
ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Computer Vision and Image Understanding 0 0 0 (2016) 1–12

Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

Online supervised hashing

Fatih Cakir ∗, Sarah Adel Bargal , Stan Sclaroff

Department of Computer Science, Boston University, Boston, MA 02215, United States

a r t i c l e i n f o

Article history:

Received 15 January 2016

Revised 19 September 2016

Accepted 19 October 2016

Available online xxx

Keywords:

Hashing

Fast similarity search

Approximate nearest neighbors

Retrieval

a b s t r a c t

Fast nearest neighbor search is becoming more and more crucial given the advent of large-scale data in

many computer vision applications. Hashing approaches provide both fast search mechanisms and com-

pact index structures to address this critical need. In image retrieval problems where labeled training

data is available, supervised hashing methods prevail over unsupervised methods. Most state-of-the-art

supervised hashing approaches employ batch-learners. Unfortunately, batch-learning strategies may be

inefficient when confronted with large datasets. Moreover, with batch-learners, it is unclear how to adapt

the hash functions as the dataset continues to grow and new variations appear over time. To handle these

issues, we propose OSH: an Online Supervised Hashing technique that is based on Error Correcting Out-

put Codes. We consider a stochastic setting where the data arrives sequentially and our method learns

and adapts its hashing functions in a discriminative manner. Our method makes no assumption about

the number of possible class labels, and accommodates new classes as they are presented in the incom-

ing data stream. In experiments with three image retrieval benchmarks, our method yields state-of-the-

art retrieval performance as measured in Mean Average Precision, while also being orders-of-magnitude

faster than competing batch methods for supervised hashing. Also, our method significantly outperforms

recently introduced online hashing solutions.

© 2016 Elsevier Inc. All rights reserved.

1

p

s

d

c

r

s

d

s

p

c

m

b

s

a

d

d

s

i

i

r

m

c

e

t

m

i

m

m

m

e

o

a

e

t

i

t

h

1

. Introduction

Given a query, finding similar points in a corpus is a central

roblem in many computer vision applications. The ever-growing

ize of available data collections and the increasing use of high-

imensional representations in describing data, have increased the

omputational complexity for performing similarity search, urging

esearchers to develop search strategies that can be used to explore

uch collections in an efficient and effective manner.

Various similarity search techniques have been proposed to ad-

ress these challenges. Such techniques include tree-based con-

truction algorithms (Arya et al., 1998; Jagadish et al., 2005), which

artition the search space so that only a subset of data points is

onsidered for a query. Another group of techniques employ di-

ensionality reduction methods (Roweis and Saul, 20 0 0; Tenen-

aum et al., 20 0 0), which map the data to a lower-dimensional

pace while preserving the neighborhood structure. A speedup is

chieved in distance computations with the more compact, lower-

imensional representations.

However, these approaches do not scale well with higher-

imensional data representations and larger datasets. One promis-
∗ Corresponding author.

E-mail addresses: fcakir@bu.edu (F. Cakir), sbargal@bu.edu (S.A. Bargal),

claroff@bu.edu (S. Sclaroff).

n

C

d

a

ttp://dx.doi.org/10.1016/j.cviu.2016.10.009

077-3142/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
ng family of approaches is based on hashing, in which the data

s mapped to binary vectors in Hamming space. The binary vector

epresentations permit fast search mechanisms with a very small

emory footprint. Example applications that utilize hashing in-

lude: image annotation (Wang et al., 2014b), visual tracking (Li

t al., 2013), 3D reconstruction (Cheng et al., 2014), video segmen-

ation (Liu et al., 2014), object detection (Dean et al., 2013) and

ultimedia retrieval (Gao et al., 2015; Song et al., 2015; 2013).

Hashing methods can be broadly categorized as data-

ndependent and data-dependent techniques. Data-independent

ethods (Datar et al., 2004; Gionis et al., 1999; Kulis and Grau-

an, 2009) give guarantees on the approximation to particular

etrics, without regard to the dataset that is to be indexed. How-

ver, for certain application settings, distances are defined only

n the available data set; thus, data-dependent solutions (Gong

nd Lazebnik, 2011; Kulis and Darrell, 2009; Lin et al., 2013; Liu

t al., 2012; Wang et al., 2012; Weiss et al., 2008) are formulated

o learn the hashings directly from data.

Data-dependent methods generally outperform data-

ndependent solutions in retrieval tasks primarily due to the

raining phase where desirable properties such as compact-

ess and informativeness of the hash mapping are imposed.

onsequently, the resulting binary codes better capture the data-

istribution. However, this training phase usually involves solving

 complex optimization problem in which the optimum is gener-
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
mailto:fcakir@bu.edu
mailto:sbargal@bu.edu
mailto:sclaroff@bu.edu
http://dx.doi.org/10.1016/j.cviu.2016.10.009
http://dx.doi.org/10.1016/j.cviu.2016.10.009

2 F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

S

f

f

2

t

2

N

o

2

C

t

w

t

l

d

d

m

c

t

u

t

fi

v

o

a

t

2

a

g

e

m

r

s

(

t

c

b

f

H

S

t

o

t

o

t

2

c

f

t

t
ally found via batch learning. This batch learning usually has time

complexity that scales as a quadratic function of the number of

items in the dataset. As a result, it is very costly to re-run the

batch learning with each update of the corpus, in order to adapt

the hash mapping for evolving data distributions. A static corpus

is rarely observed in practice; on the contrary, expansions and

diversifications of the data are very common. Data points asso-

ciated to previously observed or unobserved classes may arrive,

necessitating an update in the hash mapping to accommodate to

this non-stationarity. In such cases, it would be extremely costly

to repeatedly do batch learning from scratch.

Many hashing studies conform to two important properties ini-

tially stated by Weiss et al. (2008) : (1) the domain of the hash

mapping should cover the entire input space and (2) compact

codes should be adequate enough in representing the data. Given

the above discussion, we suggest a third important property: (3)

a hash mapping must be amenable to the variation of a dataset.

In this work, we propose an online supervised method for learn-

ing hash codes that satisfies all three properties. We specifically

consider the problem of retrieving semantically similar neighbors

where the semantics is induced from label information. This prob-

lem is central in many vision tasks including, but not limited to,

label-based image retrieval and annotation (Carneiro et al., 2007;

Guillaumin et al., 2009), semantic segmentation (Liu et al., 2011),

image super resolution (Yue et al., 2013), etc. Supervised hashing

methods have shown to outperform unsupervised methods in se-

mantic retrieval mainly due to leveraging available label informa-

tion.

Our formulation is based on Error Correcting Output Codes

(ECOCs). ECOCs have their origins in coding theory and have been

successfully used to solve many computer vision problems (Jiang

and Tu, 2009; Kittler et al., 2001; Schapire, 1997; Zhao and Xing,

2013). The general theme is to use a distributed representation for

the output space. These representations are carefully selected so

they partition the output space into distant target regions. Errors

made in the system (e.g., channel or classifiers) then can be re-

covered to a certain extent. In the hashing context, an ECOC for-

mulation has several advantages. It allows one to be more spe-

cific regarding the range of the hash mapping. Prior work usually

enforce properties to the hash mapping � through binary con-

straints resulting in complex (NP-hard) optimization problems. In-

stead, we directly construct the elements of the range (set) as de-

sired and then do minimization. ECOCs also enables compensation

for a number of hash function errors during retrieval when the

range of � is carefully constructed. Finally, it provides a constant

time hash-lookup complexity during retrieval.

We consider a stochastic setting in which data items sequen-

tially arrive and the hash mapping is updated accordingly. The data

items may be associated with previously unobserved labels; thus,

we assume that the number of labels is not known a priori. In ex-

perimental evaluation, our proposed method yields accuracy that

is at least comparable to (sometimes even better than) state-of-

the-art batch solutions but is orders-of-magnitude faster in learn-

ing the hash mapping. Most importantly, our method is adaptable

to data variations. This is critical for diversifying and expanding

datasets (please observe Fig. 1). We also significantly outperform

two competing recent online hashing methods (Cakir and Sclaroff,

2015; Huang Long-Kai and Wei-Shi, 2013).

In summary, our contributions are twofold:

1. We introduce an adaptive supervised hashing technique. It is

orders-of-magnitude faster than state-of-the-art batch methods,

while providing comparable or better accuracy. Also, compared

to recently proposed online techniques, our method shows sig-

nificant improvements.
Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
2. Our learning formulation does not require any prior assump-

tions on the label space and is well-suited for expanding

datasets that have new label inclusions. Our learning algorithm

has linear time complexity with respect to number of items in

the dataset. To the best of our knowledge, it is the first super-

vised hashing technique that allows the label space to grow.

