

Probability in Computing

Reminders

- HW 11 due Thursday **Reading**
- P 4.2.1, 4.2.3

LECTURE 23

Last time

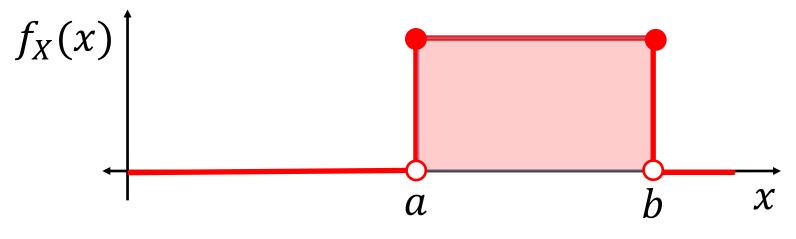
• Applications of Markov and Chebyshev

Today

- Continuous Distributions:
 - Uniform Distribution
 - Normal Distribution

CS Continuous Uniform Distribution

• Also known as **Rectangular Distribution**



• $Pr(a \le x \le b) = 1 = height \cdot widht$

CS 237 PDF: Uniform Distribution

A continuous random variable X is said to have a Uniform distribution over the interval [a, b], shown as X ~ Uniform(a, b), if its PDF is given by

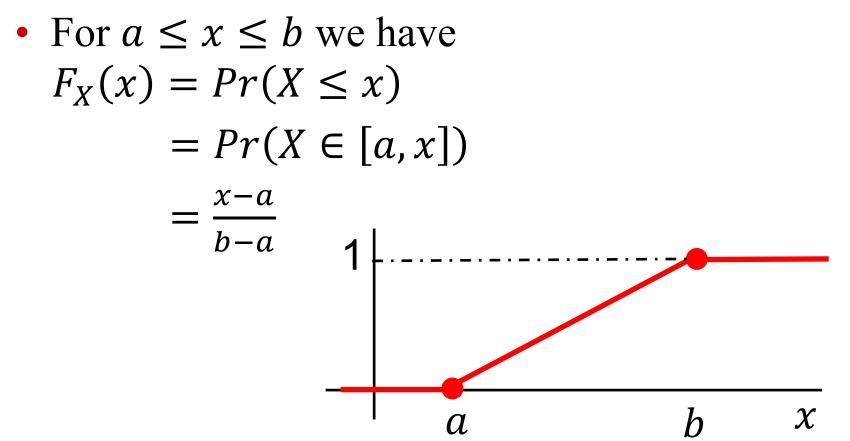
$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & x < a \text{ or } x > b \end{cases}$$

CS Top Hat question (Join Code: 033357)

• A student waits for the T between zero and 10 minutes, uniformly distributed. What is the probability that a student waits between 4 to 6 minutes?

CS CDF: Uniform Distribution

• By definition $F_X(x) = Pr(X \le x)$. We have $F_X(x) = 0$ for x < a and $F_X(x) = 1$ for x > b



Tiago Januario, Sofya Raskhodnikova; Probability in Computing

- By definition $F_X(x) = Pr(X \le x)$. We have $F_X(x) = 0$ for x < a and $F_X(x) = 1$ for x > b
- For $a \le x \le b$ we have

•
$$F_X(x) = \frac{x-a}{b-a}$$

• To summarize

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

CS Top Hat question (Join Code: 033357)

A student waits for the T between zero and 10 minutes, uniformly distributed. What is the probability that the student waits at least 7 minutes?

CS Top Hat question (Join Code: 033357)

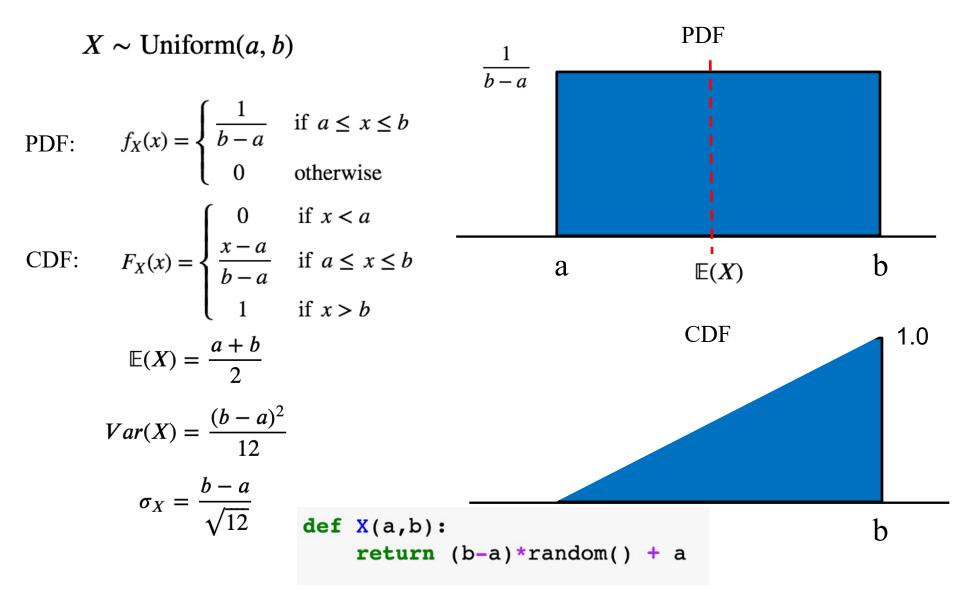
A student waits for the T between zero and 10 minutes, uniformly distributed. What is the expected waiting time?

Variance and Standard Deviation

A student waits for the T between zero and 10 minutes, uniformly distributed. What is the variance and standard deviation?

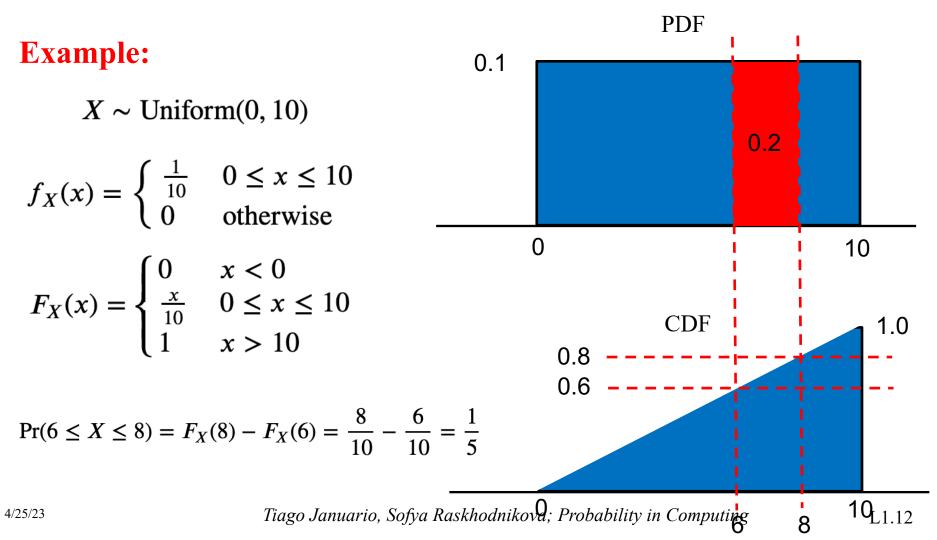
CS Conditional Uniform Probability

What is the probability that a student waits at most 8 minutes given that they waited at least 6 minutes?

