
Online Supervised Hashing for Ever-Growing Datasets

Fatih Cakir Sarah Adel Bargal Stan Sclaroff
Boston University
Boston, MA 02215

{fcakir, sbargal, sclaroff}@cs.bu.edu

Abstract

Supervised hashing methods are widely-used for near-
est neighbor search in computer vision applications. Most
state-of-the-art supervised hashing approaches employ
batch-learners. Unfortunately, batch-learning strategies
can be inefficient when confronted with large training
datasets. Moreover, with batch-learners, it is unclear how
to adapt the hash functions as a dataset continues to grow
and diversify over time. Yet, in many practical scenarios the
dataset grows and diversifies; thus, both the hash functions
and the indexing must swiftly accommodate these changes.
To address these issues, we propose an online hashing
method that is amenable to changes and expansions of the
datasets. Since it is an online algorithm, our approach of-
fers linear complexity with the dataset size. Our solution is
supervised, in that we incorporate available label informa-
tion to preserve the semantic neighborhood. Such an adap-
tive hashing method is attractive; but it requires recomput-
ing the hash table as the hash functions are updated. If
the frequency of update is high, then recomputing the hash
table entries may cause inefficiencies in the system, espe-
cially for large indexes. Thus, we also propose a framework
to reduce hash table updates. We compare our method to
state-of-the-art solutions on two benchmarks and demon-
strate significant improvements over previous work.

1. Introduction
Nearest neighbor search lies at the heart of many com-

puter vision applications. Given a query xq and a refer-
ence set X = {xi}Ni=1, the problem is to find x∗ such
that x∗ = argminx∈Xd(x,xq) where d is a particular
distance. There are two aspects to the problem: efficient
search strategies given the set X and efficient distance com-
putations. The advent of large-scale datasets and the us-
age of high-dimensional representations have dramatically
increased the time and space complexity of search and
distance computations. This has inspired researchers to
develop techniques that alleviate the ever-mounting com-
putational burden, e.g., tree-based construction algorithms

[1, 13] and dimensionality reduction methods [30, 26].
These approaches either do not perform well with high

dimensions or do not scale well to large datasets. A widely-
used approach that does not have the aforementioned draw-
backs is hashing, in which the memory footprint of the data
(or related structures) is significantly reduced, the distance
computation is extremely efficient, and sub-linear search
mechanisms are available.

Many hashing approaches have been proposed that pre-
serve similarities as induced by particular metrics and/or
available semantic information. However, these methods
are generally batch learners: the learning phase takes con-
siderable time and the computations usually grow quadrat-
ically with data input size. It is not clear how to adapt the
hash codes when a new set of data items arrives. Most pro-
cedures may even necessitate learning from scratch. As
a result, they are unable to swiftly adapt to changes in
datasets. Yet, variations and expansions in datasets are com-
mon; making techniques that scale well with the input and
are amenable to such variations critical.

In this paper, we propose an online supervised hashing
method that maintains the semantic neighborhood and sat-
isfies the aforementioned properties. Retrieving semanti-
cally similar items has its use in many vision applications,
including image super-resolution [36], scene parsing [23],
image auto-annotation [10] and label-based image retrieval
[4]. Our hashing scheme utilizes Error Correcting Output
Codes (ECOCs). ECOCs have their origins in coding the-
ory and have been successfully used to solve many vision
related problems [16, 15, 38]. In this work, ECOCs allow
compensation of hash function errors, and thus, increase the
robustness of the hash mapping. We also make no prior as-
sumptions on the label space; this is crucial given the ever-
growing nature of datasets. Our method allows us to swiftly
update the hash functions with incoming data; this makes it
adaptive to data variations and diversifications.

An adaptive hashing method is attractive, although it has
its own challenges. In particular, the binary codes must be
recomputed when the hash mappings are updated. This may
cause inefficiencies in the system, especially if such updates

1

ar
X

iv
:1

51
1.

03
25

7v
1

 [
cs

.C
V

]
 1

0
N

ov
 2

01
5

are frequent. Therefore, a framework is needed to reduce
revisiting binary codes that are already stored in an index.
In summary, our contributions are twofold:

(i) We propose an online supervised hashing formulation
that directly minimizes an upper bound on the Ham-
ming loss between ECOC hash codes and the outputs
of the hash mapping. The ECOC hash codes corre-
spond with labels in the dataset.

(ii) We introduce a flexible framework that allows us to
reduce hash table entry updates. This is critical, es-
pecially when frequent updates may occur as the hash
table grows larger and larger.

We learn hash functions orders-of-magnitude faster vs.
state-of-the-art batch-learning solutions while achieving
comparable performance. We also show improved results
over two recent online hashing methods. In addition, we
demonstrate better or comparable performance to recent
deep learning based hashing approaches without demand-
ing GPU hours for training or fine-tuning a deep network.

