Probability in Computing

Reminders

- HW 6 is due Thursday Reading
- LLM 18.18-18.19, 19.2

P 1.4.1, 3.1.4

Lecture 12

Last time

- Bayes' Rule Example
- Review

Today

- Pairwise and Mutual Independence

Midterm Announcement

- Midterm will be Wednesday, March 15, 6:30-8:30 in CGS 129
- Closed book, no devices.
- One hand-written 2-sided page of notes allowed on colored paper, significantly different from white. No mechanical reproduction (writing on a computer and then printing is not allowed).
- All material up to tomorrow's discussion (Friday, 3/2)
- Practice exam problems will be distributed soon; Friday discussion will be practice problems, Tuesday lecture (3/14) will be review.
- Review TopHat, homework, and discussion problems, plus exercises suggested from the 2 nd textbook.

Reminder: Independent Events

Definition: Independent Events

Two events A and B are independent if

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

- Independent \neq disjoint! When events A and B are disjoint: if A happens then B is guaranteed not to happen.

Top Hat question (Join Code: 033357)

Let A and B be two disjoint events with $\operatorname{Pr}(A)>0$ and $\operatorname{Pr}(B)>0$ Are A and B independent?
A. YES, for all A, B satisfying the conditions.
B. NO, for all A, B satisfying the conditions.
C. YES for some A, B satisfying the conditions and NO for others.

Independence for Three Events

How should we define independence for three events A, B, C ?

- Options

1) A and B are independent: $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)$
B and C are independent: $\operatorname{Pr}(B \cap C)=\operatorname{Pr}(B) \cdot \operatorname{Pr}(C)$
A and C are independent: $\operatorname{Pr}(A \cap C)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(C)$
2) $\operatorname{Pr}(A \cap B \cap C)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B) \cdot \operatorname{Pr}(C)$
3) Require both (1) and (2).

Questions: Does (1) imply (2)? Does (2) imply (1)?

Independence for Three Events

Option (1) does not imply Option (2)

- Experiment: toss a fair coin twice
- $A=$ event that $1^{\text {st }}$ toss is H
- $B=$ event that $2^{\text {nd }}$ toss is H
\qquad
$=\{\mathrm{HH}, \mathrm{HT}\}$
$=\{\mathrm{HH}, \mathrm{TH}\}$
- $C=$ event that tosses are different $=\{H T, T H\}$

Independence for Three Events

Option (2) does not imply Option (1)

- Experiment: roll a fair die twice
- $A=$ event that $1^{\text {st }}$ roll is 1,2 or 3
- $B=$ event that $1^{\text {st }}$ roll is 3,4 or 5
- $C=$ the sum of the two rolls is $9=\{(3,6),(6,3),(4,5),(5,4)\}$

$$
\operatorname{Pr}(A \cap B \cap C)=
$$

$\operatorname{Pr}(A \cap B)=$

Independent Events

Definition: Independent Events

Three events A, B, and C are pairwise-independent if

$$
\begin{aligned}
& \operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B) ; \\
& \operatorname{Pr}(B \cap C)=\operatorname{Pr}(B) \cdot \operatorname{Pr}(C) ; \\
& \operatorname{Pr}(A \cap C)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(C) .
\end{aligned}
$$

Three events A, B and C are mutually independent if they are pairwise independent and

$$
\operatorname{Pr}(A \cap B \cap C)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B) \cdot \operatorname{Pr}(C) .
$$

Compact Notation: Sum and Product

- Σ : Sigma, summation notation LaTex: \sum
- П: Pi, product notation

LaTex: \prod

$$
\begin{aligned}
& \sum_{i=2}^{5} i=2+3+4+5 \\
& \prod_{n=1}^{6} x=x^{6} \\
& \prod_{i=1}^{2} \prod_{j=4}^{6} 3 i j=\prod_{i=1}^{n}((3 i \cdot 4)(3 i \cdot 5)(3 i \cdot 6)) \\
& =(3 \cdot 1 \cdot 4)(3 \cdot 1 \cdot 5)(3 \cdot 1 \cdot 6) \cdot(3 \cdot 2 \cdot 4)(3 \cdot 2 \cdot 5)(3 \cdot 2 \cdot 6)
\end{aligned}
$$

Compact Notation with Sets

- Σ : Sigma, summation notation LaTex: \sum
- $\Pi: \mathrm{Pi}$, product notation