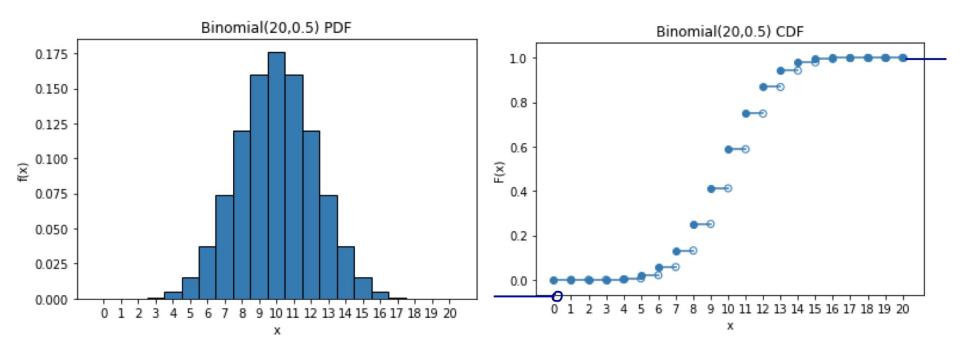


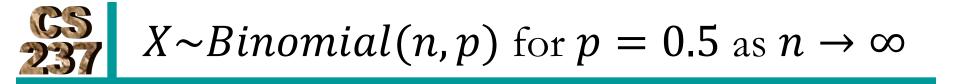
L1.11

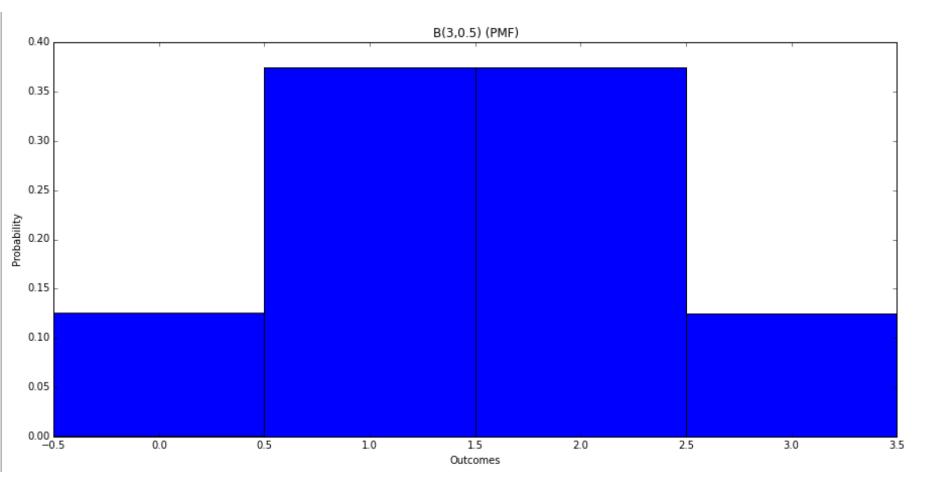
Reminder: The recommended way to calculate probabilities for continuous RVs is with intervals, usually using the CDF.

