Probability in Computing

Lecture 8

Reminders

- HW4 due Thursday

Last time

- Probability Mass Functions (PMFs)
- Probability Density Functions (PDFs)
- Cumulative Distribution Functions (CDFs)
Today
- Conditional Probability

The annual death rate among people who know this statistic is one in six

https://xkcd.com/795/

Incorporating New Information

- A patient has some unknown disease
- Based on the symptoms, the doctor estimates that the patient has:

- Disease a

■ Disease b
\square Disease c

Disease d

- Then a test reveals that the disease is neither b nor d
- Based on this information, what is the chance of having each disease?

Incorporating New Information

- A test eliminated diseases b and d

Probability

Before the test
0.05
0.1
0.3
0.55
?

Incorporating New Information

- A test eliminated diseases b and d

Probability

Before the test
0.05
0.1
0.3
0.55 \qquad

Incorporating New Information

- A test eliminated diseases b and d

Probability

Before the test
$0.05 x$
0.05 \qquad

■ Disease b

Disease c

Disease d

- Disease a
-

0.1
0.3
0.55

0

- In the absence of any other information, the new probabilities of a and b should be proportional to their original probabilities.

Incorporating New Information

- A test eliminated diseases b and d

Probability

Before the test

After the test

- Disease a
0.05 $\frac{0.05}{0.35}$
\square Disease b
0.1
\longrightarrow
0

Disease c
0.3

Disease d
0.55

0

- Probabilities should add up to $1: 0.05 x+0.3 x=1$

$$
x=\frac{1}{0.35}
$$

Incorporating New Information

- A test eliminated diseases b and d

Probability

Before the test

After the test
Disease a
0.05 $\frac{0.05}{0.35}$

- Disease b
0.1

0

Disease c
0.3

Disease d
0.55

0

- Note: $\operatorname{Pr}\left(\right.$ "the disease is neither b nor $\left.d^{\prime \prime}\right)=\operatorname{Pr}(\{a, c\})=0.35$

Conditional Probability

- The information provided by the test is that the following event has happened:

$$
B=\text { "the disease is neither } b \text { nor } d^{\prime \prime}=\{\boldsymbol{a}, \boldsymbol{c}\}
$$

- We define a new probability function that assigns a probability $\operatorname{Pr}(A \mid B)$ to every event $A \subseteq \Omega$

$$
\underset{\uparrow}{\operatorname{Pr}(A \mid B)}=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Read: "Probability of A given B " If $A=\{\omega\}$ for an outcome ω, we also write: $\operatorname{Pr}(\omega \mid B)$

If we specify $\operatorname{Pr}(\omega \mid B)$ for every outcome $\omega \in \Omega$, then $\operatorname{Pr}(A \mid B)$ is determined for all events A (as the sum of probabilities of all outcomes in A)

Conditional Probability

- The information provided by the test is that the following event has happened:

$$
B=\text { "the disease is neither } b \text { nor } d^{\prime \prime}=\{\boldsymbol{a}, \boldsymbol{c}\}
$$

- We define a new probability function that assigns a probability $\operatorname{Pr}(A \mid B)$ to every event $A \subseteq \Omega$

$$
\begin{gathered}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
\operatorname{Pr}(a \mid B)=\frac{\operatorname{Pr}(a)}{\operatorname{Pr}(B)}=\frac{0.05}{0.35}
\end{gathered}
$$

Conditional Probability

- The information provided by the test is that the following event has happened:

$$
B=\text { "the disease is neither } b \text { nor } d^{\prime \prime}=\{\boldsymbol{a}, \boldsymbol{c}\}
$$

- We define a new probability function that assigns a probability $\operatorname{Pr}(A \mid B)$ to every event $A \subseteq \Omega$

$$
\begin{gathered}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
\operatorname{Pr}(c \mid B)=\frac{\operatorname{Pr}(c)}{\operatorname{Pr}(B)}=\frac{0.3}{0.35}
\end{gathered}
$$