2. Related Work
2.1. Hashing

Two distinct hashing approaches exist. The first ap-
proach considers mapping similar data points into identi-
cal hash bins. A hash lookup strategy is then utilized for a
query, returning candidate nearest neighbors from the hash
bin that the query is mapped to. Hence, a fraction of the
reference set is explored. The second approach is a dimen-
sionality reduction technique with the additional constraint
that the mapped representations reside in a Hamming space.
With these new binary representations, distances can be ef-
ficiently computed, allowing even an exhaustive search in
the reference set to be done very fast.

The first group of approaches can be broadly categorized
as Locality Sensitive Hashing (LSH) methods [5, 8, 18].
LSH methods have attractive properties: bounds on the
query time, low space complexity of related search struc-
tures, and the “goodness” of the returned nearest neighbor.
However, these methods ignore the data distribution and are
developed only for certain distance functions.

For certain applications, distances for a set of data points
(training data) are only provided. The particular metric
on which these distances are derived may be unknown;
therefore, it is necessary to learn hash mappings directly
from data. This can be considered as a Hamming embed-
ding problem, where binary codes are produced for each
data point while preserving similarities in the original input
space. Such an approach is much more flexible than LSH in
that arbitrary similarities can be preserved.

We can broadly categorize these methods as: spectral
techniques [29, 32, 37], order preserving methods [25, 27],

similarity alignment solutions that maximize the equiv-
alence between the input and Hamming space distances
[17, 21, 24], quantization based approaches [9, 11, 14] and
deep learning based methods [22, 23, 33]. Recently, super-
vised approaches have been introduced that preserve the se-
mantic neighborhood [21, 31]. These methods outperform
their unsupervised counterparts when the task is to retrieve
semantically similar neighbors.

Our method is based on Error Correcting Output Codes
(ECOCs). ECOCs have been extensively used in many vi-
sion problems. The central idea is the use of codewords
with error-correcting abilities. Such error-correctiveness
has been exploited in recent supervised hashing methods
where a number of hash function errors can be recovered in
a mapping. In [35], a binary ECOC matrix is constructed
in which a codeword is considered as a target hash code
for a particular label. The codewords constitute the rows of
the matrix and the columns denote bipartitions of the data
on which the dichotomizers are trained. The dichotomiz-
ers are consequently used as hash functions. In [2], the
authors propose constructing the ECOC matrix adaptively
and learning the hash functions in a Boosting framework to
reduce correlations among the hash mappings. Using this
approach they report state-of-the-art performance for super-
vised hashing. However both ECOC based methods employ
batch-learning; as a result, training takes considerable time
even for simple hash functions.

2.2. Online/Adaptive Hashing

Recent studies have tackled the problem of adaptively
updating the hash functions with incoming data.

Huang et al. [12] recently introduced Online Kernel
Hashing, where a stochastic environment is considered with
pairs of points arriving sequentially in time. At each step,
a number of hash functions are selected based on a Ham-
ming loss measure and an update is done on the hashing
parameters via gradient descent. Although a hash func-
tion selection strategy exists that reduces binary code re-
computations, it does not guarantee a partial selection. For
particular parameter selections, the algorithm might require
updating all functions at every iteration.

Yang et al. [34] have also proposed a strategy in deter-
mining which hash functions to update with the arrival of
new data. At each step, a group of hash functions is se-
lected by considering the hash functions’ bit assignment
consistency or contribution in preserving the similarities as
indicated by a similarity matrix. However, this strategy is
not online in that previously seen examples are stored and
learning is done in batch mode.

Our work is most similar to [3] where an online Boost-
ing technique is employed with ECOCs in learning the hash
functions. Rather then using a Boosting strategy, we di-
rectly minimize a convex upper bound on the Hamming dis-

Figure 1: An ECOC Matrix Λ. Each cycle consists of ρ codewords corresponding to ρ observed labels. At the end of each
cycle, k new code words and hash functions are added. As a result, Λ expands in both directions. For an incoming point
(x, y), only ρ hash functions of the cycle in which the label y was first observed are updated.

tance between the hash mappings and target codewords. We
employ a stochastic gradient technique in which our algo-
rithm has established regret bounds. Also, we introduce a
formulation that employs a ternary ECOC matrix; this al-
lows the hash codes to grow over time while, at the same
time, reducing visits to previously learned codes stored in
an index. As previously stated, it is essential not to re-
compute the entire hash table with every update.

3. Formulation
Let X and Y denote the feature and label space, respec-

tively. z , (x, y) is an observation from the joint space
Z , X × Y where y ∈ Y . We approach hashing as
a Hamming embedding. The goal is to find a mapping
Φ : X → Hb where Hb is the b−dimensional Hamming
space, so that a particular neighborhood structure is pre-
served. We specifically focus on preserving the semantic
neighborhood as described by label information.

We utilize a collection of hash functions for this purpose,
where a function f : X → {−1, 1} accounts for the gen-
eration of a bit in the binary code. Many types of hash
functions are considered in the literature; for simplicity and
good performance we utilize linear threshold functions:

f(x) , sgn(wTx) (1)

where w and x are in homogeneous form. Mapping Φ(x) =
[fi(x), ..., fb(x)]T then becomes a vector-valued function
to be learned.