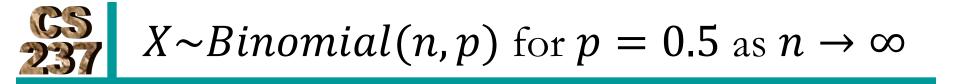


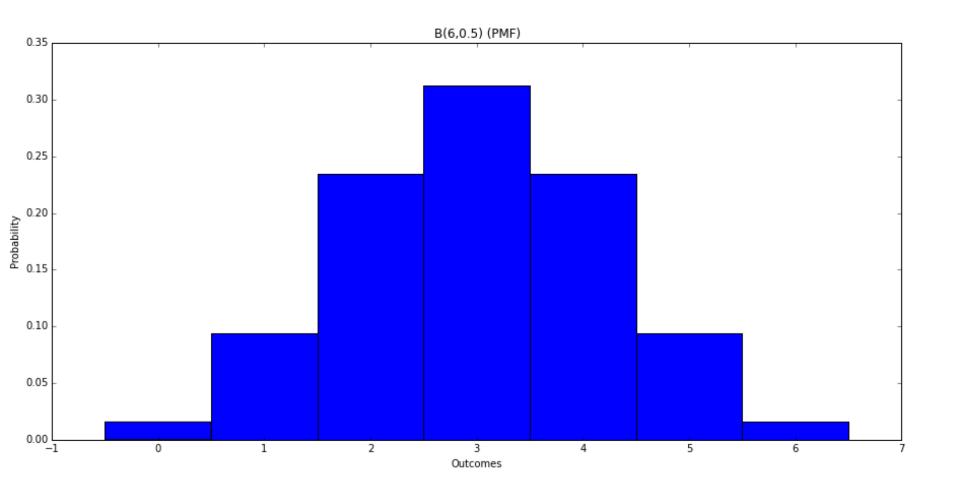
• X ~ Binomial(n, p) example



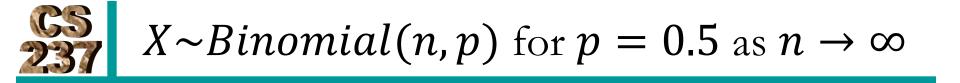


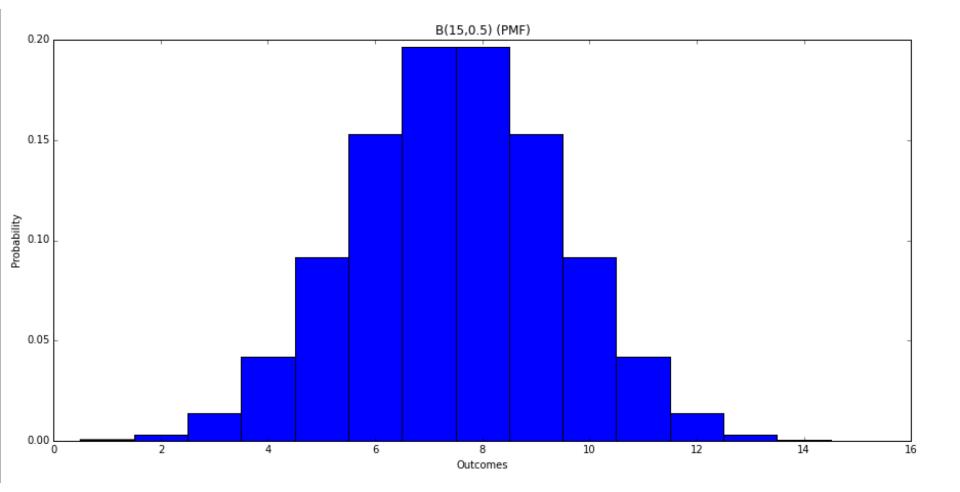






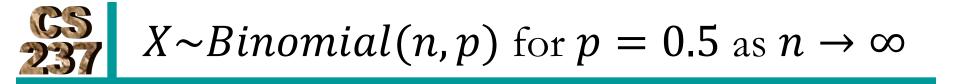
Tiago Januario, Sofya Raskhodnikova; Probability in Computing

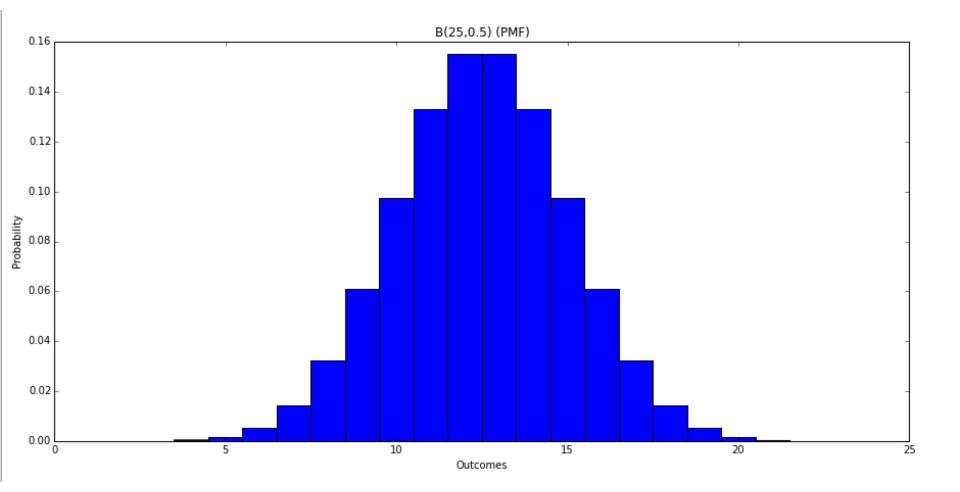




Tiago Januario, Sofya Raskhodnikova; Probability in Computing

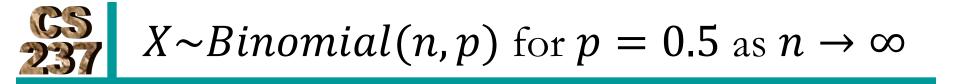
161.16

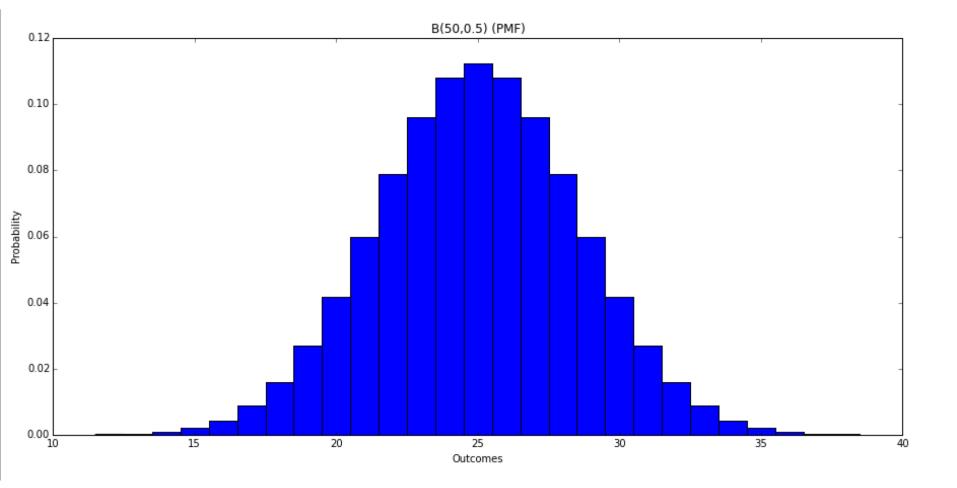




Tiago Januario, Sofya Raskhodnikova; Probability in Computing

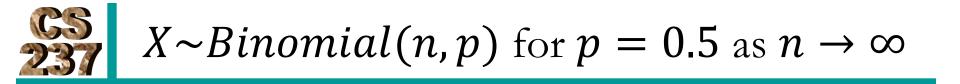
七1.17

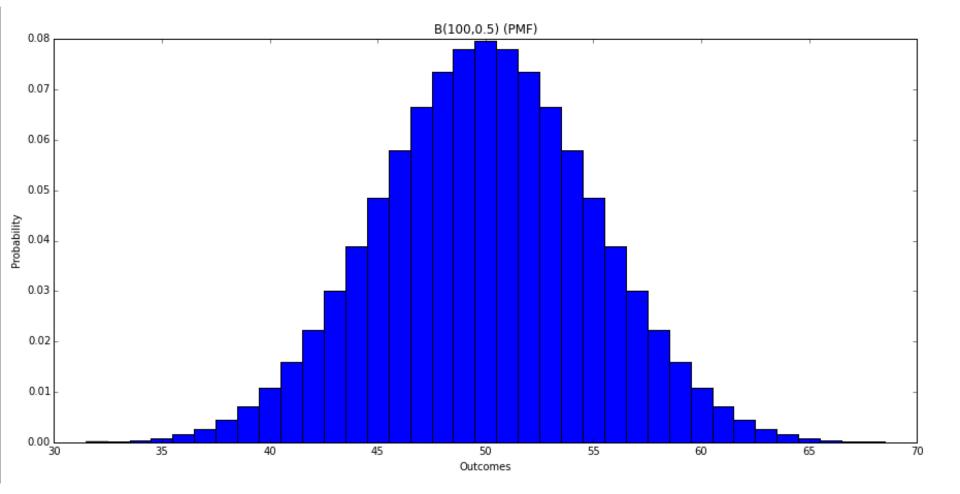




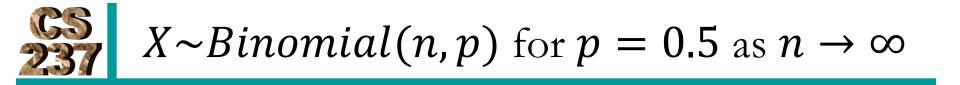
Tiago Januario, Sofya Raskhodnikova; Probability in Computing