LaTex: \prod

 Let $S=\{1,2,3\}$. Then$\sum_{i \in S} i^{2}=$
$\prod_{i \in S} \operatorname{Pr}\left(A_{i}\right)=$
$\bigcap_{i \in S} A_{i}=$

Independent Events

Definition: Independent Events

Three events A, B, and C are pairwise-independent if

$$
\begin{aligned}
& \operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B) ; \\
& \operatorname{Pr}(B \cap C)=\operatorname{Pr}(B) \cdot \operatorname{Pr}(C) ; \\
& \operatorname{Pr}(A \cap C)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(C) .
\end{aligned}
$$

Three events A, B and C are mutually independent if they are pairwise independent and

$$
\operatorname{Pr}(A \cap B \cap C)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B) \cdot \operatorname{Pr}(C) .
$$

- Succinct form of the definition of mutual independence:

Three events A_{1}, A_{2}, and A_{3} are mutually independent if for all nonempty sets $S \subseteq\{1,2,3\}$,

$$
\operatorname{Pr}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} \operatorname{Pr}\left(A_{i}\right) .
$$

Independence: Examples

1. Experiment: toss a fair coin twice

- $A=$ event that $1^{\text {st }}$ toss is H
- $B=$ event that $2^{\text {nd }}$ toss is H
- $C=$ event that tosses are different

We showed: A, B, C are pairwise independent, but not mutually independent
2. Experiment: toss a fair coin 3 times

- $A_{i}=$ event that i-th toss is H for $i=1,2,3$

Then $\operatorname{Pr}\left(A_{1} \cap A_{2}\right)=\operatorname{Pr}(\{H H T, H H H\})=\frac{1}{4}$

$$
=\frac{1}{2} \cdot \frac{1}{2}=\operatorname{Pr}\left(A_{1}\right) \cdot \operatorname{Pr}\left(A_{2}\right)
$$

Similarly, for A_{1} and A_{3} and for A_{2} and A_{3}
$\operatorname{Pr}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{1}{8}=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\operatorname{Pr}\left(A_{1}\right) \cdot \operatorname{Pr}\left(A_{2}\right) \cdot \operatorname{Pr}\left(A_{3}\right)$
Conclusion: A_{1}, A_{2}, A_{3} are mutually independent

Mutually Independent Events

- We can generalize the definition to any number of events.

Definition: Mutually Independent Events

Events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent if for all nonempty sets $S \subseteq\{1,2, \ldots, n\}$,

$$
\operatorname{Pr}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} \operatorname{Pr}\left(A_{i}\right) .
$$

Example: toss a fair coin n times

- $A_{i}=$ event that i-th toss is H for $i=1,2, \ldots, n$
$A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent
- Independence is a very strong assumption
- Many incorrect arguments in probability are due to
- incorrect assumptions on the independence of events
- not accounting properly for all of the information available
- Need to make sure we are conditioning on the right events

People v. Collins

Robbery case in 1968 in a suburb of LA

- A purse was snatched from an elderly person
- A couple seen running from the scene were described as a black man with a beard and a mustache and a blond girl with hair in a ponytail
- Witnesses said they drove off in a partly yellow car

Malcolm and Janet Collins were arrested

- He was black and, though clean shaven when arrested, had evidence of recently having had a beard and a mustache
- She was blond and usually wore her hair in a ponytail
- They drove a partly yellow Lincoln

https://en.wikipedia.org/wiki/People v. Collins

People v. Collins

- The prosecution called a mathematics instructor as a witness, who testified about the multiplication rule for Pr
- The prosecutor suggested to the jury to consider the following odds that the defenders were not the robbers

Black man with beard	1 in 10
Man with mustache	1 in 4
White woman with pony tail	1 in 10
White woman with blond hair	1 in 3
Yellow motor car	1 in 10
Interracial couple in car	1 in 1,000

- What do you think they ruled?
- Do you agree with their decision?