We will consider using an ECOC formulation for learn-
ing Φ. The biggest advantage of ECOCs is the error-
correcting property, which enables recovery from hash
function errors in computing the binary encoding. Let
C ⊆ Hb denote a codebook. Usually the elements of C,
i.e. , the codewords, ought to satisfy good error-correcting
properties such as having ample bit differences. We will
assign each codeword c ∈ C to a label in Y . One intu-
itive way to preserve the semantic similarity is to minimize
the Hamming distance between Φ(x) and its corresponding

codeword cy . Formally, we would like to find Φ such that
dh(Φ(x), cy) is minimized where dh(a,b) is the Hamming
loss/distance between a and b. Hence, the objective can be
formulated as:

J(Φ) , EZ [dh(Φ(x), cy)] ,
∫
Z
dh(Φ(x), cy)dP (z).

(2)
We would like to solve Eq. 2 in an online manner. This

allows the computations to grow linearly with data input
size, which is crucial given large-scale datasets.

The Hamming distance is defined as dh(Φ(x), cy) =∑
t[[ft(x) 6= cyt]] where both dh and the functions ft are

non-differentiable. Fortunately, we can relax ft by dropping
the sgn function in Eq. 1 and derive an upper bound on the
Hamming loss. Note that dh(Φ(x), cy) =

∑
t[[ft(x) 6=

cyt]] ≤
∑
t l(−cytwT

t x) with a suitably selected convex
margin-based function l. Thus, by substituting this surro-
gate function into Eq. 2, J(Θ)(> J(Φ)) becomes a convex
where ΘT = [wT

1 , ...,w
T
T]. Therefore, we can directly min-

imize this upper bound using stochastic gradient descent:

Θt+1 ← Θt − ηt∇ΘJ(Θ) (3)

where ηt > 0. Zinkevich [39] showed that for SGD, re-
quiring J(Θ) to be a differentiable Lipschitz-function is
sufficient for obtaining a regret bound that diminishes as
O(1/

√
T), where T is the iteration number.

Expanding and diversifying datasets are common in
many practical problems. Hence, it is crucial that the map-
ping accommodates these variations. In our online setting,
an incoming point may be associated with a previously ob-
served class label or may even be associated with a new
class label. The online framework we employ allows the
hash functions to be adapted with streaming data. If a new
label is observed, we assign a unique codeword from C to
the label and proceed on with the minimization.

Reducing Hash Table Updates. As discussed, the concept
of adaptive hash functions is extremely appealing; though,
it could require that all previously computed hash codes

must be updated with every change of Φ. Assume N b-
length hash codes are already stored in an index. This re-
quires updatingNb bit entries in the indexing structure. Af-
ter T iterations a total of O(NbT) computations must be
carried out to keep the index up to date. Although, hash
function evaluation is usually fast, if N is large and the in-
dex is partially stored on a disk, these computations may re-
quire disk access and become extremely inefficient. Hence,
a solution that reduces hash bit entry updates in indexing is
needed.

To address this issue we utilize ternary codewords
cy ∈ {−1, 0, 1}b, where 0 denotes an inactive bit. As
used in classification problems [7], the inactive bit al-
lows us to avoid any changes to the corresponding (inac-
tive) generator hash function. The Hamming distance dh
now becomes dh(Φ(x), cy) =

∑
t[[ft(x) 6= cyt]]|cyt| ≤∑

t l(−cytwT
t x)|cyt|. Hence, as the inactive bits do not

contribute to the Hamming distance, their partial derivative
∇wtJ in Eq. 3 is 0.

Our framework is online and the number of labels is not
known a priori. Consequently, rather than fixing the code
length parameter b, we systematically grow the binary codes
with incoming data. Please observe Fig. 1. Assume we store
codewords cy corresponding to observed labels as rows in
an ECOC matrix Λ. A cycle in our method consists of ob-
serving ρ new labels; for example, the first set of ρ labels
observed during learning constitute the first cycle. At the
end of each cycle, we alter the matrix Λ by appending k
inactive columns to the right. Let m denote the number of
cycles so far. The next incoming newly observed label is
assigned the ternary code cy = [0 · · · 0 cy] with (m − 1)k
inactive bits and a k-length binary codeword cy ∈ C. There-
fore, Λ grows in both directions with streaming data. We
summarize our algorithm in Alg. 1.

3.1. Parameter Selection

Alg. 1 requires user-specified choices for C, ρ and k.
Though the performance does not critically depend on deli-
cate parameter choices, we still discuss selection heuristics.

Central to the method is the codebook C, where its el-
ements cy ∈ {−1, 1}k are used to construct target hash
codes for the mappings. Though these binary codes can
be computed on the fly with demand, it is more appropri-
ate to construct them offline to reduce online computations.
These codes ought to have good row and column separation
properties. We consider a randomly generated codebook,
which is simple to construct and shown to perform better
compared to other heuristics [20].

