

Probability in Computing

Reminders

• HW 7 is due Thursday

Reading

LLM 19.4-19.5
 P 3.2.2

LECTURE 15

Last time

• Pairwise and Mutual Independence

Today

• Expected value of a random variable (can be interpreted as the average value of a random variable)

Top Hat question (Join Code: 413437)

You roll one die.

Let X be the random variable that represents the result.

What value does X take on average?

A. 1/6

B. 3

3.5

6

None of the above.

Example: Spinner

Spin the dial of the spinner.

Let Y be the number of the region where it stopped.

ightharpoonup Range(Y) = {1,2,3,4}

$$ightharpoonup \Pr(Y=1) = \frac{1}{2}, \ \Pr(Y=2) = \frac{1}{4}, \Pr(Y=3) = \Pr(Y=4) = \frac{1}{8}$$

What value does Y take on average?

- It is NOT
$$\frac{1+2+3+4}{4} = \frac{10}{4} = 2.5$$

- Suppose we spin the dial *N* times, where *N* is huge. Then we expect to see about $\frac{N}{2}$ ones, $\frac{N}{4}$ twos, $\frac{N}{8}$ threes, and $\frac{N}{8}$ fours.
- If we add them up and divide by N, we get

$$\frac{\frac{N}{2} \times 1 + \frac{N}{4} \times 2 + \frac{N}{8} \times 3 + \frac{N}{8} \times 4}{N} = \frac{1}{2} + \frac{1}{2} + \frac{3}{8} + \frac{1}{2} = \frac{15}{8} = 1.875$$
 $\neq 2.5$

We want a weighted average:

each value is counted the number of times proportional to its probability.

Random variables: expectation

Definition: Expectation

The expectation (also called the expected value or mean) of a discrete random variable X over a sample space Ω is

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega).$$

• Example 1: X = number obtained when rolling a die

$$\mathbb{E}(X) = \sum_{i=1}^{6} i \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

• Example 2: Y = region of the spinner selected

$$\mathbb{E}(Y) = \sum_{i=1}^{4} i \cdot \Pr(i) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + 4 \cdot \frac{1}{8} = \frac{15}{8}$$

Expectation of X does not have to be in Range(X)

Example: roulette

• 38 slots: 18 black, 18 red, 2 green.

- If we bet \$1 on red, we get \$2 back if red comes up. What's the expected value of our winnings?
- Let *X* be the value of winnings

It is tedious to consider each slot separately

We can combine outcomes on which *X* takes the same value

Random variables: expectation

Definition: Expectation

The expectation (also called the expected value or mean) of a discrete random variable X over a sample space Ω is

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega).$$

• We can group together outcomes ω for which $X(\omega) = a$:

$$\mathbb{E}(X) = \sum_{a \in \text{Range}(X)} a \cdot \Pr(X = a).$$

This version of the definition is more useful for computations.

Proof:
$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)$$

$$= \sum_{a \in \text{Range}(X)} \sum_{\omega \in \Omega: X(\omega) = a} X(\omega) \cdot \Pr(\omega) = \sum_{a \in \text{Range}(X)} \sum_{\omega \in \Omega: X(\omega) = a} \frac{a}{\alpha} \cdot \Pr(\omega)$$

$$= \sum_{a \in \text{Range}(X)} \frac{a}{\alpha} \cdot \sum_{\omega \in \Omega: X(\omega) = a} \Pr(\omega) = \sum_{a \in \text{Range}(X)} \frac{a}{\alpha} \cdot \Pr(X = a)$$

Example: roulette

• 38 slots: 18 black, 18 red, 2 green.

- If we bet \$1 on red, we get \$2 back if red comes up. What's the expected value of our winnings?
- Let *X* be the value of winnings

$$\mathbb{E}(X) = \sum_{a \in \text{Range}(X)} a \cdot \Pr(X = a)$$

Top Hat question (Join Code: 413437)

You roll two dice.

Let X_1 be the number of the 1st die, X_2 be the number on the 2nd die, and $X = |X_1 - X_2|$. Find $\mathbb{E}(X)$.

- \mathbf{A} . \mathbf{C}
- B. 1
- C. $\frac{70}{36}$
- D. 2
- E. 3.5
- F. None of the above

Top Hat question (Join Code: 413437)

You toss a fair coin until you get heads.

Let X be the number of tosses. What is $\mathbb{E}(X)$?

- A. 1.5
- $\mathbf{B}.\quad \sqrt{2}$
- **C**. 2
- D. 4
- E. Infinite

Linearity of Expectation

Theorem. For any two random variables X and Y on the same probability space,

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

Also, for all $c \in \mathbb{R}$,

$$\mathbb{E}(cX)=c\cdot\mathbb{E}(X).$$

You roll two dice.

Let X_1 be the number of the 1st die, X_2 be the number on the 2nd die.

Example 1: Find $\mathbb{E}(X_1 + X_2)$.

Example 2: Find $\mathbb{E}(2X_1)$.

Linearity of Expectation

Theorem. For any two random variables X and Y on the same probability space,

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y).$$

Also, for all $c \in \mathbb{R}$,

$$\mathbb{E}(X) = c \cdot \mathbb{E}(X).$$

• More generally, for all $a, b \in \mathbb{R}$,

$$\mathbb{E}(aX + bY) = a \cdot \mathbb{E}(X) + b \cdot \mathbb{E}(Y).$$

• And for multiple random variables $X_1, ..., X_n$ and numbers $c_1, ..., c_n \in \mathbb{R}$,

$$\mathbb{E}(c_1 X_1 + c_2 X_2 + \dots + c_n X_n)$$

= $c_1 \mathbb{E}(X_1) + c_2 \mathbb{E}(X_2) + \dots + c_n \mathbb{E}(X_n)$

Linearity of expectation holds even for dependent random variables!