The remainder of the paper is organized as follows.

ection 2 briefly surveys related work. Section 3 gives the

ormulation of our methodology. Section 4 provides experiments

ollowed by concluding remarks in Section 5 .

. Related work

In this section, we briefly provide a review of related hashing

echniques.

.1. Hashing

Many hashing methods have been introduced over the years.

otable earlier examples include Locality Sensitive Hashing meth-

ds (Datar et al., 2004; Gionis et al., 1999; Kulis and Grauman,

009) where metric functions such as the Euclidean, Jaccard and

osine distances are approximated. These methods usually have

heoretical guarantees on the approximation quality and conform

ith sub-linear retrieval mechanisms. However, they are confined

o certain metrics as they ignore the data distribution and/or re-

ated meta-data.

Contrary to earlier methods, recent approaches are data-

ependent such that hash functions are directly learned from the

ata. These methods can be considered as binary embeddings that

ap the data into the Hamming space while preserving a spe-

ific neighborhood structure. Such a neighborhood is induced from

he meta-data (e.g., labels) or is completely determined by the

ser (e.g., via similarity-dissimilarity indicators of data pairs). With

he new binary representations, distance computations can be ef-

ciently carried out allowing even a linear search to be done

ery efficiently for large-scale data. These data-dependent meth-

ds can be grouped as follows: rank preserving methods (Norouzi

nd Fleet, 2011; Shakhnarovich et al., 2003), similarity alignment

echniques (Kulis and Darrell, 2009; Lin et al., 2014; Liu et al.,

012; Wang et al., 2012), quantization/PCA based methods (Gong

nd Lazebnik, 2011; He et al., 2013; Jegou et al., 2011), spectral and

raph based solutions (Ge et al., 2014; Strecha et al., 2012; Weiss

t al., 2008; Zhang et al., 2010), and very recently, deep-learning

ethods (Lai et al., 2015; Lin et al., 2015; Xia et al., 2014). We now

eview a few of the prominent methods. For a more comprehen-

ive survey we refer readers to Wang et al. (2014a).

Among similarity alignment solutions, Minimal Loss Hashing

MLH) (Norouzi and Fleet, 2011) considers minimizing a hinge-

ype loss function motivated from structural SVMs. In Binary Re-

onstructive Embeddings (BRE), (Kulis and Darrell, 2009), a kernel-

ased solution is proposed where the goal is to construct hash

unctions by minimizing an empirical loss between the input and

amming space distances via a coordinate descent type algorithm.

upervised Hashing with Kernels (SHK) (Liu et al., 2012) is similar

o BRE such that a kernel-based solution is proposed; but, instead

f preserving the equivalence of the input and Hamming space dis-

ances, the kernel function weights are learned by minimizing an

bjective function based on the binary code inner products.

Another notable line of work includes quantization/PCA based

echniques. Among these, Semi-Supervised Hashing (Wang et al.,

012) learns the hash functions by maximizing the empirical ac-

uracy on labeled data and also the entropy of the generated hash

unctions on any unlabeled data. This is shown to be very similar

o doing a PCA analysis where the hash functions are the eigenvec-

ors of the biased covariance matrix (biased due to the supervised
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12 3

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Fig. 1. A toy example with a hash mapping � : R 2 → H

3 . Supervised learning of this mapping is usually done in batch mode in state-the-art methods. If the dataset grows

and diversifies, the hash mapping that is computed in batch mode become outdated and must be recomputed by re-running the batch optimization from scratch. The batch

learning usually has time complexity that scales as a quadratic function of the number of items in the dataset. As a result, it is very costly to adapt the hash mapping for

evolving data distributions. We introduce an online technique for learning the hash mapping that is easily amenable to such variations and expansions of the dataset.

i

o

t

t

t

(

(

t

i

n

d

e

j

s

t

f

i

p

i

q

i

m

m

a

g

p

b

m

s

f

t

p

m

2

a

o

H

t

i

i

H

i

s

T

d

f

l

t

i

i

s

t

m

t

l

S

w

w

t

c

t

i

m

h

f

3

t

v

3

i

a

s

i

b
nformation). Other noteworthy work includes PCA inspired meth-

ds where the principal components are taken as the hash func-

ions. If “groups” exist within the data (e.g. suitable for clustering)

hen further refining the principal components for better binariza-

ion has shown to be beneficial, e.g., as in Iterative Quantization

 Gong and Lazebnik, 2011).

Spectral Hashing (Weiss et al., 2008) and Self-Taught Hashing

 Zhang et al., 2010) are notable spectral hashing techniques where

he similarity of the instances is preserved as binary codes by solv-

ng a graph Laplacian problem.

Deep learning based approaches have recently gained promi-

ence (Lai et al., 2015; Lin et al., 2015; Xia et al., 2014). Among

eep learning based hashing methods, one notable example is Lai

t al. (2015) where the hash mapping and images features are

ointly learned with a triplet loss formulation. This triplet loss en-

ures that an images is more similar to the second image than to

he third one with respect to their binary codes.

Although these recent data-dependent solutions generally per-

orm better than their data-independent counterparts, the learn-

ng phase takes a considerable amount of time as the time com-

lexity usually grows quadratically with respect to dataset size and

nvolves solving a complex integer programming problem. Conse-

uently, many of these solutions sample only a subset of the train-

ng data to learn the hash mapping. Also these solutions are batch

ethods; therefore, given any new variation in the dataset the

apping must be re-learned from scratch. However, expansions

nd variations in datasets are common in practice. As a dataset

rows, it seems natural that new classes and data items will ap-

ear. A hash mapping should be adaptive to such diversification.

A noteworthy study with similar observations tackles this issue

y proposing a strategy to update the hash functions in a selective

anner with the arrival of new data (Yang et al., 2013). At each

tep, a set of hash functions is selected by considering the hash

unctions’ consistency or contribution in preserving the similari-

ies of the input data. However, this strategy is not online in that

reviously seen examples are stored and learning is done in batch

ode.

.2. Online hashing

Online hashing methods have recently been introduced that are

daptive to data variations by updating the hash mapping in an

nline manner with streaming input.

Huang Long-Kai and Wei-Shi (2013) introduced Online Kernel

ashing, in which an online passive-aggressive algorithm is used
Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
o update the hash functions. The data items sequentially arrive

n pairs with a supervision indicator denoting the similarity of the

tems. The hash functions to be updated are selected based on a

amming loss that reflects the number of bit flips that are needed

n the binary codes. An update is then performed via gradient de-

cent on the selected hashing parameters.

Cakir and Sclaroff (2015) also consider a similar framework.

hey argue that it is difficult to assess which hash function to up-

ate in an online setting as it is the collective effort of all the hash

unctions that yields good retrieval performance. A squared error

oss function is minimized, but, due to the discrepancy between

he retrieval accuracy and the objective function, another criterion

s used to infer which hash functions to update.

Leng et al. (2015) propose approximating the properties of the

ncoming data in a “sketch” matrix. The incoming data arrives in

mall batches and a data-sketch matrix maintains the properties of

his data while offering significant memory savings. A PCA-based

ethod on the data-sketch is then used to derive the hash func-

ions. One crucial limitation of this method is that it discards any

abel information in its formulation.

Although (Cakir and Sclaroff, 2015; Huang Long-Kai and Wei-

hi, 2013) leverage label information, the data items arrive in pairs

ith a similarity indicator denoting the similarity of the items, i.e.,

hether or not the pair share the same class. We argue that cap-

uring the semantic neighborhood via a simple indicator is diffi-

ult, and, instead, we directly utilize any available label informa-

ion. With the usage of ECOCs this allows us to assign target codes

n the Hamming space to labels directly and to learn the hash

apping accordingly, i.e. , we explicitly structure the range of the

ash mapping providing significant improvements in retrieval per-

ormance.

. Online supervised hashing

In this section, we first provide the problem setting and define

he ECOC framework. Afterwards, we formulate our online super-

ised hashing technique.

.1. Framework

Assume the joint space Z � X × Y where X and Y denote the

nput and label spaces, respectively. The goal of hashing is to learn

 mapping � : X → H

b such that a neighborhood structure is pre-

erved in the b -dimensional Hamming space H. This neighborhood

s usually obtained from a particular metric associated with X , la-

el information defined on Y or can be derived jointly from Z .
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

4 F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Fig. 2. Assume two class labels: green and blue . The two target codes c 1 and c 2 are

assigned to these classes, respectively. If the codes are lengthy then identical bi-

partitions can occur, possibly resulting in highly-correlated hash functions for these

bits. In this example, when the first class is assigned value 1, and the second class

is assigned value 0, we get the identical bi-partitions marked using red boxes. The

corresponding hashings h 1 , h 3 , h 5 , h 8 and h b will be correlated if initialized simi-

larly. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

p

p

l

�

E

c

p

b

e

S

r

w

T

e

i

m

e

s

t

c

i

g

i

w

c

t

i

t

w

w

d

w

e

(

t

g

h

c

p

t

I

b

o

t

a

Following recent work, we utilize a set of hash functions for the

mapping, i.e. , �(x) = [h 1 (x) , . . . , h B (x)]
T

where each hash function

h i (·; w i) : X → {−1 , 1 } is responsible for the generation of one bit

and w i is its associated parameter vector.

