Probability in Computing

LLECTURE 7

Last time

» Three kinds of sample spaces

* Random Variables

Today

* Probability Mass Function (PMF)

* Cumulative Distribution Function (CDF)
* Probability Density Function (PDF)
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I Probability Mass Function

For discrete random variables, the Probability Mass
Function (PMF) 1s also called the probability distribution.
Thus, when asked to find the probability distribution of a
discrete random variable X, we can do this by finding its

PMF.
C = "Flip three coins and return the number of heads"
Range(C)={ , , , } .

Probability Mass Function P
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in Range(X)

A PMF contains all the information you need to know about a
Random Variable and 1s often 1llustrated as a histogram.



I Probability Mass Function

Example 2:
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Z ="Toss 8 fair coins and count
the number of heads"
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I Probability Mass Function

Example 3:

Y = “Flip a 4-sided die and count the number of flips until it lands a 4.”
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I Properties of PMFs

Consider a discrete random variable X with Range(X)=Ry.

Note that by definition the PMF 1s a probability measure,
so 1t satisfies all properties of a probability measure.




I Example

[ have an unfair comn for which P(H)=p, where
O<p<1. I toss the coin repeatedly until I observe a
heads for the first time. Let Y be the total number
of coin tosses. Find the PMF of Y.



I Top Hat question one (Join: 033357)

What is the value of Py (k)?

A.(1-k)p
B.(1-p“p
C.(1-p)*1p
D.(1-p)*p

E. None of the above



I Example

Your turn: If p = %, whatis P(2 <Y < 5)?




| Cumulative Distribution Functions

The Cumulative Distribution Function (CDF) for a
random variable X shows what happens when we keep

track of the sum of the probability distribution from left to
right over its range.

Example 1: X = “Count the dots on a thrown die”




I Cumulative Distribution Functions

Example 2: C = "Flip three coins and return the number of heads
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Cumulative Distribution Functions

Example 3:

Y = “Count how many flips until a fair coin shows a head.”

6
k € Range(Y)
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| Properties of CDF's

. CDF 1s always a non-decreasing function
if y = x then Fy(y) = Fx(x)

. CDF approaches 1 as x becomes large
lim Fy(x) =1

X—00

. Pla< X <b)=Fy(b) —Fx(a)



I Top Hat question (Join Code: 033357)

Suppose we have a random variable X with probability distribution:

k: 0 1 2 3
Pr(X=k): 0.1 04 02 03

Which of these is a possible list of probabilities for Pr(X <= x) ?

A. {0.1,04,0.2,03}
B. {0.1,0.5,0.8,1.0 }
C. {0.1,0.5,0.7,1.0 }
D. {0.1,0.3,0.6,1.0}



I Probability Density Function

. Why PMF does not work for continuous random
variables?

. For continuous random variables, the CDF 1s
well-defined so we can provide the CDF.

. The concept 1s very similar to mass density in
physics: its unit 1s probability per unit length.



Probability Density Function

Consider the spinner example again.... i

X = “choose a real number uniformly
from [0.. | ]” 0.75 0.25

The PDF of X 1s uniform (same
probability across the range) and 05
has an area of 1.0, and 1s

: PDF of S
given by: P ors

0.8

Range(X) = [0..1] .
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I PDFs and CDFs of Continuous Distributions

For continuous probability, we
use extent (e.g., area) for Pr(X < 0.7AS) = CDFx(0.75) = 0.75

probability. To calculate areas, ’ |
we will use the CDF, which

gives the area in the PDF to the

left of given real number.

Range(X) = [0..1]
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| PDFs and CDFs of Continuous Distributions

To calculate probability of intervals,

Pr( X < 0.5)

we use Inclusion/Exclusion:
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| PDFs and CDFs of Continuous Distributions

Bottom Line: In order to deal with continuous distributions, you have to either
calculate areas using geometric techniques , or do integrals.

Example: Suppose our PDF looked like this *

T f0<x<?2

fx) =

0 otherwise

To calculate the probability of intervals, we need to determlne the CDF, which
means doing the following integral: | e




| PDFs and CDFs of Continuous Distributions

POF
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