Though we assume no prior information for the label
space, let L denote the total number of labels we antic-
ipate. During learning, the ternary codewords are con-
structed from codes sampled from the binary codebook C.
Since the inactive bits in the ternary codewords do not con-

Algorithm 1:
input : Codebook C, ρ, k, ηt, streaming inputs (xt, yt),

initiliazation procedure for a set of hash
functions init(), procedure find(Λ, y) to
obtain the codeword of y from code matrix Λ,

1 Θ = init(w1, . . . ,wk),m = 1, n = 1

2 for t← 1, ..., T do
3 flag ← 0
4 if yt /∈ Y then // A new label
5 flag ← 1
6 if n > ρ then // A new cycle
7 Λ← [Λ 0ρ×k]
8 Θ = [Θ init(wmk+1, ...,w(mk+k)]
9 m← m+ 1, n← 1

10 else
11 n← n+ 1
12 end
13 cy ← random codeword from C
14 C ← C\cy

15 cy ← [

(m−1)k︷ ︸︸ ︷
0, .., 0 cy] /* Ternary code

assigned to label y */
16

17 Λ←
[

Λ
cy

]
18 end
19 if flag = 0 then cy ← find(Λ, y);
20

21 Θt+1 ← Θt − ηt∇ΘJ(Θ; cy) // Update
22

23 end

tribute to the Hamming distance, the binary codes cy ∈ C
instead must have ample bit differences. To ensure this
property, codebook C must have a sufficiently large num-
ber of codes. Specifically, 2k � L must be satisfied where
k is the length of cy . This is a mild requirement given the
common choices of k (k = 32, 64, . . .) which work well in
practice.

Another situation to avoid is ρ < log k, as this can
lead to identical columns (bipartitions) in a cycle. To ex-
amine why we need ρ ≥ log k, consider the codewords
assigned to ρ labels in a particular cycle. Ignoring the
inactive bits, notice that the columns denote bipartitions
of the data based on labels in which the hash functions
can be considered as dichotomizers. Eq. 2 can be reor-
ganized by interchanging the integral and sum, yielding
J(Θ) =

∑
t

∫
Z l(−cytw

T
t x)dP (z). Hence, with the up-

per bound, minimizing the Hamming loss between the tar-
get hash codes cy and the mapping Φ(x) can be viewed as
minimizing the sum of expected losses or the binary classi-
fication errors. If identical bipartitions exist then the learned
dichomotizers will be highly correlated as the classification

Figure 2: A point x may be indexed by either using its cor-
responding codeword cy (if label information exists) or by
using the output of the mapping, i.e. , Φ(x). As seen, for
ternary codewords the inactive bits do not contribute to the
Hamming distance (only highlighted areas are compared).

error of each dichomotizer will independently be minimized
based on these same bipartitions (data splits).

In general, kmust be selected so that the inequality 2k �
L ≥ ρ ≥ log k holds. For randomly generated ρ codes
of k-length, the probability that all bipartitions are unique
is 2ρ!

(2ρ−k)!2ρk
. Thus, a good choice for ρ might be 4 log k

where this probability is ≥ 0.9 for common choices of k.

3.2. Populating Hash Table and Retrieval

After learning the mapping Φ, the hash table can be pop-
ulated by either indexing a point x using its correspond-
ing codeword cy in Λ or by using the output of the map-
ping, i.e. , Φ(x) (see Fig. 2). Given a test query xq ,
Φ(xq) is computed and instances are ranked based on the
Hamming distances between the binary codes. Note that
Φ(x) ∈ {−1, 1}b while the hash codes of the points are
ternary, as described above. Even with ternary codes, the
Hamming distance computation can be carried out with the
same efficiency by masking out the inactive bit positions.

If the point to be indexed has label information y, then
using the corresponding codeword as its binary code is
shown to perform better [2]. Instances can be ranked by
merely computing the Hamming distance between the test
query code Φ(xq) and the codewords. Since the number
of codewords is usually much smaller than the number of
instances, this is much more efficient and the ECC error-
correcting property also allows a number of hash function
errors to be compensated for during this retrieval. More-
over, since the hash table is populated via codewords c, an
update to previously stored entries is not required when the
mapping Φ is changed. This is an important property for
an adaptive hashing technique since updating the index for
each change in the hash mapping might be computationally
infeasible for large structures.

However, label information may not always be available.
In such a case, we can use Φ to compute the binary code of
an instance. However, such codes must be accommodated

to the changes to Φ; thus, reducing this need to update the
hash table becomes essential. We do this by allocating sets
of hash functions to sets of classes with the usage of ternary
codewords as explained Sec. 3 and Alg. 1.

4. Experiments
In this section we evaluate and compare our method

against state-of-the-art techniques on two standard im-
age retrieval benchmarks. For comparison, we consider
Binary Reconstructive Embeddings (BRE) [17], Minimal
Loss Hashing (MLH) [25], Supervised Hashing with Ker-
nels (SHK) [24], Fast Supervised Hashing (FastHashing)
[21], Supervised Hashing with Error Correcting Codes
(ShECC) [2], Smart Hashing (SmartHash) [34], Hashing
by Deep Learning [33, 22, 19], Online Kernel Hashing
(OKH) [12] and Online Supervised Hashing (OSH) [3].
These methods have outperformed earlier methods such as
[5, 32, 31, 27, 37, 29]. Similar to our work, OKH and OSH
are online hashing methods.