People v. Collins

- Modeling assumption: each couple matches the witnesses’ description with probability p, independently of the other couples
- Prosecutor's argument:
$p=\operatorname{Pr}($ "black man with beard") $\cdot \operatorname{Pr}($ "man with mustache") $\cdot \ldots$

$$
=\frac{1}{10} \cdot \frac{1}{4} \cdot \frac{1}{10} \cdot \frac{1}{3} \cdot \frac{1}{10} \cdot \frac{1}{1000}=\frac{1}{12,000,000}
$$

$\operatorname{Pr}($ "accused couple are not the robbers") $=p$

65 237
 People v. Collins

The culprit had big eyes, big ears, and big teeth. Statistically, the chance of it being anyone other than the defendant

From http://www.stus.com/stus-cartoon.php?name=People+v.+Collins\&cartoon=evi0007

People v. Collins: Flaws

- Prosecutor's argument:
$p=\operatorname{Pr}($ "black man with beard") $\cdot \operatorname{Pr}$ ("man with mustache") $\cdot \ldots$

$$
=\frac{1}{10} \cdot \frac{1}{4} \cdot \frac{1}{10} \cdot \frac{1}{3} \cdot \frac{1}{10} \cdot \frac{1}{1000}=\frac{1}{12,000,000}
$$

What should this term be by the Product Rule?

- This argument assumes that events are mutually independent

Is it reasonable to assume, e.g., that "black man with beard" and "man with mustache" are independent events?

People v. Collins: Flaws

- Prosecutor's argument:
Pr ("accused couple are not the robbers") $=\operatorname{Pr}($ "a couple matches the description")

Prosecutor's Fallacy

"The odds of finding this evidence on an innocent man are so small that the jury can safely disregard the possibility that this defendant is innocent"

People v. Collins: Flaws

- Prosecutor's argument:
Pr ("accused couple are not the robbers") $=\operatorname{Pr}($ "a couple matches the description")
- This argument fails to condition on all the available information

We need to consider the conditional probability
Pr ("there are at least 2 couples matching description" |
"there is at least 1 couple matching description")

This information was revealed, so we need to condition on it.

People v. Collins

- Suppose there are n couples in the LA area, each matching the description with probability p, independently of the others
- Let $X=$ number of couples matching the description $\operatorname{Pr}(X \geq 2 \mid X \geq 1)=$

People v. Collins

- Suppose there are n couples in the LA area, each matching the description with probability p, independently of the others
- Let $X=$ number of couples matching the description Example: $n=5,000,000 \quad p=\frac{1}{12,000,000}$

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 1)=1-(1-p)^{n} \approx 0.340759 \\
& \operatorname{Pr}(X \geq 2)=1-(1-p)^{n}-n p(1-p)^{n-1} \approx 0.0660758
\end{aligned}
$$

$$
\operatorname{Pr}(X \geq 2 \mid X \geq 1)=\frac{\operatorname{Pr}(X \geq 2)}{\operatorname{Pr}(X \geq 1)} \approx 0.193907
$$

People v. Collins

- Suppose there are n couples in the LA area, each matching the description with probability p, independently of the others
- Let $X=$ number of couples matching the description

$$
\text { Example: } n=5,000,000 \quad p=\frac{1}{12,000,000}
$$

$$
6.6 \% \text { : not large, but }
$$

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 1)=1-(1-p)^{n} \approx 0.340759 \quad \text { not small either } \\
& \operatorname{Pr}(X \geq 2)=1-(1-p)^{n}-n p(1-p)^{n-1} \approx 0.0660758
\end{aligned}
$$

$$
\operatorname{Pr}(X \geq 2 \mid X \geq 1)=\frac{\operatorname{Pr}(X \geq 2)}{\operatorname{Pr}(X \geq 1)} \approx 0.193907
$$

People v. Collins

- Suppose there are n couples in the LA area, each matching the description with probability p, independently of the others
- Let $X=$ number of couples matching the description Example: $n=5,000,000 \quad p=\frac{1}{12,000,000}$

$$
\begin{aligned}
& \operatorname{Pr}(X \geq 1)=1-(1-p)^{n} \approx 0.340759 \\
& \operatorname{Pr}(X \geq 2)=1-(1-p)^{n}-n p(1-p)^{n-1} \approx 0.0660758
\end{aligned}
$$

$$
\operatorname{Pr}(X \geq 2 \mid X \geq 1)=\frac{\operatorname{Pr}(X \geq 2)}{\operatorname{Pr}(X \geq 1)} \approx 0.193907
$$

19.39\%: that's pretty high

People v. Collins

- The California Supreme Court overruled the initial guilty verdict
- There are at least two flaws in the prosecution's argument:
- Independence assumptions: "black man with beard" and "man with mustache" may not be independent
- Not conditioning on all the available information ("at least one such couple")

