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« HW 11 due tonight
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Probability in Computing

LECTURE 24

Last time

e Uniform Distribution

 Normal Distribution
Today

* Exponential Distribution

 Poisson Process
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Q%S% Normal Distribution

Tiago decided to fail 60% of the CS237 students.
Let X~Normal(uy, o) be distribution of points
with uy = 40 and oy = 5. How many points you
need to pass in this course?
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‘é%% Normal Distribution

Tiago decided to fail 60% of the CS237 students.
Let X~Normal(uy, o) be distribution of points
with uy = 40 and oy = 10. How many points you
need to pass in this course?
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237!=§ Comparing Discrete and Continuous Distributions

Discrete Continuous
Measuring:  Binomial(N,1/2) | > Normal(y, o'2)
Waiting: Geometric(p) | > Exponential(4)
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GS Exponential Distribution as Limit of Geometric

237

Geometric( 0.25 )
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GS Exponential Distribution as Limit of Geometric

237

Geometric( 0.125 )
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GH

ay37 | Exponential Distribution as Limit of Geometric

Geometric( 0.052 )
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2%5% Exponential Distribution as Limit of Geometric

Geometric( 0.0252 )
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ay37 | Exponential Distribution as Limit of Geometric

Geometric( 0.0125 )
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ay37 | Exponential Distribution as Limit of Geometric

C Exponential( 0.7 )
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(=S . - -
937 Review: Exponential Function

Since two of the continuous distributions we study (Normal and Exponential)
use exponentials, let’s think about this a bit....

Here is a graph of the exponential function eX, where e =2.71828... (Euler’s

Constant):
Plot of f(x) = e*
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ay37 | Exponential Distribution as Limit of Geometric

C Exponential( 0.7 )
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Exponential Distribution

Exponential Distribution, along with the Normal, is one of the
most important continuous distributions in probability and

statistics.

Formally we say that X is distributed according to the Exponential

Distribution with rate parameter 1 > 0, denoted
X~Exponential(A)

if

—At
f(®) = {ge
Fx(t) = {(1) ~ €

and where E(X) = /11 and Var(X) =

4/25/23

ift =0
if t <0

AL ift>0

if t <0

Probability Distribution for Exp(0.7)

1
/12
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%%Si; Exponential vs Geometric

4/25/23

Exponential distribution ¢ Geometric distribution,

models the time between models the number of
events, where events trials needed to achieve
occur continuously and the first success 1n a
independently at a sequence of independent
constant rate over time Bernoulli trials

In other words, it models ¢ In other words, it models

the waiting time for the the number of trials
next occurrence of an needed to obtain the first
event. "success"
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Q%S?; Exponential vs Geometric

4/25/23

X~Exp(1) e X~Geometric(p)

Ry = [0, o) e Ry =[1,2,3,...]

fx(t) = Ae™™ « Px(k) =(1—-p)'p
Fo(t) =1 — e 2t e Fy(k) =1—-(1-p)F
E(X) —1 e E(X) =%

Var(X) = 1—12 o Var(X) = 1p_—2p
PrX>t)=e* e Pr(X >k) = (1-p)*

PrX<t)=1—-e™ o pr(X<k)=1-(1—-p)¥
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z3»| Exponential Distribution

Examples:

* Time until we observe a shooting star

* Time until a taxi or bus arrives

* Time waiting 1n line at the post office

e Time until a hard drive breaks down

* Time 1t takes for the popcorn to finish popping
* Time 1t takes for your hair to dry
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37| Top Hat question (Join Code: (033357)

Assume that at an intersection the time between
accidents 1s exponential and there are two accidents
per day, on average. What 1s the average time in
hours between accidents?

A. 24
B. 12
C. 2

D. %
E. 30
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37| Top Hat question (Join Code: (033357)

Assume that at an intersection the time between
accidents 1s exponential and there are two accidents
per day, on average.

* What 1s the probability that there will be at least
one accident in the next two days? Type your
answer with 2 decimal places.
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%%Si; Top Hat question (Join Code: 033357)

Fill in the blank

The time (1in minutes) Prof Sofya takes per student
during OH has an Exponential(0.1) distribution.
When you arrive, Prof Sofya is helping another
student and there 1s no one else 1n front of you. The
expected time you will wait 1s 10 min.

