Research
My research interests lie within machine learning and computer vision, with a focus on learning with noisy labels (LNL) and multi-distribution data (Domain Generalization). Specifically, I work on improving noise detection and enhancing generalization performance. My research has applications in biomedical data, where I aim to advance machine intelligence for medical insights such as drug discovery. And in e-commerce, where I focus on designing search algorithms that handle noisy and multi-regional data effectively.
|
|
SEQ+MD:Learning Multi-Task as a SEQuence with MultiDistribution Data
Siqi Wang,
Audrey Zhijiao Chen,
Austin Clapp,
Sheng-Min Shih,
Xiaoting Zhao,
arXiv, 2024
arXiv
In this work, we propose the SEQ+MD framework, which integrates sequential learning for multi-task learning (MTL) and feature-generated region-mask for multi-distribution input. This approach leverages the sequential order within tasks and accounts for regional heterogeneity, enhancing performance on multi-source data.
|
|
LNL+K: Learning with Noisy Labels and Noise Source Distribution Knowledge
Siqi Wang,
Bryan A. Plummer,
The European Conference on Computer Vision (ECCV), 2024
arXiv
We introduce a new task called Learning with Noisy Labels and noise source distribution Knowledge (LNL+K), which assumes we have some knowledge about likely source(s) of label noise that we can take advantage of. By making this presumption, methods are better equipped to distinguish hard negatives between categories from label noise. In addition, this enables us to explore datasets where the noise may represent the majority of samples, a setting that breaks a critical premise of most methods developed for the LNL task.
|
|
A Unified Framework for Connecting Noise Modeling to Boost Noise Detection
Siqi Wang,
Chau Pham,
Bryan A. Plummer,
arXiv, 2023
arXiv
In this work, we explore the integration of noise modeling and noise detection, proposing an interconnected structure with three crucial blocks: noise modeling, source knowledge identification, and enhanced noise detection using noise source-knowledge-integration methods.
|
|
CHAMMI: A benchmark for channel-adaptive models in microscopy imaging
Zitong Chen,
Chau Pham,
Siqi Wang,
Michael Doron,
Nikita Moshkov,
Juan C. Caicedo,
Bryan A. Plummer,
Advances in Neural Information Processing Systems (NeurIPS), 2023
arXiv
We present a benchmark for investigating channel-adaptive models in microscopy imaging, which consists of 1) a dataset of varied-channel single-cell images, and 2) a biologically relevant evaluation framework. In addition, we adapted several existing techniques to create channel-adaptive models and compared their performance on this benchmark to fixed-channel, baseline models.
|
|
Anchoring to Exemplars for Training Mixture-of-Expert Cell Embeddings
Siqi Wang,
Manyuan Lu,
Nikita Moshkov,
Juan C. Caicedo,
Bryan A. Plummer,
arXiv, 2021
arXiv
Treatment ExemplArs with Mixture-of-experts (TEAMs), an embedding learning approach that learns a set of experts that are specialized in capturing technical variations in our training set and then aggregates specialist's predictions at test time.
|
|
Stylistic Compatibility Learning with Deep Neural Networks for
Indoor Scene
Siqi Wang,
Daniel Ritchie (advisor),
Master Project Report, 2020
A deep neural network with conditioning method to learn the scene style.
|
|
An Efficient Adaptive Algorithm for Removal of Impulse Noises
Siqi Wang,
Tongyu Yue,
Bo Lang,
International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017
Adaptive Min-Max Average Filters (AMMAF) for the removal of impulse noises.
|
|
Efficient Segmentation for Region-based Image Retrieval Using Edge Integrated Minimum Spanning Tree
Yang Liu,
Lei Huang,
Siqi Wang,
Xianglong Liu,
Bo Lang,
International Conference on Pattern Recognition (ICPR), 2016
A RBIR-oriented image segmentation algorithm named Edge Integrated Minimum Spanning Tree (EI-MST).
|
Template from source code.
|
|