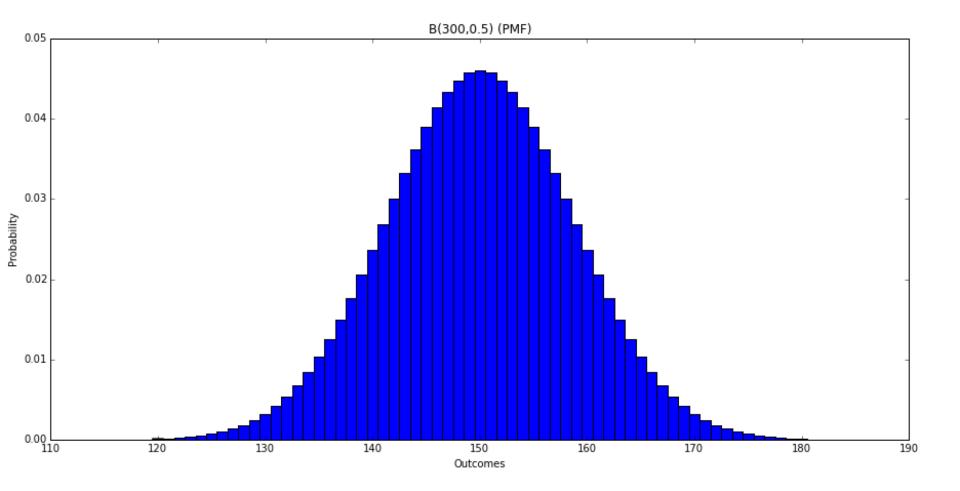
181.18

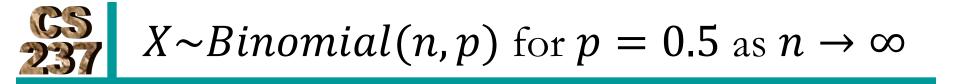


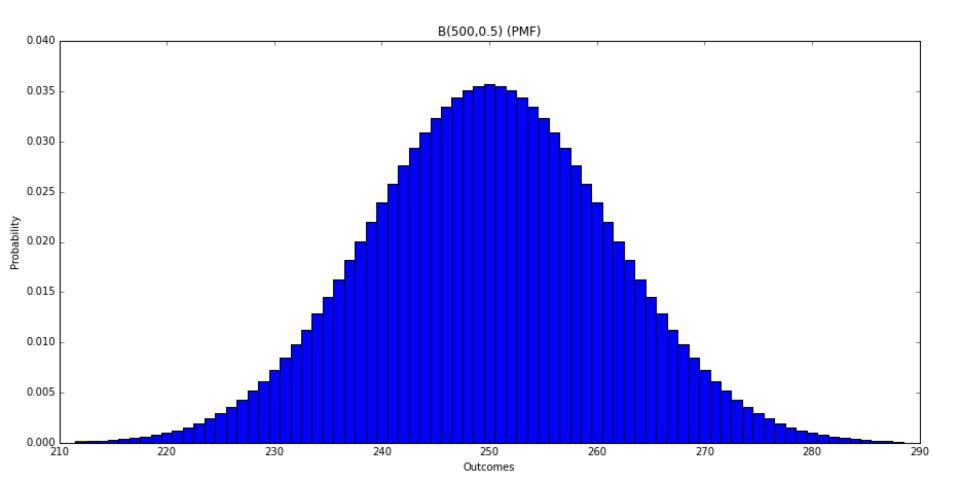


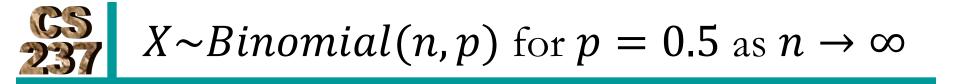
191.19

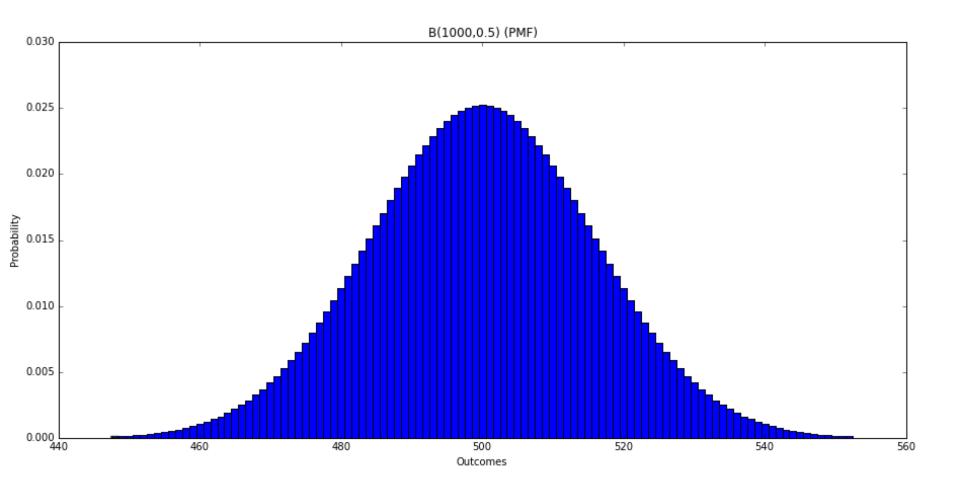


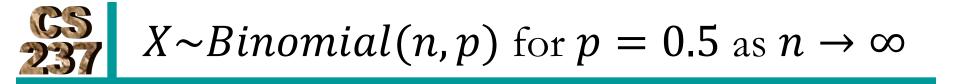


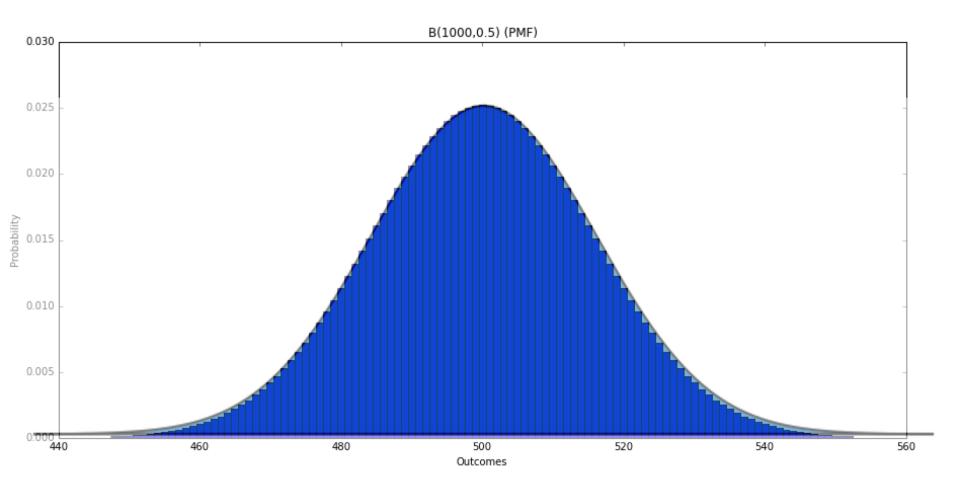




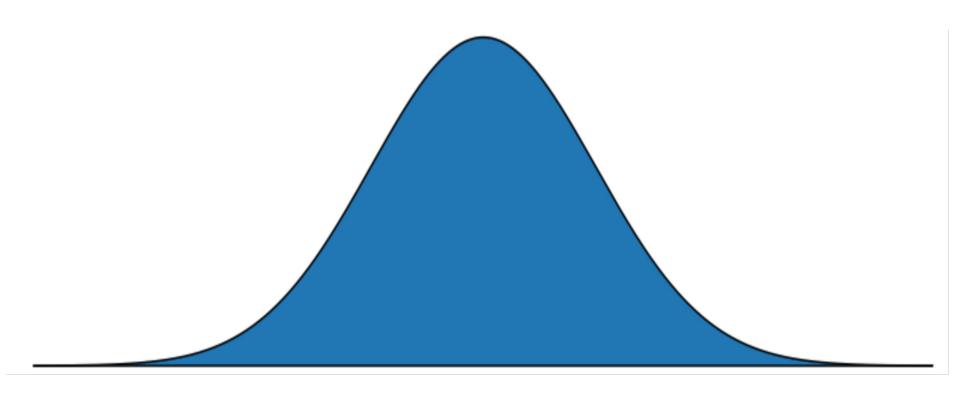






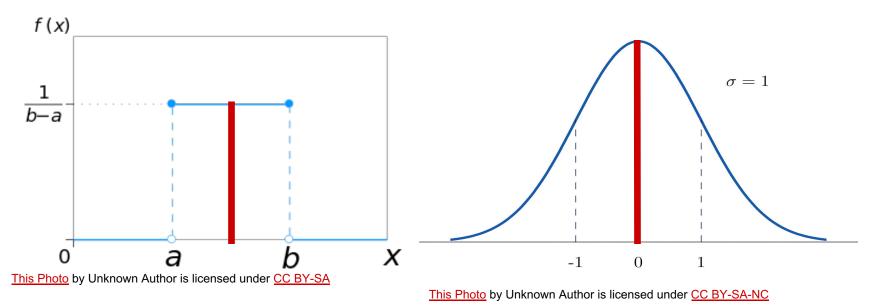


