: Encouraging Plasticity in Deep Neural Networks[Paper, IJCV]  pdfA. Zunino*, S. A. Bargal*, P. Morerio, J. Zhang, S. Sclaroff, V. Murino. "Excitation Dropout: Encouraging Plasticity in Deep Neural Networks." IJCV, 2021. |
Guided Zoom: Questioning Network Evidence for Fine-grained Classification[Paper, TPAMI]  pdfS. A. Bargal*, A. Zunino*, V. Petsiuk, J. Zhang, K. Saenko, V. Murino, S. Sclaroff. "Guided Zoom: Questioning Network Evidence for Fine-grained Classification." TPAMI, 2021. |
Explainable Deep Classification Models for Domain Generalization[Paper, CVPRW]  pdfA. Zunino*, S. A. Bargal*, R. Volpi, M. Sameki, J. Zhang, S. Sclaroff, V. Murino, K. Saenko. "Explainable Deep Classification Models for Domain Generalization." CVPRW, 2021. |
Disrupting DeepFakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems[Paper, CVPRW]  pdf  code  video demoN. Ruiz, S. A. Bargal, S. Sclaroff. "Disrupting DeepFakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems." CVPRW, 2020. |
DMCL: Distillation Multiple Choice Learning for Multimodal Action Recognition[Paper, WACV]  pdfN. C. Garcia, S. A. Bargal, V. Ablavsky, P. Morerio, V. Murino, S. Sclaroff. "DMCL: Distillation Multiple Choice Learning for Multimodal Action Recognition." WACV, 2020. |
Moments in Time Dataset[Paper, TPAMI]  pdf  Web page  Video SummaryM. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal, T. Yan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, A. Oliva. "Moments in Time Dataset: one million videos for event understanding." TPAMI, 2019. |
Multi-way Encoding for Robustness to Adversarial Attacks[Paper, WACV]  pdfD. Kim, S. A. Bargal, J. Zhang, S. Sclaroff. "Multi-way Encoding for Robustness to Adversarial Attacks." WACV, 2019. |
Top-Down Spatiotemporal Saliency for Visual Grounding[Paper, CVPR]  pdf  Demo  GitHubS. A. Bargal*, A. Zunino*, D. Kim, J. Zhang, V. Murino, S. Sclaroff. "Excitation Backprop for RNNs." Conference on Computer Vision and Pattern Recognition (CVPR), 2018. |
Top-Down Spatial Saliency for Visual Grounding[Paper, IJCV]  pdfJ. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, S. Sclaroff. "Top-Down Neural Attention by Excitation Backprop." International Journal of Computer Vision (IJCV), 2017. |
Action Recognition & Deep Learning[Paper, Journal PR]  pdf   DatasetsS. Ma, S. A. Bargal, J. Zhang, L. Sigal, S. Sclaroff. "Do Less and Achieve More: Training CNNs for Action Recognition Utilizing Action Images from the Web." Journal of Pattern Recognition (PR), 2017. [Poster, Boston University's Graduate Research Symposium]  pdf S. Ma, S. A. Bargal, J. Zhang, L. Sigal, S. Sclaroff. "Do Less and Achieve More: Training CNNs for Action Recognition Utilizing Action Images from the Web." Boston University's Graduate Research Symposium, April 2016. Office of Technology Development Award. |
|
Supervised Hashing[Paper, TPAMI]  pdfF. Cakir*, K. He*, S. A. Bargal, S. Sclaroff. "Hashing with Mutual Information." TPAMI, 2019. [Paper, CVPR]  pdf K. He, F. Cakir, S. A. Bargal, S. Sclaroff. "Hashing as Tie-Aware Learning to Rank." Conference on Computer Vision and Pattern Recognition (CVPR), 2018. [Paper, ICCV]  pdf  GitHub F. Cakir*, K. He*, S. A. Bargal, S. Sclaroff. "MIHash: Online Hashing with Mutual Information." International Conference on Computer Vision (ICCV), 2017. |
|
Online Supervised Hashing[Paper, Journal CVIU]  pdfF. Cakir, S. A. Bargal, S. Sclaroff. "Online Supervised Hashing." Computer Vision and Image Understanding Journal (CVIU), 2016. [Paper, arXiv]  pdf F. Cakir, S. A. Bargal, S. Sclaroff. "Online Supervised Hashing for Ever-Growing Datasets." arXiv, 2015. |
Facial Emotion Recognition from Videos[Paper, ICMI]  pdf  posterS. A. Bargal, E. Barsoum, C. Canton Ferrer, C. Zhang. "Emotion Recognition in the Wild from Videos using Images." International Conference on Multimodal Interaction (ICMI), 2016. Top-three finalists for the EmotiW 2016 Competition. Ranking TBA at ICMI. |
|
Biometrics[Paper, VISAPP]  pdfS. A. Bargal, A. Welles, C. R. Chan, S. Howes, S. Sclaroff, E. Ragan, C. Johnson, C. Gill. "Image-based Ear Biometric Smartphone App for Patient Identification in Field Settings." International Conference on Computer Vision Theory and Applications (VISAPP) , 2015. [Poster, Boston University's Fifth Annual Networking Conference]  pdf S. A. Bargal, A. Welles, C. R. Chan, S. Howes, E. Ragan, C. Johnson, C. Gill. "Project SEARCH: Scanning Ears for Child Health." Fifth annual networking conference by the Office of Technology Development at Boston University: Tech, Drugs, and Rock n' Roll (TDRR), July 2014. Social Entrepreneurship Award. |
Trajectory Analysis[Poster, Boston University's Provost Scholars Day]  pdfS. A. Bargal, M. Goodwin, S. Sclaroff. "A study of Spatial Exploration Patterns of Children." Boston University's Provost Scholars Day, March 2014. Hariri Award for Transformative Computational Science Research. [Poster, Computational Behavioral Science Annual Meeting]  pdf S. A. Bargal, M. Goodwin, S. Sclaroff. "Quantitative Description of Child Trajectories." NSF Expeditions in Computing: Computational Behavioral Science Annual Meeting at Georgia Institute of Technology, Nov 2014. |
|
Facial Expression Recognition from Images[Paper, IPCV]  pdfS. A. Bargal, R. el Kaliouby, A. Goneid, A. Nayfah. "Classification of Mouth Action Units using Local Binary Patterns." International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV) , 2: 956-961, 2012. [Master's Thesis, The American University in Cairo] S. A. Bargal, R. el Kaliouby, A. Goneid. "Classification of Mouth Action Units using Local Binary Patterns." Lambert Academic Publishing (LAP), ISBN 978-3-659- 10663-7, 2012. |