Our formulation is based on Error Correcting Output Codes

(ECOCs). An ECOC based formulation has several advantages. First,

it allows being specific regarding the range of �. Prior work usu-

ally enforces desirable properties such as compactness and infor-

mativeness on the range (set) without explicitly specifying its ele-

ments. Such properties are generally imposed through integer con-

straints in the objective function leading to a high-complexity op-

timization problem. Instead, we consider specific elements in the

range of � as target codes, thereby enabling an easy imposition

of any desirable property for the mapping. Also, the resulting op-

timization procedure is less demanding without the complex con-

straints. Secondly, the target codes can directly be used as hash

bins when constructing an index. Since the number of target codes

is much smaller than the co-domain of �, this allows a constant

O(|T |) retrieval complexity where T is the set of target codes.

Lastly, if the target codes are selected to have ample bit differences,

a number of hash function errors can be compensated for during

retrieval, thus providing further robustness.

A hashing method also based on ECOCs has been considered

in Cakir and Sclaroff (2014) achieving state-of-the-art performance.

However, the method is batch -making it intractable to re-learn

the hash mapping for each data variation. Also, it is not clear how

the method works for multi-label datasets and most importantly

the label space Y is assumed to be known a priori . In contrast,

we employ ECOCs in an online setting, in which the hash func-

tions are updated sequentially with incoming data. Moreover, we

assume no prior information on the label space Y; the incoming

instances can be associated with previously observed labels or not.

The method has to accommodate newly arrived data with its pos-

sibly never-seen labels. This is an essential feature given the ever-

growing sizes of datasets and the inclusions of initially unknown

classes.

3.2. Methodology

We consider the hash functions to be hyperplanes of the fol-

lowing form:

h (x ; w) = sgn (w

T x) , (1)

where w and x are given in homogeneous form. We assume

a stochastic environment in which data items (x , y) ∈ Z arrives

sequentially. Although our method is applicable to multi-label

datasets, for mathematical brevity, assume | y | = 1 , i.e. , each data

point is associated only with a single label. Each label y is as-

signed a specific target code in the b -dimensional Hamming space

H

b . Let c y ∈ T denote the target code for label y . Intuitively, we

should find a mapping � such that d h (�(x), c y) is minimized,

where d h =

∑ b
i =1 � c y � = h i (x ; w i) � is the Hamming loss. The objec-

tive function then can be formulated as:

J(�) =

∫
Z

d h (�(x) , c y) dP (z)

=

∫
Z

b ∑

i =1

� c yi � = h i (x ; w i) � ︸ ︷︷ ︸
≤l(c yi w

T
i

x)

dP (z) .
(2)

Replacing the 0 \ 1 loss in d h with a margin-based convex upper-

bound l such as the exponential loss, the objective function be-

comes convex. Let us denote this new objective function as ˜ J (�) .

We consider stochastic gradient descent (SGD) to minimize it:

�t+1 ← �t − ηt ∇ �
˜ J (�t) (3)

where � = [w 1 , · · · , w b] and the learning rate ηt is a positive real

number. SGD has been successfully applied to large-scale learning
Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
roblems as it provides huge memory savings and substantial com-

utational time improvements. In our case, it also enables an on-

ine leaning approach for supervised learning of the hash mapping

.

Notice that the objective can be written as ˜ J (�) =
 Z [

∑ T
i =1 l(c yi w

T
i

x)] =

∑ T
i =1 E Z [l(c yi w

T
i

x)] ; thus, Eq. (3) can be

onsidered as finding dichotomizers of a linear form, each

arametrized by w , which minimizes the sum of expected margin-

ased losses. Since the expected losses are in sum form, this is

quivalent to independently minimizing each hash function h i .

pecifically, we can update hashing h i according to the following

ule:

t+1
i

← w

t
i − ηt ∇ w

l(h i (x ; w

t
i) , c yi) . (4)

he choice of T is important. The target codes c should be distant

nough in H

b to increase robustness. The error-correlation among

ndividual hash functions is also crucial for the retrieval perfor-

ance. Even if we find � that minimizes the objective function,

rrors made by the hash functions may be correlated. Each bit po-

ition in a target code c denotes a binary label for the data points;

hus, identical bi-partitions may be produced giving rise to highly-

orrelated dichotomizers as illustrated in Fig. 2 . Therefore, reduc-

ng this correlation is crucial for the success of an ECOC based al-

orithm (Guruswami and Sahai, 1999). In Boosting this problem

s tackled by re-weighting the probability distribution associated

ith the training data, thus enabling the learner to focus on in-

orrectly mapped (i.e., misclassified) instances. For our online set-

ing, we handle the error-correlation in a similar manner and take

nto account previous mappings when updating each hash func-

ion. Formally, h i is updated as follows:

t + 1
i

← w

t
i − ηt ∇ w i

l(H i −1 + h i (x ; w

t
i) ; c y) , (5)

here H i −1 =

∑ i −1
i =1 c yk h k (x

t ; w

t
k
) . With this approach, we can han-

le the error-correlation problem in a way that is not possible

hen applying SGD on � directly. Eq. (4) is inspired by Babenko

t al. (2009) , but our formulation differs from Babenko et al.

2009) in that we incorporate ECOCs in learning.

When a new label is observed, we assign a new target code

o it and proceed with the update as usual. The target code can be

enerated on-the-fly, but to further reduce the computational over-

ead it is helpful to construct a sufficiently large set of codes or a

odebook C, beforehand. The performance of the method also de-

ends on this codebook’s construction, e.g. , the distance between

he target codes must be large enough to ensure error-correction.

n practice, randomly constructing the binary codebook performs

etter than using construction heuristics (Li, 2006). Therefore, in

ur implementation, we use random construction for code genera-

ion. We summarize our Online Supervised Hashing (OSH) learning

lgorithm in Algorithm 1 .
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12 5

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Table 1

Difference between the two hash mappings for indexing data. T is the set containing the

target codes c . N is the number of hashed data items. b is the dimensionality of the Ham-

ming space H. In practice, typically |T | 	 N 	 2 b . When target codes c is used to index data

items, it is enough to compare the target codes to the hashed query �(x q). This results in

an O(|T |) time retrieval complexity. On the other hand, when the output of � is used to

populate the index, Hamming ranking on the hashed data items can be done having linear

time complexity (O(N)) .

Hash using # possible hash bins Retrieval Complexity Hash unlabeled data

Target codes c y |T | Constant O(|T |) No

Mapping � 2 b Linear O(N) Yes

input : Streaming data { (x t , y t) } T
t=1

, Codebook C, ˜η,

Procedure find(T , y) to obtain the target code(s) of

y from target set T ,
Initialize � = [w 1 , . . . , w b] , k = 1 ;

for t ← 1 to T do

if y t � Y then

for each new label y ∈ y t do

Y ← { ̃Y, ̃ y } ;
T ← random codeword c ∗ from C˜ // ;

C ← C˜\ ̃c ∗;

k ← k + 1 ;

end

end

for each y in y t do

c y ← find(�, y) ;

for i ← 1 to b do

w

t+1
i

← w

t
i
− ηt ∇ w

l(H i −1 + ̃ h i (x
t ; w

t
i
) ; c y)

end

end

end

Algorithm 1: OSH: Online supervised hashing.

3

i

t

o

t

h

d

h

p

T

n

d

f

r

i

�

t

i

h

a

h

T

d

s

m

i

c

r

n

i

m

t

h

i

i

t

d

q

i

b

s

o

H

a

4

1

a

R

L

i

e

(

L

a

e

s

e

L

s

a

4

(

(

r

s

t

A

v

g
.3. Populating the index table and retrieval

In this work, the use of ECOCs enables two different ways to

ndex a data item. A data item x can be indexed by using either

he target code c corresponding to its label y (if available) or the

utput of the hash mapping �(x).