231.23

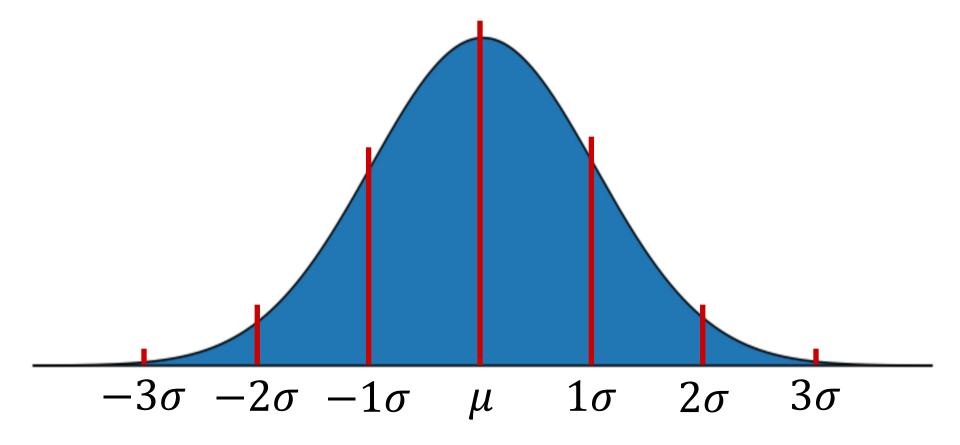


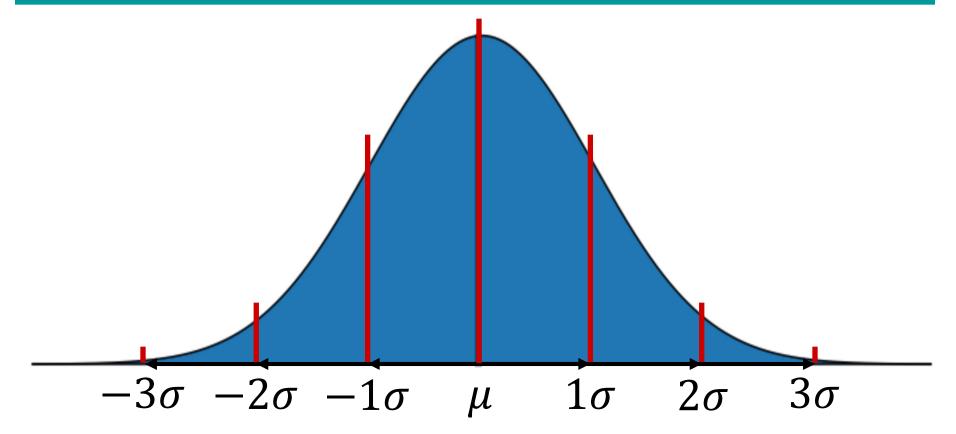
Symmetric probability distributions

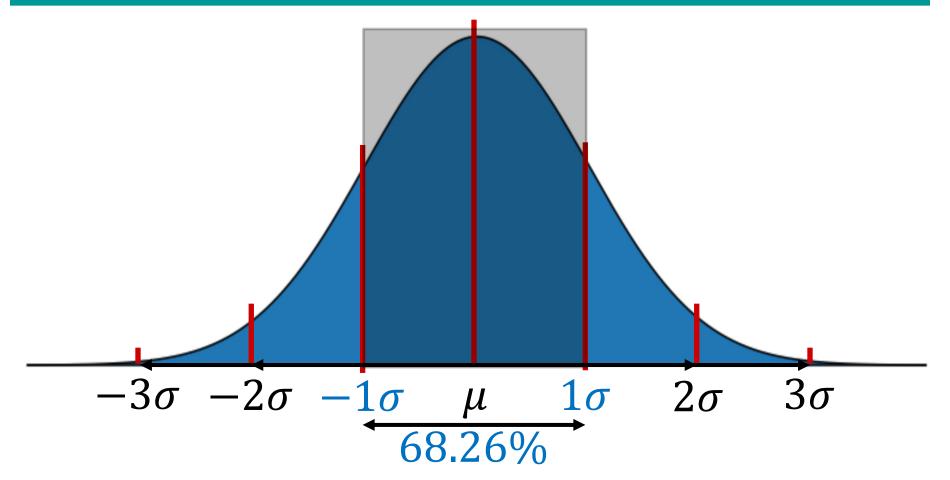
• A symmetric probability distribution is a probability distribution which is unchanged when its PDF is reflected around a vertical line at some value of the random variable represented by the distribution.