A. greater than
B. equals to
C. smaller than
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2335% Exponential Distribution: The Memoryless Property

Probability Distribution for Exp(0.1)
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%g The Memoryless Property

The time (in hours) Prof Sofya takes per student
during OH has an Exponential(6) distribution. You
have been waiting for 30 min. What 1s the
probability that you will wait at least 15 min

more?
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%}g The Memoryless Property
The time (in hours) Prof Sofya takes per student
during OH has an Exponential(6) distribution.
What 1s the probability that she will help within 10
to 20 min?
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Random Arrivals

Random events over time occur frequently:

o Sneezes in a classroom

o Alpha particles emitted from U 238

o Email arriving in my inbox

o Accidents at an intersection

o Earthquakes, volcanoes, asteroids, ...

Yellowstone volcano eruption:
NASA to SAVE the world from
supervolcano erupting

NASA scientists are creating an ambitious plan to prevent an explosion of a Yellowstone
volcano that could even end human life by drilling a hole.

= »W‘ T & m-"—! =

4/25/23 ¢

THE REALLY BIG ONE

An earthquake will destroy a sizable portion of the coastal Northwest. The question is

when.

sd
-

0000

By Kathryn Schulz

hen the 2011 earthquake and tsunami

struck Tohoku, Japan, Chris
Goldfinger was two hundred miles away, in
the city of Kashiwa, at an international
meeting on seismology. As the shaking
started, everyone in the room began to laugh.
Earthquakes are common in Japan—that one
was the third of the week—and the
participants were, after all, at a seismology
conference. Then everyone in the room
checked the time.

The next full-margin rupture of
the Cascadia subduction zone will

Tiago Januario, SOfA-RaskhodRiKOva,; Rrobability'in Computing

Seismologists know that how long an

What if an asteroid hit the Earth?
BY MARSHALL BRAIN o o o 9

UP NEXT »

An asteroid striking our planet - its the stuff of science fiction. Many
movies and books have portrayed this possibility ("Deep Impact,”
"Armageddon," "Lucifer's Hammer," and so on).

An asteroid impact is also the stuff of science fact. There are obvious
craters on Earth (and the moon) that show us a long history of large
objects hitting the planet. The most famous asteroid ever is the one
that hit Earth 65 million years ago. It's thought that this asteroid threw
s0 much moisture and dust in to the atmosphere that it cut off
sunlight, lowering temperatures worldwide and causing the extinction
of the dinosaurs.

Anillustration of an asteroid on its way
to Earth. See more space dust images.
PHOTOGRAPHER: ANDREUS AGENCY:
DREAMSTIME.COM

Every year The Federal Highway A

ion reports approxi 2.5 Million
intersection accidents. Most of these crashes involve left turns.



S| po;
oisson Process

The Poisson Process concept captures an important way of thinking about
events randomly occurring through time (or space)... Two things to remember
are

o Events are discrete (they happen or they don’t — you can think of it as a
Bernoulli trial with an outcome of success or failure), but

o Time and space are continuous..... the random behavior here is the time of an
event.

When an event has happened we say it has arrived. You can think of this as a
sequence of real numbers giving the arrival time of an event:

Arrival Times= {0.4324..., 0.734,1.389...,1.453..., 2.1546..., ... }

S R R R

I
0 1 2 3 4 )

Time t in seconds/days/years/whatever
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Y 4 Poisson Process

We can motivate the way a Poisson process is formally defined
by considering what happens when we randomly generate
arrivals in a unit interval. Suppose each trial of the experiment
we generate 5 random numbers in the interval [0..1):
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Poisson Process
237

We know that the probability that a particular arrival
occurs in the interval [0.0 .. 0.1) is 1/10; for [0.2 .. 0.5) is
0.3, and for any interval [a..b) it is (b-a).

h 00 02 04 06 08 10
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GO -
Poisson Process
237

The probability for any one arrival is
equal to the length of the interval.

-01

-0.2

00 02 04 06 08 10
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GO -
Poisson Process
237

This is because the arrivals are independent
and uniformly distributed in the interval [0..1).

h 00 02 04 06 08 10
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Now suppose we generate 5 random

) arrivals in [0 .. 1), 10 random arrivals
"1, | in[0..2), 15 arrivals in [0 .. 3), 20 in

oo-li t H :I

N [0 .. 4) and so on, to infinity...
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GO :
Poisson Pr
237 01SSO 0ocess

Since the arrivals are independent
) and distributed uniformly, the mean
1, | number of arrivals in each second

oo-li } H #I

- [0..1),[1..2),[2..3), etc. is still 5.
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Y Poisson Process