In evaluating retrieval performance we consider the fol-
lowing scheme. Given a query xq , Φ(xq) is computed and
instances are ranked according to their Hamming distances
to the query. This linear search is extremely efficient in
Hamming space. To quantify our results, we report the
Mean Average Precision (mAP). We consider binary codes
of length 8 to 64.

We further compare our method with OKH, OSH and
SmartHash to analyze the number of indexed binary code
updates during a learning phase. We specifically report
mAP values vs. the number of bit updates with different
choices of parameters.

4.1. Experimental Setup

We conduct evaluation on two datasets: Cifar-10 and
Sun397. We follow common guidelines in constructing our
training and test sets [24, 31]. Unless otherwise stated, the
training and test sets are constructed with an equal number
of samples from all labels. The rest of the data is used to
populate the hash table. If label information is provided,
then we index a point with the codeword corresponding to
its label. If a label is not provided, Φ is used for indexing.

Given a test query, the goal is to retrieve (or rank highly)
instances associated with the same label. We use the same
data splits for all batch-learning methods. For online tech-
niques, the experiments are repeated five times with differ-
ent orderings of the incoming data and the average perfor-
mance values are reported. Different types of hash func-
tions such as linear and kernel SVMs, decision trees, etc. are
available for certain methods such as ShECC and FastHash.
We simply select the best performing type of function.

In Sec. 4.2, when evaluating retrieval performance, we
set ρ sufficiently large so that only a single cycle occurs
in Alg. 1. The value of k then denotes the bit-length (8 to

Figure 3: Example images from the Cifar-10 and Sun397
datasets.

64). In Sec. 4.3, we compare the adaptive methods based on
the number of bit updates applied to already indexed data
during learning. In so doing, we allow multiple cycles in
Alg. 1 and report retrieval performance by using different
parameter values. Notably, the step size ηt is set to 1 in all
experiments.

We use the Gist descriptor and CNN features as image
representations. The CNN features are obtained from the
fc7 layer of a VGG16 [28] Convolutional Neural Network
pre-trained on ImageNet [6]. Note that we do not fine-tune
the network to the target datasets Cifar-10 and Sun397. Fi-
nally, some of the compared methods mean-center and unit
normalize the input features; therefore, such preprocessing
of features is applied to put all compared methods on equal
footing.

Regarding Smart Hashing, this procedure is not a hash-
ing method but a strategy to update the hash functions in
a selective manner. This strategy can be used in conjunc-
tion with suitable hashing methods to reduce computational
time. Similar to their work, we apply this framework to
SHK with the default parameters as noted by the authors.
We consider the similarity based selection scheme which
is reported to be better performing. The number of hash
functions updated with each incoming set of points is set to
dlog be where b is the total length of the embedded binary
codes. The incoming data set size (, q) is chosen to be 100
while we also begin initially with 100 samples.

Cifar-10 contains 60K images from 10 different categories.
Example categories include: airplane, deer, ship, truck, etc.
We split the dataset into 59K training and 1K testing im-
ages. 2K images are further sampled from the training set
for learning the hash functions.

Sun397 contains over 108K images from 397 scene cate-
gories. There are at least 100 images per category. We split
the dataset into two: a training and test set with 104K and
3970 images, respectively. The 3970 training images are
also used to learn the hash functions.

Method Mean Average Precision
Random 0.1

Training Time
(seconds)

of bits 8 16 32 64 32
BRE [17] 0.16 0.17 0.16 0.17 263
MLH [25] 0.16 0.17 0.18 0.19 224
SHK [24] 0.23 0.26 0.30 0.31 1115

SmartHash [34] 0.24 0.27 0.28 0.30 604
FastHash [21] 0.27 0.33 0.34 0.37 194

ShECC [2] 0.41 0.50 0.57 0.58 1075
OKH [12] 0.12 0.13 0.14 0.15 8.7
OSH [3] 0.39 0.44 0.48 0.53 5.5

Ours 0.41 0.46 0.50 0.55 2.3
ShECC (CNN) 0.71 0.76 0.81 0.83 1608

OSH (CNN) 0.62 0.69 0.75 0.76 13
Ours (CNN, Φ) 0.47 0.51 0.60 0.63 5.2

Ours (CNN) 0.70 0.76 0.80 0.83 5.2

Table 1: Mean Average Precision and training time @ 32
bits for Cifar-10. Bold denotes the best performing method
while red denotes the best online technique.