OSH- T . If the data instance to be indexed has label informa-

ion, it is beneficial to use the corresponding target code c as its

ash bin when populating the hash table with instances. This in-

exing approach has been shown to compensate for a number of

ash function errors during retrieval, and thus, provides improved

erformance (Cakir and Sclaroff, 2014) when labels are available.

he hash bins correspond with labels and since, in practice, the

umber of hash bins |T | is much smaller than the number of in-

exed data items, the hash structure will typically be dense. There-

ore, to retrieve similar items for a query x q computing a Hamming

ank for all the data items in the index is unnecessary. Instead, it

s enough to consider the bin with Hamming distance closest to

(x q). This retrieval procedure has O(|T |) time complexity. Rather

han ranking all items, one would typically wants to rank data

tems in a specific bin of the hash table. Thus, after the closest

ash bin is identified, the items located in that bin can be ranked

ccording to similarity to the query, based on their �(x).

OSH- �. The hash mapping � can also be used as bins, i.e. , to

ash the data item x , the output �(x) can be used as an index.

his may be done when label information is not provided. The co-

omain of � is the b -dimensional Hamming space; thus, the re-
Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
ulting index structure built with � will typically be sparse with

any empty bins and some items will be associated with unique

ndices (if b is not so small). Consequently, given a query, �(x)

an be computed and hashed items can be retrieved via Hamming

anking. This retrieval has O(N) time complexity where N is the

umber of indexed items, but owing to fast distance computations

n the Hamming space, it is extremely fast.

In practice, it is convenient to use both schemes. In OSH- T , the

ain index structure is constructed from the target codes c , and

he items in specific hash bins are accessed through a secondary

ash table that is populated with �. Given a query, the closest bin

n the main index can be located via Hamming decoding, and the

tems in that bin can be Hamming ranked using �(x). In OSH- �,

he main index structure is populated using � computed for each

ata instance. The closest bins in the index can be retrieved in se-

uence of proximity to the query �(x), until the desired number of

tems is obtained and ranked. Table 1 summarizes the differences

etween these two approaches.

To make our work comparable with competing methods, we as-

ign each item a binary code that is its hash bin index, irrespective

f the hashing scheme. Given a query, we retrieve all items via

amming ranking to compute the mean Average Precision (mAP),

s explained in the next section.

. Experiments

We evaluate our approach on four widely used datasets: CIFAR-

0, SUN397, NUSWIDE and PLACES205. We compare our method

gainst Locality Sensitive Hashing (LSH) (Datar et al., 2004), Binary

econstructive Embedding (BRE) (Kulis and Darrell, 2009), Minimal

oss Hashing (MLH) (Norouzi and Fleet, 2011), Supervised Hash-

ng with Kernels (Liu et al., 2012), Fast Hashing (FastHash) (Lin

t al., 2014), Supervised Hashing with Error Correcting Codes (ECC)

 Cakir and Sclaroff, 2014), Online Kernel Hashing (OKH) (Huang

ong-Kai and Wei-Shi, 2013), Adaptive Hashing (AdaptHash) (Cakir

nd Sclaroff, 2015) and deep learning based hashing methods (Lai

t al., 2015; Lin et al., 2015; Xia et al., 2014). These methods have

hown to outperform earlier hashing techniques such as Weiss

t al. (2008) , Wang et al. (2012) , Zhang et al. (2010) , and Gong and

azebnik (2011) . We refer to our method as OSH in the following

ections: OSH- T when the target codes c are used as the hash bins,

nd OSH- � when � is used to populate the hash table.

.1. Evaluation protocol

For all experiments we follow the protocol used in Liu et al.

2012) , Wang et al. (2012) , and Huang Long-Kai and Wei-Shi

2013) . We consider the Hamming ranking in which instances are

anked based on Hamming distances to the query. This retrieval

cheme has linear complexity but owing to the binary represen-

ations it is extremely fast in modern CPUs. We consider Mean

verage Precision (mAP) scores for a set of queries evaluated at

arying bit lengths and/or mAP values vs. CPU time analysis. Al-

orithmic parameters are set via cross-validation on a small vali-
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

6 F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Table 2

Mean Average Precision for the CIFAR-10 dataset. For all methods, 2K points are used in learning the hash functions. Bold denotes

the best performing method (batch or online) while underline denotes the best online method. The training time (in seconds) includes

time for learning and populating the hash table. Results shown in the CNN section of the table use the 4096-dimensional CNN features,

as described in the text. For the CNN comparison, results for the online methods and the best performing batch method (ECC) are

reported.

Method Mean Average Precision (Random 0.1) Training time (sec)

4 bits 8 bits 12 bits 24 bits 32 bits 64 bits 24 bits

Batch

LSH (Datar et al., 2004) 0 .11 0 .12 0 .12 0 .13 0 .13 0 .14 0 .1

BRE (Kulis and Darrell, 2009) 0 .15 0 .16 0 .15 0 .15 0 .15 0 .16 295

MLH (Norouzi and Fleet, 2011) 0 .14 0 .16 0 .16 0 .15 0 .16 0 .15 280

SHK (Liu et al., 2012) 0 .21 0 .24 0 .26 0 .29 0 .30 0 .32 149

FastHash (Lin et al., 2014) 0 .21 0 .26 0 .28 0 .31 0 .32 0 .34 899

ECC- � (Cakir and Sclaroff, 2014) 0 .15 0 .18 0 .20 0 .24 0 .25 0 .27 355

ECC- T (Cakir and Sclaroff, 2014) 0 .33 0 .39 0 .44 0 .53 0 .55 0 .58 355

Online

OKH (Huang Long-Kai and Wei-Shi, 2013) 0 .13 0 .13 0 .13 0 .14 0 .15 0 .15 8 .3

AdaptHash (Cakir and Sclaroff, 2015) 0 .10 0 .10 0 .12 0 .13 0 .14 0 .14 6 .2

SketchHash (Leng et al., 2015) 0 .14 0 .15 0 .15 0 .16 0 .16 0 .17 1 .3

OSH- � 0 .15 0 .19 0 .20 0 .21 0 .21 0 .22 3 .2

OSH- T 0.32 0.38 0.41 0.48 0.48 0.52 2.9

CNN

ECC- � 0 .31 0 .43 0 .55 0 .64 0 .66 0 .68 1.6K

ECC- T 0 .57 0 .71 0 .74 0 .80 0 .81 0 .83 1.6K

OKH 0 .14 0 .15 0 .18 0 .21 0 .21 0 .26 31

AdaptHash 0 .10 0 .15 0 .15 0 .19 0 .22 0 .26 7 .0

SketchHash 0 .23 0 .24 0 .24 0 .24 0 .26 0 .27 6 .5

OSH- � 0 .30 0 .33 0 .38 0 .45 0 .45 0 .47 13

OSH- T 0 .45 0 .69 0 .71 0 .72 0 .75 0 .76 11

P

t

t

l

N

2

fi
dation set sampled from each dataset (specifically, 4K data points

are used). We choose performance over learning time when select-

ing the type of base learners in the hashing methods. Specifically,

for ECC we use the linear SVM as the base learner for all our ex-

periments. Similarly, we always select the best performing learner

despite the possibility of being much slower for the FastHash tech-

nique. As for the loss function in OSH we utilize the exponential

loss and select a constant step size for ηt = { 0 . 2 , 0 . 5 , 0 . 1 , 0 . 1 } for

CIFAR-10, SUN397, NUSWIDE and PLACES205, respectively.

All experiments were conducted on a workstation with 2.4 GHz

Intel Xeon CPU and 512 GB RAM.

4.2. Datasets and features

In this section we introduce the benchmark image datasets

used in our experimental evaluation, and the descriptors used to

represent the images in these datasets. We consider four bench-

mark datasets:

CIFAR-10: The CIFAR-10 benchmark contains 60K samples

from 10 different categories represented as 512-

dimensional Gist descriptors. We randomly partition

the dataset into two: a training and a test consist-

ing of 59K and 1K samples (100 per class), respec-

tively. 2K instances (20 per class) are sampled from

the training set to learn the hash functions, and the

remaining training data is used to populate the hash

table.

SUN397: The SUN397 dataset contains over 100K samples from

397 categories represented with 512-dimensional Gist

descriptors. We sample 10 instances from each class

to construct our test set. We sample 3.7K instances

(10 instances per class) from the remaining instances

to learn the hash functions while the rest of the train-

ing data is used to populate the hash table.

NUSWIDE: This dataset contains over 270K samples. Each sam-

ple can be associated with multiple labels, corre-

sponding with 81 ground truth concepts. We use the
Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
500-dimensional BoW descriptors provided with the

dataset (Chua et al., 2009) as the feature representa-

tion. As in Chua et al. (2009) , we partition the data

into two parts: 269K and 1K samples for the train-

ing and test sets, respectively. We use 2K samples se-

lected at random from the training set to learn the

hash functions, while the remaining data is used to

populate the hash table. Following (Wang et al., 2012),

the precision metric is evaluated based on whether

the retrieved instances share at least one label with

the query.

LACES205: For large-scale experiments we use the Places dataset.

