

Probability in Computing

Reminders

- HW 7 is due next Thursday **Reading**
- LLM 18.18-18.19, 19.2
 P 1.4.1, 3.1.4

LECTURE 14

Last time (before review)

• Pairwise and Mutual Independence

Today

• Independence of Random Variables

3/16/2023

Tiago Januario, Sofya Raskhodnikova; Probability in Computing; based on slides by Alina Ene

Reminder: Independent Events

Definition: Independent Events

Two events A and B are independent if $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

Definition: Three Independent Events

Three events A, B, and C are pairwise-independent if $Pr(A \cap B) = Pr(A) \cdot Pr(B)$; $Pr(B \cap C) = Pr(B) \cdot Pr(C)$; $Pr(A \cap C) = Pr(A) \cdot Pr(C)$.

Three events A, B and C are mutually independent if they are pairwise independent and $Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C)$

 $Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B) \cdot Pr(C).$

Tiago Januario, Sofya Raskhodnikova; Probability in Computing

CS Mutually Independent Events

• We can generalize the definition to any number of events.

Definition: Mutually Independent Events

Events $A_1, A_2, ..., A_n$ are mutually independent if for all nonempty sets $S \subseteq \{1, 2, ..., n\}$, $\Pr\left(\bigcap_{i \in C} A_i\right) = \prod_{i \in C} \Pr(A_i)$.

Example: toss a fair coin *n* times

• A_i = event that *i*-th toss is H for i = 1, 2, ..., n $A_1, A_2, ..., A_n$ are mutually independent

CS Top Hat question (Join Code: 033357)

How many (nontrivial) equalities do we have to check to establish mutual independence of *n* events?

- **A.** *n*
- **B**. 3n 5
- C. $(n-1)^2$
- D. $2^n n 1$
- **E.** None of the above

CS Top Hat question (Join Code: 033357)

We roll a 6-sided die *n* times.

- Let A_i be the event that the *i*-th roll is 6 for all i = 1, ..., n
- Let $P_{i,j} = A_i \cap A_j$ for all i and $j \in \{1, ..., n\}$ where i < j
- Let $E_{i,j}$ be the event that the results of rolls *i* and *j* are the same for all *i* and $j \in \{1, ..., n\}$ where i < j

Which of the following events are mutually independent? (Pick the last option that applies)

- A. A_1, A_2, \dots, A_n if the die is fair
- **B.** $A_1, A_2, ..., A_n$ if the die is fair or unfair (it does not matter)
- $\mathbf{C}. \quad P_{1,2}, P_{3,4}, P_{5,6}$
- **D.** All events $E_{i,j}$ (that is, $E_{1,2}, E_{1,3}, \dots, E_{n-1,n}$) when the die is fair
- **E.** All events $P_{i,j}$ (that is, $P_{1,2}, P_{1,3}, \dots, P_{n-1,n}$) when the die is fair

Independent Random Variables

Definition: Independent Random Variables

Random variables X and Y are independent if for all $x, y \in \mathbb{R}$, the events $[X \le x]$ and $[Y \le y]$ are independent, i.e., $Pr([X \le x] \land [Y \le y]) = Pr(X \le x) \cdot Pr(Y \le y).$

- This definition applies to both discrete and continuous RVs.
- For discrete random variables, it is equivalent to:

Definition: Discrete Independent Random Variables

Discrete random variables X and Y are independent if for all $x \in range(X)$ and $y \in range(Y)$, the events [X = x] and [Y = y] are independent.

Examples: 1) *X* and *Y* are the results of two rolls of a die.

2) *X* and *Y* the are distances of two darts from the center of the target.

Tiago Januario, Sofya Raskhodnikova; Probability in Computing

CS 237 Top Hat question (Join Code: 033357)

Experiment: toss a fair coin 3 times

• C = number of heads

• $M = \begin{cases} 1 & \text{if all three outcomes match} \\ & (\text{are the same}) \\ 0 & \text{otherwise} \end{cases}$

Are *C* and *M* independent?

- A. YES
- B. NO

Experiment: toss a fair coin 3 times

•
$$H_1 = \begin{cases} 1 \text{ if the first toss is } H \\ 0 \text{ otherwise} \end{cases}$$

• $M = \begin{cases} 1 \text{ if all three outcomes match} \\ 0 \text{ otherwise} \end{cases}$

Are H_1 and M independent?

A. YES

B. NO

Experiment: toss a fair coin 3 times

• $H_1 = \begin{cases} 1 \text{ if the first toss is } H \\ 0 \text{ otherwise} \end{cases}$

• $M = \begin{cases} 1 \text{ if all three outcomes match} \\ 0 \text{ otherwise} \end{cases}$

Are H_1 and M independent?

	M = 1	M = 0
Pr	1/4	3/4

	Pr		M = 1	M = 0
$H_1 = 1$	1/2	$H_1 = 1$	1/8	3/8
$H_1 = 0$	1/2	$H_1 = 0$	1/8	3/8