Method Mean Average Precision (×10−1)
Random 0.026

Training Time
(seconds)

of bits 8 16 32 64 32
BRE [17] 0.052 0.059 0.062 0.074 301
MLH [25] 0.049 0.065 0.080 0.079 293
SHK [24] 0.058 0.057 0.054 0.051 860

SmartHash [34] 0.053 0.053 0.053 0.053 2800
FastHash [21] 0.044 0.050 0.059 0.072 2400

ShECC [2] 0.086 0.128 0.146 0.191 11262
OKH [12] 0.034 0.043 0.053 0.062 19
OSH [3] 0.096 0.110 0.140 0.190 9.2

Ours 0.100 0.120 0.160 0.220 5.2
ShECC (CNN) 0.140 0.210 0.320 0.570 14574

OSH (CNN) 0.077 0.079 0.089 0.541 27
Ours (CNN, Φ) 0.062 0.092 0.164 0.301 6.9

Ours (CNN) 0.166 0.375 0.567 0.790 7.2

Table 2: Mean Average Precision and training time @ 32
bits for Sun397. Bold denotes the best performing method
while red denotes the best online technique.

4.2. Retrieval Performance

Table 1 shows results for the Cifar-10 dataset. There are
three main groups of results presented in this table. The first
group corresponds to results using batch methods trained
with the Gist descriptor. The second group comprises online
methods trained with Gist. The last group of rows in the
table shows the top competing batch and online method, in
which CNN features are used as the image representations.

We observe ShECC performs best for all length binary
codes. Our method is the overall runner-up, while being the
top performing online solution. Our method surpasses ev-
ery other batch-learning technique with up to four orders-
of-magnitude speedup (1073 vs. 2.3 seconds of learning
time for ShECC and our method, respectively). We out-
perform the Online Kernel Hashing solution (OKH) with
significant Mean Average Performance boosts, e.g., 0.12 vs.
0.41 (+242%) for 8 bits and 0.15 vs. 0.55 (+267%) for 64
bit codes. Compared to OSH, our technique also demon-
strates both retrieval accuracy and computational time im-

provements.
With the CNN features we observe a significant boost in

performance for all the techniques. Similarly to previous
results, our method is the best performing online method
and the overall runner up technique showing comparable
results to ShECC but being much faster.

Table 2 shows results for the Sun397 dataset. Our
method is again either the overall best performing technique
or the runner-up. With only 8 bits our retrieval performance
is more accurate compared to all other techniques exclud-
ing ShECC. We achieve these results with drastic learning
time improvements (only 5.2 seconds). One interesting ob-
servation is: SmartHash is slower to learn its hash functions
compared to SHK. This is due to the reason that, although
updating a subset of hash functions is faster (only dlog(b)e
among b hash functions are updated), the previously ob-
served data is not discarded with the new incoming set of
points. At each step, dlog(b)e functions are updated but in a
batch-learning procedure for this larger set of points, even-
tually yielding slow computational times.

Similar to the Cifar-10 benchmark, we see a boost in per-
formance when CNN features are used as image represen-
tations. Our method improves over the competing online
and batch method OSH and ShECC (0.79 vs. 0.54 & 0.57
(+46%) for 64-bit codes, 0.5 vs. 0.08 & 0.32 (+66%) for
32-bit codes).

We also provide results when Φ is used for indexing the
data. This might be the case when the label of an instance
is missing or not available. The retrieval scores are not as
high as when codewords are used; however, the results show
overall good performance. Utilizing the codewords enables
error correcting by mapping instances to codes that have
good separation. Thus, in retrieval (where the label for the
query is unavailable), a number of hash function errors can
be compensated for. However, when Φ is used for index-
ing, the Hamming distance between binary codes of points
from distinct classes can be small, degrading the retrieval
performance. For these reasons, whenever a label exists for
an instance, it is much better to use the corresponding code-
word as its binary code for indexing.

4.2.1 Comparison with Deep Learning Methods

We also compare our method against recently introduced
deep learning based hashing approaches [33, 22, 19], us-
ing the Cifar-10 benchmark. These methods simultaneously
learn features for the target dataset and hash functions. As
the performance boost in such methods is also due to fea-
ture learning, we use CNN features in our method for fair
comparison. These features are obtained from the fc7 layer
of a VGG16 Convolutional Neural Network pre-trained on
ImageNet. We note that the features used in our method
are not based on a network that is fine-tuned on our target

datasets. We also use the same evaluation setup as noted
in the respective papers. Specifically, 5K and 50K training
images are used when comparing against [33, 19] and [22],
respectively. Also, such deep learning methods often train
multiple epochs over the data, whereas we merely process
the data only once.

In the experiments with the Cifar-10 benchmark, we ob-
serve a mAP value of 0.803 for our method when 5K images
are used for training. Please compare this to 0.581 (+37%)
and 0.532 (+51%) for [33] and [19], respectively. When
trained with 50K images we obtain a mAP value of 0.87.
In [22], authors report a 0.89 mAP value. However, notice
that our CNN features are not fine-tuned. Also, it takes∼12
and ∼150 seconds for training with 5K and 50K points, re-
spectively, on a standard PC CPU to get better or at least
comparable results; opposed to training for a few hours on
a GPU for the deep learning methods.