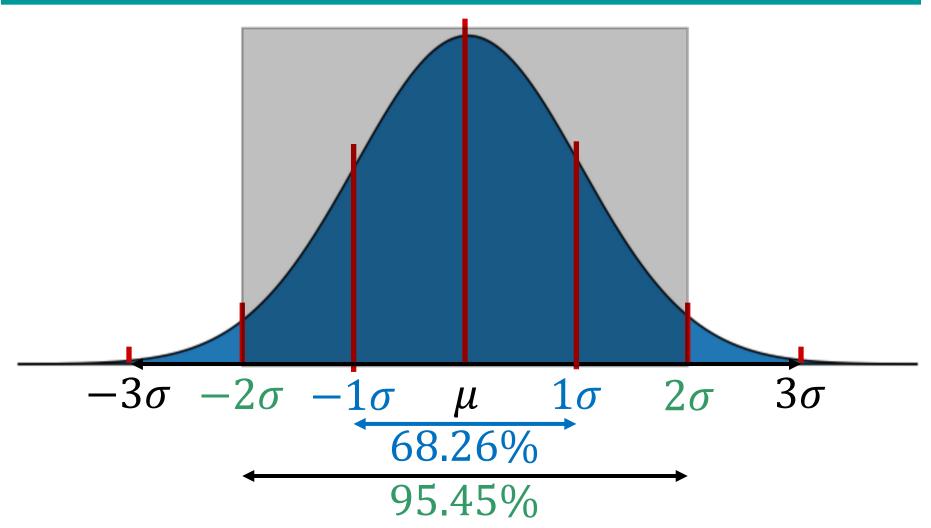


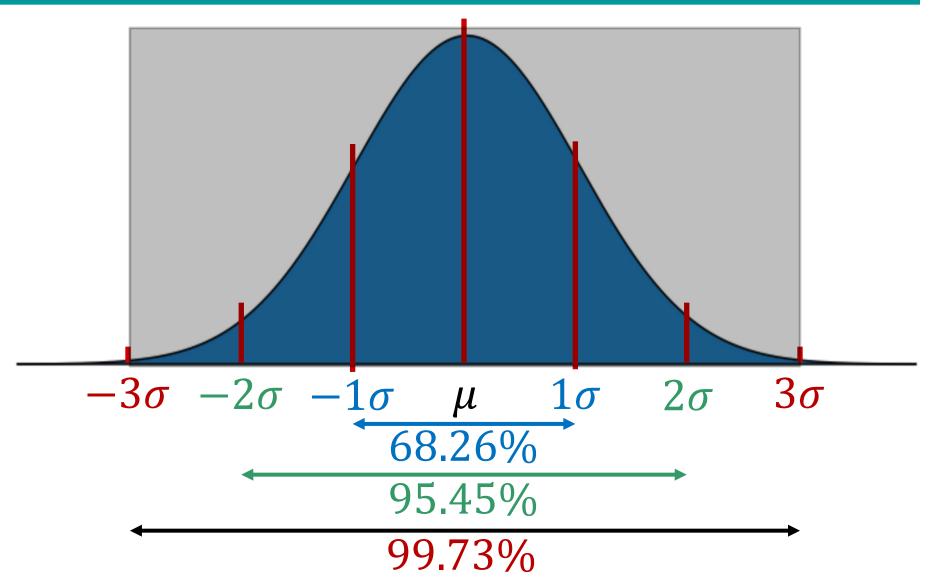
- Very important probability distribution
- Also known as Gaussian or Bell-shaped curve





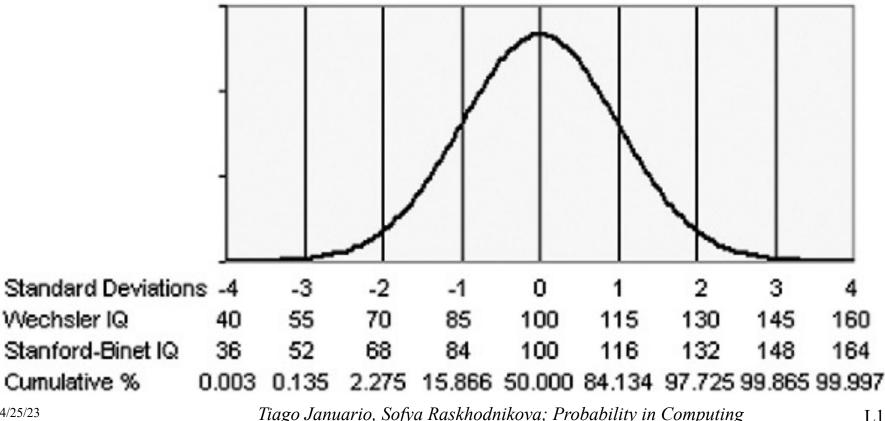






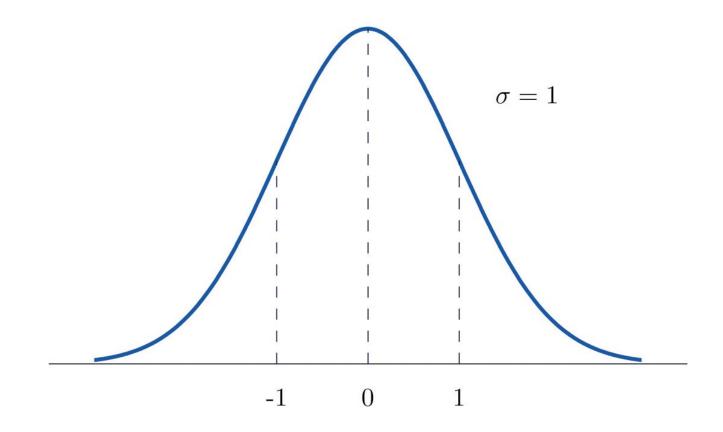
The normal distribution occurs when a very large number of factors add together to create some random phenomenon.

Example: What is the IQ of a human being?