This dataset is a 2.5 million image subset of the

recently introduced Places benchmark (Zhou et al.,

2014). Images in this dataset belong to one of 205

scene categories. A test set of 4.1K points is con-

structed by sampling 20 images per class. The rest of

the dataset constitutes the training data used to pop-

ulate the hash table. A random subset of 100K im-

ages from this training data is used to learn the hash

functions. Nearly all batch methods were not train-

able for this benchmark; thus, we report results for

online hashing solutions only. We use CNN features

as image representations for PLACES205. These CNN

features are pre-computed from the fc 7 layer of an

AlexNet (Krizhevsky et al., 2012) trained on the Im-

ageNet dataset (Deng et al., 2009), and are reduced to

128 dimensions by PCA. The network is not fine-tuned

on this target dataset.

Similarly to PLACES205, we also use deep feature representa-

ions of the images in CIFAR-10, SUN397 and NUSWIDE. The fea-

ures are extracted from the fully connected layer fc7 of the 16-

ayer VGG16 (Simonyan and Zisserman, 2015) Convolutional Neural

etwork (CNN) pre-trained on the ImageNet dataset (Deng et al.,

009). The features are extracted from a network that is also not

ne-tuned for these experimental datasets. Each image is repre-
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12 7

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Table 3

Mean Average Precision for the SUN397 dataset. For all methods, 3.7K points are used in learning the hash functions. Bold denotes

the best performing method (batch or online) while underline denotes the best online method. The training time (in seconds) includes

time for learning and populating the hash table. Results shown in the CNN section of the table use the 4096-dimensional CNN features,

as described in the text. For the CNN comparison, results for the online methods and the best performing batch method (ECC) are

reported.

Method Mean Average Precision ×10 −1 (Random 0.02) Training time (sec)

4 bits 8 bits 12 bits 24 bits 32 bits 64 bits 24 bits

Batch

LSH (Datar et al., 2004) 0 .031 0 .033 0 .038 0 .044 0 .047 0 .056 0 .2

BRE (Kulis and Darrell, 2009) 0 .046 0 .051 0 .056 0 .058 0 .061 0 .077 146

MLH (Norouzi and Fleet, 2011) 0 .041 0 .046 0 .050 0 .057 0 .060 0 .073 149

SHK (Liu et al., 2012) 0 .050 0 .059 0 .064 0 .068 0 .068 0 .065 2.4K

FastHash (Lin et al., 2014) 0 .034 0 .043 0 .045 0 .050 0 .054 0 .060 4.4K

ECC- � (Cakir and Sclaroff, 2014) 0 .02 0 .04 0 .04 0 .06 0 .07 0 .08 22K

ECC- T (Cakir and Sclaroff, 2014) 0 .061 0 .098 0 .103 0 .144 0 .145 0 .198 22K

Online

OKH (Huang Long-Kai and Wei-Shi, 2013) 0 .034 0 .035 0 .039 0 .045 0 .050 0 .059 32

AdaptHash (Cakir and Sclaroff, 2015) 0 .02 0 .026 0 .040 0 .044 0 .047 0 .057 10

SketchHash (Leng et al., 2015) 0 .046 0 .052 0 .057 0 .063 0 .067 0 .076 2 .3

OSH- � 0 .033 0 .039 0 .042 0 .057 0 .062 0 .078 3 .1

OSH- T 0.061 0.094 0.110 0.135 0.141 0.201 3.2

CNN

ECC- � 0 .03 0 .06 0 .09 0 .158 0 .19 0 .29 16K

ECC- T 0 .07 0 .14 0 .152 0 .238 0 .324 0 .575 14K

OKH 0 .027 0 .028 0 .029 0 .033 0 .034 0 .051 33

AdaptHash 0 .026 0 .029 0 .031 0 .033 0 .036 0 .053 11

SketchHash 0 .027 0 .029 0 .035 0 .041 0 .049 0 .072 13

OSH- � 0 .041 0 .072 0 .071 0 .133 0 .162 0 .250 19

OSH- T 0 .079 0 .133 0 .181 0 .298 0 .402 0 .557 21

Table 4

Mean Average Precision for the NUSWIDE dataset. For all methods, 1.6K points are used in learning the hash functions. Bold denotes

the best performing method (batch or online) while underline denotes the best online method. The training time (in seconds) includes

time for learning and populating the hash table. Results shown in the CNN section of the table use the 4096-dimensional CNN features,

as described in the text. For the CNN comparison, results for the online methods and the best performing batch method (FastHash)

are reported. Note: ECC and OSH- T are not applicable because NUSWIDE is a multi-label dataset.

Method Mean Average Precision (Random ∼ 0.21) Training time (sec)

4 bits 8 bits 12 bits 24 bits 32 bits 64 bits 24 bits

Batch

LSH (Datar et al., 2004) 0 .215 0 .220 0 .225 0 .237 0 .232 0 .268 0 .5

BRE (Kulis and Darrell, 2009) 0 .255 0 .261 0 .265 0 .274 0 .277 0 .286 288

MLH (Norouzi and Fleet, 2011) 0 .243 0 .259 0 .264 0 .267 0 .271 0 .279 310

SHK (Liu et al., 2012) 0 .248 0 .265 0 .263 0 .281 0 .287 0 .29 68

FastHash (Lin et al., 2014) 0 .28 0 .291 0 .293 0 .296 0 .302 0 .304 201

Online

OKH (Huang Long-Kai and Wei-Shi, 2013) 0 .219 0 .22 0 .231 0 .232 0 .236 0 .24 13

AdaptHash (Cakir and Sclaroff, 2015) 0 .215 0 .216 0 .232 0 .234 0 .236 0 .237 10

SketchHash (Leng et al., 2015) 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01 1

OSH- � 0.261 0.266 0.274 0.281 0.283 0.293 4.6

CNN

FastHash 0 .477 0 .533 0 .549 0 .564 0 .568 0 .577 6.8K

OKH 0 .224 0 .245 0 .248 0 .256 0 .279 0 .304 30

AdaptHash 0 .225 0 .239 0 .248 0 .266 0 .288 0 .314 14

SketchHash 0 .01 0 .01 0 .01 0 .01 0 .01 0 .01 5

OSH- � 0 .414 0 .438 0 .465 0 .489 0 .504 0 .51 17

s

t

t

f

f

4

f

u

o

v

1

N

m

o

n

p

t

a

o

a

w

b

a
ented by a 4096-dimensional feature vector. These features are

hen used in place of the Gist and BoWs features in experiments

hat test OSH, the other online hashing methods, and the best per-

orming batch method for each benchmark dataset using the deep

eatures as input.

.2.1. Initialization and populating the hash table

For the online methods OKH, AdaptHash and OSH, LSH is used

or initialization of the hashing parameters. The sets of samples

sed to learn the hash functions are selected randomly with-

ut any class consideration. In addition, when reporting the mAP

s. CPU time, the online learning is continued until 59K, 100K,

00K and 100K samples are observed for the CIFAR-10, SUN397,
Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
USWIDE and PLACES205 datasets, respectively. Some methods

ean-center and unit-normalize the data; thus, to put all meth-

ds on equal footing, we also mean-center the data and do unit

ormalization as preprocessing.

As stated in Section 3.3 , two different schemes are possible to

opulate a hash table. In OSH- T , each data item x is indexed using

he target code c corresponding to its label (if label information is

vailable). In OSH- �, each data item is indexed using the output

f the mapping �(x). We use an analogous annotation of ECC- T
nd ECC- � for ECC. For CIFAR-10, SUN397 and PLACES205 datasets,

e can evaluate and compare performance of OSH and ECC using

oth schemes. For NUSWIDE, since multiple labels can be associ-

ted with a data item, we simply use OSH- � as the index when
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

8 F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Fig. 3. Mean Average Precision with respect to CPU time for CIFAR-10 (top), SUN397

(middle) and NUSWIDE (bottom) datasets in which for OSH the online learning is

continued for 59K, 100K and 100K points, respectively. For all other methods the

dots represents the training time with 2K, 3.7K and 2K samples. Note that Sketch-

Hash is not included in final figure.

p

a

4

c

m

a

i

q

d

4

t

m

o

S

o

t

c

m

m

a

a

c

w

m

b

a

o

h

a

t

w

c

c

b

m

t

h

i

r

t

f

W

a

h

b

t

s

m

b

a

O

t

p

m

a

c

Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
opulating the hash table. Note that ECC (both −� and −T) is not

pplicable on multi-label datasets.

.3. Results

In this section we present the results of our experiments. We

ompare the performance of OSH, our proposed online hashing

ethod, to state-of-the-art online and batch methods. We then

nalyze the precision/time tradeoff of our method, and compare

t against other online and batch methods. Finally, we examine

ueries and their corresponding retrieved images using our two in-

exing schemes: OSH- � and OSH- T .