4.3. Update Performance

As stated above, adaptive hashing is appealing; but, it
may require revisiting and recomputing the hash codes for
previously indexed items as the hash functions are updated.
In this section, we report the number of bit updates in an
index during a learning phase for SmartHash, OKH, OSH,
and our method. Learning is done with the same setup as
described in Sec. 4.1. We first provide a complexity analysis
and then interpret evaluation results.

Complexity Analysis. SmartHash and OKH update a sub-
set of hash functions at each step. The corresponding bits
of all codes in an index are subsequently updated. Assume
we have N binary codes in our index. SmartHash relearns
z hash functions in each iteration; hence, it requires z bit
entry updates for a single binary code. Assume T̂ is the it-
eration number, then SmartHash carries out O(zNT̂) com-
putations to keep the index up to date. For OSH this number
is O(NbT) where b and T are the length of the binary code
and the iteration number, respectively.1 For OKH, the num-
ber of bit updates depends solely on algorithmic parame-
ters. Hence, we report runtime measurements with only the
cross-validated parameters.

For our method, when ρ is set sufficiently large so that
only a single cycle occurs in Alg. 1, the complexity of keep-
ing the index up to date after T iterations is the same as
OSH, namely O(NbT). For analysis purposes, we forgo
the no prior assumption on the number of labels to examine
the case where multiple cycles might occur. Assume there
are L labels in total and L ≥ ρ. Also assume we are in a
state where we observed all labels and the incoming points
are uniformly sampled from all such L labels. In such a
case, updating the index requires O(ρNbTL) computations

1Note that T̂ and T are different. Given the setup in Sec. 4.1, if M is
the number of training points to learn the hash functions, then T̂ = M/q
and T = M .

Figure 4: Mean Average Precision with respect to number of bit updates occurrences per indexed point during learning.

Figure 5: Training time for SmartHash, OKH, OSH and
Ours (Φ). The columns of SmartHash and Ours (Φ) corre-
spond to the parameter choices in their given order as noted
in Sec. 4.3. Training time for Ours is similar to Ours (Φ).

where the binary code length is now b = dkLρ e. Hence, a
tradeoff exists between reducing the hash bit updates and
the total code length. Fortunately, as seen in Fig. 1, Λ is
sparse in that most of the entries of the codewords are in-
active bits. With a small overhead of computation we can
exploit this sparsity and we need not store the entire code-
word in memory during Hamming distance computations.

Runtime Analysis. Fig. 4 shows the retrieval performance
with respect to the number of bit updates per indexed point.
Following [34], we set the parameters in the SmartHash
method to (z, q) = {(5, 400), (5, 200), (3, 100), (5, 100)}.
The code length is set to 32. For our method, we set the
number of hash functions in each cycle to be k = 32 where
each cycle consists of ρ = c log(k) codewords. Specifi-
cally, c = {40, 20, 10, 5, 2} for the Sun397 benchmark and
ρ = {5, 4, 3, 2} for Cifar-10. Finally, for OKH and OSH,
we report the mAP value and number of bit updates per bi-
nary code for a single set of cross-validated parameters.

Fig. 4 shows the number of bit updates per indexed data
point during learning with respect to Mean Average Pre-
cision (mAP). While we observe SmartHash relearns hash
codes less frequently, the retrieval performance is inferior to
our method. Also as shown in Fig. 5 the computation time

for learning in SmartHash is orders-of-magnitude greater
than with our method. Regarding OKH, this method re-
quires fewer updates but its mAP is inferior to our method.

When the mapping Φ is used for indexing, the hash ta-
ble must be updated to accomodate the changes in the hash
mapping. With Alg. 1 we can control the number of bit
updates that occur during learning. For Cifar-10, we ob-
serve a tradeoff between the number of bit updates vs. mAP
performance. This is different for the Sun397 benchmark
where reduction in bit updates does not necessarily mean
lower retrieval performance. For datasets with a relatively
small number of classes (e.g., Cifar-10) allocating differ-
ent sets of hash functions to separate classes will cause
the retrieval performance to drop due to such sets of hash
functions only being discriminatory with respect to individ-
ual classes. However, for datasets with larger numbers of
classes, such an allocation might have a positive effect since
it may be hard to bipartition data in such an intricate fea-
ture space with lots of classes [20]. The parameter choices
should be selected to suit the specific application.

Overall, we observe that our method either performs
best in term of retrieval accuracy and number of updates
in the index with respect to OSH and OKH. Compared to
SmartHash, our method shows improved retrieval perfo-
mance but with higher number of hash table updates, but
the training time is orders-of-magnitude faster as shown in
Fig. 5. Also, SmartHash is not an online method requiring
to maintain previously seen data instances.

5. Conclusion
We introduce an online hashing method that achieves

state-of-the-art retrieval performance. As observed in
the experiments, our method is orders-of-magnitude faster
compared to batch solutions and significantly faster than
competing online hashing methods. Online hashing meth-
ods are important due to their ability to adapt to variations
in datasets. Equally important, online hashing methods of-
fer superior time complexity vs. batch methods for learning
with respect to dataset input size.