Conditional Probability

- The information provided by the test is that the following event has happened:

$$
B=\text { "the disease is neither } b \text { nor } d^{\prime \prime}=\{\boldsymbol{a}, \boldsymbol{c}\}
$$

- We define a new probability function that assigns a probability $\operatorname{Pr}(A \mid B)$ to every event $A \subseteq \Omega$

$$
\begin{gathered}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
\operatorname{Pr}(\{a, b\} \mid B)=\frac{\operatorname{Pr}(\{a\})}{\operatorname{Pr}(B)}=\frac{0.05}{0.35}
\end{gathered}
$$

$$
\Omega=\{a, b, c, d\}
$$

Conditional Probability

- The information provided by the test is that the following event has happened:

$$
B=\text { "the disease is neither } b \text { nor } d^{\prime \prime}=\{\boldsymbol{a}, \boldsymbol{c}\}
$$

- We define a new probability function that assigns a probability $\operatorname{Pr}(A \mid B)$ to every event $A \subseteq \Omega$

$$
\begin{gathered}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
\operatorname{Pr}(\{a, c\} \mid B)=\frac{\operatorname{Pr}(\{a, c\})}{\operatorname{Pr}(B)}=1
\end{gathered}
$$

$$
\Omega=\{a, b, c, d\}
$$

Conditional Probability

Definition: Conditional Probability

Let B be an event such that $\operatorname{Pr}(B) \neq 0$. For every event A, we define the conditional probability of event A given event B :

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(\mathrm{A} \cap B)}{\operatorname{Pr}(B)} .
$$

$\operatorname{Pr}(\boldsymbol{A} \mid \boldsymbol{B})$ is undefined if $\operatorname{Pr}(B)=0$.

Top Hat question (Join Code: 033357)

- Experiment: roll two fair 6-sided dice
- $\mathrm{A}=$ "first die is 6 "
- $\mathrm{B}=$ "sum of the two rolls is 9 "

What is $\operatorname{Pr}(A \mid B)$?
A. $\frac{1}{36}$
B. $\frac{1}{6}$
C. $\frac{1}{4}$
D. None of the above

Top Hat question (Join Code: 033357)

- Experiment: toss a fair coin three times
- $\mathrm{A}=$ "more H than T "
- $\mathrm{B}=$ "first toss is H "

What is $\operatorname{Pr}(A \mid B)$?
A. $\frac{3}{8}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. None of the above

Top Hat question (Join Code: 033357)

- Experiment: spin the dial of the spinner
- $\mathrm{A}=$ "dial stopped in the upper half of the circle"
- $\mathrm{B}=$ "outcome is in $[1 / 3,2 / 3]$ "

What is $\operatorname{Pr}(A \mid B)$?

A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. None of the above

Top Hat question (Join Code: 033357)

- Experiment: spin the dial of the spinner
- $\mathrm{A}=$ "dial stopped in the upper half of the circle"
- $\mathrm{C}=$ "outcome is in $[1 / 6,1 / 3]$ "

What is $\operatorname{Pr}(A \mid C)$?

A. $\frac{1}{12}$
B. $\frac{1}{6}$
C. 1
D. None of the above

Top Hat question (Join Code: 033357)

Mr. Smith has two children (boys and girls are equally likely)

- A = "both children are boys"
- $\mathrm{B}=$ "at least one child is a boy"
- $\mathrm{C}=$ "older child is a boy"
[Martin Gardner]
[1914-2010]

True or false: $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \mid C)$?
A. True
B. False

Axioms of Probability

Conditional probabilities satisfy the axioms of probability

- Non-negativity: $\operatorname{Pr}(A \mid E) \geq 0$ for all events $A \subseteq \Omega$
- Additivity: if A and B are disjoint events then

$$
\operatorname{Pr}(A \cup B \mid E)=\operatorname{Pr}(A \mid E)+\operatorname{Pr}(B \mid E)
$$