.3.1. Performance comparisons

We present Mean Average Precision (mAP) performance and

ime performance comparisons between our online hashing

ethod and other state-of-the-art online and batch hashing meth-

ds. This is done for the three benchmark datasets: CIFAR-10,

UN397, and NUSWIDE.

Table 2 reports the mAP values for CIFAR-10. The top section

f the table reports results for the batch methods. We observe

hat ECC- T performs best among the batch methods for all length

odes. The middle section of Table 2 reports results for the online

ethods. We can see that our method, OSH attains best perfor-

ance among the online methods. More importantly, our method

chieves these results with substantial time improvements. For ex-

mple, it takes only 2.9 s to learn the hash function parameters

ompared to 355 s of the best performing batch method ECC- T ,
hile attaining comparable results. Another significant improve-

ent is the memory footprint of the binary codes. Even with 4

its, our method achieves comparable performance to state-of-the-

rt techniques with 64-bits (excluding ECC- T).
ECC- T performs better than ECC- � and other competing meth-

ds because ECC- T leverages class labels while populating the

ash table, i.e., when indexing a data item, if label information is

vailable, the corresponding ECOC is used. This allows compensa-

ion for hash function errors during retrieval. All other competing

ork (excluding OSH) cannot leverage class labels to assign hash

odes while populating the hash table, since there is no unique

ode for a particular label. Our OSH technique also can leverage la-

el information while populating the hash table, if that label infor-

ation is available (corresponding to OSH- T in the results). Note

hat, even when label information is not used in populating the

ash table (i.e. , OSH- �) superior results are achieved vs. compet-

ng online hashing methods.

We also evaluated performance when CNN features are used to

epresent the images instead of Gist. These results are reported in

he bottom section of Table 2 . Here we observe that using CNN

eatures results in a significant boost in the mAP performance.

e compare the best performing batch method (ECC- T) against

ll online methods. Our method, OSH, remains the best online

ashing solution while attaining mAP that is competitive with the

est performing batch method for this dataset, ECC- T . The training

ime increases when using CNN features due to the higher dimen-

ionality of the feature representation, as expected. However, our

ethod again has learning times that are a fraction of the best

atch method: 1.6K vs. 11 s.

Table 3 reports results for the SUN397 dataset. From the batch

nd online sections of the table, we observe that our method,

SH, is the best online hashing method. It is a strong competi-

or for the batch method ECC- T , sometimes even exceeding its

erformance. Again our method achieves these results orders-of-

agnitude faster compared to other solutions. When CNN features

re used, we again observe a significant boost in performance. We

ompare performance of the best-performing batch method vs. all
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12 9

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Fig. 4. Mean Average Precision with respect to CPU time for PLACES205 datasets in

which online learning is continued for 100K points. Random performance value for

mAP is ∼ 0.004.

o

t

i

o

m

m

f

w

O

u

h

e

b

p

s

s

l

c

q

s

w

t

i

i

o

b

c

4

m

t

d

t

p

s

m

b

m

s

F

i

s

q

2

fi

f the online methods. Using CNN features, our OSH technique ei-

her achieves comparable results with ECC- T , the best compet-

ng batch method or exceeds it. Again these results are achieved

rders-of-magnitude faster: 14K vs. 21 s, for the ECC- T vs. our OSH

ethod, respectively.

Table 4 reports results for the NUSWIDE dataset. For this bench-

ark, our OSH technique surpasses all methods, batch or online,

or all bit lengths, excluding FastHash. When using CNN features,

e compare the best batch method against all online methods.

SH remains the best online hashing solution and a close runner-

p to the best batch method. Training time increases due to the

igher dimensionality of feature representation, as expected. How-
ig. 5. Retrieval when � is used to populate the hash table: OSH- �. Seven sample test im

mages: UnderwaterCoralReef, Bedroom, SnowyMountain, Beach, Cockpit, LivingRoom, Kitche

imilarity to the query image; going from left to write similarity with query image decre

uery image. Bedroom query retrievals include 6/10 images labeled HotelRoom. Beach que

/10 images labeled Parlor , 1/10 image labeled DiningRoom , 1/10 labeled HomeOffice , and

gure legend, the reader is referred to the web version of this article.)

Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
ver, our method again has learning times that are a fraction of the

est method; 0.57 mAP in 6.8K seconds for FastHash-CNN com-

ared to 0.51 mAP in 17 s. We observed that SketchHash performs

ignificantly worse, even with lengthier codes or with CNN de-

criptors. We believe this might be due to NUSWIDE being a multi-

abel dataset and that SketchHash’s unsupervised formulation is in-

apable of capturing the semantics of a multi-labeled dataset ade-

uately. Note that ECC and OSH- T are not applicable for NUSWIDE

ince it is a multi-label dataset.

For all benchmarks we observe state-of-the-art performance

ith substantial time and memory savings. Our OSH method ei-

her achieves top performance or is a close runner-up, while be-

ng orders-of-magnitude faster than competing methods and us-

ng more compact codes. Being online, OKH and AdaptHash also

ffer similar advantages with respect to computational efficiency,

ut only perform slightly better than LSH in terms of retrieval ac-

uracy.

.3.2. mAP vs. tme tradeoff

In this section we study more closely the tradeoff between

ean Average Precision (mAP) and CPU time.

The graphs in Fig. 3 report the mAP value vs. CPU time for

he online and batch hashing methods, for the three benchmark

atasets. The test sets of the CIFAR-10 and SUN397 datasets con-

ain instances sampled from all classes; therefore, for evaluation

urposes, we do indexing after all possible labels have been ob-

erved. This occurs early in the online process.

As can be observed in the graphs of Fig. 3 , the mAP perfor-

ance of OSH surpasses nearly all other techniques in all three

enchmarks within a fraction of their learning time. The perfor-

ance of OSH either improves as more training examples are ob-

erved or oscillates around a particular value. Oscillation may be
ages of different classes for the SUN397 dataset are shown. (a) shows the 7 query

n , respectively. (b) shows 10 retrieved images for each class that possess highest

ases. Retrieved images that are marked in red belong to a different class than the

ry retrievals include 1/10 images labeled coast. LivingRoom query retrievals include

 1/10 labeled ConferenceRoom . (For interpretation of the references to color in this

ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

10 F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

Fig. 6. Retrieval when the target codes from the set T are used as the hash bins for the SUN397 dataset: OSH- T . (a) The images residing unordered in the hash bins; (b) the

top 10 images retrieved using OSH- T are now ranked according to �. The images belong to these classes: Kitchen, AirportTerminal, Closet, PhoneBooth, PoolroomEstablishment,

Cockpit , respectively. 10 retrieved images for each query that possess highest similarity to the query image. Note that all images retrieved belong to the correct class of the

query image.

b

t

S

i

m

p

e

i

m

S

4

s

e

due to the constant step size selection in Eq. (5) . 1 The selection

of η is mostly application-specific, and related to the knowledge

of whether the instances are sampled from a stationary or non-

stationary distribution. For example, if the data points are believed

to be sampled from a non-stationary distribution, a diminishing

step size will not allow the hash functions to adapt to such a vari-

ation.

4.3.3. Experiments with the Places205 dataset

Having established our methods superiority in previous bench-

marks we now conduct further tests on a much larger dataset:

PLACES205. This dataset has 2.5 million images over 205 cate-

gories. We use 100K training points to learn our hash mapping and

plot the retrieval performance in terms of mean Average Precision

(mAP) over CPU Time. It is impractical to train most batch meth-

ods on such a large dataset, due to the space complexity of these
1 Also, the log scale used for the x-axis is another reason. We used log-scale to

visually shrink the large discrepancy of CPU times between the methods.

s

t

p

Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
atch methods. For this reason, we compare against online solu-

ions only.

In Fig. 4 we observe OSH- T is the best online solution while

ketchHash is the runner-up. Though SketchHash converges early

n the learning process, our method’s performance increases as

ore data is seen. Learning time for SketchHash is less com-

ared to our solution as it processes 100K instances faster; how-

ver, at any CPU time value our method outperforms SketchHash

n retrieval performance. OSH- � also performs well nearing, 0.1

AP value at 100K points, albeit it falls short against OSH- T and

ketchHash. Finally, OKH and AdaptHash perform poorly.