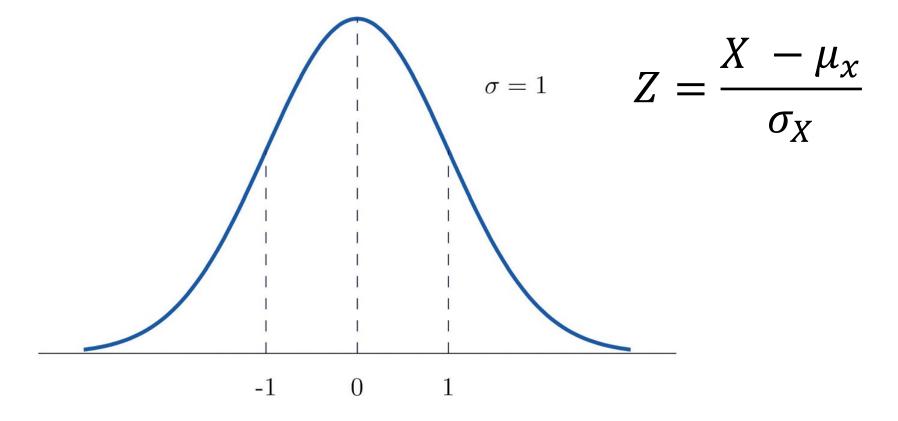
Standard Normal Distribution

Since there are countless Normal Distributions, we focus on a normalized version, simply called the Standard Normal Distribution



Standard Normal Distribution

We can convert any random variable which has a normal distribution $X \sim N(\mu, \sigma^2)$ into a standardized random variable $Z \sim N(0,1)$ by computing its z-score

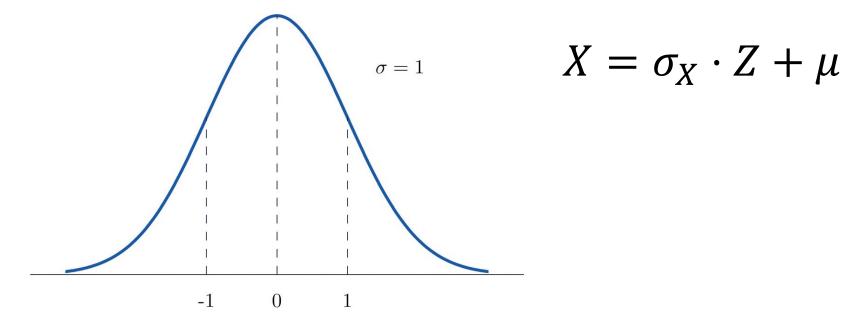


Tiago Januario, Sofya Raskhodnikova; Probability in Computing

4/2.5/23

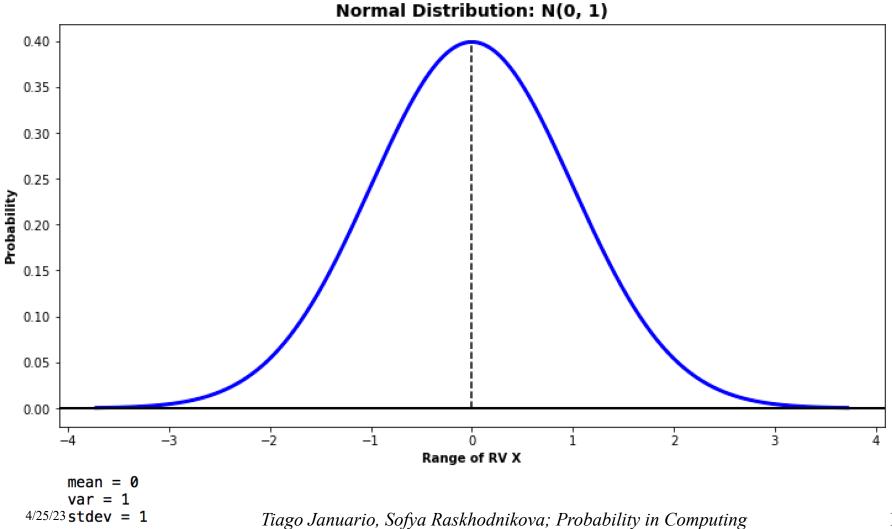
Standard Normal Distribution

We can convert any random variable which has a normal distribution $X \sim N(\mu, \sigma^2)$ into a standardized random variable $Z \sim N(0,1)$ by computing its z-score

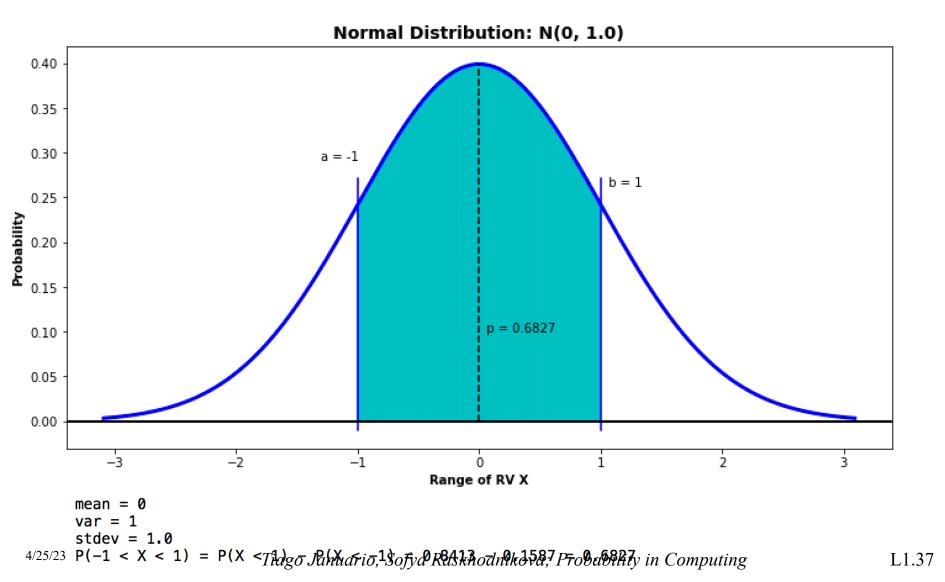


Top Hat Activity (Join Code 033357)

