
Boston University Department of Computer Science

CS 410
Software Systems

Static & Shared Libraries

Shriram Raja

Ph.D. Student, Computer Science



Boston University Department of Computer Science

CS 410
Software Systems

▪ In large projects with several source files, you might want to consolidate commonly used 
functions so that you need not duplicate their definitions

▪ Common source files can be used but not all functions might be required for all files

▪ Linking a large file with unnecessary functions increases the size of the executable

▪ Having them as separate files will require you to specify all of them at compile time

▪ Hence -> static libraries: just provide the name of the library to the linker and it will link 
only the required object files

▪ Linux: static libraries are archive files which contain multiple obj files. 

2/5/2025

Why Libraries?



Boston University Department of Computer Science

CS 410
Software Systems

Compilation Pipeline

2/5/2025

Translator

libc.a (always passed to ld)



Boston University Department of Computer Science

CS 410
Software Systems

Object Files

2/5/2025

Type Relocatable Shared Executable

Description Can be combined with 
other relocatable obj files 
to generate an executable

Can be loaded to memory 
and linked dynamically

Can be copied into 
memory and executed

Generated by Compilers & Assemblers Linkers

They are called relocatable because their 
address starts at 0; they are relocated to 

actual addresses by the Linker



Boston University Department of Computer Science

CS 410
Software Systems

▪ Object file organization can vary from system to system

▪ First Unix systems: a.out format

▪ Windows: Portable Executable format (PE)

▪ Mac OS: Mach-O format

▪ Modern Linux: Executable and Linkable Format (ELF)

▪ Typical ELF relocatable obj file 

2/5/2025

Object Files



Boston University Department of Computer Science

CS 410
Software Systems

Object Files

2/5/2025



Boston University Department of Computer Science

CS 410
Software Systems

▪ Static Libraries have issues as well: 

▪ When static libraries are updated, the applications must be relinked with the updated version

▪ When most functions in the system use the same obj files from the same static library, 
duplicating the code leads to wastage of memory

▪ Hence -> shared libraries: part of the linking is done at compile time, and the rest 
is done later using a dynamic linker

2/5/2025

Shared Libraries



Boston University Department of Computer Science

CS 410
Software Systems

Dynamic Linking

2/5/2025



Boston University Department of Computer Science

CS 410
Software Systems

▪ Applications can also request dynamic libraries:
▪ dlopen(): opens and links a shared library

▪ dlsym(): takes a handle to the open shared library and a symbol name (variable/function) and 
returns the address of the symbol (Returns NULL if it wasn’t found)

2/5/2025

Dynamic Linking



Boston University Department of Computer Science

CS 410
Software Systems

▪ The ‘ar’ command is used to invoke the archiver which concatenates the given object files into an 
archive which can be used as a static library

▪ Compiling shared objects requires slightly more work:

▪ We can use a Makefile to streamline our compilation process and deal with these dependencies

2/5/2025

Compiling Static and Shared Libraries



Boston University Department of Computer Science

CS 410
Software Systems

Makefile

2/5/2025



Boston University Department of Computer Science

CS 410
Software Systems

1. Computer Systems: A Programmer’s Perspective (Third Edition), Randal E. Bryant & 
David R. O’Hallaron

2. Makefile: Getting Started, Tutorial, Automatic Variables

2/5/2025

References

https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/books/CSAPP_2016.pdf
https://www.cs.sfu.ca/~ashriram/Courses/CS295/assets/books/CSAPP_2016.pdf
https://web.stanford.edu/class/archive/cs/cs107/cs107.1174/guide_make.html
https://makefiletutorial.com/
https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

	Init
	Slide 1: Static & Shared Libraries

	Why libraries?
	Slide 2: Why Libraries?

	Compilation Pipeline
	Slide 3: Compilation Pipeline

	Object Files
	Slide 4: Object Files
	Slide 5: Object Files
	Slide 6: Object Files

	Shared Libraries
	Slide 7: Shared Libraries
	Slide 8: Dynamic Linking
	Slide 9: Dynamic Linking

	Makefile
	Slide 10: Compiling Static and Shared Libraries
	Slide 11: Makefile

	Conclusion
	Slide 12: References