RATE = # of arrivals per second is always constant at 5
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Fa Y 4 Poisson Process

Definition: A Poisson Process is a sequence of arrivals over time, where:

1) The mean arrival rate

A _ Mean Number of Arrivals
Unit Time

is a constant over all time, for any unit interval [t.. t+1)

1) The number of arrivals in two non-overlapping intervals is independent;
and

2) The probability of two events occurring at the same time is 0.
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It is also possible that the continuous dimension is distance in space, in 1
dimension or more than 1. Examples include:

The occurrence of leaks in an Location of treesin a 1
undersea pipeline (1D): square mile plot of land:. i

08

06

02

Location of supernovas
in a given cubic
gigaparsec volume of
space in the last billion
years:

A l

|
| | | el
5

The important point is that events (discrete) occur along 1 or more (continuous) dimensions.
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T Interarrival Times of a Poisson Process

Suppose we have a Poisson Process, and instead of counting the number of
arrivals in each unit interval, we look at the interarrival times, i.e., the amount
of time between each arrival.

Intuitively, this is a natural thing to think about: How long before the next
event?

Y (Y, Y (Y'Y Y Y Yy Y Y

v v | v v | v | A |y v |
| | | >

0 1 2 3 4 5
Let’s define the random variable Y = “the arrival time of the first event.”

In fact, because the arrivals are independent, at any time t, probabilistically
the Poisson process starts all over again (the events don’t remember the past!),
so in fact

Y is the distribution of the interarrival times, where

Mean Number of Arrivals

Unit Time
4/25/23 Tiago Januario, Sofya Raskhodnikova, Probability in Computing

Y ~ Exponential( A1) where A4 =



=yxy| Poisson Process: Examples

THE REALLY BIG ONE

An earthquake will destroy a sizable portion of the coastal Northwest. The question 1s
when.

£N

O By Kathryn Schulz
as

hen the 2011 earthquake and tsunami

struck Tohoku, Japan, Chris
Goldfinger was two hundred miles away, in
the city of Kashiwa, at an international
meeting on seismology. As the shaking

started, everyone in the room began to laugh.

0000

Earthquakes are common in Japan—that one
was the third of the week—and the

participants were, after all, at a seismologyv
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s37| Poisson Process: Examples

Evidence shows the expected period of
megaquakes is once every 243 years. Last one
was January 26™, 1700, or 323 years ago. What is
probability it will occur in the next ten years?

THE REALLY BIG ONE

An earthquake will destroy a sizable portion of the coastal Northwest. The question is
when.

By Kathryn Schulz

D

hen the 2011 earthquake and tsunami

struck Tohoku, Japan, Chris
Goldfinger was two hundred miles away, in
the city of Kashiwa, at an international
meeting on seismology. As the shaking

started, everyone in the room began to laugh.

0000

Earthquakes are common in Japan—that one
was the third of the week—and the

participants were, after all. at a seismologv
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2%5} Poisson Random Variables

* Consider a Poisson Process
 Fix the unit time interval (e.g., 1 second or 1 year)
* Supposed the mean number of arrivals in a unit interval 1s A

e Let X be the number of arrivals in a unit interval. (It has the same
distribution for each unit interval.)

* Then we call X a Poisson Random Variable with rate parameter A,
denoted X~ Poisson( 1)

Range(X) ={0,1,2,...} ..

pL -A
) = —

E(X) =A
Var(X) = A

Poisson(3)

0 1 2 I! 4 5
4/25/23 ﬂago Janu ] ) k in Range(X)



2%% Poisson Random Variables: Example

Assume that arrivals of email in my Inbox are a Poisson Process
with rate A = 10 messages per hour.

What 1s the probability that I get exactly 10 emails 1n the next hour?

Probability Distribution for Poi(10)

012

010

0.08

P(X=k)

0.06

0.04

0.02

0.00 -

4/25/23

X ~ Poi(10)
Ry = {0,1,2,3,...}

e 1010%
k!

PX =k) = fx(k) =

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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2%55} Poisson Random Variables: Example

« Assume that arrivals of email in my Inbox are a Poisson Process with rate A =
10 messages per hour.

What 1s the probability that I get between 5 and 15 emails (inclusive)
in the next hour?

Probability Distribution for Poi(10)

012

X ~ Poi(10)

010

0.08

Ry = {0,1,2,3,...}

P(X=k)

0.06 e—]() lOk
k!

0.04

PX =k) = fx(k) =

0.02

0.00 -

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
L

J
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