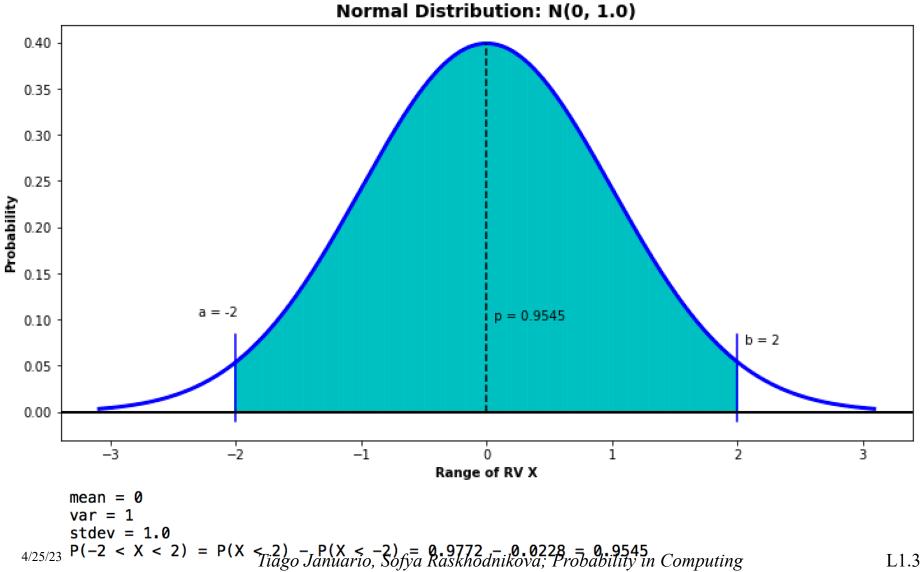
- The heights of adult men in the United States are approximately normally distributed with a mean of 70 inches and a standard deviation of 3 inches.
- Heights of adult women are approximately normally distributed with a mean of 64.5 inches and a standard deviation of 2.5 inches.
- Compute the z-score of your height



L1.36

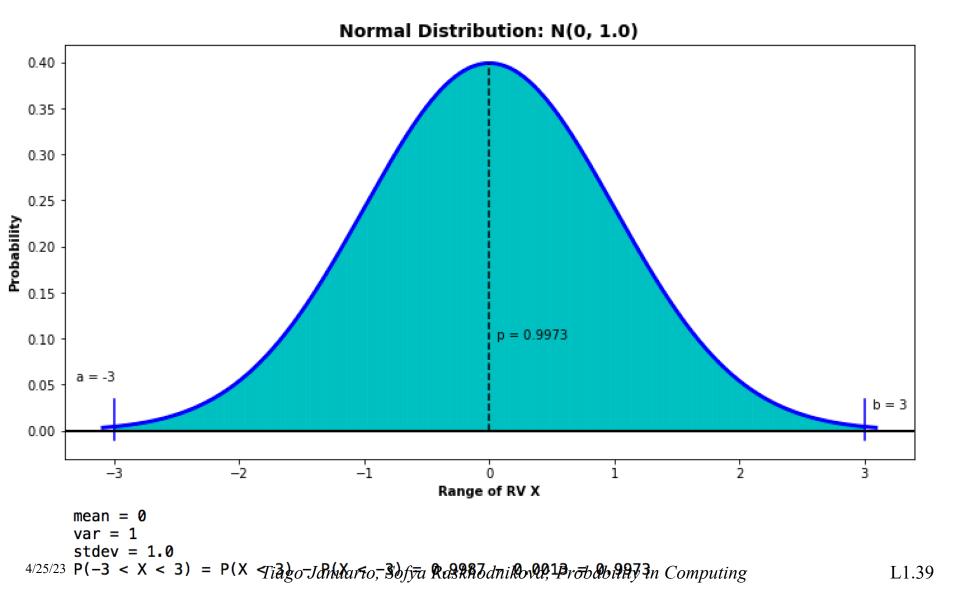


Normal Distribution



L1.38

Normal Distribution



Example: Normal Distribution

Your local pizza shop claims that their large is at least 16in or it is free. Their pizza is normally distributed with $\mu = 16.3in$ and $\sigma = 0.2in$. What is the probability of getting free pizza?

This Photo by Unknown Author is licensed under CC BY-SA

• The PDF of a *standard normal* random variable, $Z \sim N(0,1)$ is given by

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
, for all $z \in \mathbb{R}$.

• and its CDF is given by

$$F_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-\frac{u^2}{2}} du$$

Unfortunately, this integral does not have a closed form solution \mathfrak{S}

• The PDF of a *standard normal* random variable, $Z \sim N(0,1)$ is given by $1 \quad \frac{z^2}{2}$

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}}$$
, for all $z \in \mathbb{R}$.

• and its CDF is given by

$$\Phi(x) = \Pr(Z \le x) = F_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du$$

Unfortunately, this integral does not have a closed form solution \otimes

Here are some cool properties of ϕ

- 1. $\lim_{x \to \infty} \Phi(x) = 1$ and $\lim_{x \to -\infty} \Phi(x) = 0$
- 2. $\Phi(0) = \frac{1}{2}$
- **3.** $\Phi(-x) = 1 \Phi(x)$, for all $x \in \mathbb{R}$

If Z is a standard normal variable and $X = \sigma Z + \mu$ is a normal random variable, then $X \sim N(\mu, \sigma^2)$

Getting Free Pizza

Your local pizza shop claims that their large is at least 16in or it is free. Their pizza is normally distributed with $\mu = 16.3in$ and $\sigma = 0.2in$. What is the probability of getting free pizza?

Getting Huge Pizza

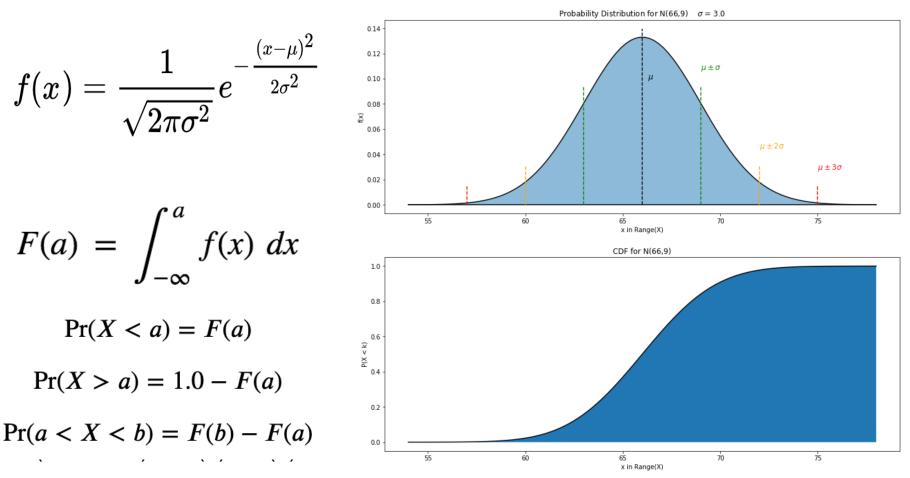
Your local pizza shop claims that their large is at least 16in or it is free. Their pizza is normally distributed with $\mu = 16.3in$ and $\sigma = 0.2in$. What is the probability of getting a pizza over 16.5*in*?

Getting Huge Pizza

Your local pizza shop claims that their large is at least 16in or it is free. Their pizza is normally distributed with $\mu = 16.3in$ and $\sigma = 0.2in$. What is the probability of getting a pizza between 15.95*in* and 16.63*in*?

Normal Distribution

Recall that the only way we can analyze probabilities in the continuous case is with the CDF:



Tiago Januario, Sofya Raskhodnikova; Probability in Computing

4/25/23