Lecture 15

Last time
• Pairwise and Mutual Independence

Today
• Finish independence of random variables
• Expected value of a random variable (can be interpreted as the average value of a random variable)

Reminders
• HW 7 is due Thursday

Reading
• LLM 19.4-19.5
• P 3.2.2
Definition: Independent Random Variables

Random variables X and Y are independent if for all $x, y \in \mathbb{R}$, the events $[X \leq x]$ and $[Y \leq y]$ are independent, i.e.,
$$\Pr([X \leq x] \land [Y \leq y]) = \Pr(X \leq x) \cdot \Pr(Y \leq y).$$

- This definition applies to both discrete and continuous RVs.
- For discrete random variables, it is equivalent to:

Definition: Discrete Independent Random Variables

Discrete random variables X and Y are independent if for all $x \in \text{range}(X)$ and $y \in \text{range}(Y)$,
the events $[X = x]$ and $[Y = y]$ are independent.

Examples: 1) X and Y are the results of two rolls of a die.
2) X and Y the are distances of two darts from the center of the target.
Review Exercise

- Let X and Y be **independent** random variables, each taking on the values -1 and 1 with probability 1/2.
- Let $Z = X \cdot Y$.

Find the PMF of Z
• Let X and Y be independent random variables, each taking on the values -1 and 1 with probability $1/2$.

• Let $Z = X \cdot Y$.

Are X, Y, and Z pairwise independent?

A. YES

B. NO
Mutually Independent Random Variables

- Definition of mutual independence carries over from events to RVs

Definition: Mutually Independent RVs

Random variables X_1, X_2, \ldots, X_n are mutually independent if for all values $x_1, \ldots, x_n \in \mathbb{R}$, the events $[X_1 \leq x_1], [X_2 \leq x_2], \ldots, [X_n \leq x_n]$ are mutually independent.

- For discrete random variables, we can replace the events with $[X_1 = x_1], [X_2 = x_2], \ldots, [X_n = x_n]$

Examples: 1) X_1, \ldots, X_n are the results of n rolls of a die.
2) X_1, \ldots, X_n are the distances of n darts from the center of the target.
Let X and Y be independent random variables, each taking on the values -1 and 1 with probability 1/2.

Let $Z = X \cdot Y$.

Are X, Y, and Z mutually independent?

A. YES

B. NO
Expectation of Random Variables
You roll one die. 🎲
Let X be the random variable that represents the result.

What value does X take on average?

A. $1/6$
B. 3
C. 3.5
D. 6
E. None of the above.
Example: Spinner

- Spin the dial of the spinner.
 Let \(Y \) be the number of the region where it stopped.
 - Range(\(Y \)) = \{1,2,3,4\}
 - \(\Pr(Y = 1) = \frac{1}{2}, \Pr(Y = 2) = \frac{1}{4}, \Pr(Y = 3) = \Pr(Y = 4) = \frac{1}{8} \)
- What value does \(Y \) take on average?
 - It is NOT \(\frac{1+2+3+4}{4} = \frac{10}{4} = 2.5 \)
- Suppose we spin the dial \(N \) times, where \(N \) is huge. Then we expect to see about \(\frac{N}{2} \) ones, \(\frac{N}{4} \) twos, \(\frac{N}{8} \) threes, and \(\frac{N}{8} \) fours.
- If we add them up and divide by \(N \), we get
 \[
 \frac{\frac{N}{2} \cdot 1 + \frac{N}{4} \cdot 2 + \frac{N}{8} \cdot 3 + \frac{N}{8} \cdot 4}{N} = \frac{1}{2} + \frac{1}{2} + \frac{3}{8} + \frac{1}{2} = \frac{15}{8} = 1.875
 \]
 \(\neq 2.5 \)

We want a **weighted average**: each value is counted the number of times proportional to its probability.
Random variables: expectation

Definition: Expectation

The expectation (also called the expected value or mean) of a discrete random variable X over a sample space Ω is

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega).$$

- **Example 1:** $X =$ number obtained when rolling a die
 $$\mathbb{E}(X) = \sum_{i=1}^{6} i \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

- **Example 2:** $Y =$ region of the spinner selected
 $$\mathbb{E}(Y) = \sum_{i=1}^{4} i \cdot \Pr(i) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 4 \cdot \frac{1}{8} = \frac{15}{8}$$

Expectation of X does not have to be in Range(X)
Example: roulette

- 38 slots: 18 black, 18 red, 2 green.

- If we bet $1 on red, we get $2 back if red comes up. What’s the expected value of our winnings?

- Let X be the value of winnings

 It is tedious to consider each slot separately

 We can combine outcomes on which X takes the same value
Random variables: expectation

Definition: Expectation

The **expectation** (also called the **expected value** or **mean**) of a discrete random variable X over a sample space Ω is

$$
\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega).
$$

- We can group together outcomes ω for which $X(\omega) = a$:

$$
\mathbb{E}(X) = \sum_{a \in \text{Range}(X)} a \cdot \Pr(X = a).
$$

Proof:

$$
\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)
$$

$$
= \sum_{a \in \text{Range}(X)} \sum_{\omega \in \Omega : X(\omega) = a} X(\omega) \cdot \Pr(\omega)
$$

$$
= \sum_{a \in \text{Range}(X)} a \cdot \sum_{\omega \in \Omega : X(\omega) = a} \Pr(\omega)
$$

$$
= \sum_{a \in \text{Range}(X)} a \cdot \Pr(X = a)
$$
Example: roulette

- 38 slots: 18 black, 18 red, 2 green.
- If we bet $1 on red, we get $2 back if red comes up. What’s the expected value of our winnings?
- Let X be the value of winnings

$$\mathbb{E}(X) = \sum_{a \in \text{Range}(X)} a \cdot \Pr(X = a)$$
You roll two dice. Let X_1 be the number on the 1st die, X_2 be the number on the 2nd die, and $X = |X_1 - X_2|$. Find $E(X)$.

A. 0
B. 1
C. $\frac{70}{36}$
D. 2
E. 3.5
F. None of the above