.3.4. Retrieval results

We now examine images retrieved for particular image queries,

o that we may gain some insight into where and why retrieval

rrors may occur. We do this for OSH- � and OSH- T .
In Fig. 5 , we present example retrieval results for OSH- � for

everal image queries from the SUN397 dataset. The top 10 re-

rievals of seven query images from seven distinct categories are

resented. Most of the retrieved images belong to the same class
ashing, Computer Vision and Image Understanding (2016),

http://dx.doi.org/10.1016/j.cviu.2016.10.009

F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12 11

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

a

t

c

a

a

F

q

u

a

w

r

t

b

t

e

i

2

t

o

o

o

l

w

w

f

fi

4

c

m

2

c

t

Z

e

t

w

e

t

b

t

a

m

b

c

t

d

t

r

e

v

r

(

s

5

t

t

s

p

t

5

a

O

s

t

f

c

c

l

c

a

i

v

N

q

k

f

l

a

T

R

A

B

C

C

C

C

C

D

D

D

G

G
G

G

G

G

H

H

J

J

J

s the query image. Interestingly, many of the retrieved images

hat do not belong to the same class appear visually similar, and

an be from semantically related classes. Examples include: an im-

ge retrieved from class Coast for a query of class Beach , and im-

ges retrieved from the class HotelRoom to the class Bedroom .

In Fig. 6 , we present retrieval results for our method OSH- T .
ig. 6 (a) shows the top 10 retrieved images for some example

uery images in the SUN397 dataset. Since the index is populated

sing OSH- T , all retrieved images have the same similarity score

nd so they are presented in random rank-order in the figure.

In order to further improve the ranking of the OSH- T retrievals,

e can rank them according to �. Note that ranking the OSH- T
etrievals using � does not change the mAP of OSH- T as all re-

rievals are from the same class.

Fig. 6 (b), shows the same 10 retrieved images for each query,

ut this time re-ranked according to �. While it is subjective

o eyeball the image similarities, some interesting observations

merge: In row 1 of Fig. 6 (b) the first image has the most sim-

lar colors and orientation compared to the query image. In row

 of Fig. 6 (b) the least similar image is a closeup on people rather

han depicting an airport terminal space as in the query image and

ther retrievals that are ranked higher. In row 3 of Fig. 6 (b), filled

pen closets appear to have higher similarity than empty or closed

nes. In row 4 of Fig. 6 (b), the blue phone booth is being ranked

east similar compared to all the red ones. In row 5 of Fig. 6 (b),

ith the exception of one image, green pool tables are retrieved

ith higher similarity that others. Finally, in row 6 of Fig. 6 (b) all

rontal view cockpits are retrieved with higher similarity than the

nal two, which are not frontal views.

.4. Comparison against deep learning hashing methods

Deep learning based hashing methods have been introduced re-

ently in which features specific to a target domain and the hash

apping are simultaneously learned (Lai et al., 2015; Lin et al.,

015; Xia et al., 2014). We compare our technique against such re-

ently introduced methods. We use deep features extracted from

he fully connected layer fc7 of the 16-layer VGG16 (Simonyan and

isserman, 2015) CNN pre-trained on the ImageNet dataset (Deng

t al., 2009). The features we use are extracted from a network

hat is not fine-tuned for the experimental datasets listed in this

ork. The length of the binary codes is selected to be 48 to match

xperiments of these works. [33] is based on the AlexNet architec-

ure with an introduced latent layer between fc7 and fc8 , [34] is

ased on the AlexNet architecture, and [39] use their own archi-

ecture of eight stacked convolution layers, which feed into divide-

nd-encode modules to divide intermediate image features into

ultiple branches, with each branch corresponding to one hash

it. In all these networks, training occurs on the target task. In

ontrast, we compute CNN features from a VGG architecture pre-

rained on ImageNet and do not fine-tune using images from our

ataset or for our target task. As a result of the different architec-

ures and fine-tuning vs. not fine-tuning, these methods are not di-

ectly comparable with experiments presented in Tables 2–4 . How-

ver, these results are discussed further here.

In the experiments with the CIFAR-10 dataset, we obtain mAP

alues of 0.77 and 0.795 when 5K and 50K images are used,

espectively. Compare this to 0.58 (32% improvement) and 0.52

 48% improvement) over Lai et al. (2015) and Xia et al. (2014) , re-

pectively. The performance increases to 0.795 when trained with

0K images. Our method does not demonstrate better performance

han Lin et al. (2015) which reports a 0.89 mAP value; but, our

echnique is orders-of-magnitude faster than these deep learning

olutions, achieving these performance values with a hash map-

ing learned in 50 and 500 seconds for 5K and 50K points, respec-

ively. Whereas these methods require hours of GPU training.
Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
. Conclusion

We proposed an online supervised hashing technique that is

daptable to continuing growth and diversification of datasets. Our

SH method does not assume any prior knowledge on the label

pace of the data. OSH achieves state-of-the-art performance on

hree image retrieval benchmarks and it is orders-of-magnitude

aster than batch methods. Our method attains mean average pre-

ision (mAP) that is comparable to state-of-the-art, but using more

ompact codes. Our method significantly outperforms previous on-

ine hashing approaches, while also being occasionally faster in its

omputation.

Online hashing methods are important due to their ability to

dapt to variations in datasets as they grow and diversify. Equally

mportant, online hashing methods offer superior time complexity

s. batch methods for learning with respect to dataset input size.

evertheless, such schemes have their own challenges. With fre-

uent updates in hash functions, the index must also be frequently

ept up-to-date. This may cause inefficiencies in the system; there-

ore, solutions must be developed to alleviate this particular prob-

em. Also, it could be advantageous if ECOC assignment were to

ccount for compound or hierarchical structure of the label space.

hese are topics for future work.

eferences

rya, S. , Mount, D.M. , Netanyahu, N.S. , Silverman, R. , Wu, A.Y. , 1998. An optimal

algorithm for approximate nearest neighbor searching fixed dimensions. J. of
the ACM .

abenko, B. , Yang, M.-H. , Belongie, S. , 2009. A family of online boosting algorithms.

In: IEEE International Conf. on Computer Vision Workshops (ICCV Workshops) .
akir, F. , Sclaroff, S. , 2014. Supervised hashing with error correcting codes. In: Proc.

ACM Conf. on Multimedia .
akir, F. , Sclaroff, S. , 2015. Adaptive hashing for fast similarity search. In: IEEE Inter-

national Conf. on Computer Vision (ICCV). IEEE .
arneiro, G. , Chan, A.B. , Moreno, P.J. , Vasconcelos, N. , 2007. Supervised learning of

semantic classes for image annotation and retrieval. IEEE Trans. on Pattern Anal-

ysis and Machine Intelligence (PAMI) .
heng, J. , Leng, C. , Wu, J. , Cui, H. , Lu, H. , 2014. Fast and accurate image matching

with cascade hashing for 3d reconstruction. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) .

hua, T.-S. , Tang, J. , Hong, R. , Li, H. , Luo, Z. , Zheng, Y.-T. , 2009. Nus-wide: a real–
world web image database from national university of singapore. In: In Proc. of

ACM Conf. on Image and Video Retrieval (CIVR’09) .

atar, M. , Immorlica, N. , Indyk, P. , Mirrokni, V.S. , 2004. Locality-sensitive hashing
scheme based on p-stable distributions. In: Proc. of Symposium on Computa-

tional Geometry (SCG) .
ean, T. , Ruzon, M.A. , Segal, M. , Shlens, J. , Vijayanarasimhan, S. , Yagnik, J. , 2013. Fast,

accurate detection of 10 0,0 0 0 object classes on a single machine. In: Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR) .

eng, J. , Dong, W. , Socher, R. , Li, L.-J. , Li, K. , Fei-Fei, L. , 2009. Imagenet: a large-scale

hierarchical image database. CVPR .
ao, L. , Song, J. , Zou, F. , Zhang, D. , Shao, J. , 2015. Scalable multimedia retrieval by

deep learning hashing with relative similarity learning. In: Proceedings of the
23rd ACM International Conference on Multimedia .

e, T. He, K., Sun, J., 2014. Graph cuts for supervised binary coding.
ionis, A. , Indyk, P. , Motwani, R. , 1999. Similarity search in high dimensions via

hashing. In: Proc. International Conf. on Very Large Data Bases (VLDB) .

ong, Y. , Lazebnik, S. , 2011. Iterative quantization: a procrustean approach to learn-
ing binary codes. In: Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion (CVPR) .
uillaumin, M. , Mensink, T. , Verbeek, J. , Schmid, C. , 2009. Tagprop: discriminative

metric learning in nearest neighbor models for image auto-annotation. In: Proc.
IEEE International Conf. on Computer Vision (ICCV) .

uruswami, V. , Sahai, A. , 1999. Multiclass learning, boosting, and error-correcting

codes. COLT .
e, K. , Wen, F. , Sun, J. , 2013. K-means hashing: an affinity-preserving quantization

method for learning binary compact codes. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) .

uang Long-Kai, Q.Y. , Wei-Shi, Z. , 2013. Online hashing. In: Proc. International Joint
Conf. on Artificial Intelligence (IJCAI) .