- Normalization: $\operatorname{Pr}(\Omega \mid E)=1$
- This applies only to conditional probabilities with the same conditioning event: $\operatorname{Pr}(\cdot \mid E)$

Axioms of Probability: Derivation

Conditional probabilities satisfy the axioms of probability

- Non-negativity: $\operatorname{Pr}(A \mid E) \geq 0$ for all events $A \subseteq \Omega$

Proof:

$$
\operatorname{Pr}(A \mid E)=\frac{\operatorname{Pr}(A \cap E)}{\operatorname{Pr}(E)}
$$

by definition of conditional probability

- Normalization: $\operatorname{Pr}(\Omega \mid E)=1$

Proof:

$$
\begin{aligned}
\operatorname{Pr}(\Omega \mid E) & =\frac{\operatorname{Pr}(\Omega \cap E)}{\operatorname{Pr}(E)} \\
& =\frac{\operatorname{Pr}(E)}{\operatorname{Pr}(E)}=1
\end{aligned}
$$

by definition of conditional probability

since $E \subseteq \Omega$

Axioms of Probability: Derivation

Conditional probabilities satisfy the axioms of probability

- Additivity: if A and B are disjoint events then

$$
\operatorname{Pr}(A \cup B \mid E)=\operatorname{Pr}(A \mid E)+\operatorname{Pr}(B \mid E)
$$

Proof:

$$
\begin{aligned}
& \operatorname{Pr}(A \cup B \mid E)=\frac{\operatorname{Pr}((A \cup B) \cap E)}{\operatorname{Pr}(E)} \\
& \quad=\frac{\operatorname{Pr}((A \cap E) \cup(B \cap E))}{\operatorname{Pr}(E)} \\
& = \\
& \quad=\operatorname{Pr}(A \cap E)+\operatorname{Pr}(B \cap E)) \\
& \operatorname{Pr}(E)
\end{aligned}
$$

by definition of conditional probability
by distributive law

A	D
	$D \sim$ H

Conditional Probability Rules

Since the conditional probability function is a valid probability function, all the probability rules remain valid - Example: Inclusion-Exclusion Principle Standard: $\quad \operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$
Conditional: $\operatorname{Pr}(A \cup B \mid E)$

$$
=\operatorname{Pr}(A \mid E)+\operatorname{Pr}(B \mid E)-\operatorname{Pr}(A \cap B \mid E)
$$

Tree Diagrams: Example

- Best-of-three tournament between BU Terriers and Harvard Huskies
- First game: Terriers win with probability $\frac{1}{2}$
- Subsequent games:

Terriers win a game with probability $\left\{\begin{array}{l}\frac{2}{3} \text { if they won the previous game } \\ \frac{1}{3} \text { if they lost the previous game }\end{array}\right.$

What is the probability that the Terriers win the tournament given that they win the first game?

Tree Diagram: Tournament

- Event $T=$ "Terriers win the tournament"
- Event $E_{1}={ }^{\prime}$ Terriers win the first game"

Tree Diagram: Justification

- Why do we multiply probabilities along each branch in a tree diagram?
- Example:
- Event $E_{1}={ }^{`}$ Terriers win the first game"
- Event $E_{2}={ }^{`}$ Terriers win the second game"
- We calculated $\operatorname{Pr}(W W)=\operatorname{Pr}\left(E_{1} \cap E_{2}\right)$

$$
=\operatorname{Pr}\left(E_{1}\right) \cdot \operatorname{Pr}\left(E_{2} \mid E_{1}\right)
$$

- Product rule follows from the definition of conditional probability:

$$
\operatorname{Pr}\left(E_{2} \mid E_{1}\right)=\frac{\operatorname{Pr}\left(E_{1} \cap E_{2}\right)}{\operatorname{Pr}\left(E_{1}\right)}
$$