References
[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.

An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. In J. of the ACM, 1998. 1

[2] F. Cakir and S. Sclaroff. Supervised hashing with error correcting
codes. In Proc. of the ACM International Conf. on Multimedia, 2014.
2, 5, 6

[3] F. Cakir and S. Sclaroff. Online supervised hashing. In Proc. IEEE
International Conf. on Image Processing (ICIP), 2015. 2, 5, 6

[4] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos. Super-
vised learning of semantic classes for image annotation and retrieval.
IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI),
2007. 1

[5] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proc. on
Computational geometry (SCG), 2004. 2, 5

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In CVPR, 2009.
6

[7] S. Escalera, O. Pujol, and P. Radeva. Error-correcting ouput codes
library. J. of Machine Learning Research, 2010. 4

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high di-
mensions via hashing. In Proc. International Conf. on Very Large
Data Bases (VLDB), 1999. 2

[9] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean ap-
proach to learning binary codes. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2011. 2

[10] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop:
Discriminative metric learning in nearest neighbor models for image
auto-annotation. In Proc. IEEE International Conf. on Computer
Vision (ICCV), 2009. 1

[11] K. He, F. Wen, and J. Sun. K-means hashing: An affinity-preserving
quantization method for learning binary compact codes. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2013. 2

[12] Q. Y. Huang Long-Kai and Z. Wei-Shi. Online hashing. In Proc.
International Joint Conf. on Artificial Intelligence (IJCAI), 2013. 2,
5, 6

[13] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDis-
tance: An adaptive b+-tree based indexing method for nearest neigh-
bor search. In ACM Trans. on Database Systems, 2005. 1

[14] H. Jegou, M. Douze, and C. Schmid. Product quantization for near-
est neighbor search. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 33(1), 2011. 2

[15] J. Jiang and Z. Tu. Efficient scale space auto-context for image seg-
mentation and labeling. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2009. 1

[16] J. Kittler, R. Ghaderi, T. Windeatt, and J. Matas. Face verification us-
ing error correcting output codes. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2001. 1

[17] B. Kulis and T. Darrell. Learning to hash with binary reconstructive
embeddings. In Proc. Advances in Neural Information Processing
Systems (NIPS), 2009. 2, 5, 6

[18] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for
scalable image search. In Proc. IEEE International Conf. on Com-
puter Vision (ICCV), 2009. 2

[19] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature learning
and hash coding with deep neural networks. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2015. 5, 7

[20] L. Li. Multiclass boosting with repartitioning. In Proc. International
Conf. on Machine Learning (ICML), 2006. 4, 8

[21] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter. Fast super-
vised hashing with decision trees for high-dimensional data. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2014. 2, 5, 6

[22] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen. Deep learning of
binary hash codes for fast image retrieval. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2015.
2, 5, 7

[23] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via
label transfer. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence (PAMI), 2011. 1, 2

[24] J. W. Liu, Wei and, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised
hashing with kernels. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2012. 2, 5, 6

[25] M. Norouzi and D. J. Fleet. Minimal loss hashing for compact binary
codes. In Proc. International Conf. on Machine Learning (ICML),
2011. 2, 5, 6

[26] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 2000. 1

[27] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with
parameter sensitive hashing. In Proc. IEEE International Conf. on
Computer Vision (ICCV), pages 750–757, 2003. 2, 5

[28] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. ICLR, 2015. 6

[29] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua. Ldahash:
Improved matching with smaller descriptors. IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI), 34(1), 2012. 2, 5

[30] J. B. Tenenbaum, V. Silva, and J. C. Langford. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science, 2000.
1

[31] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for
large-scale search. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 2012. 2, 5

[32] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc.
Advances in Neural Information Processing Systems (NIPS), 2008.
2, 5

[33] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hashing for
image retrieval via image resentation learning. In Conference on
Artificial Intelligence (AAAI), 2014. 2, 5, 7

[34] Q. Yang, L.-K. Huang, W.-S. Zheng, and Y. Ling. Smart hashing up-
date for fast response. In Proc. International Joint Conf. on Artificial
Intelligence (IJCAI), 2013. 2, 5, 6, 8

[35] Z. Yu, D. Cai, and X. He. Error-correcting output hashing in fast sim-
ilarity search. In Proc. of the Second International Conf. on Internet
Multimedia Computing and Service (ICIMCS), 2010. 2

[36] H. Yue, X. Sun, J. Yang, and F. Wu. Landmark image super-
resolution by retrieving web images. IEEE Trans. on Image Pro-
cessing, 2013. 1

[37] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for fast
similarity search. In Proc. ACM SIGIR Conf. on Research & Devel-
opment in Information Retrieval (SIGIR), 2010. 2, 5

[38] B. Zhao and E. Xing. Sparse output coding for large-scale visual
recognition. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2013. 1

[39] M. Zinkevich. Online convex programming and generalized in-
finitesimal gradient ascent. In Proc. International Conf. on Machine
Learning (ICML), 2003. 3