agadish, H.V. , Ooi, B.C. , Tan, K.-L. , Yu, C. , Zhang, R. , 2005. iDistance: an adaptive
b+-tree based indexing method for nearest neighbor search. ACM Trans. on

Database Systems .

egou, H. , Douze, M. , Schmid, C. , 2011. Product quantization for nearest neighbor
search. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 33 .

iang, J. , Tu, Z. , 2009. Efficient scale space auto-context for image segmentation
and labeling. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR) .
ashing, Computer Vision and Image Understanding (2016),

http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0001
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0002
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0003
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0003
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0003
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0004
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0004
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0004
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0005
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0005
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0005
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0005
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0005
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0006
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0006
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0006
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0006
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0006
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0006
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0007
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0008
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0008
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0008
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0008
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0008
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0009
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0010
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0011
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0012
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0012
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0012
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0012
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0013
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0013
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0013
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0014
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0014
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0014
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0014
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0014
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0015
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0016
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0017
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0017
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0017
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0018
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0019
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0019
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0019
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0019
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0020
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0020
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0020
http://dx.doi.org/10.1016/j.cviu.2016.10.009

12 F. Cakir et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–12

ARTICLE IN PRESS

JID: YCVIU [m5G; November 8, 2016;11:36]

S

S

T

W

W

W

X

Y

Z

Z

Kittler, J. , Ghaderi, R. , Windeatt, T. , Matas, J. , 2001. Face verification using error
correcting output codes. In: Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR) .
Krizhevsky, A. , Sutskever, I. , Hinton, G.E. , 2012. Imagenet classification with deep

convolutional neural networks. In: Advances in Neural Information Processing
Systems, pp. 1097–1105 .

Kulis, B. , Darrell, T. , 2009. Learning to hash with binary reconstructive embeddings.
In: Proc. Advances in Neural Information Processing Systems (NIPS) .

Kulis, B. , Grauman, K. , 2009. Kernelized locality-sensitive hashing for scalable image

search. In: Proc. IEEE International Conf. on Computer Vision (ICCV) .
Lai, H. , Pan, Y. , Liu, Y. , Yan, S. , 2015. Simultaneous feature learning and hash coding

with deep neural networks. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) .

Leng, C. , Wu, J. , Cheng, J. , Bai, X. , Lu, H. , 2015. Online sketching hashing. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) .

Li, L. , 2006. Multiclass boosting with repartitioning. In: Proc. International Conf. on

Machine Learning (ICML) .
Li, X. , Shen, C. , Dick, A. , van den Hengel, A. , 2013. Learning compact binary codes for

visual tracking. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) .

Lin, G. , Shen, C. , Shi, Q. , van den Hengel, A. , Suter, D. , 2014. Fast supervised hashing
with decision trees for high-dimensional data. In: Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR) .

Lin, G. , Shen, C. , Suter, D. , van den Hengel, A. , 2013. A general two-step approach to
learning-based hashing. In: Proc. IEEE International Conf. on Computer Vision

(ICCV) .
Lin, K. , Yang, H.-F. , Hsiao, J.-H. , Chen, C.-S. , 2015. Deep learning of binary hash codes

for fast image retrieval. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops .

Liu, C. , Yuen, J. , Torralba, A. , 2011. Nonparametric scene parsing via label transfer.

IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) .
Liu, J.W. , Wei , Ji, R. , Jiang, Y.-G. , Chang, S.-F. , 2012. Supervised hashing with kernels..

In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) .
Liu, X. , Tao, D. , Song, M. , Ruan, Y. , Chen, C. , Bu, J. , 2014. Weakly supervised multi-

class video segmentation. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) .

Norouzi, M. , Fleet, D.J. , 2011. Minimal loss hashing for compact binary codes.. In:

Proc. International Conf. on Machine Learning (ICML) .
Roweis, S.T. , Saul, L.K. , 20 0 0. Nonlinear dimensionality reduction by locally linear

embedding. Science .
Please cite this article as: F. Cakir et al., Online supervised h

http://dx.doi.org/10.1016/j.cviu.2016.10.009
chapire, R.E. , 1997. Using output codes to boost multiclass learning problems. In:
Proc. International Conf. on Machine Learning (ICML) .

Shakhnarovich, G. , Viola, P. , Darrell, T. , 2003. Fast pose estimation with parameter
sensitive hashing. In: Proc. IEEE International Conf. on Computer Vision (ICCV) .

Simonyan, K. , Zisserman, A. , 2015. Very deep convolutional networks for large-scale
image recognition. ICLR .

Song, J. , Gao, L. , Yan, Y. , Zhang, D. , Sebe, N. , 2015. Supervised hashing with pseudo
labels for scalable multimedia retrieval. In: Proceedings of the 23rd ACM Inter-

national Conference on Multimedia .

ong, J. , Yang, Y. , Huang, Z. , Shen, H.T. , Luo, J. , 2013. Effective multiple feature hash-
ing for large-scale near-duplicate video retrieval. IEEE Transactions on Multime-

dia .
Strecha, C. , Bronstein, A.M. , Bronstein, M.M. , Fua, P. , 2012. Ldahash: improved

matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI)
34 (1), 66–78 .

enenbaum, J.B. , Silva, V. , Langford, J.C. , 20 0 0. A global geometric framework for

nonlinear dimensionality reduction. Science .
Wang, J. , Kumar, S. , Chang, S.-F. , 2012. Semi-supervised hashing for large-scale

search.. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) .
ang, J., Shen, H. T., Song, J., Ji, J., 2014a. Hashing for similarity search: a survey.

CoRR abs/1408.2927.
ang, Q. , Shen, B. , Wang, S. , Li, L. , Si, L. , 2014. Binary codes embedding for fast

image tagging with incomplete labels. In: Proc. European Conf. on Computer

Vision (ECCV) .
eiss, Y. , Torralba, A. , Fergus, R. , 2008. Spectral hashing. In: Proc. Advances in Neu-

ral Information Processing Systems (NIPS) .
ia, R. , Pan, Y. , Lai, H. , Liu, C. , Yan, S. , 2014. Supervised hashing for image retrieval

via image resentation learning.. In: Conference on Artificial Intelligence (AAAI) .
ang, Q. , Huang, L.-K. , Zheng, W.-S. , Ling, Y. , 2013. Smart hashing update for fast

response.. In: Proc. International Joint Conf. on Artificial Intelligence (IJCAI) .

Yue, H. , Sun, X. , Yang, J. , Wu, F. , 2013. Landmark image super-resolution by retriev-
ing web images. IEEE Trans. on Image Processing .

hang, D. , Wang, J. , Cai, D. , Lu, J. , 2010. Self-taught hashing for fast similarity search.
In: Proc. ACM SIGIR Conf. on Research & Development in Information Retrieval

(SIGIR) .
hao, B. , Xing, E.P. , 2013. Sparse output coding for large-scale visual recognition. In:

Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) .

Zhou, B. , Lapedriza, A. , Xiao, J. , Torralba, A . , Oliva, A . , 2014. Learning deep features
for scene recognition using places database. In: Advances in Neural Information

Processing Systems, pp. 4 87–4 95 .
ashing, Computer Vision and Image Understanding (2016),

http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0021
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0021
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0021
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0021
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0021
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0022
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0022
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0022
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0022
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0023
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0023
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0023
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0024
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0024
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0024
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0025
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0026
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0027
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0027
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0028
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0028
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0028
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0028
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0028
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0029
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0030
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0031
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0032
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0033
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0034
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0035
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0035
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0035
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0036
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0036
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0036
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0037
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0037
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0038
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0038
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0038
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0038
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0039
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0039
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0039
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0040
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0041
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0042
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0043
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0043
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0043
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0043
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0044
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0045
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0046
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0047
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0048
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0049
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0050
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0051
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0051
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0051
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0052
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0052
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0052
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0052
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0052
http://refhub.elsevier.com/S1077-3142(16)30160-6/sbref0052
http://dx.doi.org/10.1016/j.cviu.2016.10.009

	Online supervised hashing
	1 Introduction
	2 Related work
	2.1 Hashing
	2.2 Online hashing

	3 Online supervised hashing
	3.1 Framework
	3.2 Methodology
	3.3 Populating the index table and retrieval

	4 Experiments
	4.1 Evaluation protocol
	4.2 Datasets and features
	4.2.1 Initialization and populating the hash table

	4.3 Results
	4.3.1 Performance comparisons
	4.3.2 mAP vs. tme tradeoff
	4.3.3 Experiments with the Places205 dataset
	4.3.4 Retrieval results

	4.4 Comparison against deep learning hashing methods

	5 Conclusion
	 References

